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Abstract

Background: The complicated cellular and biochemical changes that occur in brain during Alzheimer’s disease are

poorly understood. In a previous study we used an unbiased label-free quantitative mass spectrometry-based

proteomic approach to analyze these changes at a systems level in post-mortem cortical tissue from patients

with Alzheimer’s disease (AD), asymptomatic Alzheimer’s disease (AsymAD), and controls. We found modules

of co-expressed proteins that correlated with AD phenotypes, some of which were enriched in proteins identified as

risk factors for AD by genetic studies.

Methods: The amount of information that can be obtained from such systems-level proteomic analyses is critically

dependent upon the number of proteins that can be quantified across a cohort. We report here a new proteomic

systems-level analysis of AD brain based on 6,533 proteins measured across AD, AsymAD, and controls using an

analysis pipeline consisting of isobaric tandem mass tag (TMT) mass spectrometry and offline prefractionation.

Results: Our new TMT pipeline allowed us to more than double the depth of brain proteome coverage. This

increased depth of coverage greatly expanded the brain protein network to reveal new protein modules that

correlated with disease and were unrelated to those identified in our previous network. Differential protein

abundance analysis identified 350 proteins that had altered levels between AsymAD and AD not caused by

changes in specific cell type abundance, potentially reflecting biochemical changes that are associated with

cognitive decline in AD. RNA binding proteins emerged as a class of proteins altered between AsymAD and

AD, and were enriched in network modules that correlated with AD pathology. We developed a proteogenomic

approach to investigate RNA splicing events that may be altered by RNA binding protein changes in AD. The increased

proteome depth afforded by our TMT pipeline allowed us to identify and quantify a large number of alternatively

spliced protein isoforms in brain, including AD risk factors such as BIN1, PICALM, PTK2B, and FERMT2. Many of

the new AD protein network modules were enriched in alternatively spliced proteins and correlated with molecular

markers of AD pathology and cognition.

Conclusions: Further analysis of the AD brain proteome will continue to yield new insights into the biological basis of AD.
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Background
Alzheimer’s disease (AD) is the most common age-

related neurodegenerative disease, and currently affects

more than 46 million people worldwide [1]. The burden

of this disease is rapidly growing as the population ages,

and interventions to treat or prevent the disease are ur-

gently needed. While AD is currently defined by cogni-

tive decline in the presence of amyloid plaque and tau

tangle accumulation within the brain, the altered bio-

chemical and cellular processes that eventually lead to

changes in cognition and pathology are not well under-

stood. A better understanding of these altered processes

may yield insight into new drug targets and biomarkers

for AD. Systems-based approaches such as weighted

gene co-expression network analysis (WGCNA) can be

used to analyze biochemical and cellular changes in

brain, and are useful to help capture the complexity of

perturbations in biological networks that are related to

disease [2–4]. We recently described a weighted protein

correlational network analysis (WPCNA) of post-mortem

brains from patients with AD, asymptomatic AD

(AsymAD), and controls [5]. We found protein net-

work modules that correlated with both cognition and

AD pathology. These modules were enriched for AD

risk loci identified by genome-wide association studies

(GWAS), and contained a large number of glial pro-

teins. Many of the modules we identified were dis-

tinct from mRNA network modules generated from a

separate AD post-mortem brain cohort, suggesting

that mRNA and protein network analyses can gener-

ate both complementary and unique information.

The number of proteins that can be quantified in a

sample cohort is a fundamental limiting factor in the

depth and complexity of any network built from prote-

omic data, and consequently the amount of information

that can be gleaned from such networks. In our previous

analysis of AD, AsymAD, and control brains from the

Baltimore Longitudinal Study of Aging (BLSA) [6] co-

hort, we were able to quantify only 2,736 proteins across

97 dorsolateral prefrontal cortex (DLPFC) and precu-

neus brain tissues using label-free quantification (LFQ)

by liquid chromatography tandem mass spectrometry

(LC-MS/MS), despite the fact that we were able to iden-

tify > 5000 proteins by LC-MS/MS across the set of

brain samples [5]. This reduction in quantifiable proteins

by LFQ LC-MS/MS is a consequence of the stochastic

nature of data-dependent acquisition techniques that

leads to the well-known “missing value” problem [7],

where the same ions are not consistently chosen for MS/

MS analysis across all runs, or the peptide precursor

ions are not matched effectively across runs. One strat-

egy to minimize the missing value problem is to measure

peptide and protein levels using a multiplex tagging ap-

proach with isobaric tandem mass tags (TMTs) [8–11].

The most recent generation of TMTs can be used to re-

port the relative levels of a given peptide from a pool con-

sisting of up to 11 separate and independent samples [10].

Using an appropriate pooled sample study design and

mass spectrometry instrumentation that can perform MS3

reporter quantitation, missing values can be minimized

within an experimental cohort using a TMT approach

while avoiding dynamic range compression effects [8]. In

this study, we used a new pipeline with TMTs, coupled

with offline prefractionation, to profile a much deeper

proteome in the same BLSA DLPFC tissues previously an-

alyzed by online “single-shot” LFQ. This approach allowed

us to quantify 6,533 proteins across the entire cohort—

over double the depth achieved in our previous study. The

increased depth of proteome coverage allowed us to build

a protein network that consisted of approximately three-

fold more protein modules, two-thirds of which shared lit-

tle overlap with the modules previously identified in our

LFQ network. One of the most unique modules contained

strong enrichment in AD risk loci identified by the Inter-

national Genetics of Alzheimer’s Project (IGAP) GWAS

[12], correlated with tau tangle burden, and contained

more glial than neuronal proteins. We also used differen-

tial expression analysis on the enlarged proteomic dataset

to identify proteins that have altered levels among AD,

AsymAD, and control brains, even after accounting for

changes in cellular abundance. RNA binding proteins

emerged as a family of proteins that was increased in

abundance in AD, and these proteins were enriched in

modules that correlated with tau tangle pathology. Based

on this finding, we explored changes in RNA splicing

manifested at the protein level that may occur due to po-

tential RNA binding protein dysfunction in AD. To do so,

we developed a new proteogenomic pipeline that used

RNA-seq data from control and AD brain to predict alter-

native exon-exon junction splicing events not present in

conventional protein databases. This proteogenomic ap-

proach, coupled with the increased depth of proteome

coverage and superior quantitation afforded by our TMT

pipeline compared to our previous LFQ approach, allowed

us to identify and quantify a number of alternative

exon-exon splicing events in brain at the protein level, in-

cluding alternative exon-exon junctions in AD risk factor

proteins such as BIN1, PICALM, PTK2B, and FERMT2.

Many of the identified alternative exon-exon junction

splicing events were highly enriched in modules

unique to the TMT network, and correlated with disease,

suggesting a potential role for aberrant RNA splicing in

AD pathogenesis.

Methods

Tissue samples

Fresh frozen brain tissue blocks from dorsolateral pre-

frontal cortex (Brodmann area 9) were used for analysis,
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as described previously [5]. Frozen aliquots from the

same brain homogenate were used for LFQ and TMT

analysis. Symptomatic AD (n = 20), asymptomatic AD

(AsymAD) (n = 14), and control (n = 13) cases were

processed and analyzed. In addition to these n = 47

cases, mild cognitive impairment (MCI) cases (n = 11)

were homogenized separately on a different day and in-

cluded in the batched TMT-MS design, but were later

excluded from the analysis due to a preparation batch

effect that was refractory to post-hoc correction. Sample

information is given in Additional file 1: Table S1 and

Additional file 2: Table S2. The TMT-MS experimental

design is shown in Additional file 3: Table S3.

Tissue homogenization

Each tissue piece (approx. 100 mg wet weight) was ho-

mogenized in 500 μL of urea lysis buffer (8 M urea,

100 mM NaH2PO4, pH 8.5), supplemented with 5 μL

(100× stock) HALT protease and phosphatase inhibitor

cocktail (Pierce) using a Bullet Blender (Next Advance)

and 750 mg of steel beads (Next Advance). Protein su-

pernatants were then transferred to new 1.5 mL Eppendorf

tube and sonicated (Sonic Dismembrator, Fisher Scientific)

3 times for 5 s with 15 s intervals of rest at 30% amplitude.

Protein concentration was determined by the bicinchoninic

acid (BCA) method, and samples were frozen in aliquots at

− 80 °C. Protein integrity was checked by one-dimensional

SDS-PAGE (Additional file 8: Figure S1). The MCI case

samples were homogenized on a later day than the control,

AsymAD, and AD cases, but digestion prior to TMT label-

ing was performed at the same time.

SDS-page

Protein homogenates (100 μg) were mixed with Laemmli

sample buffer and β-mercaptoethanol (3% v/v), and in-

cubated for 5 min at 95 °C. After cooling, 10 μg protein

was loaded into Bolt 10% Bis-Tris Plus gels (Invitrogen)

and electrophoresed for 30 min at 160 V. Gels were then

stained with Coomassie Blue for protein visualization.

Protein digestion, TMT labeling, and ERLIC fractionation

Protein homogenates (100 μg) were treated with 1 mM

dithiothreitol (DTT) at 25 °C for 30 min, followed by

5 mM iodoacetimide (IAA) at 25 °C for 30 min in the

dark. Protein was digested with 1:100 (w/w) lysyl endo-

peptidase (Wako) at 25 °C overnight. Resulting peptides

were desalted with a Sep-Pak C18 column (Waters). All

samples were dried down completely using a Savant

SpeedVac (ThermoFisher Scientific). In addition to the

58 case samples, a global internal standard (GIS) mix-

ture of case sample homogenates (n = 60, 30 control and

30 AD) taken from multiple different patient cohorts

was generated by mixing each sample equally by protein

amount prior to TMT labeling on a designated reporter

channel. TMT labeling was performed per the manufac-

turer’s protocol and as previously described [10]. Briefly,

the reagents were equilibrated to room temperature.

