
Citation: Ahmed, M.A.; Alnatheer, S.

Deep Q-Learning with Bit-Swapping-

Based Linear Feedback Shift Register

fostered Built-In Self-Test and

Built-In Self-Repair for SRAM.

Micromachines 2022, 13, 971. https://

doi.org/10.3390/mi13060971

Academic Editor: Wen-Jyi Hwang

Received: 15 May 2022

Accepted: 17 June 2022

Published: 19 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Deep Q-Learning with Bit-Swapping-Based Linear Feedback
Shift Register fostered Built-In Self-Test and Built-In
Self-Repair for SRAM
Mohammed Altaf Ahmed * and Suleman Alnatheer

Department of Computer Engineering, College of Computer Engineering & Sciences, Prince Sattam Bin
Abdulaziz University, Al-Kharj 11942, Saudi Arabia; s.alnatheer@psau.edu.sa
* Correspondence: m.altaf@psau.edu.sa

Abstract: Including redundancy is popular and widely used in a fault-tolerant method for memories.
Effective fault-tolerant methods are a demand of today’s large-size memories. Recently, system-
on-chips (SOCs) have been developed in nanotechnology, with most of the chip area occupied by
memories. Generally, memories in SOCs contain various sizes with poor accessibility. Thus, it is not
easy to repair these memories with the conventional external equipment test method. For this reason,
memory designers commonly use the redundancy method for replacing rows–columns with spare
ones mainly to improve the yield of the memories. In this manuscript, the Deep Q-learning (DQL)
with Bit-Swapping-based linear feedback shift register (BSLFSR) for Fault Detection (DQL-BSLFSR-
FD) is proposed for Static Random Access Memory (SRAM). The proposed Deep Q-learning-based
memory built-in self-test (MBIST) is used to check the memory array unit for faults. The faults are
inserted into the memory using the Deep Q-learning fault injection process. The test patterns and
faults injection are controlled during testing using different test cases. Subsequently, fault memory is
repaired after inserting faults in the memory cell using the Bit-Swapping-based linear feedback shift
register (BSLFSR) based Built-In Self-Repair (BISR) model. The BSLFSR model performs redundancy
analysis that detects faulty cells, utilizing spare rows and columns instead of defective cells. The
design and implementation of the proposed BIST and Built-In Self-Repair methods are developed
on FPGA, and Verilog’s simulation is conducted. Therefore, the proposed DQL-BSLFSR-FD model
simulation has attained 23.5%, 29.5% lower maximum operating frequency (minimum clock period),
and 34.9%, 26.7% lower total power consumption than the existing approaches.

Keywords: built-in self-test; Built-In Self-Repair; Built-In Redundancy Analysis; deep Q-learning;
fault injection; system-on-chip; CMOS; Static Random Access Memory

1. Introduction

The primary purpose of memories in systems-on-chips is “to store huge amounts of
data” [1]. Here, the memories occupy more space in SOC design, developed in CMOS
technology. It contains a smaller feature size [2], which specifies that memories are essential
for yield impact [3,4]. The memory repair principle includes either row or column repair, or
both [5]. Traditionally, memory repair is executed in two stages. The first stage is examined
the failure identified by the memory built-in self-test controller through the test of repairing
memory. The second stage determines the repair signature to repair memory [6,7]. Each
repairable memory has repair registers, which hold the repair signature. Additionally,
the BIRA method calculates the repair signature according to memory failure data and
executes the memory redundancy model. It defines whether the memory is repaired in
the production testing platforms. Therefore, the repair signature is stored in the Built-In
Redundancy Analysis registers for processing MBIST Controllers [8–11].

The repair signature is sent to the scan chain of the repair registry for the chip pro-
gramming placed at the chip design level [12]. Here, the fusebox’s read and write test

Micromachines 2022, 13, 971. https://doi.org/10.3390/mi13060971 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13060971
https://doi.org/10.3390/mi13060971
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-0355-7835
https://doi.org/10.3390/mi13060971
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13060971?type=check_update&version=2

Micromachines 2022, 13, 971 2 of 18

access port (TAP) is controlled, and the special repair logs record the scan chains that
connect the memories to the fuse. Moreover, the repair data is scanned from the scan chains,
compressed, and burned while flying in the eFuse line using higher voltage nuts. On-chip
reset, restoration data from eFuse is loaded spontaneously and debugged into repair logs
attached to the memory [13]. As a result, all memories are fixed by redundancies. Finally,
MBIST runs on repaired memory, which verifies the correctness of memory.

Usually, memories do not contain logic gates and flip-flops. So, various fault models
and test algorithms are needed to test memories. If there are any faults in memory, it affects
the overall output of SOC. Due to this reason, the spare rows and columns are included
in memory. Where erroneous cells are needed to run, spare rows/columns are utilized
in the place of damaged cells using BISR logic. The repair logic contains line/column
repair or both. Then, the memory built-in self-testing and repair tool tests memory ef-
fectively to detect possible faults among normal memory cells. Thus, the below fault
models are adequate to test the memory, such as Stuck-at-Fault, Transition Fault, Coupling
Fault, Neighborhood Pattern Sensitive Fault (NBSF), and Address Decoder Faults [14–18].
Furthermore, error detection methods provide a way to detect faulty sites, and exist-
ing redundancy analysis (RA) methods offer repair solutions for these defective sites [19].
Moreover, repair solutions include spare rows and columns for misplacement of memory.

Furthermore, the rows and columns pivots and repair requests are serviced based
on the precedence list created through actions to reduce complexity and tracing time
based on execution and finding row and column pivots. However, it does not reduce the
power consumption, area, and time while implementing FPGA [20]. A simple BIST and
BISR method is presented in the research [21,22]. It uses an MBIST controller and BISR
algorithm for testing memory and is implemented on ASIC, and the March algorithm is
used in the research to test the MUT. In 2021, Fragkos presented an artificial intelligence-
based approach using a large test-bed architecture [23] to deal this the fault detection
problem. Although, some optimization techniques still are required to minimize these
issues for optimal memory built-in self-test of SRAM. Thus, the Deep Q-learning (DQL)
with Bit-Swapping-based linear feedback shift register (BSLFSR) model is proposed in this
manuscript for SRAM testing using MBIST and BISR methods.

The main contributions of this manuscript are described as follows:
In this manuscript, Deep Q-learning (DQL) with Bit-Swapping-based linear feedback

shift register (BSLFSR) for Fault Detection (DQL-BSLFSR-FD) is proposed for SRAM.
Then, the proposed hybrid technique is the combined execution of both the Deep

reinforcement learning (DQL) [24] and Bit-Swapping-based linear feedback shift register
(BSLFSR) [25]; hence it is named the DQL- BSLFSR technique.

In this manuscript, the Deep Q-learning (DQL)-based BIST is used to check the memory
array circuit and injects faults into memory.

Additionally, BSLFSR-based BISR is used for repairing faulty memory cells based on
BIRA. After inserting faults in the memory cell, fault memory is fixed with BSLFSR for the
Built-In Self-Repair scheme.

Subsequently, the simulation and synthesis outcomes are attained by utilizing Mentor
Graphics and Xilinx ISE 14.5 design suite.

Furthermore, the design and implementation of FPGA architecture by memory built-in
self-test and self-repair hardware structure for Static Random Access Memory are tested
using Verilog.

Finally, the performance measures are analyzed, such as power, area, and operating
frequency of BIST and BISR of the proposed DQL-BSLFSR-FD method.

The simulation outcomes of the DQL-BSLFSR-FD method are compared with existing
methods, such as Extreme Learning Machine-based Autoencoder for fault diagnosis (ELM-
AE-FD) [26], and built-in self-test (BIST) model-based post package inspections (PPI) for
fault diagnosis (BIST-PPI-FD) [27], respectively.

Therefore, the FPGA performance of the DQL-BSLFSR-FD method is compared with
the existing approaches. The existing techniques, such as the first one, the memory BIST

Micromachines 2022, 13, 971 3 of 18

with optimized BISR for fault detection FPGA (MBIST-OBISR-FD) [28], the second one, the
SRAM-based Physically Unclonable Function (PUF) with Hot Carrier Injection (HCI) for
fault detection FPGA (PUF-HCI-FD) [29], and third, Essential Spare Pivoting (ESP) based
Local Repair Most (LRM) FPGA (ESP-LRM-FD) [30], respectively, are compared with the
proposed method.

