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Abstract—Convolutional neural networks (CNNs) exhibit

good performance in image processing tasks, pointing

themselves as the current state-of-the-art of deep learning

methods. However, the intrinsic complexity of remotely

sensed hyperspectral images (HSIs) still limits the perfor-
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mance of many CNN models. The high dimensionality of

HSI data, together with the underlying redundancy and

noise, often make standard CNN approaches unable to

generalize discriminative spectral-spatial features. More-

over, deeper CNN architectures also find challenges when

additional layers are added, which hampers the network

convergence and produces low classification accuracies. In

order to mitigate these issues, this paper presents a new

deep CNN architecture specially designed for HSI data.

Our new model pursues to improve the spectral-spatial

features uncovered by the convolutional filters of the net-

work. Specifically, the proposed residual-based approach

gradually increases the feature map dimension at all con-

volutional layers, grouped in pyramidal bottleneck residual

blocks, in order to involve more locations as the network

depth increases while balancing the workload among all

units, preserving the time complexity per layer. It can be

seen as a pyramid, where the deeper the blocks, the more

feature maps can be extracted. Therefore, the diversity

of high-level spectral-spatial attributes can be gradually

increased across layers to enhance the performance of

the proposed network with HSI data. Our experiments,

conducted using four well-known HSI datasets and ten

different classification techniques, reveal that our newly

developed HSI pyramidal residual model is able to provide

competitive advantages (in terms of both classification

accuracy and computational time) over state-of-the-art HSI
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classification methods.

Index Terms—Hyperspectral imaging (HSI), Convo-

lutional neural networks (CNNs), Residual networks

(ResNets).

I. INTRODUCTION

Hyperspectral imaging (HSI) collects valuable infor-

mation for monitoring the surface of the Earth [1], thus

addressing important remote sensing applications in-

cluding environmental management [2], agriculture [3],

surveillance [4], and physics [5]. In general, HSI science

aims at acquiring data using hundreds of (narrow) spec-

tral bands in order to simultaneously provide detailed

spectral and spatial information. Therefore, HSIs are

particularly useful for providing highly precise material

identification by analyzing discriminative spectral and

spatial features over specific areas of interest [6].

In the literature, different kinds of unsupervised and

supervised approaches have been proposed to classify

HSI data [7]. Unsupervised methods do not make use

of labeled data, so they do not need a supervised

training phase, which makes them suitable when poor

prior knowledge of the considered scenes is available.

In this sense, unsupervised clustering methods such

as K-means [8] are used. Recently, more sophisticated

unsupervised methods have been developed to efficiently

extract a proper set of features for remote sensing

data classification and segmentation purposes. In this

sense, information theory approaches are showing an

increasing potential in remote sensing data management

and analysis because they pursue to uncover hidden

data interactions and correlations, which eventually can

be very useful to deal with the inherent complexity of

HSI data. For instance, [9] presents a new unsuper-

vised feature extraction approach based on data-driven

discovery for data classification, which exploits mutual

information maximization in order to retrieve the most

relevant features. Another relevant information theory-

based approach is the one in [10], where the authors

present an efficient classification framework that relies

on an entropy-based feature selection together with a

Pareto optimality criteria in order to detect relevant HSI

data patterns for classification purposes.

Whereas unsupervised methods only rely on the data

itself to categorize the pixels in the scene, supervised

models have shown to provide more accurate results

by learning the data relations from a given training set

containing ground-truth information [11]. Over the past

years, a wide variety of supervised machine learning

paradigms have been successfully applied to remotely

sensed HSI classification [12]. Support vector machines

(SVMs) and kernel-based methods [13], statistical pro-

cedures as principal component analysis (PCA) [14] or

logistic regression [15], Bayesian models [16], random

forest (RF) [17] and neural networks [18] are amongst

the most popular approaches.

Nonetheless, the intrinsic complexity of hyperspectral

imagery still makes many of these approaches unable

to consistently provide satisfactory classification results,

especially under challenging scenarios [1]. Note that the

number of training samples in the HSI field is usually

rather limited compared to the available number of

spectral bands, and this fact typically results in an under-

complete training process which is prone to over-fitting,

i.e. the so-called Hughes phenomenon [19]. Additionally,

spectral redundancy and noise are often present in HSI

since contiguous bands tend to be highly correlated, and

the physical limitations of the acquisition technology

always introduce some sort of signal perturbations.

Several strategies have been adopted in the remote

sensing field to mitigate these problems and, conse-

quently, improve the resulting HSI classification accu-

racy. This includes feature extraction [20]–[23], band

reduction [24]–[27], data augmentation [28], and active
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learning techniques [29]–[31] [32]. However, one of

the most popular research lines to deal with the high

complexity of the HSI domain is based on developing

spectral-spatial classifiers [6], which can achieve better

classification performance than pixel-wise classifiers,

since they take into account not only the information

of the spectral signatures but also the spatial-contextual

information. For instance, in [33] the authors resort to

discriminative low-rank Gabor filtering which is shown

to be particularly effective for spatial-spectral HSI clas-

sification. Approaches such as this often pursue a reduc-

tion of classification uncertainty by combining each pixel

spectra with the size and shape of the corresponding

structure to which it belongs, therefore highly powerful

models are usually required to effectively exploit the HSI

spectral-spatial components [34], [35].

In this scenario, supervised deep learning models

are attracting increased attention. Deep network-based

approaches [36], [37] have been recently introduced to

the hyperspectral community, showing a great potential

in the field of remote sensing classification. The main

idea behind deep learning is to extract higher abstract

semantic features from the original data with a hierarchi-

cal representation method. In other words, the supervised

deep learning approach may be considered as a nonlinear

mapping from the feature space to the label space,

achieving higher expressibility through a hierarchy of

layers. In [38], Chen et al. proposed a stacked auto-

encoder (SAE) to extract the high-level features for HSI

classification using spectral-spatial information. In [39],

Zhao et al. also exploited a stacked sparse autoencoder

(SSA) to extract layer-wise more abstract and deep-

seated features from spectral feature sets, spatial feature

sets and spectral-spatial vectors, using RF for classifica-

tion purposes. In [40], Li et al. introduced the deep belief

network (DBN) for spectral-spatial feature extraction and

classification of hyperspectral images. In [41], Zhong

et al. introduced a diversity promoting prior into the

pre-training (unsupervised) and fine-tuning procedure

(supervised) of the DBN model in order to enhance

HSI classification performance. However, these models

suffer from spatial information loss, because they require

flat spatial HSI patches (in one dimension) to satisfy

their input requirements, and may not effectively exploit

the spatial information [42]. In [43], Ma et al. tried to

overcome these limitations by implementing a spatial

updated deep auto-encoder (SDAE) in order to exploit

jointly spectral and spatial features from HSIs, replacing

each feature with the weighted average computed from

the surrounding samples. To further address this issue,

Chen et al. proposed the use of convolutional neural

networks (CNNs) for HSI classification [44]. Compared

to SAE and DBN, the CNN model allows using spatial

HSI patches as data input, providing a natural way to

incorporate this kind of information and enhance the

classification performance.

Several CNN-based models can be found in the litera-

ture for HSI classification using spectral-spatial features.

Following the pixel-based approach, in [45] Mei et al.

presented a CNN model integrating spectral signatures

and spatial context by preprocessing each pixel, i.e.

calculating the mean of the pixel neighborhood and the

mean and standard deviation per spectral band of this

neighborhood. In [46], Li et al. combined the CNN

model with pixel-pairs to learn discriminative features,

using a majority voting strategy to obtain the final

classification result. Other relevant approaches are [47],

[48], where Yang et al. and Zhang et al. respectively

proposed two different CNN models to separately extract

spectral and spatial features (the last one merging PCA

with CNN), combining them by a softmax regression

classifier. Moreover, Zhao and Du [49] combined a

spatial feature extraction process based on the CNN

model with a spectral feature extraction process based
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on the balanced local discriminant embedding (BLDE),

stacking the obtained features and then performing a

final classification step. Although these methods merge

different kinds of techniques in addition to CNNs to

separately extract spectral-spatial information, they do

not take full advantage of the joint spectral/spatial corre-

lation information. In contrast, the deep models in [50]–

[52] can learn both the spatial and the spectral infor-

mation, taking as input data 3D blocks from the original

hyperspectral image and calculating 3D convolution ker-

nels for each pixel together with its spatial neighborhood

and the corresponding spectral information.