Dried peptide samples (100 μg each) were resuspended

in 100 μl of 100 mM TEAB buffer (supplied with the

kit). Anhydrous acetonitrile (ACN) (41 μl) was added to

each labeling reagent tube and the peptide solutions

were transferred into their respective channel tubes. The

reaction was incubated for 1 h and quenched for 15 min

afterward with 8 μl of 5% hydroxylamine. Samples were

combined according to the batch design shown in

Additional file 3: Table S3, and dried down to 100 μl to

remove ACN. The combined samples were then desalted

using a Sep-Pak C18 column (Waters) and dried down

to approximately 5 μl. The labeled peptide sample

batches were each further diluted with 100 μl of 90%

ACN and 0.1% acetic acid (buffer A) and loaded onto an

offline electrostatic repulsion–hydrophilic interaction

chromatography (ERLIC) fractionation HPLC system

[10, 13]. A total of 40 fractions were collected over a

40-min gradient from 0 to 28% Buffer B (30% ACN and

0.1% formic acid). The 40 fractions were combined

down to 20 and dried down to completeness.

LC-MS/MS

Dried peptide fractions were resuspended in 30 μl of

peptide loading buffer (0.1% formic acid, 0.03% tri-

fluoroacetic acid, 1% acetonitrile). Peptide mixtures

(2 μl) were separated on a self-packed C18 (1.9 μm

Dr. Maisch, Germany) fused silica column (25 cm ×

75 μM internal diameter; New Objective) by a Dionex

Ultimate 3000 RSLCNano and monitored on a Fusion

mass spectrometer (ThermoFisher Scientific). Elution

was performed over a 140-min gradient at a rate of

300 nl/min with buffer B ranging from 3 to 80% (buf-

fer A: 0.1% formic acid in water, buffer B: 0.1% for-

mic acid in acetonitrile). The mass spectrometer was

programmed to collect at the top speed for 3 s cycles

in synchronous precursor selection (SPS)-MS3 mode

[10, 14]. The MS scans (380–1500 m/z range, 200,000

AGC, 50 ms maximum ion time) were collected at a

resolution of 120,000 at m/z 200 in profile mode.

CID MS/MS spectra (2 m/z isolation width, 35% col-

lision energy, 10,000 AGC target, 35 ms maximum

ion time) were detected in the ion trap. HCD MS/

MS/MS spectra (2 m/z isolation width, 65% collision

energy, 100,000 AGC target, 120 ms maximum ion

time) of the top 5 MS/MS product ions were col-

lected in the Orbitrap at a resolution of 60000 [10].

Dynamic exclusion was set to exclude previous se-

quenced precursor ions for 30 s within a 10 ppm

window. Precursor ions with + 1 and + 8 or higher

charge states were excluded from sequencing.
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Database search and quantification via TMT SPS-MS3

intensities

MS/MS spectra were searched against a Uniprot human

database (downloaded on 04/15/2015 with 90,411 target

sequences) with Proteome Discoverer 2.1 (ThermoFisher

Scientific). The database included all Swiss-Prot-curated

(canonical) plus TrEMBL (unreviewed) sequences, total-

ing 90,411 FASTA sequence entries. Methionine oxidation

(+ 15.9949 Da), asparagine, and glutamine deamidation

(+ 0.9840 Da) and protein N-terminal acetylation (+

42.0106 Da) were variable modifications (up to 3

allowed per peptide); static modifications included cysteine

carbamidomethyl (+ 57.0215 Da), peptide N-terminus

TMT (+ 229.16293 Da), and lysine TMT (+ 229.16293 Da).

Only peptides resulting from LysC digestion were consid-

ered, with up to two miscleavages, in the database search.

A precursor mass tolerance of ±20 ppm and a fragment

mass tolerance of 0.6 Da were applied. Spectra matches

were filtered by Percolator [15] to a peptide-spectrum

match false discovery rate of < 1%. Strict parsimony was ob-

served for peptide to protein matching, and only razor and

unique peptides were used for abundance calculations.

Log2 ratio of sample over the GIS was used for comparison

across all samples.

TMT quantitative data normalization

GIS mixture (MS3 TMT reporter channel m/z 126) pro-

vided as Proteome Discoverer 2.1 script output was

checked for extreme outlier values of log2(0.01) and

log2(100), i.e. ±6.64; these values were excluded from

analysis. Furthermore, proteins with more than 4 un-

quantifiable batches (out of a total of 8 batches) due to 0

or NA value for the GIS channel 126 reporter Proteome

Discoverer 2.1-normalized value (pre-ratio calculation)

were excluded from consideration. Finally, proteins with

more than 23 missing log2(ratio) values were excluded

from analysis, and then 11 MCI cases were dropped,

leaving a matrix of n = 47 control, AsymAD, and AD

cases with no more than 23 missing values (< 50%) per

protein measurement, for a total of 6532 proteins.

Amyloid-β log2(ratio) represented by TMT peptide level

quantitation of the APP LVFFAEDVGSNK peptide was

added to the final 6533 × 47 protein abundance matrix.

Digital sorting algorithm for cell type weight analysis of

tissue proteomes

The covariate-unregressed, normalized abundance matrix

described above was collapsed to average protein abun-

dance measurements for unique gene symbols (n = 5,839)

using WGCNA::collapseRows() function [16]. Two thou-

sand one hundred thirty two cell type marker gene sym-

bols from pure cell types of mouse brain [17] (referred to

as the Sharma dataset) which we previously defined via

thresholding used for cell type enrichment analyses of

human proteome coexpression modules [5, 17] were con-

verted from mouse to human gene symbols using biomaRt

R interface to the public Ensembl datamart as of July 2017

[18]. From this set, 895 gene symbols representing col-

lapsed and averaged protein abundances with no missing

quantification values across the 47 BLSA case tissue sam-

ples overlapped the Sharma quantitative dataset. The

overlapping marker measurements from Sharma purified

brain cell types and our BLSA middle frontal gyrus

samples were input into the DSA v1.0 R package [19]

and estimated weights were found using the DSA::Es-

timateWeight() function.

Regression for covariates

A naïve first pass regression was performed by consider-

ing age, sex, post-mortem interval (PMI), and disease

status group contributions to each sample-specific pro-

tein abundance measurement set (n = 47), explicitly

modeled using 1000 iterations of ordinary nonparamet-

ric bootstrap regression. Then age, sex, and PMI covary-

ing components of the measurement were subtracted to

arrive at a regressed protein abundance measurement

set. This approach was repeated for all 6,533 proteins in

the abundance matrix.

A second, two-pass regression scheme was performed

by first considering DSA estimated cell type weight for

the four Sharma dataset brain cell types (microglia, as-

trocytes, neurons, and oligodendroglia) as four sets of

variables for regression. Following normalization of cell

type abundance variation across the samples, the prior

age, sex, and PMI regression scheme was used to remove

these covariate effects. Only the first pass regressed pro-

tein abundance matrix was used for WPCNA. Import-

antly, missing values did not require imputation for

bootstrap covariate regression.

Weighted protein correlation network analysis (WPCNA)

Threshold power Beta for reduction of false positive cor-

relations (i.e. the beneficial effect of enforcing scale free

topology) was sampled in increments of 0.5 and selected

as the lowest power at which scale free topology R2 was

approximately 0.80, or in the case of the cell type

weight-regressed network, the power at which a hori-

zontal asymptote (plateau) was nearly approached, near

a scale free topology R2 of (0.80). Other parameters were

selected as previously optimized for protein abundance

networks [5]. Thus, for the signed network build on protein

abundances after naïve age, sex, and PMI regression, pa-

rameters were input into the WGCNA::blockwiseModules()

function as follows: Beta (power) 8.0, mergeCutHeight 0.07,

pamStage TRUE, pamRespectsDendro TRUE, reassign-

Threshold p < 0.05, deepSplit 2, minModuleSize 17, repla-

ceMissing TRUE, corType bicor, maxBlockSize greater
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than the total number of proteins (6,533), and TOM-

Denominator mean.

Gene ontology (GO) functional analysis of WPCNA modules

GO analysis for module membership was performed

using GO-Elite [20] with the background set to all 5,839

gene symbols quantified in this study. Gene lists per

module were subjected to Fisher exact overlap test in

the python command line version of GO-Elite v1.2.5 for

species setting Hs against the current (downloaded June

2017) annotation database for Biological Process, Molecu-

lar Function, and Cellular Component terms. Cytoscape

with the EnrichmentMAP app [21] was used to visualize

ontology representation, overlap, and relatedness.

Statistics

Differential expression analysis was performed as previ-

ously described [5]. Briefly, differentially expressed pro-

teins were found using one-way ANOVA followed by

Tukey’s comparison post hoc (p value < 0.05). Volcano

plots were generated with the ggplot2 package in R. Cus-

tom R scripts were used to visualize overlap of differen-

tially expressed targets with WPCNA modules.

MAGMA [22] for p value calculation of GWAS target

enrichment in WPCNA modules was performed as previ-

ously described [5]. Hypergeometric overlap significance

tests, namely one-tailed Fisher exact and two-tailed over-

representation analysis, were performed as previously

described [5].

Proteogenomic RNA alternative splicing analysis based on

gapped transcriptome reads

The GSNAP algorithm with novel splicing flag (-N) on

[23] was used to realign raw short paired end RNA-Seq

reads of 3 control and 3 AD cases from the University of

Kentucky brain bank originally published in Bai, et al.

[24] to the GRCh37 human genome build with contigs

and the 16,569 nucleotide (nt) mitochondrial genome.

Then all exon-exon junctions represented by 2 or more

gapped reads across the 6 case sample cDNA libraries,

with a minimum exonic overlap of 4 nt, were summa-

rized using the R spliceSites bioconductor package. A

custom R script and Excel formulas for string manipula-

tion were used to extract LysC [K|P] peptides spanning

exon-exon junctions (both with and without miscleavage

at proline). All junction-spanning peptides considered

were ones that had alternative events represented by

other gapped reads that shared a left (5′) or right (3′)

end with another set of gapped reads, and not “singleton”

or brain constitutive exon-exon junctions. Peptides from

different genomic sites that were 100% homologous to the

junction-spanning peptides were considered duplicates

and were removed from consideration. The resulting list

of annotated alternative exon-exon junction-spanning

peptides (N > 58,319) detected in brain transcriptome

were concatenated as FASTA entries to the April 2015 hu-

man Uniprot database, and then Proteome Discoverer 2.1

was used to search and quantify peptide reporter channels

across all 8 batches of TMT data with parameters other-

wise as described above for the initial search. Peptide sum-

mary output for each of the 8 batches was opened in

Excel, and all peptides annotated in the expanded human

database as brain-specific alternative exon-exon junc-

tion peptides—including different modified forms of

the same fully LysC digested peptides—were found

and summed using the Excel sumif() function. These

unified quantitations were performed over the differ-

ent post-translationally modified states of the same

peptide (e.g., N-terminal acetylation, or N/Q deamida-

tion, or M oxidation) for all alternative exon-exon

junction peptides in the peptide-level summary output

for each of the 8 10-plex batches of ERLIC fractions.