The remaining manuscript is structured as follows: Section 2 delineates the related
works, Section 3 elaborates the proposed methodology, Section 4 demonstrates the results
and discussion, and Section 5 concludes the manuscript.

2. Related Work

Numerous MBIST strategies were used in the previous literature. Some of the most
recent research works are reviewed here.

In 2020, Kalpana et al. [26] presented an Extreme Learning Machine-based Autoen-
coder for parametric fault diagnosis (ELM-AE-FD) in the analog circuit. Additionally,
Single and multiple parametric fault analyses were considered for simulation before the test
model. Here, the features were collected to create a fault dictionary that involves different
faulty and fault-free configuration values. Subsequently, the transfer function model was
simulated using Monte-Carlo analysis, and the model’s performance was compared with
self-adaptive evolutionary ELM approaches. Therefore, the ELM-AE-FD method achieved
higher diagnosis accuracy, but the power consumption was high.

In 2021, Gopalan and Pothiraj [28] presented memory BIST with optimized BISR for
fault detection in SOCs design. The BIST model checks the memory array circuit, and the
optimized BISR repairs the faulty memory cells. Additionally, faults were inserted into the
memory using saboteurs fault injection and mutants fault injection methods by optimized
test pattern logic. After that, the fault memory was repaired by the counting threshold
algorithm. Therefore, the performance of the MBIST-OBISR-FD model improved in this
method, but the device utilization was very high.

In 2020, Liu [29] presented SRAM-based Physically Unclonable Function (PUF) with
Hot Carrier Injection (HCI) for fault detection with high stability and low power. The
PUF model utilizes hybrid operations based on CMOS-SRAM mode and Enhancement-
Enhancement (EE) Static Random Access Memory mode. The PUF model was fabricated in
standard CMOS at 130 nm, which achieved a high bit error rate (BER). Additionally, the
accelerated aging test performs a long-term reliability operation, which enhances the model’s
performance. However, fault diagnosis was not reasonable using the PUF-HCI-FD model.

In 2020, Ryabtsev and Volobuev [30] presented the BISR framework to restore RAM
operability on SOCs. Hence, the given model was processed when various failures were
due to backup and main memory reconfiguration. Thus, the technical solution lessens the
product’s weight than most redundant devices because not every memory was allocated,
but only vital components were very susceptible to failures. Therefore, the functional state of
the digital SOC’s memory was automatically restored without the contribution of the framework.
The BISR and BIST RAM were used for industrial and special purposes that achieved high
performance in failure detection, but the area of the model was comparatively high.

In 2020, Zhou et al. [31] presented the design of the Spin-Transfer Torque-based
magneto-resistive random access memory (STT-MRAM) model for the BIST process. In this
approach, the tunneling magneto-resistance (TMR) was checked, and a real-time built-in
self-test was triggered during the sensing operation for lasting damage in the magnetic
tunnel junction (MTJ) stack. Further, the presented design was involved in magneto-
resistive random access memory array execution for calculating the feasibility of the test
scheme. Therefore, the designed model achieved lower power consumption and higher
reliability, but the operating time of the model was high.

In 2021, Park et al. [27] presented the BIST model to process post-package inspections
(PPI) for attaining fault-free Dynamic Random Access Memory (DRAM). Here, the compact
and higher test coverage structures for in-DRAM-BIST were considered for resolving the
area issues when applied to commodity Dynamic Random Access Memory. Subsequently,

Micromachines 2022, 13, 971 4 of 18

the built-in self-test model safeguards the test coverage for a short period, diminishing the test
time and improving the area overhead, but still, the power utilization of the model was high.

In 2019, Pundir [25] presented improved modified memory Built-In Self-Repair (MM-
BISR) for Static Random Access Memory utilizing hybrid redundancy analysis (HRA). The
augmented version of ESP and LRM provides a better solution for an optimized set of
rows and columns appropriate to the repair process. Additionally, the fault dictionary
was updated or fixed concurrently in the redundancy analysis (RA) based on MBIST and
provided control signals. Subsequently, rows and column pivots and restoration requests
were serviced based on a precedence list that was arranged using the compared activities.
Therefore, results were justified using the presented algorithm that was quite active as the
repair rate was higher up to 4% assessed with the penalty of an area of the Essential Spare
Pivoting, and few nominal area penalties were assessed with Essential Spare Pivoting.

3. Proposed Built-In Self-Test and Built-In Self-Repair Methodology for SRAM

The fault is inserted and tested to improve any system’s performance before it is
marketed. The process of defects being added to the system is known as fault injection. In
system-on-chip (SOC) design, memory occupies a larger space, and any memory defects
affect the overall output of the system-on-chip. Thus, spare rows and columns are included
in the memory. This manuscript proposes Deep Q-learning (DQL) and BSLFSR for built-in
self-test and Built-In Self-Repair for SRAM. The proposed DQL-based MBIST is used to
check the memory array unit, and faults are inserted into the memory using the DQL fault
injection process. Subsequently, the fault memory is repaired after inserting faults in the
memory cell using the BSLFSR-based Built-In Self-Repair model. The proposed block of
built-in self-test and Built-In Self-Repair for Embedded Memories is shown in Figure 1.

Micromachines 2022, 13, 971 5 of 19

Start register

Test controller

Comparator

Memory Under

Test (MUT)

Wr-data

addr

wr

rd

addr

Bit Swapping

based linear

feedback shift

register

(BSLFSR) based

BISROutput response

recorder

Text pattern

generator

based on

deep Q

Learning

Data Pattern

Faculty cells

Register

repairRd-data

Test fail Test pass

Figure 1. Block diagram of built-in self-test and Built-In Self-Repair for Embedded Memories.

The proposed architecture model involves various blocks such as a start register, test

pattern generator, test controller, comparator, memory under Test (MUT), output re-

sponse recorder, and BISR. The test pattern generator and test controller are performed

based on the proposed DQL method. Moreover, faults are injected using the proposed

DQL model, and the fault memory is repaired using the proposed BSLFSR.

3.1. Built-In Self-Test (BIST) Using Deep Q-Learning Algorithm

Typically, BIST is a practical integrated circuit with low cost incorporated with

SRAM memories to test the fault occurring during the memory’s read or write operation.

It eliminates the need for an expensive and time-consuming external hardware module

known as Automated Test Equipment (ATE). Additionally, the architecture of BIST in-

volves various structures than the external ATE because it is very expensive. In general, a

built-in self-test circuit involves various blocks such as a buffer circuit that act as a level

shifter, an amplifier circuit for amplifying the fault signal, the operational amplifier is uti-

lized for boosting the weak signals and operates as 2nd stage amplifier, and a comparator

circuit for evaluating the results of fault-free and faulty SRA Memory. Furthermore, the

memory test controller works based on the Deep Q-learning mechanism to improve fault

coverage and is utilized for detecting the coupling faults. The proposed Deep Q-learning

mechanism generates the test patterns and acts as a test controller for injecting faults into

the memory. After injection of defects in the memory cell, fault memory is fixed using

BSLFSR for the BISR model.

Test pattern generator

It works on the DQL model that creates the patterns needed for injecting faults and

propagating the effect to outputs. Let the initial state of DQL be as 0K , and the agent

receives the state observation)(sK in a step)(s that takes action based on the policy

Figure 1. Block diagram of built-in self-test and Built-In Self-Repair for Embedded Memories.

Micromachines 2022, 13, 971 5 of 18

The notations used in Built-in Self-test and Built-In Self-Repair for Embedded Memo-
ries block are summarized in Table 1.

Table 1. Description of the notation used in the Test and Repair process.

Operations Description

Wr-data Write the data to the memory location whose address is given.

addr Indicates the address of the memory location where the data of the memory is going to access.

wr Write enable signal to write into the memory.

rd Read enable signal indicating the read operation from memory.

Rd-data The read data bus contains the read data from the given memory location.

w0 Write the logic value ‘0’ to the memory location.

w1 Write the logic value ‘1’ to the memory location.

r0 Read the logic value ‘0’ from the memory cell.

r1 Read the logic value ‘1’ from the memory cell.