However, training very deep CNNs with HSI data is

still difficult, due to the loss of information produced

by the vanishing gradient problem [53], where gradients

obtained by the activation outputs of each processing

layer of the network tend to be smaller, making a poor

propagation of activations and gradients and elongat-

ing the cost function. As result, the accuracy of deep

CNNs is saturated and then degrades rapidly. Recently,

advanced deep CNN schemes have been proposed to

uncover highly discriminative spectral-spatial features

pervading the HSI data. It is the case of the residual

network (ResNet) [54], which defines a CNN extension

based on processing blocks, called residual blocks [55]

as fundamental structural elements to facilitate learning

of deeper networks and enabling them to be substantially

deeper. These residual blocks are modules with the same

topology that perform a set of transformations whose

outputs are aggregated by summation. In fact, ResNet

can be interpreted as a large ensemble of much shal-

lower networks [56], creating a much deeper architecture

than its plain counterparts, ensuring a minimum loss

of information by modeling each block closer to an

identity mapping than to a zero mapping, and adding

shortcut connections between each residual block so

that they receive more detailed information rather than

just abstract information. As result, ResNet models [55],

[57], [58] may outperform standard deep CNNs in HSI

analysis and classification [50], [59].

In this paper, we propose a new residual network

model based on pyramidal bottleneck residual units to

achieve fast and accurate HSI analysis and classification,

using both spectral and spatial information. This new

deep model is composed by several blocks of stacked

convolutional layers, which have a diabolo (bottleneck)

architecture in which the output layer is larger than the

input layer. In this way, the number of spectral channels

in the original HSI cube is increased step by step on

each block, creating the illusion of a pyramid where,

as the residual units are deeper, more feature maps can

be extracted, allowing to learn more robust spectral-

spatial representations from HSI cubes. However, these

HSI pyramidal bottleneck residual units are still compu-

tationally expensive, which forces to adopt acceleration

techniques to reduce execution time. In this sense, the

proposed network has been accelerated using graphics

processing units (GPUs). The obtained results (using

four well-known hyperspectral datasets) show that the

proposed model can outperform not only the spectral-

spatial CNN, but also the baseline HSI-ResNet classi-

fication results, extracting more discriminative spectral-

spatial features without the need to use large amounts of

training data, which may have great uncertainty.

The remainder of the paper is organized as follows.

Section II describes the proposed method. Section III

validates the proposed model by drawing comparisons

with other state-of-the-art HSI classification approaches.

Finally, Section IV concludes the paper with some

remarks and hints at plausible future research lines.

II. METHODOLOGY

This section is structured as follows. First, we set

notation and provide an overview of classic CNNs while
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highlighting the connections of our newly proposed

model with the traditional CNN architecture. Then, we

introduce the proposed hyperspectral pyramidal residual

network model.

A. Convolutional Neural Networks

Traditional neural networks (deep or shallow ones)

are characterized by 1D architectures composed by fully

connected layers, e.g. multilayer perceptrons (MLP),

AEs or DBNs, which can lead to the loss of HSI

structural information, in particular the intrinsic 2D

data information contained in the spatial domain of

the hyperspectral images, because of the vector-based

feature alignment of each layer [60]. Instead of that,

CNN models are able to automatically exploit not only

spectral information but also relevant spatial-contextual

features and also spectral-spatial features, depending

on their architecture. Moreover, CNNs employ local

connections defined in each layer to deal with spectral-

spatial dependencies via sharing weights, i.e. layers are

applied over defined and small regions of the input data,

obtaining an output volume composed by feature maps

which will be the input of the next layer.

Let us suppose a hyperspectral image X ∈ R
N×W×H ,

where N , W and H are the spectral bands, width

and height respectively. The pixel xi,j of X (with

i = 1, 2, ...,W and j = 1, 2, ..., H) can be defined as

the spectral vector xi,j ∈ R
N = [xi,j,1, xi,j,2, ..., xi,j,N ].

Also, we can define a neighboring region pi,j ∈ R
d×d

around xi,j , composed by pixels from (i− d
2 , j −

d
2 ) to

(i+ d
2 , j −

d
2 ) and from (i− d

2 , j +
d
2 ) to (i+ d

2 , j +
d
2 ).

If p takes into account the spectral information, it

can be defined as pi,j ∈ R
N×d×d. Depending on the

architecture of the CNN layers and the kind of data

that they use as input (the pixel vector xi,j ∈ R
N ,

the spatial region pi,j ∈ R
d×d, or the spectral-spatial

region pi,j ∈ R
N×d×d), we can classify CNNs into three

categories:

1) Spectral-based classification approaches, also

called 1D-CNNs, which are conceptually simple

and easier to understand and implement because

these models follow the pixel vector-based ap-

proach of traditional networks, being the spectral

feature xi,j ∈ R
N of the original HSI data directly

deployed as the input vector. As a result, each

1D-layer obtains an output composed by n feature

vectors, being n the number of filters or kernels.

2) Spatial-based classification approaches, also called

2D-CNNs, which are the most widely used for

image analysis and categorization tasks. In these

models, the HSI is normally pre-processed via

PCA or similar dimension reduction methods (such

as independent component analysis -ICA- [61]

or maximum noise fraction -MNF- [62], among

others) in order to reduce the number of spectral

bands, and neighboring regions pi,j ∈ R
d×d are

extracted from the original image in order to create

the input patches that 2D-CNN models process to

extract the spatial feature representation. As result,

each 2D-layer obtains an output made up of n

feature maps.

3) Spectral-spatial classification approaches, also

called 3D-CNNs, make use of a 3D-architecture to

jointly extract spectral-spatial information. In this

case, neighboring spatial-spectral regions pi,j ∈

R
N×d×d are extracted from the original image in

order to create the input data blocks that feed the

network.

The proposed method makes use of 2D-CNN ap-

proaches, implementing 2D layers. However, all the

spectral bands will be used in order to create the in-

put data blocks pi,j ∈ R
N×d×d instead of reducing
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the original spectral signatures using PCA. This will

allow us to extract not only spatial information, but

also spectral information, in a fast and integrated way,

performing a full spectral-spatial feature extraction and

further allowing 3D processing. In particular, four kinds

of CNN layers will be used by the proposed architecture:

1) Convolution layers (CONV), that perform a dot

product between their weights and biases and small

windows of the input volume data defined by a kernel

k×k, obtaining an output volume composed by n feature

maps, being n the number of kernels:

pl+1 = φ (Wl · pl + bl) (1)

where pl+1 is the output with n feature maps of the l-th

CONV layer, Wl is weight matrix defined by the filter

bank with kernel size k × k, and bl of the i-th CONV

layer, pl is the output feature maps of the l−1-th CONV

layer and φ(·) the non-linear activation function.

2) Batch normalization layers (BATCH-NORM) that

reduce the covariance shift by means of which the hidden

unit values shift around, allowing a more independent

learning process in each layer. It regularizes and speeds

up the training process, imposing a Gaussian distribution

on each batch of feature maps:

BN(x) =
x− mean[x]
√

Var[x] + ǫ
· γ + β (2)

being γ and β learnable parameter vectors, and ǫ a

parameter for numerical stability.

3) Nonlinearity layers that embed a nonlinear function

applied to each feature map’s component in order to

learn nonlinear representations. In this layer, the rectified

linear unit (ReLU) [63], [64] has been implemented.

4) Pooling layers (POOL) that reduce data vari-

ance and computation complexity, making the features

location-invariant summarizing the output of multiple

neurons in CONV layers through a pooling function, e.g.

max-pool or average-pool.