Quantitations of within-batch normalized abundances

were then scaled across batches to set the average of

all GIS measurements within batch to be identical

across batches. The scaled, normalized, summed pep-

tide abundances were log2-transformed; 9 negative

values (< 1 before log2 transformation) were removed

from the matrix. Regression for age, sex, and PMI co-

variation was performed in R on all log2 transformed

values except for 781 that could not be regressed due

to a high number of missing values. After regression,

ANOVA with Tukey post hoc correction was per-

formed on both regressed and unregressed values.

The regressed alternative exon-exon junction peptide

abundances were matched to the 50 WPCNA eigen-

proteins by calculating kME (correlation to module

eigenprotein) for each peptide and assigning the pep-

tide to the module with the highest correlation. For

the purposes of avoiding spurious correlations, no

more than 25 out of 47 missing values were allowed

for any peptide. Venn and volcano plots were pro-

duced in R using vennDiagram, ggplot2, and/or plotly

R packages.

Results

TMT quantification pipeline increases the depth of

proteomic network analysis of human brain tissues

In our previous analysis of dorsolateral prefrontal cortex

(DLPFC) brain tissue from AD, asymptomatic AD (Asy-

mAD), and control cases from the Baltimore Longitu-

dinal Study of Aging (BLSA) [6] cohort, we were able to

identify 3,069 proteins with 10 % or less missing values

across 47 DLPFC brain samples (excluding precuneus

samples) using “single-shot” one-dimensional online

reverse-phase HPLC fractionation and label-free quanti-

tation (LFQ) [5]. This represented a reduction from

5138 total proteins identified across all DLPFC samples
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due to missing peptide quantitative values in greater

than 10% of the samples. In order to address the limita-

tion of LFQ by data-dependent LC-MS/MS when

analyzing protein levels across multiple samples, we

reprocessed and reanalyzed the same DLPFC homoge-

nates using a multiplex isobaric tandem mass tag (TMT)

labeling approach and synchronous precursor selection-

based mass spectrometry (SPS-MS3) quantitation on a

tribrid mass spectrometer, coupled with orthogonal off-

line prefractionation [8, 10]. As part of the new analysis

approach, we also relaxed the data inclusion criteria to

require missing values in < 50% rather than < 10% of the

samples, given that the WGCNA algorithm for coex-

pression network analysis well-tolerates missing values

up to 50%. We subsequently refer to this quantitation

and analysis approach as our “TMT pipeline.” Using the

TMT pipeline, we were able to identify and quantify

6,533 proteins, compared to 3,069 proteins using the

previous single-shot LFQ strategy. The large majority of

the increase in protein coverage was due to the superior

quantitation provided by TMT labeling and prefractio-

nation rather than the relaxed missing values tolerance

threshold (Additional file 9: Figure S2). To validate that

protein quantitation was similar using the two different

quantitation approaches, we compared the relative levels

of the amyloid-β (Aβ)17–28 peptide in each sample

quantified by LFQ and TMT. The Aβ17–28 peptide is a

proteolytic fragment of Aβ generated by both trypsin

and LysC enzymatic digestion of the full-length Aβ pep-

tide, and therefore represents a peptide with a very large

change in abundance across the sample cohort due to

aggregation of Aβ into amyloid plaques in AsymAD and

AD cases [5]. An illustration of Aβ17–28 quantitation by

TMT is shown in Additional file 10: Figure S3A, with

correlation of this Aβ peptide measurement to cerebral

amyloid plaque load in each case shown in Additional

file 10: Figure S3C. We found a strong correlation (r =

0.85) between Aβ levels measured by LFQ and TMT

quantitation approaches (Additional file 10: Figure S3B),

suggesting that TMT with SPS-MS3 quantification was

able to reliably quantify proteins over a large dynamic

range, similar to the LFQ approach employed in our pre-

vious analysis.

We used the same correlational network analysis ap-

proach previously applied to the LFQ data to construct a

protein correlational network from the TMT data

(Fig. 1a). Whereas we were able to identify 16 modules

of coexpressed proteins in the LFQ protein network, the

increased proteomic depth afforded by the TMT pipeline

increased the number of modules identified in the TMT

network to 50. When comparing protein membership

overlap between the modules in the two networks, most

of the modules that were previously identified in the

LFQ network were largely recapitulated in the TMT

network, including LFQ modules M1, M4, M6, and

others previously identified as strongly correlated with

AD pathology [5]. These modules were renumbered in

the TMT network due to enlargement of the network,

and were occasionally split among several TMT mod-

ules, such as TMT modules M7 and M8 that corre-

sponded to the LFQ module M5. TMT modules with

cognate modules in the LFQ network that were strongly

associated with AD traits included M1 and M3, which

were negatively correlated with AD pathology, and M4

and M7, which were positively correlated with AD path-

ology, among others. However, in addition to the previ-

ously identified modules, the increased depth of the

TMT network allowed us to identify a number of mod-

ules that shared little to no overlap with modules in the

LFQ network. For instance, the most “unique” module,

module 27 (M27), contained > 70% new protein members

that were not identified in the LFQ network (Fig. 1b). The

cell type “character” of each module can be assessed by

examining the overlap of module protein membership

with cell type specific protein expression data [5, 17].

While most of the new modules did not display a strong

association with any of the four brain cell types we

analyzed (microglia, astrocytes, oligodendrocytes, or neu-

rons), M27 was predominantly glial in nature and corre-

lated positively with tau tangle burden (Braak stage).

Other modules unique to the TMT network that were sig-

nificantly correlated with AD neuropathology included

M17 and M29, which were associated with increased tau

tangle burden, and M47, which was associated with de-

creased tau tangle burden. Additional TMT network mod-

ules associated with disease are illustrated in Additional

file 11: Figure S4 and Supplementary Data. Therefore, the

increased depth of proteome coverage afforded by the

TMT pipeline allowed us to identify new modules that

correlated with disease.

AD genetic risk factors cluster in glial modules

Genetic variants that impart increased or decreased risk

for AD have been mapped by genome wide association

studies (GWAS), which collectively have identified over

20 genetic loci associated with AD at genome-wide

significance, and many other loci that fall below

genome-wide significance [12, 25]. We assessed whether

the proteins encoded within these AD risk loci preferen-

tially cluster within any of the modules in the TMT net-

work [5, 22]. We found four modules that were uniquely

enriched in gene products significantly associated with

AD GWAS risk loci: M4, M7, M27, and M33 (Fig. 2).

Three out of four of these modules (M4, M7, and M27)

were predominantly glial in nature and correlated posi-

tively with amyloid plaque and tau tangle burden,

whereas one module, M33, contained more proteins asso-

ciated with oligodendrocytes and neurons, and correlated
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negatively with amyloid plaques and tau tangles (Fig. 1a).

The proteins identified by GWAS that were enriched in

each of these modules are highlighted in Additional file 12:

Figure S5. Modules M4 and M7 showed strong overlap with

two similar modules identified in the LFQ network, M6 and

M5, respectively. M5 was also enriched in AD GWAS loci

[5]. Module M27, however, was the most unique module in

the TMT network compared to the previous LFQ network

(Fig. 1b), and showed enrichment in GWAS protein candi-

dates including PICALM, FERMT2, and TMEM106B,

among others (Additional file 12: Figure S5). Therefore, the

increased depth of the TMT network allowed us to identify

unique protein modules that were both glial in nature and

strongly enriched for AD genetic risk factors.

Brain cell type changes and protein abundance differences

between asymptomatic and symptomatic AD

The neuropathological changes that are quintessential

for AD diagnosis—namely, the development of amyloid

plaques and tau tangles—are considered to develop years

before onset of the cognitive changes that characterize

AD dementia [26]. This asymptomatic phase of AD

(AsymAD) is currently considered a preclinical stage of

the disease [27, 28]. Because our cohort contained brains

from control (little to no AD pathology), AsymAD (AD

pathology without cognitive symptoms), and AD (AD

pathology with dementia) cases, we were able to exam-

ine the changes in brain cell type abundance for four dif-

ferent classes of cells across controls, AsymAD, and AD

(See figure on previous page.)

Fig. 1 Correlational Network Analysis. a, b Proteins in frontal cortex from Alzheimer’s, asymptomatic Alzheimer’s, and control brains were analyzed by

tandem mass spectrometry and quantified using either a label-free (LFQ)-based or tandem mass tag (TMT)-based quantification pipeline. The resulting

data from each quantification approach were used to build separate correlational protein networks. a Modules in the LFQ-trypsin and TMT-LysC

networks are represented by numbers (1–16 in LFQ and 1–50 in TMT) and a cognate color, and the correlational relationship among the

different modules within a network is represented by dendrogram. The overlap of proteins within each TMT-LysC module with cell type

specific protein markers from microglia, astrocytes, oligodendrocytes (oligo), and neurons is shown by single color heat map (increased

red represents increased overlap). Correlation between modules and neuritic amyloid plaque burden (CERAD score) and tau tangle burden (Braak

stage) is shown by two-color heat map for both TMT-LysC and LFQ-trypsin networks (red represents positive correlation, blue represents negative

correlation). The CERAD score captures the type of amyloid plaque burden most closely associated with cognitive decline [53]. Module

protein membership overlap between TMT-LysC and LFQ-trypsin modules is shown by two-color heat map in the large box (red indicates

more overlap than expected, blue indicates less overlap than expected), with a summary of maximal overlap for each module with all

other modules in the other network shown by single color heatmap in boxes labeled “Max”. All modules in the LFQ-trypsin network were

preserved in the TMT-LysC network prior to correction for multiple comparisons. Preservation of LFQ-trypsin modules 7 and 15 in the TMT-LysC network

was no longer significant after correction for multiple comparisons. The area highlighted by the dotted line box represents TMT-LysC modules that have

little to no overlap in protein membership with LFQ-trypsin modules, representing protein modules unique to the TMT-LysC network. b Percent novelty of

protein members within each module of the TMT-LysC network compared to the LFQ-trypsin network. Bars are color coded by heatmap for degree of

significance by P value. P values shown in (a) and (b) are corrected by Benjamini-Hochberg FDR