The proposed architecture model involves various blocks such as a start register, test
pattern generator, test controller, comparator, memory under Test (MUT), output response
recorder, and BISR. The test pattern generator and test controller are performed based on
the proposed DQL method. Moreover, faults are injected using the proposed DQL model,
and the fault memory is repaired using the proposed BSLFSR.

3.1. Built-In Self-Test (BIST) Using Deep Q-Learning Algorithm

Typically, BIST is a practical integrated circuit with low cost incorporated with SRAM
memories to test the fault occurring during the memory’s read or write operation. It
eliminates the need for an expensive and time-consuming external hardware module
known as Automated Test Equipment (ATE). Additionally, the architecture of BIST involves
various structures than the external ATE because it is very expensive. In general, a built-in
self-test circuit involves various blocks such as a buffer circuit that act as a level shifter,
an amplifier circuit for amplifying the fault signal, the operational amplifier is utilized for
boosting the weak signals and operates as 2nd stage amplifier, and a comparator circuit for
evaluating the results of fault-free and faulty SRA Memory. Furthermore, the memory test
controller works based on the Deep Q-learning mechanism to improve fault coverage and
is utilized for detecting the coupling faults. The proposed Deep Q-learning mechanism
generates the test patterns and acts as a test controller for injecting faults into the memory.
After injection of defects in the memory cell, fault memory is fixed using BSLFSR for the
BISR model.

Test pattern generator
It works on the DQL model that creates the patterns needed for injecting faults and

propagating the effect to outputs. Let the initial state of DQL be as K0, and the agent receives
the state observation (Ks) in a step (s) that takes action based on the policy π(Ks, As). The
Q-function or a state-action value function from the state K and action A under the policy
π is described in Equation (1),

Qπ(K, A) =
∞

∑
t=0

φtRs+t|Ks, As = A (1)

The reward function is denoted as R, which states a scalar reward for a given state or
action, φ representing the discount factor used to prefer the test patterns. Additionally, the
model’s loss function during training is reduced using Equation (2),

L(ϕ) =
(

yϕ−)−Q(K, A, ϕ)2
)

(2)

Micromachines 2022, 13, 971 6 of 18

where the loss function is mentioned as L(ϕ) of DQN parameters ϕ and y(ϕ−) represents
the generated test patterns given in Equation (3),

y(ϕ−) =
(

R + φmaxQ(K′, A′, ϕ−
)

(3)

To track the test patterns ϕ− is used in the DQR mentioned in Equation (4),

ϕ− ← gϕ + (1− g)ϕ− (4)

where g denotes the parameter for identifying test patterns that is mentioned as g << 1.
Thus, to enhance the training stability, weights of the target network are periodically
updated through repetitions. Hence, the generated test patterns are stored and applied
during BIST execution. In this, the patterns are randomly generated by a DQL-based test
pattern generator that act as test patterns. Moreover, an essential emphasis of register
design is less area, which is created with as many various patterns as possible.

Test Controller
In this work, the memory test controller involves registers for starting the test controller

to record the failed information. Hence, the test controller starts once the start signal is
programmed in the start register. Additionally, the start register contains reset, resume,
clock, start, stop, halt-on-error, and memory ID. Additionally, the test pattern generator
works based on the DQL method that generates patterns applied in the block of MUT
during the read operation. Moreover, the read data is compared with generated patterns
during the testing operation. At last, the memory ID, faulty cells, defective cell counts,
and failed address of the memory under test are recorded in the output response recorder.
Moreover, the failed data are given to a built-in repair block for using spare memory in the
place of faulty cells.

3.2. Memory under Test (MUT)

Additionally, the generated patterns are applied to MUT during the read and write
operations. In this, various states are considered, such as idle state, write 0 at the memory
location (w0), read 0 write 1 state (r0w1), read 1 write 0 read 0 (r1w0r0), write 0 read 0
write 1 (w0r0w1), read 1 word 0 (r1w0),read 0 (r0) and fail record status. Hence, the test
controller in an idle state waits to start the signal if it is received once, then jumps to write
0 state (w0) and starts the memory test operation. Thus, MUT is full of zero patterns when
it jumps to another state as r0w1. Here, read and write operations are performed using a
test controller. Correspondingly, the test controller executes every operation successively at
every state.

3.3. Comparator

In this model, the comparator compares the output and the pattern from the MUT
block. Additionally, the read data are compared with preferred patterns while performing
the testing under-read operation. If the comparison outcome fails, the test controller jumps
to the failure-registration level, storing the comparison outcome and returning to another
address location.

3.4. Output Response Recorder

It is responsible for verifying the output responses, which means the computer re-
sponse applied to test vectors should be examined. Further, the decision is taken whether
the system is faulty or not. Here, the faulty cells, fail address, memory ID, and MUT
defective cell count records are stored in the output response recorder. Subsequently, the
predefined patterns are given to memory under test, and the attained response is noted in
the output response recorder.

Every operation is completed and shows the outcome in the status of fail record state.
Additionally, Test Controller detects the failure memory ID, faults location, faulty cell, and
faulty cell count. Subsequently, simulation results of the proposed model compute various

Micromachines 2022, 13, 971 7 of 18

fault types, such as Stuck Fault (SF), Coupling Faults (CF), Read Destructive Fault (RDF),
Write Destructive Faults (WDF), Transition Coupling Faults (TCF), Static Coupling Faults
(SCF), Disturb Cell Coupling Faults (DCCF), Incorrect Read Faults (IRF), Deceptive Read
Destructive Faults (DRDF), Idempotent Coupling Faults (ICF).

3.5. Fault Modeling of SRAM

The description of possible approaches by which SRAM fails is defined as the fault
modeling of SRAM. Next, the proposed DQL model is aimed to inject various categories of
faults into the SRAM memory. Furthermore, possible defects in SRAM are explained as follows:

Stuck Fault (SF)
SF is defined as the single-cell fault where the logic value in the SRAM memory cell is

stuck at 0/1.
Coupling Faults (CF)
CF is one of the categories of fault that occurs in SRAM cells due to its interaction with

other cells. This originates under double cell faults, and two states are an increasing state
that specifies zero to one, and the falling state sets 0 to 1.

Read Destructive Fault (RDF)
RDF belongs to a single-cell fault that is occurred in SRAM cell values into inverted,

and then the resultant incorrect value is getting when a read operation is executed in the
cell. If memory is zero, reads zero takes place, and cell memory becomes one; hence it
is specified as 0r0/1/1 and if memory is one, read one takes place, and the cell memory
becomes zero. Thus it is defined as 1r1/0/0.

Write Destructive Faults (WDF)
WDF is the category of single-cell faults that is non-transition kinds of operations,

cells in the memory start to flip. Furthermore, in WDF, two various methods are presented
among write’s destructive fault. If memory is zero, write zero occurs, and the cell becomes
one. Hence it is specified as 0w0/1/ and if memory is one, write one takes place, and the
cell becomes zero; accordingly, it is defined as 1w1/0/.

Transition Coupling Faults (TCF)
TCF is a double cell fault, and here transition does not occur if the write transition

operation is used among cells of the victim word. The fault is 0W1/0/ for up transition,
and the fault is 1W0/1 for down transition.

Static Coupling Faults (SCF)
SCF is a double cell fault that occurs in 0/1, and it is attained in the cells of the victim

word because of forcing the aggressor word when 0 to 1 value is given to the cell.
Disturb Cell Coupling Faults (DCCF)
DCF is one of the double cell fault categories that occur when writing operation or

read operation is achieved over the aggressor word, resulting in cell disturbance of the
victim word.

Incorrect Read Faults (IRF)
IRF falls under the double cell fault category when a read operation occurs in the

SRAM cell, gets the incorrect value, and the memory cell state remains stable. If memory is
zero, read zero occurs, but when cell memory becomes zero, the reading process turns one
and is specified as 0r0/0/1. If memory is one, read one takes place, but when cell memory
becomes one, it returns to zero and is specified as 1r1/1/0. Finally, the read operation
yields the aggressor value.

Deceptive read destructive faults (DRDF)
DRDF is a single-cell fault that occurs because the value in the cell is reversed and

gets the accurate value while performing the read operation. If memory is zero, read zero
takes place, and cell memory becomes one when the reading process turns into zero, which is
specified as 0r0/1/1, and if memory is one, read one takes place. Cell memory becomes zero,
then read turns into one specified as 1r1/0/0, i.e., the value is reversed after the read operation.