B. Proposed Hyperspectral Deep Network for Spectral-

Spatial Classification

We denote a hyperspectral data cube as X ∈

R
N×W×H , containing two spatial dimensions: the width

W and height H , and one spectral dimension, the

number of spectral bands or channels N . In order to ex-

ploit both sources of information, we present a learning

framework based on very deep CNNs, with the aim of

performing accurate spectral-spatial HSI classification,

taking into account the spectral signature of each pixel

xi,j ∈ X and its spatial neighborhood. However, train-

ing very deep CNNs becomes more difficult as depth

increases due to the loss of information produced by the

vanishing gradient problem [53], where the activation

outputs of the network produce a poor propagation of

activations and gradients, being gradients close to zero,

which elongates the cost function that must be optimized

and cannot sufficiently change the model weights at each

iteration. This hampers the convergence of the network

from the beginning, where accuracy first saturates and

then degrades rapidly.

Fig. 1. Typical residual unit architecture R
(i)
j . The F(·) + pj is

performed by the shortcut connection, with element-wise addition.

One of the most effective ways to solve the vanish-

ing/exploding gradient problem is the use of a ResNet

model [54], through a residual block-based [55] architec-

ture. This model can be interpreted as a large ensemble

of many grouped and shallower networks, similar to a
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matrioska. Let us consider a ResNet that is composed by

M groups or modules. The i-th module Mi, with i =

1, 2, ...,M , will be composed by R(i) residual units and

the j-th residual unit R
(i)
j of Mi, with j = 1, 2, ..., R(i)

composed by a few stacked layers, normally CONV

layers stacked with ReLUs and BATCH-NORM layers.

In this architecture, two types of connections are given

(see Fig. 1), the feedforward connection that connects

layer-to-layer, i.e. each layer is connected with the

previous one and the next one, and the skip or shortcut

connection between each residual unit, i.e. a linear layer

that connects the input of R
(i)
j with its output, preserving

information across layers. In this way, two operations

are carried out related with these connections [see Eq.

(3)], residual learning by feedforward connections and

identity mapping by shortcut connections:

yj = h(pj) + F(pj ,Wj)

pj+1 = φ(yj)
(3)

where pj and pj+1 are the input and output feature

maps of the j-th residual unit respectively, Wj =
{

W
(j)
l |1 ≤ l ≤ Lj

}

is the weight matrix of the Lj

CONV layers associated to the j-th residual unit, F(·) is

the residual function, h(pj) = pj is the identity mapping

and φ(·) is an activation function (normally a ReLU).

The goal of the network is to learn the residual function

F(·) with respect to h(pj) = pj .

Also, in the ResNet each R
(i)
j shares the same topol-

ogy, whose outputs are aggregated by summation and

subject to two design rules: 1) for the same output

feature map spatial size, the layers have the same number

of filters n, and 2) if the feature map size is halved,

the number of filters n is doubled in order to preserve

the time complexity per layer. The main idea behind

this structure is that each residual unit is configured to

perform the same recognition task as a single layer of

the traditional CNN.

Fig. 2. Different residual unit architectures showing only CONV

layers: (left) traditional residual units, where CONV layers have exactly

the same topology; (center) bottleneck residual units, where feature

maps are reduced and restored in depth for the input and output

layers, maintaining the size between units; (right) pyramidal bottleneck

residual units, where the number of channels of the CONV layers

are gradually increased at every unit, resulting in progressively wider

layers.

An interesting point of ResNets is the design of the

residual blocks, depending on the size of the obtained

feature maps of each CONV layer (as we can observe

in Fig. 2 looking at the gray contours that indicate the

size of each layer). As opposed to traditional residual

units, where each CONV layer shares the same topology,

bottleneck residual units [54] have demonstrated to be

more economical than the former, where the input and

output CONV layers first reduce and then restore the

depth dimension of the feature maps, allowing a faster

execution of each residual unit. The pyramidal bottleneck

residual unit [57] is a modification of the latter that

outperforms the results of traditional residual units. This

kind of units are characterized by a diabolo architecture,

with the output layer being larger than the input layer

(from the number of channels point of view), which im-

poses a processing on the identity mapping h(pj) = pj

because of the different depth sizes between the original

input feature map pj and the resulting feature maps

of the residual function F(pj ,Wj). In order to solve

this issue in a parameter-free way, pyramidal residual

networks [57] implement a zero-padded shortcut, i.e.

they add extra zero entries padded until reaching the
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Fig. 3. Proposed hyperspectral pyramidal residual network architecture model. The input block pi,j ∈ R
N×d×d is passed through five different

modules that compose the hyperspectral pyramidal residual network: C, P1, P2, P3 and the output module. C is composed by a CONV and

a BATCH-NORM layers, while P1, P2 and P3 modules, also called pyramidal modules, are composed by three pyramidal bottleneck residual

units (B
(i)
1 , B

(i)
2 and B

(i)
3 , being i = {1, 2, 3} the pyramid layer). These residual units are composed by three BATCH-NORM layers followed

by their corresponding CONV layers and with a ReLU at the end of the unit. Instead of P1, that maintains the spatial size, P2 and P3 reduce

the data space adding strides equal to s = 2 (green CONV layer) and a downsampling layer. Finally, the output module is composed by a

downsampling layer and a fully connected layer that performs the final classification. Each CONV layer has its own number of filters and kernel

sizes, n1 and k1 for the first module and n
(j)
l

and k
(j)
l

for the pyramid layers (being j = 1, 2, 3 the j-th residual unit B
(i)
j and l = 1, 2, 3 the

number of the l-th CONV layer). The fully connected layer is composed by Nclass neurons, being Nclass the number of different land-cover

classes in the original HSI data.

increased dimension.

However, these residual units have been traditionally

developed for only spatial feature extraction, in order

to perform RGB image analysis and processing. Here

we introduce, for the first time in the literature, a new

residual unit inspired by pyramidal bottleneck residual

units to perform spectral-spatial classification of HSI

data. Fig. 3 provides a graphical illustration of our

model architecture, that follows the same matrioska

scheme of a ResNet. In this case, each module Mi

is renamed as pyramidal module Pi, where the j-th

residual unit is implemented as a pyramidal bottleneck

residual unit B
(i)
j . Also, this network implements zero-

padded identity-mapping shortcut connections for each

B
(i)
j , h∗(·).

Traditionally, CNNs are fed with a completely nor-

malized image prior in order to perform classification.

However, HSI data typically exhibit land-cover classes

that are highly mixed within the image X ∈ R
N×W×H ,

so each pixel xi,j ∈ R
N needs to be sent one by

one to the network. In order to exploit spectral-spatial

information, 3D neighboring blocks around each xi,j

are extracted, denoted by pi,j ∈ R
N×d×d, and sent to

the model as input data, following a border mirroring
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method described in [52]. Moreover, the original HSI

data X is normalized to zero mean and unit variance.

Patches pass through five different modules, which com-

pose the very deep neural network: one input module

called C, three pyramidal modules called P1, P2 and

P3, and the final output module.

The input module C is made up of a CONV layer,

with a kernel size N × k1 × k1 and a number of kernels

n1, followed by a BATCH-NORM layer. This module

performs a first spectral-spatial feature extraction from

the original input data, preparing its output feature maps

for the rest of the network.

The next pyramidal modules, P1, P2 and P3, are

composed by three pyramidal bottleneck residual units

each one, i.e. B
(i)
1 , B

(i)
2 and B

(i)
3 , with i = {1, 2, 3}.

At this point, a new architecture for the pyramidal

bottleneck residual units has been implemented in order

to perform spectral-spatial HSI feature processing. As

we can observe in Fig. 3, each B
(i)
j is made up of

several stacked layers, in particular three CONV layers,

preceded by the corresponding BATCH-NORM layers,

with a ReLU activation function at the end of the

unit. Specifically, the distribution of the layers can be

summarized as follows: BATCH-NORM1 − CONV1

− BATCH-NORM2 − CONV2 − BATCH-NORM3 −

CONV3 − ReLU.