Fig. 2 Enrichment of AD Genetic Risk Factors within TMT-LysC Network Modules. Enrichment of proteins contained within genetic regions identified

by genome wide association studies (GWAS) as risk factors for AD, autism spectrum disorder, and schizophrenia was calculated for each module in the

TMT-LysC network. Modules highlighted in dark red were significantly enriched for AD risk factors, and not for risk factors associated with autism or

schizophrenia. The horizontal dotted line indicates a z-score level of enrichment of 1.96, or FDR < 0.05, above which enrichment was considered significant
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using a digital sorting algorithm [19, 29], and correlate

these changes with amyloid plaque and tau tangle bur-

den (Fig. 3a and Additional file 13: Figure S6). We found

that astrocytes and microglia were increased in AD com-

pared to AsymAD and control, and showed a strong

correlation with tau tangle burden (Braak stage). The

percentage of astrocytes and microglia also correlated

with amyloid plaque burden, but less strongly than with

tau tangle burden. The neuronal cell population de-

creased in both AsymAD and AD and correlated nega-

tively with amyloid plaque burden. The oligodendrocyte

population increased in AsymAD, and then decreased

slightly in AD compared to AsymAD. While there was a

weak positive correlation with amyloid plaque burden

that approached statistical significance, the fraction of

oligodendrocytes did not correlate with tau tangle

burden. Therefore, the changes associated with progres-

sion to AsymAD are a decrease in neurons and an

increase in oligodendrocytes mostly associated with

amyloid burden. Progression from AsymAD to AD—that

is, symptom onset—is associated with an increase in

astrocytes and microglia, and is associated with neuro-

fibrillary tangle burden.

We next asked whether these changes in cell type

abundance are the primary drivers of changes in protein

abundance among control, AsymAD, and AD, or whether

there are changes in protein abundance by disease state

that are independent of changes in cell type. TMT

A B C

D E

Fig. 3 Protein Abundance Changes in AD Adjusted for Cell Type Changes. a–e The abundance of cell type-specific protein markers of astrocytes,

microglia, neurons, and oligodendrocytes (oligos) was used to calculate the percentage of each cell type in control, asymptomatic AD (AsymAD),

and AD brain tissue (a). b The number of proteins with significantly different levels among control (CT), AsymAD, and AD prior to adjustment for

cell type populations changes observed in AsymAD and AD. The number of total proteins with differential abundance for AD, AsymAD, and CT is

given in parentheses. c The number of proteins with differential abundance after adjustment for changes in cell type population by cell type

deconvolution (regression). The circles in (b, c) are not drawn to scale. d Gene ontology (GO) network analysis of the AsymAD vs. AD proteins

shown in (b), prior to cell type regression. e GO network analysis of the AsymAD vs. AD proteins in (c), after cell type regression. The nonspecific

GO terms “cytoplasm” and “cytosol” were removed from the network. The RNA binding protein subnetwork is highlighted in green. An enlarged

version of the network is given in Additional file 16: Figure S9, with a complete list of GO terms provided in Additional file 4: Table S4. P values in

(a) were calculated after one-way ANOVA. Significance of each GO term in (d, e) is indicated by false discovery rate (FDR, or Q value). GO network

analysis of AsymAD vs. control is provided in Additional file 15: Figure S8
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proteomic analysis allowed us to identify 1147 proteins

that showed changes in abundance among control, Asy-

mAD, and AD cases (Fig. 3b). Most of the proteins with

altered abundance were observed when comparing control

with AD cases, or AsymAD with AD cases, with relatively

fewer proteins that differed between control and Asy-

mAD. To account for changes in cell type on changes

in protein abundance between groups, we used our

estimates of cell type changes to deconvolute this ef-

fect from changes in protein abundance [19, 29], and

then reanalyzed our pairwise group comparisons of

differentially abundant proteins after deconvolution.

This approach has previously been applied to tran-

scriptomic data to remove the confounding effects of

cell type changes on gene expression [30], but to our

knowledge has not previously been applied to prote-

omic data. Deconvolution of cell type changes re-

duced the number of proteins with significantly

different abundance levels between disease states (Fig. 3c).

The number of proteins with different abundance

levels between control and AD was reduced after de-

convolution by approximately a factor of six, suggest-

ing that most of the changes in protein abundance

observed between control and AD are driven by

changes in brain cell type. A similar reduction in

abundance changes was observed between control and

AsymAD after deconvolution. Notably, however, the

number of proteins with unique changes in abun-

dance between AsymAD and AD showed only a small

reduction—from 290 to 263 proteins—after deconvo-

lution for cell type, suggesting that most of the

changes in protein abundance between AsymAD and

AD are not driven primarily by changes in brain cell

type. Instead, these changes may reflect a “biochem-

ical phase” of AD [31]. There were slightly more pro-

teins that were significantly lower in abundance

compared to those that were higher in abundance in

AD compared to AsymAD after cell type deconvolu-

tion (Additional file 14: Figure S7). Proteins that were

elevated in AD compared to AsymAD included

FABP7, SMOC1, and LTF, and tended to cluster in

modules M4, M7, and M8. Those that were lower in

AD compared to AsymAD included NPTX2, VGF,

and GSTM1, and tended to cluster in modules M1,

M2, and M3. Most of the modules in which the dif-

ferentially abundant proteins between AsymAD and

AD tended to cluster correlated with case status or

AD pathology (Supplementary Data). GO network

analysis of differentially abundant proteins between

AsymAD and AD showed that many more protein

ontologies became significant after cell type deconvo-

lution, and existing ontologies identified in the unre-

gressed analysis such as “cytoskeleton” became more

significant (Fig. 3d and e). A GO network analysis of

differentially abundant proteins between control and

AsymAD cases before and after cell type deconvolu-

tion, representing protein changes early in the AD

process, is provided in Additional file 15: Figure S8.

In summary, these findings suggest that a majority of

the differences in protein abundance between AsymAD

and AD appear to be independent of simple brain cell type

abundance changes, in contrast to the protein abundance

differences between control and AsymAD and control and

AD. Furthermore, proteins that change in abundance be-

tween AD and AsymAD are contained within modules

that correlate with AD traits.

RNA binding protein enrichment in the AD brain TMT

proteomic network

After cell type deconvolution of protein abundance

changes, we noted with keen interest the preservation of

RNA binding proteins as hubs of differentially abundant

proteins between control and AsymAD (Additional

file 15: Figure S8), and between AsymAD and AD (Fig.

3e and Additional file 16: Figure S9). We have previously

reported that aggregation of RNA binding proteins that

are a part of the cellular pre-mRNA splicing machinery,

especially the U1 small nuclear ribonucleoproteins

(snRNPs) such as U1-70K, is an early event in AD patho-

genesis [32]. The observation that RNA binding proteins

emerged as hubs of differentially abundant proteins after

cell type deconvolution prompted us to investigate

whether certain TMT network modules were enriched in

RNA binding proteins, and if so, whether these modules

were associated with AD pathology. Upon examination of

a number of different classes of RNA binding proteins, we

found that modules 10, 15, 17, 18, 29, and 40 were signifi-

cantly enriched with RNA binding proteins (Additional

file 17: Figure S10A). Most of the RNA binding

protein-enriched modules correlated with tau tangle bur-

den as measured by Braak stage (Additional file 17: Figure

S10B). Interestingly, our previous studies demonstrated

that many of the U1 snRNPs colocalize with neurofibril-

lary tangles and paired helical filaments in AD brain [24,

32–34], and that accumulation of insoluble snRNPs corre-

lates strongly with both amyloid and Tau pathology [32–

37]. Collectively, these data support the relevance of this

class of proteins to AD pathogenesis. The finding of

strong RNA binding protein enrichment in certain mod-

ules within the AD TMT network led us to question

whether these same modules contained more alternatively

spliced proteins whose abundances may change as a con-

sequence of AD pathophysiology. Changes in RNA spli-

cing leading to the expression of different protein

isoforms may be a useful indicator of AD pathology and

cause downstream cellular and network dysfunction lead-

ing to cognitive decline.
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A Proteogenomic approach for the identification and

quantification of alternative RNA splicing events in AD

brain

Before proceeding with a proteomic analysis of alterna-

tive RNA splicing in brain, we compared which mass

spectrometry proteomic quantification pipeline—LFQ or

TMT—would be most suitable for such an analysis. One

aspect of the TMT quantification approach as imple-

mented in our pipeline is that it uses LysC rather than

trypsin enzymatic digestion prior to LC-MS/MS. LysC

cleaves peptides only at lysine residues, whereas trypsin

cleaves at both lysine and arginine residues. LysC there-

fore generates peptides that are, on average, of greater

length than peptides generated after trypsin digestion

[13]. We hypothesized that this increased peptide length

may better capture exon-exon junction (EEjxn) sites

generated through alternative splicing, and we therefore

assessed whether the TMT-LysC approach allowed us to

identify and quantify more alternatively spliced proteins

than our previous LFQ-trypsin approach. A schematic of

our approach for splicing analysis is shown in Fig. 4a,

with details provided in Methods. We used RNA-seq

data from control and AD DLPFC to generate a library

of potentially translated polypeptides in silico, which we

then digested in silico with LysC to generate proteolytic

peptides that could be appended to standard databases

for identification and quantification of alternative spli-

cing events by mass spectrometry. An example of an al-

ternative mRNA splicing decision quantified at the

peptide level by TMT-MS shown in Fig. 4b. Using this

proteogenomic approach, we were able to identify 5746

alternative exon-exon junction (alt-EEjxn) peptides in

the LFQ-trypsin analysis, compared to 4830 alt-EEjxn

peptides in the TMT-LysC analysis (Additional file 18:

Figure S11). However, in the LFQ analysis over 1000 of

the alt-EEjxn peptides were identified in only 1 out of 47

samples. When comparing the number of quantifiable

alt-EEjxn peptides, the TMT approach was slightly better

than LFQ over a range of data missingness thresholds

(Additional file 18: Figure S11). However, because our

TMT analysis was performed in batch with cases and

controls present within the same batch, whereas LFQ is

performed on individual cases, the difference in quantifi-

able alt-EEjxn peptides by case status between TMT and

LFQ is larger than simply the difference in total quantifi-

able alt-EEjxn peptides. This difference is illustrated in

Fig. 4c, and demonstrates the advantage of the TMT ap-

proach when quantifying proteins across multiple ex-

perimental groups. A summary comparison between the

TMT-LysC and LFQ-trypsin approaches used here for

alt-EEjxn peptide analysis is given in Additional file 5:

Table S5, along with the custom databases from which

the alt-EEjxn peptides were identified. As shown in

Fig. 4c, LFQ-trypsin and TMT-LysC analyses identified

and quantified largely separate subsets of alt-EEjxn pep-

tides. Of those alt-EEjxns that were identified and quanti-

fied by both LFQ-trypsin and TMT-LysC approaches, the

relative quantitative values correlated between the two ap-

proaches (Additional file 19: Figure S12), lending validity

to the alt-EEjxn quantifications. From both of these ana-

lyses we were able to validate the occurrence of a number

of alt-EEjxn splicing events in brain that have yet to be an-

notated in Swiss-Prot, and which heretofore have been

predicted to exist only in the Trembl database, in our

RNAseq data, or in both. For those alt-EEjxns that were

identified in only the RNAseq data, trypsin and LysC also

identified different subsets of junctions as reflected by the

different GO ontologies for these alternatively spliced pro-

teins, similar to the total alt-EEjxn quantifications (Add-

itional file 20: Figure S13). A complete list and description

of each alt-EEjxn peptide identified by LFQ-trypsin and

TMT-LysC pipelines is given in Supplementary Data. In

summary, we found that our TMT-LysC pipeline was su-

perior to our previous LFQ-trypsin pipeline for quantita-

tive analysis of alt-EEjxn splicing decisions in brain, and

we therefore focused our subsequent analyses on

alt-EEjxn peptides generated by LysC cleavage and quanti-

fied by TMT.

Alternative splicing events associated with AD pathology

and cognitive function

In order to examine which alt-EEjxn splicing events may

be associated with progression of cognitive dysfunction

from AsymAD to AD given the RNA binding protein

abundance differences after cell type deconvolution be-

tween these two disease states, we performed a differen-

tial abundance analysis of alt-EEjxn peptides between

AsymAD and AD. As shown in Fig. 4d, we found there

were more alt-EEjxn peptides that were reduced in AD

compared to AsymAD, similar to the total protein abun-

dance differences between AD and AsymAD. Alt-EEjxns

that were increased in AD were enriched in modules

M4, M7, and M35, with M35 containing alt-EEjxns with

the largest average change from AsymAD (Additional

file 21: Figure S14). All of these modules were strongly

glial in nature, with M35 a strongly astrocytic module.

Tau had a number of alt-EEjxn peptides that were signifi-

cantly increased in AD, and these mapped to the 3- and

4- microtubule binding domain repeat isoforms of the

protein in this analysis because either isoform can be

considered constitutively expressed in humans. Alt-EEjxns

that were decreased in AD were most abundant in module

M36—a module unique to the TMT network and without

strong cell type character. We also analyzed specifically

alt-EEjxns derived from the top twenty most significant

common variant AD risk factor proteins identified from

GWAS [12]. We observed alt-EEjxn peptides from a total

of five of these proteins (Additional file 6: Table S6). Three
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of the five GWAS proteins had alt-EEjxns that were differ-

ent in abundance by case status, and included BIN1,

PTK2B, and FERMT2 (Additional file 7: Table S7). In

summary, we identified a number of alternative splicing

decisions at the protein level in brain that significantly

change in AD, including in AD risk factor proteins identi-

fied from GWAS. Those that were increased in AD tended

to cluster in astroglial modules.

To extend our analysis of alt-EEjxns to the network

level, we next assessed whether certain network modules

were enriched for alt-EEjxns beyond those enriched only

for differentially abundant alt-EEjxns, and if so, whether

these modules were the same modules that were enriched

in RNA binding proteins. To do so, we added the

alt-EEjxn peptides identified by TMT-LysC to the TMT

protein network modules with which they most highly

correlated and tested whether a module contained more

alt-EEjxn peptides than would be expected by chance.

Interestingly, we found that there was little overlap be-

tween modules enriched in RNA binding proteins and

those enriched in alt-EEjxn peptides (Fig. 4e), suggesting

that pre-mRNA splicing changes in AD are not highly cor-

related with changes in the levels of RNA binding pro-

teins, per se. Modules 4 and 7—glial modules enriched in

AD risk factors from GWAS—did not contain more

alt-EEjxn peptides than expected, but two other GWAS

modules, M27 and M33, were enriched, with M33 being

highly enriched. M33 contained snRNPC, a U1 snRNP in-

volved in the spliceosome complex. Another highly

enriched module, M15, also contained snRNPs snRNPB

and snRNP70 (also known as U1-70K). We have previ-

ously shown that U1 snRNPs are a major component of

the AD insoluble proteome [24, 32–34]. Modules that

were most highly enriched with alt-EEjxn peptides clus-

tered in the unique (i.e., protein module specific) region of

the TMT network, with an especially enriched cluster in

related modules 11, 36, 16, and 20. Modules 11 and 20

had corrected p values for enrichment of 4.1e− 15 and

1.7e− 13, respectively, and by GO analysis were most likely

to be involved in regulation of immune system processes

(data not shown). This region of the TMT network was

not strongly associated with a particular cell type or

strongly correlated with standard histopathological mea-

sures of AD. However, given that alternative splicing is a

molecular event, we tested whether these modules might

better correlate with molecular markers of AD path-

ology present within the same tissue sample rather

than with the general pathological measures repre-

sented by CERAD score and Braak stage. For molecu-

lar correlation with tau, we correlated each module

with the tau pT231 peptide (VAVVRpTPPKSPSSAK),

which lies within the proline-rich region of tau and is

separate from the microtubule-binding region that ag-

gregates into neurofibrillary tangles. Phosphorylation

of tau at T231 has been associated with AD [38], and

levels of this peptide are moderately correlated with

tau tangle burden (Additional file 10: Figure S3D).

We also tested for correlation of each network mod-

ule with Aβ17–28, U1-70K, and TDP-43, as well as

with cognitive function as measured by last MMSE

score prior to death. As shown in Fig. 4e, modules

11, 36, and 20 showed a significant correlation with

either tau pT231, U1-70K, or cognition. Interestingly,

the highly related modules 11 and 36 showed

(See figure on previous page.)

Fig. 4 Alternative Splicing in AD. a–e Workflow for proteogenomic analysis of alternative splicing (a). RNA-Seq is performed on mRNA isolated

from dorsolateral prefrontal cortex (DLPFC) control and AD brain. The mRNA sequences are then translated and digested with a given enzyme in

silico to obtain peptide sequences. Peptide sequences that contain non-canonical exon-exon junctions (alt-EEjxns) are appended to the search

database for peptide identification and subsequent quantification. b Illustration of alt-EEjxn peptide quantification for the clathrin light chain B

protein (CLTB). An alternative splicing event between exons 5, 6, and 9 leads to the generation two alt-EEjxn peptides after enzymatic digestion.

The levels of these alt-EEjxn peptides, each of which reflects a particular splicing “decision,” can be quantified across case groups. The exon numbering

shown in panel (b) is based on the Gencode v19 exon annotation database, and includes RNA-derived junctions. c Venn diagram representing the

number of alt-EEjxn peptides quantifiable by LFQ-trypsin or TMT-LysC pipelines in the BLSA cohort. A peptide was considered quantifiable

if it had at least two measurements in at least two different case groups. The overlap between TMT-LysC and LFQ-trypsin represents quantifiable

exon-exon junctions that were identified by both methods, even though the peptides that contain the junction may be different between the two

methods. d Differential abundance of alt-EEjxns between AsymAD and AD, color-coded by the module to which each junction peptide is

most highly correlated. The amino acid sequence of each alt-EEjxn peptide, and the module to which each alt-EEjxn peptide is most

highly correlated, is provided in interactive HTML files for each case group comparison in Supplementary Data. e Enrichment of TMT-LysC

alt-EEjxn peptides in TMT-LysC network modules. Each network module eigenprotein was correlated with molecular phenotypes obtained

from the same tissue sample as the alt-EEjxn peptides, as well as with cognition as measured by the last MMSE score proximate to death.

Modules within the dashed box are unique to the TMT network, similar to the depiction shown in Fig. 1a. Module numbers highlighted in red indicate

modules enriched in RNA binding proteins as shown in Additional file 17: Figure S10. Significance of enrichment for alt-EEjxn peptides was calculated

by Fisher exact test, and is shown by single color heat map of -log10 p value (increased red represents smaller p value). P values are corrected by

Benjamini-Hochberg FDR. Module eigenprotein correlation with molecular species and cognition is shown by two-color heat map (red

represents positive correlation, blue represents negative correlation). MMSE correlation was calculated by Spearman test. All other correlations are

bicorrelation rho. Aβ, amyloid-β(17–28); MAPT pT231, microtubule associated protein tau peptide (VAVVRpTPPKSPSSAK) phosphorylated at threonine

231; U1-70K, U1 small nuclear ribonucleoprotein 70 kDa; TDP-43, TAR DNA-binding protein 43; MMSE, mini-mental state examination. *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001
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opposite correlation with cognition, with increases in

M11 associated with worsened cognitive function and

increases in M36 associated with improved cognitive

function, suggesting that protein splicing changes may

be highly specific in their relationships to different

types of AD pathology and cognitive function. Module

35, which contained a number of differentially abun-

dant alt-EEjxns, showed strong correlation to Aβ as well

as to tau pT231, and correlated with worsened cognitive

function. From the molecular analyses we also identified

modules such as M18 that, although not enriched in

alt-EEjxn peptides, were observed to be strongly enriched

in RNA binding proteins (Additional file 22: Figure S15),

were strongly correlated in a positive direction with

tau pT231, U1-70K, and TDP-43, and were corre-

lated in a negative direction with cognitive function.