Idempotent Coupling Faults (ICF)

Micromachines 2022, 13, 971 8 of 18

ICF is a double cell fault that happens when forced by the cell of aggressor word
consists of higher (0–1)/lesser (0–1) transition of write operation for obtaining final value
(0 or 1) in the cell is presented in the victim word.

Finally, the fault information (various faults) and memory failure information (faulty
cell, faulty location, and memory ID) is transmitted to the BISR block.

3.6. Built-In Self-Repair (BISR) Utilizing Bit-Swapping-Based Linear Feedback Shift Register (BSLFSR)

This manuscript deals with two individual processes described in the flowchart in
Figure 2. The first is a Bit-Swapping-based linear feedback shift register, and the second
is the BSLFSR-BISR method to perform a Built-In Self-Repair process. The BSLFSR is a
process of improving actual LFSR performance next spare rows and columns are used
instead of faulty cells using the BSLFSR-BISR method. The BS-LFSR framework focuses
primarily on minimizing power dissipation by reducing the conversion process in the
conventional LFSR without compromising its efficiency and effectiveness. The proposed
BSLFSR acts as the repair analyzer due to low power consumption. Initially, the memory
failure information, such as faulty cell, faulty location, memory ID, and fault information,
are transferred to the Built-In Self-Repair block to repair defective cells of the failed memory.
BSLFSR-BISR involves spare memory or row-column block and redundancy logic (RL).

The redundancy management logic is utilized to store the faulty addresses found in
the memory test process. Further, it compares the defected addresses with previously saved
addresses in the fault table in case of multiple faults. When read and write operations of
memory matches, the BSLFSR-BISR method starts working, and information is accessed via
the spare memory. Simultaneously the repair analysis block access to the failure data and
measures the repair signature stored in the register. Furthermore, it is likened to defected
addresses and prior saved addresses in the fault table in case of multiple faults. Then, the
address is stored only for the read and write memory operations that are not available
in the fault table. Built-In Redundancy Analysis decides spare row or column allocation
related to the information of faulty cell numbers in a specific address. Moreover, the Built-In
Self-Repair block works in the proposed Bit-Swapping-based linear feedback shift register
principle as mentioned in the flowchart.

In BSLFSR-BISR, the pre-charge technique is used for repair analysis or fault diagnosis.
Here, the XOR gate is replaced, which lessens the delay and power in the circuit. Hence
increasing operating frequency is attained along with the increasing performance of the
circuit. Moreover, the standard repairing works in a simple rule. If a row contains more
faults, it is said to be repaired, and if the column contains various faults, then various rows
and columns are fixed. The faulty cell count is established using a memory test controller
that is taken as a reference by BSLFSR for measuring the repair signature.

Moreover, a predefined threshold value uses spare rows and columns that are decided
based on the counts of defected cells in defected rows or columns. Hence, the predefined
threshold value equals ‘2’ or greater than ‘2’. If the row defect count is greater than ‘2’ or
equal to ‘2’, then the spare row will allocate first; or else, a spare column will allocate. * The
checking process will continue if the spare memory (row or column) allocation is over. If it
is non-zero, the spare row allocates the checking process by continuing until it reaches the
null state. Therefore, the spare memory is increased based on the faulty cell count. Hence
this method significantly provides a memory test and fault repair solution by using the
control flow mentioned in the flowchart.

Micromachines 2022, 13, 971 9 of 18Micromachines 2022, 13, 971 9 of 19

Figure 2. Flow chart of proposed method.

The redundancy management logic is utilized to store the faulty addresses found in

the memory test process. Further, it compares the defected addresses with previously

saved addresses in the fault table in case of multiple faults. When read and write opera-

tions of memory matches, the BSLFSR-BISR method starts working, and information is

accessed via the spare memory. Simultaneously the repair analysis block access to the

failure data and measures the repair signature stored in the register. Furthermore, it is

likened to defected addresses and prior saved addresses in the fault table in case of mul-

tiple faults. Then, the address is stored only for the read and write memory operations

that are not available in the fault table. Built-In Redundancy Analysis decides spare row

or column allocation related to the information of faulty cell numbers in a specific address.

Moreover, the Built-In Self-Repair block works in the proposed Bit-Swapping-based linear

feedback shift register principle as mentioned in the flowchart.

In BSLFSR-BISR, the pre-charge technique is used for repair analysis or fault diagno-

sis. Here, the XOR gate is replaced, which lessens the delay and power in the circuit. Hence

Figure 2. Flow chart of proposed method.

4. Results and Discussion

This section describes the performance of the DQL-BSLFSR-FD method. Here, the
simulation and synthesis outcomes are attained by utilizing Mentor Graphics and Xilinx
ISE 14.5 Design Suite. Additionally, design and implement FPGA architecture by MBIST
and Built-In Self-Repair hardware structure for Static Random Access Memory and tested
using Verilog. The performance metrics, such as area, power, delay, slice register, maximum
operating frequency, and clock period, are analyzed. The FPGA performance of the DQL-
BSLFSR-FD method is likened to existing approaches. The proposed method’s FPGA
performance is compared with the memory BIST with optimized BISR for fault detection
(FPGA-MBIST-OBISR-FD) [22], SRAM-based Physically Unclonable Function (PUF) with
Hot Carrier Injection (HCI) for fault detection (FPGA-PUF-HCI-FD) [23], and the Essential
Spare Pivoting (ESP) based Local Repair Most (LRM) (FPGA-ESP-LRM-FD) [27], respectively.

Micromachines 2022, 13, 971 10 of 18

4.1. Performance Metrics

The performance metrics, such as area, delay, power, slice register, maximum operating
frequency, and clock period, are analyzed to validate the efficiency of the proposed method.

Calculation of Power Consumption

The average power consumption of the proposed DQL-BSLFSR-FD model is calculated
using Equation (4)

Pavg = λV2
DD(CL.C f) (5)

where the clock frequency of the model is represented as C f , load capacitance is denoted
by CL, activation factor is represented as λ, and the supply voltage is denoted as VDD.

4.2. Simulation Outcomes

The proposed DQL-BSLFSR-FD method achieves better performance in terms of area,
power, and delay when compared with other existing methods. In this work, simulation
and synthesis outcomes are attained using Mentor Graphics and Xilinx ISE 14.5 Design
Suite, where the design is implemented on Virtex-5 FPGA. During testing, various faults
are injected into the memory using DQL with test pattern generation. The test patterns
and fault injection into the memory are controlled through the test benches written to test
the memory during testing. Various test cases are considered for testing the memory by
applying different test patterns and injecting various faults for negative testing. There are
256 different test patterns are required for 8-bit size memory. Additionally, the generated
patterns are used to detect every possible fault in the memory. The injected faults and the
generated test patterns by the proposed DQL-BSLFSR-FD approach are obtained. Here, the
numbers of defected cells are identified by the DQL-BSLFSR-FD approach to allocating the
spare rows and spare columns.

Figure 3 shows the test pattern generation outcome by the proposed method. Various
test patterns are generated to test the MUT for faults. The DQL-BSLFSR-FD model will
test the memory and create the fault report. It also counts the number of faulty cells in
each memory address and simultaneously updates the fault count register. The row- and
column-wise details of defected count cell are computed, and the outcome of the faulty
cells are stored in the fault count register by the proposed DQL-BSLFSR-FD method and
are shown in Figure 4.

Micromachines 2022, 13, 971 11 of 19

memory by applying different test patterns and injecting various faults for negative test-

ing. There are 256 different test patterns are required for 8-bit size memory. Additionally,

the generated patterns are used to detect every possible fault in the memory. The injected

faults and the generated test patterns by the proposed DQL-BSLFSR-FD approach are ob-

tained. Here, the numbers of defected cells are identified by the DQL-BSLFSR-FD ap-

proach to allocating the spare rows and spare columns.
Figure 3 shows the test pattern generation outcome by the proposed method. Various

test patterns are generated to test the MUT for faults. The DQL-BSLFSR-FD model will

test the memory and create the fault report. It also counts the number of faulty cells in

each memory address and simultaneously updates the fault count register. The row- and

column-wise details of defected count cell are computed, and the outcome of the faulty

cells are stored in the fault count register by the proposed DQL-BSLFSR-FD method and

are shown in Figure 4.