In order to exploit the spectral-spatial information

contained in HSI data, the l-th CONV layer of the j-

th residual unit has been implemented with a filter bank

defined by its own kernel size, n
(j)
l−1×k

(j)
l ×k

(j)
l , and its

own number of kernels, n
(j)
l . As a result, each CONV

layer takes into account all the spectral information

contained in its input feature maps, which is defined by

the number of feature maps of the previous layer n
(j)
l−1,

and processes the spatial information within a window

over the feature maps defined by k
(j)
l × k

(j)
l . In this

way, each layer exploits both kinds of features spectral

and spatial, computing its output feature maps via Eq.

(1), with n
(j)
l maps.

Moreover, following the implemented spectral-spatial

pyramidal bottleneck residual block B
(i)
j , the output

feature map can be obtained by reformulating Eq. (3)

as follows:

y
(i)
j = h∗(p

(i)
j ) + F(p

(i)
j ,W

(i)
j )

p
(i)
j+1 = φ(y

(i)
j )

with F(p
(i)
j ,W

(i)
j )equals to:

for l in L: p
(i)
j = W

(j)
l · BN(p

(i)
j ) + b

(j)
l

(4)

where p
(i)
j and p

(i)
j+1 are the input and output feature

maps of the pyramidal bottleneck residual unit B
(i)
j , re-

spectively, h∗(p
(i)
j ) is the zero-padded identity-mapping

shortcut connection, W
(i)
j denotes all the weights and

biases of each CONV layers associated to B
(i)
j , being

Lj the number of CONV layers, F(p
(i)
j ,W

(i)
j ) is the dot

product between the input feature maps and the CONV

layers weights where Wj =
{

W
(j)
l |1 ≤ l ≤ Lj

}

being

W
(j)
l and b

(j)
l the weight matrix and bias vector of the

l-th CONV layer, φ is the ReLU activation function, and

BN(·) is the batch-normalization of the data. We must

highlight that P1 keeps the spatial feature size, setting

the strides in all the CONV layers of each B
(1)
j equal to

s = 1. However, P2 and P3 implement two different

mechanisms to perform downsampling over the input

data. As we can see, in the first residual unit of both

modules –B
(2)
1 and B

(3)
1 – there is a CONV layer (in

particular CONV2) with stride equal to s = 2 and a

downsampling layer added at the end of the unit. This

last downsampling layer applies an average pooling over

the input data in order to reduce data variance and extract

low-level features from the spatial neighborhood, feeding

those to the next layer. At this point it is interesting

to point that, instead of following the traditional two

rules of residual units, the pyramidal residual network

approach has been adopted in order to calculate the
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depth at the end of each B
(i)
j , called N

(i)
j , attempting

to gradually increase the depth of the feature map at

each unit instead of doubling it in certain units, which

allows to distribute the computational burden associated

to the increase of the feature maps in an uniform way.

In particular, Eq. (5) [57] has been adopted in order

to linearly increase the depth of feature maps at each

residual unit:

N
(i)
j =











A if i = 1 and j = 1

⌊N
(i)
j−1 +

α
N(net) ⌋ otherwise

(5)

Here, A is the initial depth of the input volume data,

N
(i)
j is the dimensionality of the feature map associated

to the j-th residual unit, B
(i)
j , that belongs to the i-th

module, Pi, and N (net) =
∑P

i=1 B
(i) represents the total

number of residual units, being P and B(i) the number

of pyramid modules and the number of pyramidal bot-

tleneck residual units per module, respectively.

Finally, the output feature maps of the last pyramidal

module P3 are downsampled one last time with average

pooling, and reshaped into a vector in order to feed a

fully-connected (FC) layer which is added at the end of

the network in order to perform the final classification

task. On the other hand, the neural model has been

optimized using the stochastic gradient descent (SGD)

method, with 200 epochs in the comparative experiments

and a variable learning rate, with LR = 0.1 from epochs

1 to 149 and LR = 0.01 from epochs 150 to 200.

Table I summarizes the proposed architecture by stat-

ing the value of each of the kernel sizes and the number

of filters employed in each CONV layer. The number of

kernels n
(j)
l of each CONV layer depends on the initial

selected A and α values, being A the number of spectral

bands (N in our case) and α = 50.

TABLE I

PROPOSED NETWORK TOPOLOGY. AVERAGE POOLING HAS A

KERNEL OF 2× 2 WITH STRIDE 2, AND FC LAYER HAS Nclass

NEURONS, BEING Nclass THE NUMBER OF CLASSES OF EACH

DATASET.

Module ID Unit ID CONV ID Kernel size
Stride

C/Pi B
(i)
j C

(j)
l

k
(j)
l

× k
(j)
l

Input module

C − − 3× 3 1

Pyramidal modules

P1

B
(1)
1

C
(1)
1 1× 1 1

C
(1)
2 7× 7 1

C
(1)
3 1× 1 1

B
(1)
2

C
(2)
1 1× 1 1

C
(2)
2 7× 7 1

C
(1)
3 1× 1 1

B
(1)
3

C
(3)
1 1× 1 1

C
(3)
2 7× 7 1

C
(3)
3 1× 1 1

P2

B
(2)
1

C
(1)
1 1× 1 1

C
(1)
2 8× 8 2

C
(1)
3 1× 1 1

B
(2)
2

C
(2)
1 1× 1 1

C
(2)
2 7× 7 1

C
(1)
3 1× 1 1

B
(2)
3

C
(3)
1 1× 1 1

C
(3)
2 7× 7 1

C
(3)
3 1× 1 1

P3

B
(3)
1

C
(1)
1 1× 1 1

C
(1)
2 8× 8 2

C
(1)
3 1× 1 1

B
(3)
2

C
(2)
1 1× 1 1

C
(2)
2 7× 7 1

C
(1)
3 1× 1 1

B
(3)
3

C
(3)
1 1× 1 1

C
(3)
2 7× 7 1

C
(3)
3 1× 1 1

III. EXPERIMENTS

A. Hyperspectral Datasets

Four well-known hyperspectral datasets have been

considered in the experimental part of the work: Indian

Pines (IP), University of Pavia (UP), Salinas Valley (SV)
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TABLE II

NUMBER OF SAMPLES OF THE INDIAN PINES (IP), UNIVERSITY OF PAVIA (UP) AND SALINAS VALLEY (SV) HSI DATASETS.

INDIAN PINES (IP) UNIVERSITY OF PAVIA (UP) SALINAS (SV) KENNEDY S.C. (KSC)

Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples

Background 10776 Background 164624 Background 56975 Background 309157

Alfalfa 46 Asphalt 6631 Brocoli-green-weeds-1 2009 Scrub 761

Corn-notill 1428 Meadows 18649 Brocoli-green-weeds-2 3726 Willow-swamp 243

Corn-min 830 Gravel 2099 Fallow 1976 CP-hammock 256

Corn 237 Trees 3064 Fallow-rough-plow 1394 Slash-pine 252

Grass/Pasture 483 Painted metal sheets 1345 Fallow-smooth 2678 Oak/Broadleaf 161

Grass/Trees 730 Bare Soil 5029 Stubble 3959 Hardwood 229

Grass/pasture-mowed 28 Bitumen 1330 Celery 3579 Swap 105

Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes-untrained 11271 Graminoid-marsh 431

Oats 20 Shadows 947 Soil-vinyard-develop 6203 Spartina-marsh 520

Soybeans-notill 972 Corn-senesced-green-weeds 3278 Cattail-marsh 404

Soybeans-min 2455 Lettuce-romaine-4wk 1068 Salt-marsh 419

Soybean-clean 593 Lettuce-romaine-5wk 1927 Mud-flats 503

Wheat 205 Lettuce-romaine-6wk 916 Water 927

Woods 1265 Lettuce-romaine-7wk 1070

Bldg-Grass-Tree-Drives 386 Vinyard-untrained 7268

Stone-steel towers 93 Vinyard-vertical-trellis 1807

Total samples 21025 Total samples 207400 Total samples 111104 Total samples 314368

and Kennedy Space Center (KSC). Table II shows a brief

summary of the considered HSI images, including the

number of samples per class, as well as the available

ground-truth information. Additionally, a more detailed

description of each image is given below.