A summary of the TMT network findings that in-

cludes cell type character, correlation with

Fig. 5 TMT-LysC AD Protein Network Summary. The overlap of proteins within each TMT-LysC module with cell type specific protein markers from

microglia, astrocytes, oligodendrocytes (oligo), and neurons is shown by single color heat map (increased red represents increased overlap). Correlation

between module eigenprotein and neuritic amyloid plaque burden (CERAD score), tau tangle burden (Braak stage), Aβ17–28, phosphorylated tau pT231

peptide (VAVVRpTPPKSPSSAK), U1-70K small nuclear ribonucleoprotein, TAR DNA-binding protein 43 (TDP-43), and last mini-mental state examination

(MMSE) score prior to death, is shown by two-color heat map (red represents positive correlation, blue represents negative correlation). The overlap of

alt-EEjxns and different classes of RNA binding proteins is shown by single color heat map. A, McKnight 570 refers to RNA binding proteins that are often

found within RNA granules as described in [48]; B, Total Observed RNA binding refers to all RNA binding proteins commonly observed in our proteomic

experiments; C, proteins that interact with the low complexity 2 (LC2) domain of the U1-70K small nuclear ribonucleoprotein 70 kDa (snRNP70) [54]; D,

proteins that are homologous to U1-70K; E, proteins that interact with the LC1 or basic-acidic dipeptide (BAD) repeat domain of U1-70K [54]; F, low

complexity arginine-serine (RS) repeat-containing proteins; G, proteins annotated as comprising the spliceosome complex in the Kyoto

Encyclopedia of Genes and Genomes (KEGG); H, proteins annotated as involved in RNA translation by Gene Ontology (GO); I, proteins

annotated in KEGG as belonging to the U1 spliceosome complex. Overlap was calculated by Fisher exact test. P values are corrected by

Benjamini-Hochberg FDR. Bicorrelation was performed for CERAD, Braak, and molecular species. Spearman correlation was performed for

MMSE. Detailed data for all correlations are provided in Supplementary Data
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histological and molecular markers of AD and cogni-

tion, and enrichment of RNA binding proteins and

protein alt-EEjxns, is given in Fig. 5. Overall, we

found that RNA binding proteins are enriched within

specific network modules, and that these modules

are generally positively correlated with AD pathology

and negatively correlated with cognitive function.

Modules that are enriched in alt-EEjxns do not overlap

significantly with RNA binding protein modules, but

many are located within the unique region of the

TMT network and correlate with molecular markers

of AD pathology. Some of these modules are strongly

enriched with alt-EEjxns and correlate with cognitive

function.

Alternative splicing events associated with modules

enriched in AD risk factor proteins

As a final separate approach to investigate alt-EEjxn spli-

cing events that may be relevant to AD, we correlated

each alt-EEjxn peptide with the module eigenprotein for

those modules that were enriched in AD GWAS hits in

the BLSA-TMT network (M4, M7, M27, and M33), and

assessed whether the alt-EEjxn peptide was present in

differential abundance among control, AsymAD, and AD

brains. A list of the top ten most highly correlated

alt-EEjxn peptides with these modules and their differen-

tial abundance by case status is given in Table 1. Most of

the alt-EEjxn peptides that were highly correlated with

the M4 and M7 modules were also present in differential

Table 1 Correlation of alternatively spliced proteins with TMT protein network modules enriched in AD risk factors

The ten alt-EEjxn peptides with the strongest correlation to each protein network module enriched in AD risk factors are shown, including their differential abundance

by case status. Proteins/peptides not present in the module to which they correlate are highlighted in gray. Proteins/peptides that are significantly different in

abundance by case status are highlighted in red. ANOVA p values were adjusted for multiple comparisons by Tukey test. Detailed information for each

alt-EEjxn peptide listed in the table, as well as for all identified alt-EEjxn peptides, is provided in Supplementary Data. AsymAD, asymptomatic AD; CT,

control; kME, module eigenprotein correlation value
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abundance by case status, whereas few of the alt-EEjxn

peptides that correlated highly to the M27 and M33

modules had different levels between control, AsymAD,

and AD. In module M27, nearly all of the top ten

most-highly correlated alt-EEjxn peptides were not

present as full proteins within the module, with the ex-

ception of FERMT2, which has been identified as an AD

risk factor protein. Proteins from which an alt-EEjxn

peptide was identified that correlated to glial modules

M27 and M33 are annotated as being involved in trans-

lation initiation, nucleic acid metabolism, protein folding

chaperoning, and cytoskeleton organization, among

other cellular functions. Interestingly, the most significant

differential abundance in this list of highly correlated

alt-EEjxn peptides was between AsymAD and AD, and

was for an alt-EEjxn peptide derived from TPI1 (triose-

phosphate isomerase 1). TPI1 is involved in gluconeogen-

esis, but has also been identified as interacting directly

with the Parkin protein, a ubiquitin protein ligase, and po-

tentially affecting mitochondrial function [39]. Most of the

alt-EEjxn peptides that highly correlated to the M27 mod-

ule were from proteins that are involved in membrane

scaffolding, endosomal transport and autophagy, as well

as protein translation. We therefore identified a number

of alternative splicing events that strongly correlated with

network modules enriched in AD GWAS risk factor pro-

teins, and some of these isoforms differed in abundance in

AsymAD and AD.

Discussion

In this study we extended the depth of our proteomic

network analysis of AD brain by approximately a factor

of three using a new TMT-based analysis pipeline. The

deeper protein coexpression network analysis revealed

new protein modules that correlated with pathological

measures of AD and were enriched in AD risk factors

identified by GWAS. With this improved proteome

coverage we were able to estimate the percentage of four

different cell types within the brain and analyze how the

abundance of these cell types changes in asymptomatic

and symptomatic AD. We were also able to use these es-

timations of cell type changes to remove this potential

confound from analysis of differential protein abundance

changes in AsymAD and AD, and observed that most

protein abundance changes between AsymAD and AD

are not due to cell type changes. From this differential

protein abundance analysis between AsymAD and AD

we observed that RNA binding proteins were differen-

tially altered between these two disease states, which led

us to further analyze RNA binding proteins and alterna-

tively spliced proteins within the TMT protein network.

We found that RNA binding proteins clustered within

specific network modules, and that some of these mod-

ules strongly correlated with molecular markers of AD

and cognitive decline. Alternative exon-exon splicing

events also tended to cluster within certain network

modules, and some of these modules correlated with

molecular markers of AD and cognitive decline. We

identified a number of alt-EEjxn splicing events in AD

GWAS risk factor proteins that were significantly altered

in AD, as well as splicing events in other proteins that

correlated with network modules enriched in AD risk

factor proteins and were altered in AD.

The use of TMTs allowed us to perform an orthogonal

offline prefractionation step prior to LC-MS/MS analysis

while keeping MS analysis time within reasonable pa-

rameters through the ability to pool up to 11 tagged

samples into a single batch prior to LC-MS/MS analysis.

This approach has distinct advantages over standard

“single-shot” LFQ analysis. Prefractionation significantly

increases the depth of proteome coverage achievable by

LC-MS/MS of complex tissues such as brain. TMTs also

allow for relative protein measurements across multiple

case groups within a single batch, minimizing the miss-

ing value problem for quantification across case groups.

However, missing values are not eliminated in the TMT

approach as it still relies on data-dependent acquisition

techniques within each batch, and therefore not all

batches contain the protein measurement of interest.

Alternative approaches to protein quantification by mass

spectrometry, such as data-independent acquisition

[7, 40], may soon help to address the limitations on pro-

tein quantitation posed by data-dependent approaches.

Nevertheless, we anticipate that further increases in the

depth of proteome coverage in brain will be possible using

a data-dependent TMT approach through advances in

chromatography techniques and mass spectrometry

instrumentation.

The increased depth of proteome coverage allowed us

to build a protein coexpression network of AD brain

that was significantly larger than our previous LFQ-

based network [5]. It is notable that the TMT-LysC

protein coexpression network nearly completely recapit-

ulated the LFQ network we previously published, despite

the fact that the TMT-LysC network was generated

using an entirely different analysis pipeline with a new

quantification approach and different mass spectrometry

instrumentation. This finding lends validity to the previ-

ous LFQ network generated from the BLSA cohort, and

by extension to LFQ-based networks of other cohorts

we have analyzed ([41], unpublished data). Many of the

new modules in the TMT network were not strongly as-

sociated with a particular cell type, indicating that most

cell type specific modules were captured in the previous

LFQ network. However, a few unique modules did show

significant cell type character, including M27, which was

largely microglial in cell type character, and by protein

membership was the most unique module in the
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TMT-LysC network compared to the previous LFQ-

trypsin network. This module was also enriched for AD

GWAS risk factors and correlated with AD pathology,

demonstrating that further increases in the depth of

brain proteome coverage have the potential to reveal

additional protein coexpression modules that are rele-

vant to AD pathophysiology. In the TMT network we

also observed a number of new modules that appeared

to be anti-correlated with disease, potentially reflecting

AD “resilience” modules. One such area of the network

was the related cluster of modules M47 to M26. This

cluster tended to be associated with improved cognition

and lower levels of tau tangles, p-tau, U1-70K, and

TDP-43. Further mechanistic investigation into the

drivers of these protein coexpression changes may pro-

vide insights into factors that protect against AD.