Figure 3. Test pattern generation using the DQL-BSLFSR-FD model. Figure 3. Test pattern generation using the DQL-BSLFSR-FD model.

Micromachines 2022, 13, 971 11 of 18Micromachines 2022, 13, 971 12 of 19

Figure 4. Defected count cell details in row and column using the DQL-BSLFSR-FD model.

Once the faulty cell information is obtained from the test controller, the repair process

begins. The simulation output for the repair of the defective cells in rows and columns is

shown in the screens taken of the simulator after getting the output. The spare rows and

columns are allocated for the faulty cell information received by the DQL-BSLFSR-FD

block. Subsequently, the spare row allocation in SRAM memory using the DQL-BSLFSR-

FD method is shown in Figure 5. Similarly, the spare column allocation in SRAM memory

using the proposed DQL-BSLFSR-FD method is represented in Figure 6.

Figure 5. Allocation of spare rows using the DQL-BSLFSR-FD model.

Figure 4. Defected count cell details in row and column using the DQL-BSLFSR-FD model.

Once the faulty cell information is obtained from the test controller, the repair process
begins. The simulation output for the repair of the defective cells in rows and columns
is shown in the screens taken of the simulator after getting the output. The spare rows
and columns are allocated for the faulty cell information received by the DQL-BSLFSR-FD
block. Subsequently, the spare row allocation in SRAM memory using the DQL-BSLFSR-FD
method is shown in Figure 5. Similarly, the spare column allocation in SRAM memory
using the proposed DQL-BSLFSR-FD method is represented in Figure 6.

Micromachines 2022, 13, 971 12 of 19

Figure 4. Defected count cell details in row and column using the DQL-BSLFSR-FD model.

Once the faulty cell information is obtained from the test controller, the repair process

begins. The simulation output for the repair of the defective cells in rows and columns is

shown in the screens taken of the simulator after getting the output. The spare rows and

columns are allocated for the faulty cell information received by the DQL-BSLFSR-FD

block. Subsequently, the spare row allocation in SRAM memory using the DQL-BSLFSR-

FD method is shown in Figure 5. Similarly, the spare column allocation in SRAM memory

using the proposed DQL-BSLFSR-FD method is represented in Figure 6.

Figure 5. Allocation of spare rows using the DQL-BSLFSR-FD model. Figure 5. Allocation of spare rows using the DQL-BSLFSR-FD model.

Micromachines 2022, 13, 971 12 of 18Micromachines 2022, 13, 971 13 of 19

Figure 6. Allocation of a spare column using the DQL-BSLFSR-FD model.

Table 2 shows the comparison of simulation outcomes for the proposed and existing

approaches. Next, the slices of the proposed method are 24.6% and 32.7% lower than ELM-

AE-FD and BIST-PPI-FD approaches, and the slice flip-flop count of the proposed method

attains 18.9% and 26.7% lower than the ELM-AE-FD and BIST-PPI-FD approaches. Sub-

sequently, the LUT of the proposed method is 15.7% and 26.7% lower than ELM-AE-FD

and BIST-PPI-FD methods. The minimum clock period of the proposed approach is

11.85% and 18.7% lower than the existing ELM-AE-FD and BIST-PPI-FD methods. Fur-

thermore, the maximum operating frequency of the proposed method is 23.5% and 29.5%

increased than the existing ELM-AE-FD and BIST-PPI-FD approaches. Moreover, the total

power consumption for the proposed method attains 34.9% and 26.7% lower than the ex-

isting ELM-AE-FD and BIST-PPI-FD techniques.

Table 2. Simulation outcome comparison.

Performance Metrics
ELM-AE-FD

[26]

BIST-PPI-FD

[27]

DQL-BSLFSR-FD

(Proposed)

Slice numbers 48 54 37

Slice flip-flop numbers 51 68 46

Look Up Table (LUT) numbers 91 87 70

Minimum clock period (ns) 9.5 8.9 6.5

Maximum frequency (MHz) 114 124.6 140.6

Total power consumption (nW) 156.6 134.7 74.7

4.3. Comparative Analysis of Performance Metrics Using FPGA

The proposed structure is designed and tested by utilizing Verilog explanations that

are targeted for Virtex-5, xc5vlx30 FPGA. The performance of FPGA implementation of

the proposed DQL-BSLFSR-FD method is compared with existing approaches, such as

memory BIST with optimized BISR for fault detection (OBISR-FD) [28], PUF-HCI-FD [29],

and ESP-LRM-FD [30] FPGAs, respectively.

Figure 7 shows the comparison of the area for the proposed DQL-BSLFSR-FD method

with the existing (OBISR-FD) [28], PUF-HCI-FD [29], and ESP-LRM-FD [30] FPGAs ap-

proaches. The area calculation of the proposed FPGA-DQL-BSLFSR-FD method provides

85%, 72%, and 79% lower area than the existing approaches, such as MBIST-OBISR-FD,

PUF-HCI-FD, and ESP-LRM-FD FPGAs, respectively.

Figure 6. Allocation of a spare column using the DQL-BSLFSR-FD model.

Table 2 shows the comparison of simulation outcomes for the proposed and existing
approaches. Next, the slices of the proposed method are 24.6% and 32.7% lower than
ELM-AE-FD and BIST-PPI-FD approaches, and the slice flip-flop count of the proposed
method attains 18.9% and 26.7% lower than the ELM-AE-FD and BIST-PPI-FD approaches.
Subsequently, the LUT of the proposed method is 15.7% and 26.7% lower than ELM-AE-FD
and BIST-PPI-FD methods. The minimum clock period of the proposed approach is 11.85%
and 18.7% lower than the existing ELM-AE-FD and BIST-PPI-FD methods. Furthermore,
the maximum operating frequency of the proposed method is 23.5% and 29.5% increased
than the existing ELM-AE-FD and BIST-PPI-FD approaches. Moreover, the total power
consumption for the proposed method attains 34.9% and 26.7% lower than the existing
ELM-AE-FD and BIST-PPI-FD techniques.

Table 2. Simulation outcome comparison.

Performance Metrics ELM-AE-FD [26] BIST-PPI-FD [27] DQL-BSLFSR-FD (Proposed)

Slice numbers 48 54 37
Slice flip-flop numbers 51 68 46

Look Up Table (LUT) numbers 91 87 70
Minimum clock period (ns) 9.5 8.9 6.5
Maximum frequency (MHz) 114 124.6 140.6

Total power consumption (nW) 156.6 134.7 74.7

4.3. Comparative Analysis of Performance Metrics Using FPGA

The proposed structure is designed and tested by utilizing Verilog explanations that
are targeted for Virtex-5, xc5vlx30 FPGA. The performance of FPGA implementation of
the proposed DQL-BSLFSR-FD method is compared with existing approaches, such as
memory BIST with optimized BISR for fault detection (OBISR-FD) [28], PUF-HCI-FD [29],
and ESP-LRM-FD [30] FPGAs, respectively.

Figure 7 shows the comparison of the area for the proposed DQL-BSLFSR-FD method
with the existing (OBISR-FD) [28], PUF-HCI-FD [29], and ESP-LRM-FD [30] FPGAs ap-
proaches. The area calculation of the proposed FPGA-DQL-BSLFSR-FD method provides
85%, 72%, and 79% lower area than the existing approaches, such as MBIST-OBISR-FD,
PUF-HCI-FD, and ESP-LRM-FD FPGAs, respectively.

Micromachines 2022, 13, 971 13 of 18Micromachines 2022, 13, 971 14 of 19

Figure 7. Area comparison for the proposed and other existing approaches.

Figure 8 compares the slice register of the proposed FPGA-DQL-BSLFSR-FD method

with the existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA approaches.

The slice register of the proposed DQL-BSLFSR-FD FPGA method provides an 85%, 80%,

and 50% lower slice register than the existing approaches, such as MBIST-OBISR-FD, PUF-

HCI-FD, and ESP-LRM-FD, FPGA, respectively.

Figure 8. Comparison of slice register utilization for the proposed and other existing methods.