• Indian Pines (IP): The IP dataset (Table II) was

gathered in 1992 by the Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS) sensor [65] over an

agricultural area in Northwestern Indiana. Specif-

ically, it covers a set of agricultural fields with

regular geometry and also irregular forest areas. The

selected scene contains 145×145 pixels, with a total

of 224 spectral bands in the wavelength range from

400 to 2500 nm, and spatial resolution of 20 meters

per pixel (mpp). After removing 4 null bands and

other 20 bands corrupted by the atmospheric water

absorption effect, the remaining 200 bands have

been considered for the experiments. Moreover,

about half of the data (10249 pixels from a total

of 21025) contains ground-truth information in the

form of a single label from 16 different classes.

• University of Pavia (UP): The UP image (Ta-
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ble II) was acquired by the Reflective Optics System

Imaging Spectrometer (ROSIS) sensor [66] over

the campus at the University of Pavia, northern

Italy. This dataset mainly contains an urban en-

vironment with multiple solid structures (asphalt,

gravel, metal sheets, bitumen, bricks), natural ob-

jects (trees, meadows, soil) and shadows. After

discarding the noisy bands, the considered scene

contains 103 spectral bands, with a size of 610×340

pixels in the spectral range from 0.43 to 0.86 µm

and with spatial resolution of 1.3mpp. About a 20%

of the pixels (42776 of 207400) contain ground-

truth information from 9 different class labels.

• Salinas Valley (SV): The SV scene (Table II) was

collected by the 224-band AVIRIS sensor over the

Salinas Valley, California, and it is characterized by

a spatial resolution of 3.7 mpp. The area covered

comprises 512 lines by 217 samples. As in the case

of the Indian Pines dataset, we discard the 20 water

absorption bands, i.e. [108-112], [154-167] and 224.

This image was only available as at-sensor radiance

data, and includes a total of 16 ground-truth classes,

such as vegetables, bare soils, and vineyard fields.

• Kennedy Space Center (KSC): The KSC data

(Table. II) was collected by the AVIRIS instrument

over the Kennedy Space Center in Florida in 1996.

Once noisy bands have been removed, the resulting

image contains 176 bands with a 512 × 614 size,

ranging from 400 to 2500 nm and with 20 mpp

spatial resolution. A total of 5122 pixels labeled in

13 classes, representing different land cover types,

are considered for classification purposes.

B. Experimental Configuration

The proposed approach has been compared to a total

of ten different classification methods available in the

literature: 1) support vector machine (SVM) with radial

TABLE III

CLASSIFICATION RESULTS FOR THE INDIAN PINES (IP) DATASET

USING 15% OF THE LABELED DATA FOR TRAINING AND 11× 11

INPUT SPATIAL SIZE.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 68.04 ±6.95 33.04 ±7.45 62.39 ±13.96 65.87 ±10.34 89.13 ±7.28 93.04 ±7.58

2 83.55 ±1.31 66.68 ±1.67 83.84 ±2.46 81.04 ±3.28 98.33 ±0.71 99.13 ±0.56

3 73.82 ±1.44 56.20 ±2.41 76.37 ±5.03 79.07 ±6.75 98.05 ±1.40 99.54 ±0.36

4 71.98 ±3.86 41.10 ±2.50 68.35 ±6.12 82.70 ±8.34 98.23 ±0.62 99.92 ±0.17

5 94.29 ±0.97 87.12 ±1.73 90.87 ±2.09 69.25 ±10.58 97.56 ±2.84 99.83 ±0.24

6 97.32 ±0.97 95.32 ±1.79 96.95 ±1.10 88.29 ±5.51 98.93 ±1.14 99.89 ±0.13

7 88.21 ±5.06 32.86 ±12.66 78.21 ±10.28 67.86 ±25.65 83.57 ±19.51 99.29 ±1.43

8 98.16 ±0.75 98.49 ±0.81 98.08 ±0.90 96.26 ±1.60 99.41 ±0.61 100.00 ±0.00

9 52.00 ±8.43 13.00 ±3.32 72.00 ±8.12 67.00 ±27.68 65.00 ±21.68 99.00 ±2.00

10 79.49 ±2.76 69.95 ±4.31 82.17 ±5.41 68.82 ±9.80 97.22 ±0.31 98.48 ±0.88

11 86.83 ±1.05 90.66 ±1.18 83.66 ±2.85 86.55 ±3.14 98.12 ±2.16 99.58 ±0.22

12 83.41 ±2.26 55.43 ±4.80 75.89 ±3.33 73.41 ±6.07 93.09 ±5.85 98.55 ±0.64

13 97.41 ±2.99 93.32 ±2.04 98.68 ±0.54 94.54 ±4.80 99.80 ±0.39 99.51 ±0.98

14 96.14 ±0.97 96.45 ±0.76 96.17 ±1.02 96.24 ±2.33 99.43 ±0.33 99.81 ±0.19

15 67.31 ±3.05 50.44 ±2.44 67.80 ±3.56 85.39 ±7.71 96.58 ±2.81 99.53 ±0.30

16 92.47 ±4.14 85.27 ±3.37 88.71 ±2.77 92.90 ±3.97 93.12 ±3.82 98.49 ±1.46

OA (%) 86.24 ±0.38 78.55 ±0.68 85.27 ±0.47 83.59 ±0.88 97.81 ±0.56 99.40 ±0.08

AA (%) 83.15 ±1.10 66.58 ±0.93 82.51 ±1.04 80.95 ±1.55 94.10 ±2.00 98.98 ±0.49

Kappa 84.27 ±0.45 75.20 ±0.81 83.20 ±0.53 81.23 ±1.04 97.50 ±0.64 99.31 ±0.10

Time(s) 208.98 ±1.70 1,301.68 ±45.94 7.31 ±0.15 56.45 ±0.19 39.62 ±0.67 103.21 ±0.47

TABLE IV

CLASSIFICATION RESULTS FOR THE UNIVERSITY OF PAVIA (UP)

DATASET USING 15% OF THE LABELED DATA FOR TRAINING AND

11× 11 INPUT SPATIAL SIZE.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 95.36 ±0.30 93.52 ±0.45 94.17 ±1.73 93.43 ±2.70 99.16 ±0.25 99.91 ±0.07

2 98.25 ±0.16 98.29 ±0.18 98.06 ±0.50 97.59 ±0.88 99.77 ±0.17 99.99 ±0.01

3 82.93 ±0.91 75.56 ±1.86 79.27 ±7.04 89.96 ±3.30 96.95 ±1.78 99.77 ±0.14

4 95.93 ±0.70 91.68 ±0.63 94.61 ±2.58 94.16 ±3.24 98.80 ±0.69 99.80 ±0.09

5 99.46 ±0.36 98.88 ±0.49 99.63 ±0.27 97.97 ±2.69 99.90 ±0.17 100.00 ±0.00

6 91.76 ±0.60 74.54 ±0.97 93.60 ±1.70 89.62 ±4.10 99.88 ±0.12 100.00 ±0.00

7 88.59 ±0.65 81.01 ±1.74 88.53 ±3.47 80.20 ±4.82 96.54 ±1.41 99.66 ±0.49

8 90.14 ±0.54 90.70 ±0.75 89.59 ±4.56 96.05 ±1.88 98.56 ±0.78 99.92 ±0.09

9 99.97 ±0.05 99.75 ±0.26 99.63 ±0.28 99.48 ±0.27 99.79 ±0.19 100.00 ±0.00

OA (%) 95.20 ±0.13 92.03 ±0.21 94.82 ±0.26 94.77 ±0.72 99.28 ±0.25 99.94 ±0.01

AA (%) 93.60 ±0.14 89.33 ±0.33 93.01 ±0.60 93.16 ±1.23 98.81 ±0.33 99.89 ±0.05

Kappa 93.63 ±0.17 89.30 ±0.28 93.13 ±0.34 93.05 ±0.97 99.04 ±0.32 99.92 ±0.02

Time(s) 6,084.92 ±55.64 6,188.75 ±35.16 29.10 ±0.92 172.29 ±0.71 140.09 ±1.63 269.19 ±0.66

basis function kernel [67], 2) random forest (RF), 3)

multi-layer perceptron (MLP), 4) extreme learning ma-

chine (ELM) [68], 5) kernel extreme learning machine

(KELM) [69], 6) one-dimensional CNN (1D-CNN), 7)

two-dimensional CNN (2D-CNN), 8) three-dimensional

CNN (3D-CNN), 9) spectral-spatial residual network

(SSRN) [50] and 10) deep fast convolutional neural

network (DFCNN) [52]. All hyper-parameters have been

fixed in an optimal way for each method.