From the cell type analysis, we found that astrocytes

and microglia increase in relative proportion between

AsymAD and AD, suggesting that immune system acti-

vation or dysfunction may be a primary driver of cogni-

tive decline in the setting of AD pathology. Astrocytes

and microglia also correlated more strongly with tau

tangle burden than with amyloid-β plaque load, illustrat-

ing the connection between inflammation and tangle

formation. The correlation between inflammation and

tangle formation has also been noted in other tauopa-

thies, such as frontotemporal dementia and chronic

traumatic encephalopathy [42–45]. Interestingly, the

neuron population decreased between control and Asy-

mAD, with a further decrease between AsymAD and

AD. It is not clear if synaptodendritic rarefaction may be

driving this decreased measurement in cell population,

or if it is actual neuron loss. Frank neuronal loss is often

associated with late stages of the disease, and synapse

loss in AD is thought to correlate with cognitive dys-

function. We expected the neuron population to corre-

lated more strongly with tau tangle burden than with

amyloid-β plaque burden given that tangle burden is

more closely correlated with cortical atrophy and cogni-

tive decline [46], but we observed that neurons corre-

lated more strongly with amyloid plaques. Therefore, a

discrepancy remains between the neuronal cell type data

and disease state that warrants future investigation in a

separate study cohort. We also noted an increase in oli-

godendrocytes in AsymAD, which is consistent with

recent transcriptomic data suggesting alterations in

oligodendrocyte and myelination biology in AD brain

[30, 47]. Protein abundance differences between Asy-

mAD and AD were largely preserved after adjustment

for cell type changes, suggesting that perhaps these

changes reflect a more “biochemical” phase of AD asso-

ciated with cognitive dysfunction rather than a “cellular”

phase of AD [31]. One cause of such biochemical

changes may be changes in RNA binding proteins as

identified in our GO network analysis, and as previously

described by our group [32]. One of the most interesting

RNA binding protein-enriched modules was M18. This

module contained proteins often found in RNA granules

[48], as well as proteins with low complexity domains

such as U1-70K that bind to RNA and that have been

associated with other neurodegenerative conditions such

as frontotemporal dementia [49]. M18 was significantly

correlated with phosphorylated tau, U1-70K, TDP-43,

and cognitive decline, but did not contain an overabun-

dance of proteins from any of the four cell types we

tested, unlike modules such as M4 and M7 which we

have previously found to be astroglial and strongly associ-

ated with AD [5]. One caveat regarding module correlation

with cognitive decline in this analysis is that MMSE scores

were skewed towards 30, suggesting that the cognitive time

points captured from these individuals in the BLSA study

were significantly removed from later disease stages. Future

analyses using cohorts with more evenly distributed cogni-

tive performance will be important to verify the cognitive

associations reported here. Nevertheless, the MMSE-based

cognitive correlations are likely correct in direction given

their internal consistency with our previously published

finding—validated here—that M4 and M7 correlate with

progression from AsymAD to AD.

We developed an analytical pipeline to identify and

quantify alternative exon-exon junctions at the protein

level in brain. The databases we generated to identify

alt-EEjxn peptides from brain were based on RNAseq

data from relatively few control and AD brains from the

University of Kentucky Brain Bank. However, most of

the common alternatively spliced transcripts present in

DLPFC control and AD brain were likely represented in

this database. Adding RNAseq data from additional

brains would perhaps uncover more rare local splicing

variations, and will be a focus of future work. In our

analysis of alt-EEjxns we observed a number of local

splice variants that have not yet been documented to

exist at the protein level in any human tissue. Because

brain contains a large number of alternatively spliced

proteins [50], we consider it likely that deeper

characterization of protein splice variants in brain will

uncover even more local splice variations that are trans-

lated into protein, with some being potentially relevant

to disease. Our comparison between LFQ-trypsin and

TMT-LysC analytical pipelines found that the TMT-LysC

approach was slightly superior to LFQ-trypsin for quanti-

fication of alt-EEjxns, and even better when quantifying

alt-EEjxns across case groups. However, for simply validat-

ing the existence of a particular alt-EEjxn at the protein

level, LFQ-trypsin was superior to TMT-LysC. This is

likely the case because trypsin digestion is more efficient

than LysC and provides deeper coverage of the proteome,

despite the fact that the number of peptides containing
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exon-exon splice junctions are reduced with trypsin diges-

tion due to the overabundance of basic amino acid resi-

dues at splice junctions [51]. A significantly deeper

“bottom-up” analysis of local splicing variation at the

proteomic level will likely require multiple and orthogonal

enzymatic digestion approaches. As a case-in-point, we

observed only 4 alt-EEjxns at the protein level out of a

possible 74 alt-EEjxns at the mRNA transcript level in

PICALM. It is unclear how many of these local splice vari-

ants are translated into protein rather than undergo

nonsense-mediated decay, but it seems likely based on

abundant steady state transcript levels that a majority of

these splice isoforms are translated into protein. The use

of an orthogonal digestion approach for better splice junc-

tion coverage is also supported by the observation that

trypsin and LysC identified largely separate subsets of

alt-EEjxns, both for junctions currently annotated in pro-

tein databases and for those observed only in RNAseq or

expressed sequence tag data. It should be noted that our

quantitative analysis of alt-EEjxns was necessarily limited

to the peptide level, and therefore the analysis is best con-

sidered to represent quantification of alternative splicing

“decisions” in brain, whereby many separate splicing deci-

sions may contribute in a combinatorial fashion to the

generation of different protein isoforms.

From the alt-EEjxns we identified, those that were ele-

vated in AD compared to AsymAD tended to cluster

into modules that were microglial or astrocytic in na-

ture. It is possible that the increase in these cell types in

AD lead to a relative increase in alt-EEjxns that are

otherwise translated at a low baseline level, and develop-

ment of an algorithm to potentially exclude this effect,

similar to cell type deconvolution for total protein levels,

would be a welcome advance for alt-EEjxn analysis. Al-

ternatively, splicing decisions may change systematically

and may also underlie phenotype changes among the

astroglial population of cells in brain. A future analysis

to probe the extent of splice decision “switching” in AD,

whereby an alt-EEjxn is favored at the expense of the ca-

nonical junction, would also be informative. A number

of alt-EEjxns in AD GWAS risk factor proteins were ele-

vated in AD, including in BIN1 and PTK2B. The func-

tional relevance of these alternative exon-exon splicing

decisions in these and other AD risk factor proteins re-

mains to be determined. We found that alt-EEjxns at a

global level tended to cluster into the unique area of the

TMT-LysC network, but did not significantly overlap

with modules enriched in RNA binding proteins. Al-

though we have previously observed that snRNP alter-

ations are associated with deficits in RNA splicing in AD

brain [24, 32]—a finding recently confirmed by others

[52]—the fact that there was little overlap with RNA

binding proteins at the network level suggests that abun-

dance levels of RNA binding proteins do not correlate

directly with levels of alternative splicing. Rather, it is

likely that only certain types of RNA binding proteins

directly affect alternative splicing decisions. We assessed

for protein components of the U1 spliceosome complex

in our enrichment analysis, but we did not find strong

enrichment of these proteins in the network. This may

be due to the fact that U1 spliceosome proteins undergo

a dramatic shift in solubility in AD brain, and aggregate

in close proximity to neurofibrillary tangles [24, 32–34].

Module 29 contained five snRNPs and was annotated as

being involved in mRNA splicing by GO analysis, but

did not show enrichment of alt-EEjxn peptides. The rela-

tionship between RNA protein abundance and alterna-

tive splicing remains an area for future investigation.

Conclusions

We developed a TMT-based quantification pipeline for

proteomic analysis of brain tissue that significantly in-

creased our depth of proteome coverage of control and

AD brain and led to additional insights into the protein

changes that characterize AD pathophysiology, including

changes in RNA splicing. Future advances in alternative

protein isoform analysis by mass spectrometry will un-

doubtedly shed further light on this “dark matter” of the

proteome and its role in AD.
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Additional file 1: Table S1. Sample List. AD, Alzheimer’s disease; AS,

asymptomatic Alzheimer’s disease; CT, control; MCI, mild cognitive

impairment; CERAD, Consortium to Establish a Registry for Alzheimer’s

Disease amyloid-β plaque load score; Braak, Braak stage for tau tangle

burden; PMI, post-mortem interval; ApoE, apolipoprotein E isoform

genotype; MMSE, Mini-Mental State Examination; NA, not available.

MCI cases were not used in the final analysis. (DOCX 45 kb)

Additional file 2: Table S2. Case Characteristics. Values shown are means

± SD. AD, Alzheimer’s disease; AsymAD, asymptomatic Alzheimer’s disease; MCI,

mild cognitive impairment; CERAD, Consortium to Establish a Registry for

Alzheimer’s Disease amyloid-β plaque load score; Braak, Braak stage for tau

tangle burden; PMI, post-mortem interval; ApoE, apolipoprotein E

isoform genotype. (DOCX 30 kb)

Additional file 3: Table S3. TMT Experimental Design. MCI cases

(n = 11) were removed after batch correction. The final cohort used for

quantification was n = 47 DLPFC non-MCI samples. TMT, tandem mass tag;

GIS, global internal standard; BLSA, Baltimore Longitudinal Study of Aging;

AD, Alzheimer’s disease; AsymAD, asymptomatic Alzheimer’s disease; MCI, mild

cognitive impairment; DLPFC, dorsolateral prefrontal cortex. (PDF 888 kb)

Additional file 4: Table S4. List of Biological Terms for GO Network in

Figure S8. GO, gene ontology; UP, UniProt; KEGG, Kyoto Encyclopedia of

Genes and Genomes; SMART, Simple Modular Architecture Research Tool;

FDR, false discovery rate. (DOCX 35 kb)

Additional file 5: Table S5. Number of Alternative Exon-Exon Junction

Peptides Identified by TMT-LysC and LFQ-trypsin Approaches. The number of

alt-EEjxn peptides identified by matching to the listed databases (Swiss-Prot,

Trembl, or RNAseq) is shown, along with the number of quantifiable alt-EEjxn

peptides. A peptide was considered quantifiable in this analysis if it had

a minimum of 2 measurements in at least 2 different case groups.