Figure 9 shows the maximum operating frequency comparison for the DQL-BSLFSR-

FD method with existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA ap-

proaches. The maximum operating frequency of the proposed DQL-BSLFSR-FD method

0

500

1000

1500

2000

2500

3000

A
re

a
 (

m
)

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-

FD

FPGA-ESP-LRM-

FD

FPGA-DQL-

BSLFSR-FD

(proposed)

0

200

400

600

800

1000

1200

S
li

ce
 r

eg
is

te
r

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-

FD

FPGA-ESP-LRM-

FD

FPGA-DQL-

BSLFSR-FD

(proposed)

Figure 7. Area comparison for the proposed and other existing approaches.

Figure 8 compares the slice register of the proposed FPGA-DQL-BSLFSR-FD method
with the existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA approaches.
The slice register of the proposed DQL-BSLFSR-FD FPGA method provides an 85%, 80%,
and 50% lower slice register than the existing approaches, such as MBIST-OBISR-FD,
PUF-HCI-FD, and ESP-LRM-FD, FPGA, respectively.

Micromachines 2022, 13, 971 14 of 19

Figure 7. Area comparison for the proposed and other existing approaches.

Figure 8 compares the slice register of the proposed FPGA-DQL-BSLFSR-FD method

with the existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA approaches.

The slice register of the proposed DQL-BSLFSR-FD FPGA method provides an 85%, 80%,

and 50% lower slice register than the existing approaches, such as MBIST-OBISR-FD, PUF-

HCI-FD, and ESP-LRM-FD, FPGA, respectively.

Figure 8. Comparison of slice register utilization for the proposed and other existing methods.

Figure 9 shows the maximum operating frequency comparison for the DQL-BSLFSR-

FD method with existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA ap-

proaches. The maximum operating frequency of the proposed DQL-BSLFSR-FD method

0

500

1000

1500

2000

2500

3000

A
re

a
 (

m
)

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-

FD

FPGA-ESP-LRM-

FD

FPGA-DQL-

BSLFSR-FD

(proposed)

0

200

400

600

800

1000

1200

S
li

ce
 r

eg
is

te
r

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-

FD

FPGA-ESP-LRM-

FD

FPGA-DQL-

BSLFSR-FD

(proposed)

Figure 8. Comparison of slice register utilization for the proposed and other existing methods.

Figure 9 shows the maximum operating frequency comparison for the DQL-BSLFSR-
FD method with existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA ap-
proaches. The maximum operating frequency of the proposed DQL-BSLFSR-FD method

Micromachines 2022, 13, 971 14 of 18

provides 67.8%, 33.33%, and 56.7% higher maximum operating frequency than the existing
approaches, such as MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGAs, respectively.

Micromachines 2022, 13, 971 15 of 19

provides 67.8%, 33.33%, and 56.7% higher maximum operating frequency than the exist-

ing approaches, such as MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGAs, re-

spectively.

Figure 9. Comparison of maximum operating frequency of the presented and other methods on

FPGA.

Figure 10 compares the minimum clock period of the DQL-BSLFSR-FD method with

the existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA approaches. The

minimum clock period of the proposed DQL-BSLFSR-FD method provides a 40%, 25%,

and 50% lower minimum clock period than the existing approaches, such as MBIST-

OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGAs, respectively.

Figure 10. Comparison of a minimum clock period.

0

20

40

60

80

100

120

140

160

M
a
x
im

u
m

 o
p

er
a
ti

n
g
 f

re
q

u
en

cy

(M
H

Z
)

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-

FD

FPGA-ESP-

LRM-FD

FPGA-DQL-

BSLFSR-FD

(proposed)

0

2

4

6

8

10

12

14

M
in

im
u

m
 c

lo
c
k

 p
er

io
d

 (
n

s)

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-

FD

FPGA-ESP-LRM-

FD

FPGA-DQL-

BSLFSR-FD

(proposed)

Figure 9. Comparison of maximum operating frequency of the presented and other methods on FPGA.

Figure 10 compares the minimum clock period of the DQL-BSLFSR-FD method with
the existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA approaches. The
minimum clock period of the proposed DQL-BSLFSR-FD method provides a 40%, 25%, and
50% lower minimum clock period than the existing approaches, such as MBIST-OBISR-FD,
PUF-HCI-FD, and ESP-LRM-FD FPGAs, respectively.

Micromachines 2022, 13, 971 15 of 19

provides 67.8%, 33.33%, and 56.7% higher maximum operating frequency than the exist-

ing approaches, such as MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGAs, re-

spectively.

Figure 9. Comparison of maximum operating frequency of the presented and other methods on

FPGA.

Figure 10 compares the minimum clock period of the DQL-BSLFSR-FD method with

the existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA approaches. The

minimum clock period of the proposed DQL-BSLFSR-FD method provides a 40%, 25%,

and 50% lower minimum clock period than the existing approaches, such as MBIST-

OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGAs, respectively.

Figure 10. Comparison of a minimum clock period.

0

20

40

60

80

100

120

140

160

M
a
x
im

u
m

 o
p

er
a
ti

n
g
 f

re
q

u
en

cy

(M
H

Z
)

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-

FD

FPGA-ESP-

LRM-FD

FPGA-DQL-

BSLFSR-FD

(proposed)

0

2

4

6

8

10

12

14

M
in

im
u

m
 c

lo
c
k

 p
er

io
d

 (
n

s)

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-

FD

FPGA-ESP-LRM-

FD

FPGA-DQL-

BSLFSR-FD

(proposed)

Figure 10. Comparison of a minimum clock period.

Micromachines 2022, 13, 971 15 of 18

Figure 11 shows the comparison of power consumption for the proposed DQL-BSLFSR-
FD method with the existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA
approaches. The power consumption of the proposed DQL-BSLFSR-FD FPGA method
provides 91.66%, 83.33%, and 75% lower power consumption than the existing method,
such as MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA, respectively.

Micromachines 2022, 13, 971 16 of 19

Figure 11 shows the comparison of power consumption for the proposed DQL-

BSLFSR-FD method with the existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD

FPGA approaches. The power consumption of the proposed DQL-BSLFSR-FD FPGA

method provides 91.66%, 83.33%, and 75% lower power consumption than the existing

method, such as MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA, respectively.

Figure 11. Power consumption comparison for the proposed and other existing methods.

Figure 12 shows the delay comparison for the DQL-BSLFSR-FD approach with exist-

ing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA approaches. Then, the de-

lay of the proposed DQL-BSLFSR-FD method provides 91.53%, 86.84%, and 80.77% lower

delay than the existing approaches, such as MBIST-OBISR-FD, PUF-HCI-FD, and ESP-

LRM-FD FPGA, respectively.

Figure 12. Comparison of delay for proposed and other approaches.

0

50

100

150

200

250

300

350

P
o
w

er
 c

o
n

su
m

p
ti

o
n

 (
n

W
)

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-

FD

FPGA-ESP-LRM-

FD

FPGA-DQL-

BSLFSR-FD

(proposed)

0

1

2

3

4

5

6

7

D
el

a
y
 (

p
s)

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-FD

FPGA-ESP-LRM-FD

FPGA-DQL-BSLFSR-

FD (proposed)

Figure 11. Power consumption comparison for the proposed and other existing methods.

Figure 12 shows the delay comparison for the DQL-BSLFSR-FD approach with existing
MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA approaches. Then, the delay of
the proposed DQL-BSLFSR-FD method provides 91.53%, 86.84%, and 80.77% lower delay
than the existing approaches, such as MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD
FPGA, respectively.

Micromachines 2022, 13, 971 16 of 19

Figure 11 shows the comparison of power consumption for the proposed DQL-

BSLFSR-FD method with the existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD

FPGA approaches. The power consumption of the proposed DQL-BSLFSR-FD FPGA

method provides 91.66%, 83.33%, and 75% lower power consumption than the existing

method, such as MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA, respectively.

Figure 11. Power consumption comparison for the proposed and other existing methods.

Figure 12 shows the delay comparison for the DQL-BSLFSR-FD approach with exist-

ing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA approaches. Then, the de-

lay of the proposed DQL-BSLFSR-FD method provides 91.53%, 86.84%, and 80.77% lower

delay than the existing approaches, such as MBIST-OBISR-FD, PUF-HCI-FD, and ESP-

LRM-FD FPGA, respectively.

Figure 12. Comparison of delay for proposed and other approaches.