More specifically, the SVM, RF, MLP, ELM, KELM
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TABLE V

CLASSIFICATION RESULTS FOR THE SALINAS VALLEY (SV)

DATASET USING 15% OF THE LABELED DATA FOR TRAINING AND

11× 11 INPUT SPATIAL SIZE.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 99.68 ±0.21 99.61 ±0.12 99.72 ±0.42 87.99 ±17.62 100.00 ±0.00 100.00 ±0.00

2 99.87 ±0.12 99.86 ±0.07 99.88 ±0.15 99.75 ±0.23 99.99 ±0.01 100.00 ±0.00

3 99.74 ±0.11 99.22 ±0.51 99.43 ±0.44 81.40 ±10.85 99.94 ±0.07 100.00 ±0.00

4 99.48 ±0.18 99.28 ±0.44 99.61 ±0.27 95.11 ±5.51 99.83 ±0.23 100.00 ±0.00

5 99.24 ±0.31 98.46 ±0.21 99.25 ±0.48 64.31 ±12.09 99.90 ±0.09 100.00 ±0.00

6 99.92 ±0.06 99.80 ±0.09 99.92 ±0.07 99.60 ±0.11 100.00 ±0.00 100.00 ±0.00

7 99.70 ±0.15 99.58 ±0.09 99.82 ±0.12 98.01 ±4.54 99.90 ±0.15 99.99 ±0.01

8 90.87 ±0.39 84.41 ±1.34 85.41 ±8.00 91.89 ±2.44 90.67 ±6.83 99.92 ±0.07

9 99.94 ±0.02 99.07 ±0.17 99.86 ±0.07 98.02 ±1.56 99.99 ±0.01 100.00 ±0.00

10 98.26 ±0.27 93.40 ±0.58 97.15 ±0.77 97.05 ±0.67 99.27 ±0.43 99.91 ±0.09

11 99.61 ±0.34 94.79 ±0.59 97.42 ±2.29 94.58 ±3.59 99.48 ±0.73 99.96 ±0.07

12 99.93 ±0.05 99.08 ±0.29 99.80 ±0.14 92.67 ±5.75 99.76 ±0.38 100.00 ±0.00

13 99.07 ±0.72 98.23 ±0.69 99.40 ±0.28 98.10 ±0.76 99.63 ±0.58 99.98 ±0.04

14 98.08 ±1.00 92.81 ±1.04 97.58 ±0.94 95.25 ±5.74 99.94 ±0.11 100.00 ±0.00

15 72.83 ±0.78 63.32 ±1.82 80.27 ±8.41 87.36 ±3.87 96.18 ±1.52 99.95 ±0.04

16 99.45 ±0.25 98.17 ±0.36 98.97 ±0.38 93.72 ±1.66 99.39 ±0.42 99.93 ±0.06

OA (%) 94.15 ±0.10 90.76 ±0.24 93.87 ±0.70 92.31 ±1.62 97.44 ±1.28 99.97 ±0.02

AA (%) 97.23 ±0.11 94.94 ±0.12 97.09 ±0.33 92.18 ±2.72 98.99 ±0.40 99.98 ±0.01

Kappa 93.48 ±0.11 89.70 ±0.26 93.18 ±0.77 91.43 ±1.81 97.15 ±1.42 99.96 ±0.02

Time(s) 3,110.30 ±29.20 4,694.29 ±158.39 36.42 ±0.11 296.62 ±3.52 260.41 ±6.09 372.51 ±1.46

and 1D-CNN are spectral classifiers. 2D-CNN is a

spatial-based method, where PCA has been applied over

the hyperspectral data in order to extract one principal

component (i.e., it reduces the number of spectral bands

N to 1), and 3D-CNN, SSRN, DFCNN, together with

the proposed approach are spectral-spatial techniques.

Considering all these classification methods and the

aforementioned datasets, we provide four different ex-

periments to validate the performance of the proposed

approach with respect to standard classifiers (experiment

1), considering different training data percentages (ex-

periment 2), and drawing comparisons with two recent

CNN-based spectral-spatial classifiers (experiments 3

and 4).

1) In our first experiment, the proposed network is

compared to the standard SVM, RF, MLP, 2D-

CNN and 3D-CNN classification methods using

a training set made up of 15% of the available

labeled data for the IP, UP and SV datasets.

Additionally, the input spatial size is fixed to

N × 11 × 11 for the 2D-CNN, 3D-CNN and the

proposed model, being N the number of spectral

bands.

2) In our second experiment, we compare the clas-

sification accuracy of the proposed approach with

regards to that obtained by spectral methods, in

particular SVM, RF, MLP, ELM, KELM and 1D-

CNN, by considering different training percentages

over the IP and UP datasets, following the same

configuration proposed in [7]. Specifically, we use

5%, 10%, 15%, 20% and 25% training percent-

ages and set the input patch size of the proposed

approach to N × 7× 7.

3) In our third experiment, the proposed approach is

compared to the SSRN spectral-spatial classifier

using four different spatial sizes, i.e. 5 × 5, 7 ×

7, 9 × 9, 11 × 11, and the training configuration

considered in [50]. That is, we consider 20% of the

available labeled data for the IP and KSC datasets,

and 10% of the available training data for the UP

dataset.

4) Finally, the fourth experiment compares the pro-

posed approach with the DFCNN network using

three different spatial sizes, 9 × 9, 15 × 15 and

19 × 19, and we use the training configuration

considered in [52]. Specifically, the number of

randomly selected training samples per labeled

class is: 30, 150, 150, 100, 150, 150, 20, 150, 15,

150, 150, 150, 150, 150, 50 and 50 in the case of

IP, and 548, 540, 392, 542, 256, 532, 375, 514 and

231 for UP.

In order to assess the results, three widely used

quantitative metrics are used to evaluate the classification

performance: overall accuracy (OA), average accuracy

(AA), and Kappa coefficient. Regarding the hardware

environment in which we have run the experiments,

it is composed by a 6th Generation Intel R© CoreTMi7-
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Fig. 4. From left to right: (a) achieved accuracy (vertical axis) versus employed computing time in seconds (horizontal axis) for the Indian

Pines (IP), Pavia University (PU) and Salinas Valley (SV) datasets; Total execution times of each compared algorithm for the IP (b), PU (c)

and SV (d) datasets. In blue and red we highlight the performance of the GPU and CPU implementations, respectively.

6700K processor with 8M of Cache and up to 4.20GHz

(4 cores/8 way multi-task processing), 40GB of DDR4

RAM with a serial speed of 2400MHz, a graphical

processing unit (GPU) NVIDIA GeForce GTX 1080

with 8GB GDDR5X of video memory and 10Gbps of

memory frequency, a Toshiba DT01ACA HDD with

7200RPM and 2TB of capacity, and an ASUS Z170 pro-

gaming motherboard. Additionally, the used software

environment is composed by Ubuntu 16.04.4 x64 as

operating system, CUDA 8 and cuDNN 5.1.5, Python

2.7 as programming languages.