RNAseq data from control and AD patient brains (n = 6) were used

to generate the RNAseq alt-EEjxn peptide database, as described in

Methods. (DOCX 28 kb)
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Additional file 6: Table S6. Number of Alternative Exon-Exon Junctions

in AD Risk Factor Proteins. From the twenty proteins identified as risk factors

for AD by GWAS at genome-wide significance [12], five had alt-EEjxn

peptides that were observed and quantifiable in the BLSA-TMT analysis

(observed). The number of observed and quantifiable alt-EEjxn peptides for

each of these five proteins was a subset of the total number of alt-EEjxn

peptides predicted to exist after LysC digestion (peptide database). This

number was a further subset of the total number of alt-EEjxns observed for

each of the five proteins from RNAseq data (transcript level). For details on

generation of the peptide database and transcript level numbers, see

Methods. (DOCX 28 kb)

Additional file 7: Table S7. AD Risk Factor Protein Alternative Exon-Exon

Junction Peptides Significantly Altered by Case Status. Of the five AD risk

factor proteins that had quantifiable alt-EEjxn peptides in the BLSA-TMT

analysis, three had alt-EEjxn peptides that were significantly, or nearly

significantly, different in abundance by case status. For PTK2B 20038, module

eigenprotein correlation was not performed due to the number of missing

values for quantitation (≥25). A complete description of each alt-EEjxn peptide

is provided in Supplementary Data. ME bicor, module eigenprotein bicorrela-

tion; kME, correlation value to the module eigenprotein; AD, Alzheimer’s disease;

AsymAD, asymptomatic Alzheimer’s disease. (DOCX 29 kb)

Additional file 8: Figure S1. SDS-PAGE of Brain Homogenates. Dorsolateral

prefrontal cortex (DLPFC) brain tissue homogenates from cases shown in

Table S1 were analyzed by SDS-PAGE to assess sample integrity prior to TMT

labeling and mass spectrometry analysis. Gels were stained with Coomassie

Blue to visualize protein. AD, Alzheimer’s disease; AS, asymptomatic

Alzheimer’s disease; CT, control; MCI, mild cognitive impairment. (PDF 22000 kb)

Additional file 9: Figure S2. Protein Quantitation in TMT-LysC and LFQ-

trypsin Analyses. The relationship between the number of quantifiable

proteins at a given threshold of missing values in the 47 brain samples from

the BLSA cohort for TMT-LysC and LFQ-trypsin analyses is shown. The point

at 23 samples and 6533 proteins represents the threshold used for the TMT-

LysC analysis pipeline in this study. This point falls slightly below the TMT

curve because 11 MCI samples were included in the TMT analysis workflow,

for a total of 58 samples, but were later dropped from the analysis (see

Methods). The increased number of samples when including the 11 MCI

cases slightly reduced the number of quantifiable proteins at the ~ 50%

missing value threshold. (PDF 79 kb)

Additional file 10: Figure S3. Measurement of Aβ and Tau. (A-D) Total

amyloid-β levels were measured using the Aβ17–28 peptide fragment (A,

left). Aβ levels were quantified in the TMT-LysC analysis across case groups

using SPS-MS3 reporter ions to Aβ17–28 (A, right). (B) The Aβ17–28 peptide

was quantified by LFQ extracted ion current intensity [5], and compared to

quantification using TMTs with SPS-MS3 reporter ion relative intensities

normalized to the global internal standard (GIS). (C) The Aβ17–28 peptide

was quantified by TMT across the 47 cases and correlated to CERAD

score, a histopathological measure of neuritic amyloid plaque burden.

(D) The tau pT231 peptide (VAVVRpTPPKSPSSAK), which is derived

from the proline-rich domain, was quantified by TMT and correlated

with Braak stage, a histological staging system for tau neurofibrillary

tangle burden. (PDF 299 kb)

Additional file 11: Figure S4. TMT Network Modules Associated with

Disease State or AD Pathology. (A-F) TMT network modules that were

enriched in astrocyte or microglial proteins (A), neuronal proteins (B), ‘de

nove’ post-translational protein folding machinery (C), mitochondrial proteins

(D), nucleosomal proteins (E), or RNA-associated proteins (F), and which also

changed with disease state or were correlated to AD pathology are shown,

along with the top six hub proteins for each module. The full list of modules

and pathological correlations for each module is provided in Supplementary

Data. Eigenprotein differences by disease state were assessed by one-way

ANOVA. (PDF 180 kb)

Additional file 12: Figure S5. TMT Protein Network Modules Enriched

for AD Risk Factors. Graphical representation of the correlation

relationships among TMT network module proteins for the four

modules identified to contain enrichment of AD risk factors from GWAS,

along with the relationship of each module to case status, neuritic amyloid

plaque load (CERAD score), and tau tangle burden (Braak stage). Proteins

identified by GWAS as AD risk factors are highlighted in red. Only the top

100 proteins by kME value are shown for the M4 yellow (257 total proteins)

and M7 black (162 total proteins) modules. (PDF 462 kb)

Additional file 13: Figure S6. Cell Type Population Changes Associated

with AD and Correlation with Amyloid and Tau Pathology. The abundance

of cell type-specific protein markers of astrocytes, microglia, neurons, and

oligodendrocytes (oligos) was used to calculate the percentage of each cell

type in control, asymptomatic AD (AsymAD), and AD brain tissue (see

Methods). Percentage cell type was then correlated with the degree of

neuritic amyloid plaque pathology (CERAD Amyloid Score) and tau tangle

burden (Braak Stage) across all brains. (PDF 141 kb)

Additional file 14: Figure S7. Differential Protein Abundance between AD

and AsymAD. Proteins that were significantly increased (160) or decreased

(190) in AD compared to AsymAD, color-coded by TMT network module

membership, are shown. The horizontal dotted line represents p= 0.05.

Interactive plots for AD vs. AsymAD, AD vs. control, and AsymAD vs. control

differential protein abundance are provided in Supplementary Data.

(PDF 10400 kb)

Additional file 15: Figure S8. GO Network Analysis for Differential Protein

Abundance Between AsymAD and Control. (A, B) Proteins with significant

differences in abundance between asymptomatic AD and control before (A)

after (B) cell type deconvolution were analyzed by gene ontology (GO)

network analysis. Only two nodes were significant before cell type

deconvolution, and no nodes were significant after cell type deconvolution,

by false discovery rate (FDR) Q value statistic. Therefore, significance values are

represented by the less stringent uncorrected p value. RNA binding protein

nodes are highlighted in green. (PDF 228 kb)

Additional file 16: Figure S9. GO Network Analysis for Differential

Protein Abundance Between AD and AsymAD. Proteins with significant

differences in abundance between asymptomatic AD and AD after cell

type deconvolution were analyzed by gene ontology (GO) network

analysis. A complete list of biological terms that correspond to each

node in the network, along with the source for the term and the false

discovery rate (FDR) Q value statistic, is given in Table S4. (PDF 244 kb)

Additional file 17: Figure S10. RNA Binding Protein Enrichment in TMT

Network Modules and Correlation with AD Pathology. (A, B) Overlap of

different groups of RNA binding proteins within TMT network

modules (A). Significance of overlap was calculated by Fisher exact test,

and is shown by single color heat map of -log10 p value (increased red

represents smaller p value and increased overlap). P values are corrected by

Benjamini-Hochberg FDR. A, McKnight 570 refers to RNA binding proteins

that are often found within RNA granules as described in [48]; B, Total

Observed RNA binding refers to all RNA binding proteins commonly

observed in our proteomic experiments; C, proteins that interact with the low

complexity 2 (LC2) domain of the U1-70K small nuclear ribonucleoprotein

70 kDa (snRNP70) [54]; D, proteins that are homologous to U1-70K; E, proteins

that interact with the LC1 or basic-acidic dipeptide (BAD) repeat domain of

U1-70K [54]; F, low complexity arginine-serine (RS) repeat-containing proteins;

G, proteins annotated as comprising the spliceosome complex in the Kyoto

Encyclopedia of Genes and Genomes (KEGG); H, proteins annotated as

involved in RNA translation by Gene Ontology (GO); I, proteins annotated in

KEGG as belonging to the U1 spliceosome complex. (B) The six modules most

enriched in RNA binding proteins (M15, M18, M40, M17, M29, and M10) were

assessed for change by case group and correlation with tau tangle burden

(Braak stage). Four out of the six modules significantly correlated with

Braak stage. Correlation was performed by the bicorrelation function

as implemented in R. CT, control; AsymAD, asymptomatic Alzheimer’s

disease; AD, Alzheimer’s disease. (PDF 254 kb)

Additional file 18: Figure S11. Alternative Exon-Exon Junction Peptide

Quantitation in TMT-LysC and LFQ-trypsin Analyses. The relationship between

the number of quantifiable alternative exon-exon junction (alt-EEjxn) peptides

at a given threshold of missing values in the 47 brain samples from the BLSA

cohort for TMT-LysC and LFQ-trypsin analyses is shown, without regard to case

group. Also shown is the number of alt-EEjxn peptides quantified by TMT-

LysC that had a LFQ-trypsin cognate peptide, as well as the number of alt-

EEjxn peptides quantified by LFQ-trypsin that had a cognate TMT-LysC

peptide. The point at 23 samples represents the 50% missingness threshold.

(PDF 89 kb)
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Additional file 19: Figure S12. Correlation Between Alternative Exon-Exon

Junctions Quantified by TMT-LysC and LFQ-trypsin Analyses. Alternative

exon-exon junctions (alt-EEjxns) that were identified and quantified in

both TMT-LysC and LFQ-trypsin analyses (n = 1202 alt-EEjxns) and

which had no missing values across the 47 BLSA cases were

matched case-to-case, and the log(2) normalized intensity measurements

for each alt-EEjxn were correlated between the two quantification approaches.

Note that the peptide containing the alt-EEjxn is not necessarily identical

between TMT-LysC and LFQ-trypsin analyses. When the correlation is restricted

to identical alt-EEjxn peptides (n= 728), the strength of correlation increases

only slightly (r= 0.6) (data not shown). (PDF 15000 kb)

Additional file 20: Figure S13. GO Analysis of Alternative Exon-Exon

Junction Peptides Unique to the RNAseq Database. Alternative exon-exon

junction (alt-EEjxn) peptides that were identified by LFQ-trypsin or TMT-LysC

approaches from the RNAseq data only were analyzed by gene ontology

(GO), which showed that the alternatively spliced proteins identified by the

two approaches in the RNAseq data were largely unique. (PDF 660 kb)

Additional file 21: Figure S14. Differential Abundance of Alternative

Exon-Exon Junction Peptides by TMT Network Module. For case group

comparisons AD vs. AsymAD (top), AD vs. control (middle), and AsymAD vs.

control (bottom), the fraction of alternative exon-exon junction (alt-EEjxn)

peptides within each network module that were significantly different be-

tween the two case groups was plotted by bar graph, with each bar color

coded according to the average log2 difference of the alt-EEjxn peptides in

each direction (increased or decreased). The arrows in the AD vs. AsymAD

comparison highlight modules that showed an increase in the fraction of

alt-EEjxns or an increase in the magnitude of differential abundance, or both,

compared to AD vs. control. (PDF 718 kb)

Additional file 22: Figure S15. Enrichment of RNA Binding Proteins in

TMT Network Module 18. Graphical representation of the correlation

relationships among proteins for lightgreen module M18, with proteins

centrally located representing those most highly correlated with other

proteins in the module. Proteins annotated as RNA binding proteins in

geneontology.org are highlighted in yellow. (PDF 177 kb)
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