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Deep-RBPPred: Predicting RNA 
binding proteins in the proteome 
scale based on deep learning
Jinfang Zheng, Xiaoli Zhang, Xunyi Zhao, Xiaoxue Tong, Xu Hong, Juan Xie & Shiyong Liu  

RNA binding protein (RBP) plays an important role in cellular processes. Identifying RBPs by 

computation and experiment are both essential. Recently, an RBP predictor, RBPPred, is proposed in 

our group to predict RBPs. However, RBPPred is too slow for that it needs to generate PSSM matrix as 

its feature. Herein, based on the protein feature of RBPPred and Convolutional Neural Network (CNN), 

we develop a deep learning model called Deep-RBPPred. With the balance and imbalance training 

set, we obtain Deep-RBPPred-balance and Deep-RBPPred-imbalance models. Deep-RBPPred has 

three advantages comparing to previous methods. (1) Deep-RBPPred only needs few physicochemical 
properties based on protein sequences. (2) Deep-RBPPred runs much faster. (3) Deep-RBPPred has 
a good generalization ability. In the meantime, Deep-RBPPred is still as good as the state-of-the-art 

method. Testing in A. thaliana, S. cerevisiae and H. sapiens proteomes, MCC values are 0.82 (0.82), 
0.65 (0.69) and 0.85 (0.80) for balance model (imbalance model) when the score cutoff is set to 0.5, 
respectively. In the same testing dataset, different machine learning algorithms (CNN and SVM) are 
also compared. The results show that CNN-based model can identify more RBPs than SVM-based. In 
comparing the balance and imbalance model, both CNN-base and SVM-based tend to favor the majority 
class in the imbalance set. Deep-RBPPred forecasts 280 (balance model) and 265 (imbalance model) of 
299 new RBP. The sensitivity of balance model is about 7% higher than the state-of-the-art method. We 
also apply deep-RBPPred to 30 eukaryotes and 109 bacteria proteomes downloaded from Uniprot to 
estimate all possible RBPs. The estimating result shows that rates of RBPs in eukaryote proteomes are 

much higher than bacteria proteomes.

RNA binding proteins (RBPs) play important functions in many cellular processes, such as post-transcriptional 
gene regulation, RNA subcellular localization and alternative splicing. With signi�cant function in biology, many 
high-throughput experimental techniques have been developed to identify new RBPs in human, mouse, S. cere-
visiae and C. elegans1–10. A�er RBPs have been identi�ed, CLIP-related experimental technologies11–14 are applied 
to reveal the binding sites in RNAs. Also, many computational methods have been proposed to predict interaction 
of protein with RNA15–18 and RBPs19–25. RBP predictors can predict the RBPs, and then CLIP-related techniques 
can further reveal RNAs interacting with these RBPs. However, previous computational methods only considered 
only part features or known RNA binding domain (RBD) which plays a signi�cant role in RBPs prediction. So, we 
proposed RBPPred integrating as much as features to address this problem22. Benchmarking on datasets shows 
that RBPPred is better than other approaches. But RBPPred runs slowly because it requires to run blast against a 
huge protein NR database to generate PSSM matrix. However, the prediction speed is important because a large 
number of RBPs are still unknown in many species. To overcome this shortcoming, we present Deep-RBPPred 
which is based on deep learning.

In recently years, deep learning technology has been used in many aspects in bioinformatics and proved as a 
power tool26–32. For predicting protein binding sites in RNA sequence, DeepBind32 is the �rst CNN-based model 
to predict the binding a�nity. Deep-rbp29 and iDeep30,31 are two deep learning methods which both take RNA 
structure into consideration. �ese methods outperform the conventional approaches in term of prediction accu-
racy. However, deep learning algorithm is still not applied to RBPs prediction. In Deep-RBPPred, we apply a deep 
convolutional neural network instead of SVM. Since CNN-based method requires to input a �xed length feature 
vector, two solutions are handled to meet this requirement. �e �rst solution is to pad all the sequences to �xed 
length sequences, and then one-hot encoding is used to encode the sequences. �e second solution is to design 
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the features by hand. It is not appropriate to predict RBPs with the padding solution because the length of RBPs 
varies over a wide range (50–10 K, see methods). Based on this consideration, we employ the hand-designed fea-
tures which are proved e�ective to represent RBPs in RBPPred. Unlike RBPPred, we only employ physicochem-
ical features including hydrophobicity, polarity, normalized van der Waals volume, polarizability, side chain’s 
charge and polarity. �ese features are used to train the weights of 11 layers convolutional neural network with 
Tensor�ow33. Deep-RBPPred presents comparable results to RBPPred but is signi�cantly more e�cient in the 
testing. And it also only needs few physicochemical features.

Methods
Training sets. In order to train our deep learning model, we employed the training set used in the RBPPred. 
�e details of generating the training set have been described in RBPPred22. Here we just simply describe the 
generating process. �e positive samples are collected from the Uniprot database34, which is retrieval with GO 
term’RNA binding’ to search this protein database because the Uniprot database includes RBPs with x-ray crystal 
structures and RBPs identi�ed by high-through experiment. For the negative samples, we took the approach from 
SPOT-stru35. �e negative sequences are collected from PDB, by using PISCCES36 with sequence identity cuto� 
25%, sequence length between 50 and 10,000 and resolution of X-ray better than 3.0 Å. �e collected sequences 
are then mixed together so that the redundant proteins are removed with sequence identity of 25% by psi-cd-hit 
in the CD-HIT package37. Finally, the training set includes 2780 RBPs and 7093 non-RBPs.