0

50

100

150

200

250

300

350

P
o
w

er
 c

o
n

su
m

p
ti

o
n

 (
n

W
)

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-

FD

FPGA-ESP-LRM-

FD

FPGA-DQL-

BSLFSR-FD

(proposed)

0

1

2

3

4

5

6

7

D
el

a
y
 (

p
s)

Techniques

FPGA-MBIST-

OBISR-FD

FPGA-PUF-HCI-FD

FPGA-ESP-LRM-FD

FPGA-DQL-BSLFSR-

FD (proposed)

Figure 12. Comparison of delay for proposed and other approaches.

Micromachines 2022, 13, 971 16 of 18

Figure 13 compares the access time of the proposed DQL-BSLFSR-FD method with
existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA approaches. The access
time of the proposed DQL-BSLFSR-FD method provides 34.5%, 42.6%, and 26.7% lower
access times than existing approaches, such as MBIST-OBISR-FD, PUF-HCI-FD, and ESP-
LRM-FD FPGAs, respectively.

Micromachines 2022, 13, 971 17 of 19

Figure 13 compares the access time of the proposed DQL-BSLFSR-FD method with

existing MBIST-OBISR-FD, PUF-HCI-FD, and ESP-LRM-FD FPGA approaches. The ac-

cess time of the proposed DQL-BSLFSR-FD method provides 34.5%, 42.6%, and 26.7%

lower access times than existing approaches, such as MBIST-OBISR-FD, PUF-HCI-FD, and

ESP-LRM-FD FPGAs, respectively.

Figure 13. Comparison of access time between the proposed and other methods.

As per today’s demand of consumers to use a large volume of the memory in their

devices, this research study provides the solution to test the memories embedded in the

SoC and attempt to improve the product yield. This study offers the solution for the re-

gress testing SRAM in SOC-based development. It proposed the memory test method

through the proposed MBIST controller to find more and possibly all kinds of defects.

Further, it provides a powerful solution to repair the faculty memory cell or faulty

memory location supplied by the test block. It uses a spare memory cell to replace the

detected defective cells to repair the memory. The design is targeted to the FPGA plat-

form, and the obtained results are targeted to the power consumption, speed, and area

overhead. The obtained results are reasonable if we compare them with the existing stud-

ies targeting the same parameters. It is discussed in the literature and the above result

section and observed from the results obtained on the FPGA that the proposed method is

better in terms of delay, power, and area parameters. The comparison of results of the

existing studies [28,29,30] is carried out, the obtained results are tabulated, and the per-

formance graphs are plotted as shown in the charts of the result section. The contribution

to the memory test and repair is significant, and the existing work’s performance is ac-

ceptable compared to the studies considered in this research study.

5. Conclusions

This manuscript proposes the Deep Q-learning (DQL) with Bit-Swapping-based lin-

ear feedback shift register (BSLFSR) for Fault Detection for SRAM. Furthermore, the pro-

posed DQL-based MBIST effectively generates test patterns and injects faults into the

memory. Here, the BSLFSR-based BISR model is utilized to repair the faults’ injection in

memory. Therefore, the BSLFSR model performs the redundancy analysis to detect the

faulty cells and use the spare rows and columns. Finally, the proposed DQL-BSLFSR-FD

model has attained 85%, 72%, 79% lower area, 85%, 80%, 50% lower utilization of slice

0

5

10

15

20

25

30

35

40

A
cc

es
s

ti
m

e
(m

s)

Techniques

FPGA-MBIST-OBISR-

FD

FPGA-PUF-HCI-FD

FPGA-ESP-LRM-FD

FPGA-DQL-BSLFSR-

FD (proposed)

Figure 13. Comparison of access time between the proposed and other methods.

As per today’s demand of consumers to use a large volume of the memory in their
devices, this research study provides the solution to test the memories embedded in the
SoC and attempt to improve the product yield. This study offers the solution for the regress
testing SRAM in SOC-based development. It proposed the memory test method through
the proposed MBIST controller to find more and possibly all kinds of defects. Further, it
provides a powerful solution to repair the faculty memory cell or faulty memory location
supplied by the test block. It uses a spare memory cell to replace the detected defective
cells to repair the memory. The design is targeted to the FPGA platform, and the obtained
results are targeted to the power consumption, speed, and area overhead. The obtained
results are reasonable if we compare them with the existing studies targeting the same
parameters. It is discussed in the literature and the above result section and observed from
the results obtained on the FPGA that the proposed method is better in terms of delay,
power, and area parameters. The comparison of results of the existing studies [28–30] is
carried out, the obtained results are tabulated, and the performance graphs are plotted as
shown in the charts of the result section. The contribution to the memory test and repair
is significant, and the existing work’s performance is acceptable compared to the studies
considered in this research study.

5. Conclusions

This manuscript proposes the Deep Q-learning (DQL) with Bit-Swapping-based linear
feedback shift register (BSLFSR) for Fault Detection for SRAM. Furthermore, the proposed
DQL-based MBIST effectively generates test patterns and injects faults into the memory.
Here, the BSLFSR-based BISR model is utilized to repair the faults’ injection in memory.
Therefore, the BSLFSR model performs the redundancy analysis to detect the faulty cells
and use the spare rows and columns. Finally, the proposed DQL-BSLFSR-FD model has
attained 85%, 72%, 79% lower area, 85%, 80%, 50% lower utilization of slice register, 91.53%,
86.84%, 80.77% lower delay, 91.66%, 83.33%, 75% lower power consumption, 67.8%, 33.33%,

Micromachines 2022, 13, 971 17 of 18

56.7% higher maximum operating frequency, and 40%, 25%, and 50% lower minimum
clock period than the existing approaches, such as MBIST-OBISR-FD, PUF-HCI-FD, and
ESP-LRM-FD FPGAs, respectively.

Author Contributions: Conceptualization, M.A.A. and S.A.; methodology, M.A.A.; software, M.A.A.;
validation, M.A.A. and S.A.; formal analysis, M.A.A.; investigation, M.A.A. and S.A.; resources,
M.A.A.; data curation, M.A.A. and S.A.; writing—original draft preparation, M.A.A. and S.A.;
writing—review and editing, M.A.A.; visualization, M.A.A.; supervision, M.A.A. and S.A.; project
administration, M.A.A.; funding acquisition, S.A. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation,
Ministry of Education in Saudi Arabia for funding this research work through the project number
(IF-PSAU-2021/01/18112).

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Inno-
vation, Ministry of Education in Saudi Arabia for funding this research work through the project
number (IF-PSAU-2021/01/18112).

Conflicts of Interest: The authors declare no conflict of interest to report regarding the present study.

References
1. Chiu, C.Y.; Zhang, Z.; Chen, J.J.; Si, X.; Liu, R.; Tu, N.Y.; Su, W.J.; Huang, H.W.; Wang, J.H.; Wei, W.C.; et al. A 4-Kb 1-to-8-bit

configurable 6T SRAM-based computation-in-memory unit-macro for CNN-based AI edge processors. IEEE J. Solid-State Circuits
2020, 55, 2790–2801. [CrossRef]

2. Marshal, R.; Lakshminarayanan, G.; Ko, S.; Naganathan, N.; Ramasubramanian, N. Configurable Logic Blocks and Memory
Blocks for Beyond-CMOS FPGA based Embedded Systems. IEEE Embed. Syst. Lett. 2020, 12, 113–116.

3. He, G.; Zheng, S.; Jing, N. A hierarchical scrubbing technique for SEU mitigation on SRAM-based FPGAs. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 2020, 28, 2134–2145. [CrossRef]

4. Peng, X.; Liu, R.; Yu, S. Optimizing Weight Mapping and Data Flow for Convolutional Neural Networks on Processing-in-Memory
Architectures. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1333–1343. [CrossRef]

5. Lee, H.; Han, D.; Lee, S.; Kang, S. Dynamic Built-In Redundancy Analysis for Memory Repair. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2019, 27, 2365–2374. [CrossRef]

6. Floridia, A.; Sanchez, E. On-line self-test mechanism for dual-core lockstep system-on-chips. Microelectron. Reliab. 2020, 112,
113770. [CrossRef]

7. Wojciechowski, A.; Marcinek, K.; Pleskacz, W. Configurable MBIST Processor for Embedded Memories Testing. In Proceedings of
the 2019 MIXDES—26th International Conference “Mixed Design of Integrated Circuits and Systems”, Rzeszów, Poland, 27–29
June 2019.