C. Experimental Results

1) Experiment 1: Tables III, IV and V present the

classification results for IP, UP and SV datasets, cor-

responding to our first experiment. Specifically, the first

column of each table indicates the corresponding dataset

class; the next five columns show the results obtained by

SVM, RF, MLP, 2D-CNN and 3D-CNN classifiers, and

the last column contains the result of the proposed ap-

proach. Additionally, the OA, AA, Kappa coefficient and

computational time in seconds are provided in the last

four rows. It should be mentioned that MLP, 2D-CNN,

3D-CNN and the proposed approach take advantage of

the GPU to accelerate the corresponding procedures.

Also, in Fig. 4 we can observe the latency and execution

time results of the proposed method.

2) Experiment 2: Fig. 5 shows the results obtained

in our second experiment, where different training per-

centages are tested using IP and UP datasets. In partic-

ular, SVM, RF, MLP, ELM, KELM, 1D-CNN and the

proposed method are tested considering 5%, 10%, 15%,

20% and 25% of the labeled data for training. It should

be also mentioned that leftmost part of Fig. 5 contains

the results for the IP dataset, and the rightmost part of

Fig. 5 contains the results for the UP dataset.

Fig. 5. Overall accuracy (%) for SVM, RF, MLP, ELM, KELM, 1D-

CNN and the proposed approach when considering different training

percentages in Indian Pines (left) and University of Pavia (right)

datasets.

3) Experiment 3: In addition to the global analysis

conducted in the first two experiments, we also conduct

two additional experiments to compare the proposed

approach and two recent state-of-the-art spectral-spatial

classification networks. In this experiment, we compare

our approach with SSRN, which has been presented in

work [50]. Table VI provides the classification results
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obtained by SSRN and the proposed method. Specif-

ically, the first column contains the considered spatial

input size and the next three columns show the OA for

IP, KSC and UP datasets, respectively. Note that we use

the same training configuration used in [50], that is, 20%

of the available labeled data for IP and KSC, and 10%

of the available labeled data for UP.

4) Experiment 4: Table VII shows the results of the

comparison between the DFCNN method (presented in

work [52]) and the proposed approach. In particular,

three different spatial sizes are considered for the IP and

UP datasets. Note that additional spatial configurations

are not reported because the proposed approach already

provides an optimal result.

To conclude this section, Figs. 6, 7 and 8 complete

the experimental comparison by providing some of the

classification maps provided by the methods tested in

the first experiment for the IP, UP and SV datasets. As

it can be observed, the proposed method provides spa-

tially consistent classification outputs with well-delineted

object borders and very few classification interferers.

D. Discussion

According to the reported results, one of the first

noticeable points is the high classification accuracy that

the proposed approach is able to provide in the different

considered scenarios. That is, the proposed network

architecture achieves a consistent precision improvement

when considering not only the standard spectral clas-

sification methods SVM, RF, MPL, ELM, KELM and

1D-CNN, but also the spatial approach 2D-CNN and,

most importantly, the spectral-spatial methods 3D-CNN,

SSRN and DFCNN.

In Tables III, IV and V, it is possible to observe that

the proposed approach provides the best average results

as well as the highest accuracy values for each individual

class in the IP, UP and SV datasets. In particular, the

average improvement over the second best classifier, the

spectral-spatial 3D-CNN, is +1.59, +2.31 and +1.83

for AO, AA and Kappa metrics. Additionally, the net-

work presented in this work also shows a remarkable

performance improvement when considering different

percentages of training data. According to Fig. 5, the

proposed approach obtains the highest accuracy result

for all the tested training data percentages in IP and UP

datasets. Besides, the the proposed approach also tends

to converge faster to the maximum accuracy value than

the rest of the tested methods.

These results are also consistent with the corre-

sponding classification maps shown in Figs. 6, 7 and

8. On the one hand, spectral methods, such as SVM

or MLP, tend to generate rather noisy classification

maps because they do not take into account the spatial

component when providing a pixel prediction. On the

other hand, spatial classifiers, i.e. 2D-CNN, are prone to

alter some object shapes depending on the considered

input spatial size. Precisely, spectral-spatial classifiers

work for overcoming both limitations. As we can see,

the proposed approach certainly provides the classifi-

cation results that are more similar with regards to

the corresponding ground-truth classification maps for

IP, UP and SV datasets. In addition, it is possible to

observe that the proposed method also reaches a higher

performance. That is, class boundaries are better defined

and background pixels are better classified according to

the actual ground-truth image content. For instance, the

classification map depicted in Fig. 7(h) shows that the

proposed approach provides a clean classification result

for the self-blocking bricks class in the UP scene, while

noise and outliers are also significantly reduced with

respect to the rest of the methods.

From this initial comparison, we can note that spatial-

spectral classification algorithms are those which provide

the best performance over all the considered datasets.

December 10, 2018 DRAFT



16

TABLE VI

OVERALL ACCURACY (%) ACHIEVED BY THE SSRN METHOD [50] AND THE PROPOSED APPROACH WHEN CONSIDERING DIFFERENT INPUT

SPATIAL SIZES.

Indian Pines (IP) Kennedy Space Center (KSC) University of Pavia (UP)

Spatial Size SSRN Proposed SSRN Proposed SSRN Proposed

5× 5 92.83 ±0.66 98.80 ±0.10 96.99 ±0.55 98.81 ±0.07 98.72 ±0.17 99.52 ±0.05

7× 7 97.81 ±0.34 99.26 ±0.06 99.01 ±0.31 99.51 ±0.08 99.54 ±0.11 99.81 ±0.09

9× 9 98.68 ±0.29 99.64 ±0.08 99.51 ±0.25 99.60 ±0.05 99.73 ±0.15 99.87 ±0.03

11× 11 98.70 ±0.21 99.82 ±0.07 99.57 ±0.54 99.79 ±0.11 99.79 ±0.08 99.92 ±0.02

a) RGB b) GT c) SVM (86.24%) d) RF (78.55%) e) MLP (85.27%) f ) 2D-CNN (83.59%) g) 3D-CNN (97.81%) h) Proposed (99.40%)

Fig. 6. Classification maps for the Indian Pines (IP) dataset. The first image (a) represents a simulated RGB composition of the scene. The

second one (b) contains the ground-truth classification map. Finally, images from (c) to (h) provide the classification maps corresponding to

Table III. Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

a) RGB b) GT c) SVM (95.20%) d) RF (92.03%) e) MLP (94.82%) f ) 2D-CNN (94.77%) g) 3D-CNN (98.54%) h) Proposed (99.94%)

Fig. 7. Classification maps for the University of Pavia (UP) dataset. The first image (a) represents a simulated RGB composition of the scene.

The second one (b) contains the ground-truth classification map. Finally, images from (c) to (h) provide the classification maps corresponding

to Table IV. Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

TABLE VII

OVERALL ACCURACY (%) ACHIEVED BY THE DFCNN METHOD

[52] AND THE PROPOSED APPROACH WHEN CONSIDERING

DIFFERENT INPUT SPATIAL SIZES.

Indian Pines (IP) University of Pavia (UP)

Spatial Size DFCNN Proposed DFCNN Proposed

9× 9 93.94 98.87 ±0.19 - -

15× 15 - - 98.87 99.93 ±0.02

19× 19 96.29 99.45 ±0.14 - -

More specifically, the RF spectral classifier obtains the

lowest average overall accuracy in the conducted ex-

periments (87.11%), followed by the spatial 2D-CNN

(90.22%) and the spectral MLP (91.32%) methods. Be-

sides, the spectral SVM approach shows, on average, a

slightly better performance (91.86%). Nonetheless, the

performances provided by the spectral-spatial methods,

i.e. the 3D-CNN network (98.17%) and the proposed

approach (99.77%), are significantly higher. Precisely,

this the reason why we conduct a more detailed perfor-
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a) RGB b) GT c) SVM (94.15%) d) RF (90.76%) e) MLP (93.87%) f ) 2D-CNN (92.31%) g) 3D-CNN (97.44%) h) Proposed (99.97%)

Fig. 8. Classification maps for the Salinas Valley (SV) dataset. The first image (a) represents a simulated RGB composition of the scene. The

second one (b) contains the ground-truth classification map. Finally, images from (c) to (h) provide the classification maps corresponding to

Table V. Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

mance comparison between the proposed approach and

two recent spectral-spatial methods, SSRN and DFCNN.

Regarding the SSRN performance comparison, Ta-

ble VI shows some important points which deserve to

be mentioned. Although both methods (SSRN and the

proposed one) improve the classification accuracy when

considering a higher input spatial size, the proposed

approach provides a substantial precision gain, especially

with smaller input spatial sizes. That is, the proposed

approach pyramidal architecture provides the advantage

of extracting more feature maps as the network residual

units are deeper, therefore it is able to better exploit the

information contained within an input HSI cube in order

to learn more robust spectral-spatial representations. As

a result, the proposed method provides a more accurate

(as well as robust) classification result than the SSRN. In

other words, the proposed method consistently achieves

higher accuracy results and lower standard deviation

values than the SSRN, which means that the class uncer-

tainty is significantly reduced, no matter the considered

spatial size. Note that SSRN obtains some standard

deviation values relatively large considering the high

overall accuracy. For instance, it is the case of the KSC

dataset when considering a 11× 11 spatial size. As we

can see, SSRN obtains a 99.57±0.54% overall accuracy,

whereas the proposed approach result, 99.79 ± 0.11%,

achieves even a higher accuracy with a five times lower

standard deviation. In general, the proposed approach

exhibits a better classification performance than SSRN

for IP, KSC and UP datasets because it is able to obtain

higher accuracy results with lower standard deviation

values, which also shows that the proposal is robust in

the presence of variability and noise.

A similar trend can be also observed in the reported

DFCNN comparison (Table VII). In particular, the pro-

posed approach obtains better OA than DFCNN for

IP and UP datasets when considering 9 × 9, 15 × 15

and 19 × 19 spatial sizes, respectively. Taking all these

observations into account, it is possible to state that the

proposed approach provides a more accurate and robust

classification result than all of the other tested methods.

Even though the spectral-spatial classifiers 3D-CNN,

SSRN and DFCNN have shown to obtain relatively

high classification accuracies, the proposed architecture

provides a more effective scheme to reduce the uncer-

tainty when uncovering spectral-spatial features. That

is, increasing the feature map dimension at all CONV

layers, grouped in pyramidal residual blocks, allows

the proposed approach to involve more locations as the

network depth increases while balancing the workload
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among all units and preserving the time complexity per

layer. As a result, the diversity of high-level spectral-

spatial attributes can be gradually increased across layers

to enhance the capability of the network to manage

remotely sensed HSI data.

The obtained results also demonstrate that the pro-

posed technique provides a remarkable quantitative im-

provement, which indicates that the presented spectral-

spatial architecture is able to generate more distinctive

features to effectively classify remotely sensed HSI

images, achieving the best accuracy performance for all

the conducted experiments (see Tables III-VII) and the

most robust behavior when dealing with different input

spatial sizes (see Tables VI and VII). The effectiveness

of the proposed network (when compared with regular

CNN models) lies in its architecture, which progressively

increases the feature map dimension at all residual units,

allowing the proposed approach to involve more 3D vol-

ume locations as the network depth increases. This fact

eventually promotes uncovering a larger variety of high-

level spectral-spatial features, balancing the workload

among units to facilitate the network training process

and also allowing the model to reduce the declining-

accuracy phenomenon when considering significantly

deep networks. Based on the reported results with dif-

ferent HSI datasets, multiple training percentages and

several input spatial sizes, we can conclude that the

proposed technique is able to better exploit the spectral-

spatial information contained in a HSI data cube, thus

maintaining a good quantitative performance even with

small kernel spatial sizes.

According to the computational times reported in Ta-

bles III-V, it is also possible to highlight some important

aspects among the tested methods. On average, SVM and

RF classifiers are the most time-consuming methods, fol-

lowed by the proposed approach, 2D-CNN and 3D-CNN.

Finally, MLP has shown to be the most efficient tech-

nique in computational terms. Even though the adopted

SVM and RF implementations do not take advantage of

GPU acceleration, their corresponding optimal parameter

search tasks are computationally demanding processes

which highly affect the overall computational time. In

the case of the tested neural network-based methods,

the pyramidal residual blocks of the proposed approach

logically require a larger amount of computational power

than simpler architectures. Specifically, the proposed

approach computational time is, on average, a 25% and

43% higher than the corresponding 2D-CNN and 3D-

CNN costs. Despite the fact that the proposed approach

obtains a higher computational time than MLP, 2D-CNN

and 3D-CNN networks, the resulting cost increase is

moderate considering the high number of operations

required by the proposed model when compared to

simpler architectures. That is, the proposed network is

able to find spectral-spatial relationships useful to obtain

a relatively more effective model convergence as well

as a remarkable classification improvement. Looking at

Fig. 4, we can observe [in Fig. 4(a)] that the proposed

approach takes relatively little time to reach a good ac-

curacy (around 25 seconds), while in Figs. 4(b), (c) and

(d) we show the total execution time of each compared

algorithm, being SVM and RF the two slowest methods.

This is mainly due to the parameter searching process

(which is performed in the CPU), that has a strong

influence in the computation times. In contrast, the MLP

is the fastest GPU-implemented classifier, while the pro-

posed technique is one of the slowest GPU-implemented

methods due to its more complex architecture, followed

by the spatial CNN. Finally, it is also important to

highlight that the proposed approach generally exhibits

a lower computational time than SSRN according to the

results reported in [50].
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IV. CONCLUSIONS AND FUTURE RESEARCH LINES

This paper presents a novel CNN-based deep net-

work architecture specifically designed to manage large

hyperspectral data cubes. In particular, the proposed

new hyperspectral pyramidal residual network pursues to

improve the straightforward residual model formulation

by better exploiting the potential of the information

available on each unit. The proposed architecture grad-

ually increases the feature map dimension step by step

at each pyramidal bottleneck residual blocks, composed

by three convolutional layers, as a pyramid, in order

to involve more feature map locations as the network

depth increases, while balancing the workload among all

units and preserving the time complexity per layer. The

experimental part of the work, conducted over four well-

known hyperspectral datasets and using ten different

classification methods, reveal that the new hyperspectral

pyramidal residual model is able to provide a competitive

advantage over state-of-the-art classification methods.

One of the main conclusions that arises from this work

is the relevance of using spectral-spatial information

when classifying hyperspectral data. In this regard, the

newly proposed approach is able to uncover highly de-

scriptive spectral-spatial classification features through-

out the implemented network convolutional filters. That

is, our adopted strategy for gradually increasing the fea-

ture map dimension at all residual-based units allows us

to consider a higher variety of spectral-spatial attributes

as the network depth increases, because more image

locations can be simultaneously considered. Eventually,

this fact leads to classification improvements by means

of the combined spectral-spatial features, which help to

better discern among classes in multiple HSI datasets and

experimental settings. Although other recent approaches,

such as SSRN and DFCNN, exhibit very good classi-

fication performance, the new proposed hyperspectral

pyramidal residual model is able to outperform their

results and also to provide a more robust behavior

when considering different input spatial sizes. Another

important point is related to the amount of data used

for training purposes. Although deep learning methods

usually require a significant amount of labeled data,

the proposed approach has shown to provide consistent

performance improvements with respect to other state-

of-the-art models using different percentages of training

data.

Despite the good results provided by the proposed

approach, there are several unresolved issues that may

present challenges over time. In particular, our future

work will be aimed at the following directions: (i)

reducing the computational complexity of the proposed

HSI classification network by developing new methods

to optimize the model parameters, (ii) developing more

efficient parallel implementations of the proposed model,

and (iii) integrating advanced data augmentation and

active learning schemes into the proposed classification

framework.
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