8. Ahmed, M.A.; Abuagoub, A.M. MBIST controller based on March-ee algorithm. J. Circuits Syst. Comput. 2021, 30, 2150160.
[CrossRef]

9. Kim, H.; Lee, H.; Han, D.; Kang, S. Multi-Bank Optimized Redundancy Analysis Using Efficient Fault Collection. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2021. [CrossRef]

10. Miao, Y.; Zhang, B.; Yi, Y.; Lin, J. Application of improved reweighted singular value decomposition for gearbox fault diagnosis
based on built-in encoder information. Measurement 2021, 168, 108295. [CrossRef]

11. Sun, Y.; Li, S.; Wang, Y.; Wang, X. Fault diagnosis of rolling bearing based on empirical mode decomposition and improved
manhattan distance in symmetrized dot pattern image. Mech. Syst. Signal Process. 2021, 159, 107817. [CrossRef]

12. Ustaoğlu, B.; Schmitz, K.; Große, D.; Drechsler, R. ReCoFused partial reconfiguration for secure moving-target countermeasures
on FPGAs. SN Appl. Sci. 2020, 2, 1363. [CrossRef]

13. Srivastava, A.; Ghosh, P. A Novel Approach of Data Content ZeroizationUnder Memory Attacks. J. Electron. Test. 2020, 36,
147–167. [CrossRef]

14. Ryabtsev, V.G.; Volobuev, S.V. Implementation of Memory in a System on a Chip with Built-In Self-Testing and Self-Healing. Russ.
Microelectron. 2020, 49, 527–531. [CrossRef]

15. Chang, J.; Cieslak, J.; Guo, Z.; Henry, D. On the synthesis of a sliding-mode-observer-based adaptive fault-tolerant flight control
scheme. ISA Trans. 2021, 111, 8–23. [CrossRef]

16. Ogasahara, Y.; Hori, Y.; Katashita, T.; Iizuka, T.; Awano, H.; Ikeda, M.; Koike, H. Implementation of pseudo-linear feedback shift
register-based physical unclonable functions on silicon and sufficient Challenge–Response pair acquisition using Built-In Self-Test
before shipping. Integration 2020, 71, 144–153. [CrossRef]

17. Gracin, D.; Omkar, K.; Ravi, V.; Vigneswaran, T. Variation-Tolerant In-Memory Digital Computations Using SRAM. In Advances in
Smart Grid Technology; Springer: Singapore, 2020; pp. 511–522.

http://doi.org/10.1109/JSSC.2020.3005754
http://doi.org/10.1109/TVLSI.2020.3010647
http://doi.org/10.1109/TCSI.2019.2958568
http://doi.org/10.1109/TVLSI.2019.2920999
http://doi.org/10.1016/j.microrel.2020.113770
http://doi.org/10.1142/S0218126621501607
http://doi.org/10.1109/TCAD.2021.3109859
http://doi.org/10.1016/j.measurement.2020.108295
http://doi.org/10.1016/j.ymssp.2021.107817
http://doi.org/10.1007/s42452-020-3003-x
http://doi.org/10.1007/s10836-020-05867-4
http://doi.org/10.1134/S1063739720070100
http://doi.org/10.1016/j.isatra.2020.10.061
http://doi.org/10.1016/j.vlsi.2019.12.002

Micromachines 2022, 13, 971 18 of 18

18. Lee, H.; Yoo, Y.; Shin, S.H.; Kang, S. ECMO: ECC Architecture Reusing Content-Addressable Memories for Obtaining High
Reliability in DRAM. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 781–793. [CrossRef]

19. Vatajelu, E.; Prinetto, P.; Taouil, M.; Hamdioui, S. Challenges and Solutions in Emerging Memory Testing. IEEE Trans. Emerg. Top.
Comput. 2019, 7, 493–506. [CrossRef]

20. Murugan, S.V.; Sathiyabhama, B. Bit-swapping linear feedback shift register (LFSR) for power reduction using pre-charged XOR
with multiplexer technique in built in self-test. J. Ambient Intell. Humaniz. Comput. 2021, 12, 6367–6373. [CrossRef]

21. Mohammed, A.A.; Abubaker, E.M.; Eljialy, S.A. Memory test and repair technique for SoC based devices. IEICE Electron. Express
2021, 18, 20210092. [CrossRef]

22. Alnatheer, S.; Ahmed, M.A. Optimal method for test and repair memories using redundancy mechanism for SoC. Micromachines
2021, 12, 811. [CrossRef]

23. Fragkos, G.; Minwalla, C.; Plusquellic, J.; Tsiropoulou, E.E. Artificially Intelligent Electronic Money. IEEE Consum. Electron. Mag.
2021, 10, 81–89. [CrossRef]

24. Chen, W.; Qiu, X.; Cai, T.; Dai, H.N.; Zheng, Z.; Zhang, Y. Deep reinforcement learning for Internet of Things: A comprehensive
survey. IEEE Commun. Surv. Tutor. 2021, 23, 1659–1692. [CrossRef]

25. Pundir, A. Novel modified memory built in self-repair (MMBISR) for SRAM using hybrid redundancy-analysis technique. IET
Circuits Devices Syst. 2019, 13, 836–842. [CrossRef]

26. Kalpana, V.; Maheswar, R.; Nandakumar, E. Multiple parametric fault diagnosis using computational intelligence techniques in
linear flter circuit. J. Ambient Intell. Humaniz. Comput. 2020, 11, 5533–5545. [CrossRef]

27. Park, J.; Lee, J.H.; Park, S.K.; Chun, K.C.; Sohn, K.; Kang, S. An In-DRAM BIST for 16 Gb DDR4 DRAM in the 2nd 10-nm-Class
DRAM Process. IEEE Access 2021, 9, 33487–33497. [CrossRef]

28. Gopalan, K.; Pothiraj, S. A saboteur and mutant based built-in self-test and counting threshold-based built-in self repairing
mechanism for memories. J. Ambient Intell. Humaniz. Comput. 2021, 12, 6651–6663. [CrossRef]

29. Liu, K.; Chen, X.; Pu, H.; Shinohara, H. A 0.5-V hybrid SRAM physically unclonable function using hot carrier injection burn-in
for stability reinforcement. IEEE J. Solid-State Circuits 2020, 56, 2193–2204. [CrossRef]

30. Ryabtsev, V.G.; Volobuev, S.V. Built-In Self-Repairing System-on-Chip RAM. Russ. Microelectron. 2021, 50, 504–508. [CrossRef]
31. Zhou, Y.; Cai, H.; Zhang, M.; Naviner, L.A.B.; Yang, J. A novel BIST for monitoring aging/temperature by self-triggered scheme

to improve the reliability of STT-MRAM. Microelectron. Reliab. 2020, 114, 113735. [CrossRef]

http://doi.org/10.1109/TVLSI.2022.3153894
http://doi.org/10.1109/TETC.2017.2691263
http://doi.org/10.1007/s12652-020-02222-5
http://doi.org/10.1587/elex.18.20210092
http://doi.org/10.3390/mi12070811
http://doi.org/10.1109/MCE.2020.3024512
http://doi.org/10.1109/COMST.2021.3073036
http://doi.org/10.1049/iet-cds.2018.5218
http://doi.org/10.1007/s12652-020-01908-0
http://doi.org/10.1109/ACCESS.2021.3061349
http://doi.org/10.1007/s12652-020-02284-5
http://doi.org/10.1109/JSSC.2020.3035207
http://doi.org/10.1134/S1063739721070118
http://doi.org/10.1016/j.microrel.2020.113735

	Introduction
	Related Work
	Proposed Built-In Self-Test and Built-In Self-Repair Methodology for SRAM
	Built-In Self-Test (BIST) Using Deep Q-Learning Algorithm
	Memory under Test (MUT)
	Comparator
	Output Response Recorder
	Fault Modeling of SRAM
	Built-In Self-Repair (BISR) Utilizing Bit-Swapping-Based Linear Feedback Shift Register (BSLFSR)

	Results and Discussion
	Performance Metrics
	Simulation Outcomes
	Comparative Analysis of Performance Metrics Using FPGA

	Conclusions
	References