�e training set consisting of di�erent amount of RBPs and non-RBPs is known as an imbalance training set. 
�e classi�cation algorithm tends to favor the majority class when it is trained in the imbalance dataset. So, we 
randomly select 2780 non-RBPs to generate the balance dataset together with 2780 RBPs.

Testing set. For testing our deep learning model, we used the testing set from RBPPred22. However, only the 
identical sequences between the training and the testing set are removed. �is may lead to a bias result caused 
by the redundance between training and testing set. So, we remove the homology sequences by CD-HIT. �e 
testing and training set are mixed together to be clustered by CD-HIT with sequence identity cuto� 30%. �en 
all the sequences are discarded from testing set if they are in the same cluster with the training sequences. �is 
can ensure the testing sequences are independent with training set. For one cluster, we only select the sequence 
provided by CD-HIT to ensure a non-redundant testing set. We �nally collected 488 sequences including 239 
negative samples and 249 positive samples, which are composed of 72 RBPs and 13 non-RBPs for A. thaliana, 129 
RBPs and 164 non-RBPs for H. sapiens, 48 RBPs and 62 non-RBPs for S. cerevisiae. Comparing to the previous 
testing dataset including 2546 sequences, 2058 sequences are discarded for the redundance.

Protein features and encoding. �e protein is encoded to a feature vector by the approach described in 
RBPPred37. But the evolutionary information and predicted secondary structure are discarded due to the com-
putational time. �e solvent accessibility is also discarded. At last, a 148-dimensional vector is encoded to rep-
resent each protein sequence including the properties of hydrophobicity, normalized van der Waals volume, 
polarity and polarizability, charge and polarity of side chain. We expand the dimension of feature vector to 160 
with the expanded feature values assigned to 0 due to the CNN network architecture. Finally, we collect a total 
160-dimensional feature vector to represent a protein sequence, as shown in Fig. 1. �e detail of encoding the 

Figure 1. Process of encoding a protein sequence into the 160 dimension feature vector. For the properties 
of hydrophobicity, polarity, normalized van der Waals volume, polarizability, the global protein sequence 
descriptors (C-T-D) was employed to encode each feature vector with 21 dimension (v1, v2, v3, v4, …, v21). 
According to charge and polarity of side chain, the protein sequence was encoded to a vector of 64 dimension 
(v1, v2, v3, v4, …, v64) through the conjoint triad encoding method. �is process is a part of RBPPred encoding 
process22.
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physicochemical properties is described in RBPPred22. �e program encoding the feature vector is extracted from 
the RBPPred so�ware package.

Performance evaluation. �e performance is evaluated by sensitivity (SN), speci�city (SP), accuracy 
(ACC) and Matthews Correlation Coe�cient (MCC) which are de�ned as following:

= +Sensitivity (SN) TP/(TP FN)

= +Specificity (SP) TN/(TN FP)

= + + + +Accuracy (ACC) (TP TN)/(TP TN FN FP)

=

− + + + +
⁎ ⁎ ⁎ ⁎ ⁎

Matthews Correlation Coefficient (MCC)

(TP TN FP FN)/sqrt((TP FN) (TP FP) (TN FP) (TN FN))

where, TP is true positive, and FN is false negative. TN refers to true negative and FP refers to false positive. �e 
AUC is also applied to measure the performance.

Network architecture of Deep-RBPPred. Deep-RBPPred is a Convolutional Neural Network (CNN)38 
with tensor�ow. In Fig. 2, it shows the network architecture of Deep-RBPPred. �e protein feature vector is 
reshaped to a tensor with shape 8 × 20 in order to apply the 2D-convolution function. So the input layer is a size 
of 8 × 20 feature tensor representing a protein. �e following layer is a convolution layer with a kernel size of 
2 × 5. In this layer, 32 convolution kernels are set to �lter the input features. �e third layer is a max pooling layer 
with a size of 2 × 2. �e feature size will be reduced to 4 × 10 a�er the layer. And the next layer is a local response 
normalized layer. �is layer is set to increase the generalization ability. �e following three layers are convolution 
layer, max pooling layer and local response normalized layer, respectively. �en the feature tensor is �atted to a 
640-dimensional vector. �e following two layers are fully connected layers with 512 and 256 neurons, respec-
tively. �e 10th layer is a dropout layer39 which randomly discards some neurons in the training phase. �e drop-
out probability is set to 0.5. �e �nal layer is the So�max layer which is used to classify RBPs or not. �e output of 
this model is a probability score which describes the probability of an RBP. All the activation functions in neurons 
are ReLU40. All the weights in neurons are added a L2 regularization operation. �e L2 regularization losses are 

Figure 2. Network architecture of Deep-RBPPred. Deep-RBPPred is a CNN network including 11 layers. 
Convolution Layer and Max Pooling Layer are designed to automatically process the feature. Local Response 
Normalization layer and Dropout Layer are designed to avoid over-�tting. So�max layer is used to classify the 
protein with probability score. �e batch size is assigned to 200. �e learning rate is set to 0.0001.
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added to the �nal loss function. Adam optimizer is employed to minimize �nal loss consisting of cross-entropy 
between the label and probability score and L2 regularization loss of neurons. In this architecture, the number of 
trainable variable is 480,930. In training process, the learning rate is set to 0.0001.

Result
10-fold cross-validation on the training set. To avoid the over�tting and estimate an appropriate epoch 
of our models in the whole training sets, we perform the 10-fold cross-validation on the balance and imbalance 
training set. As shown in Fig. 3, the balance model converges between 100 and 200 epochs. �e imbalance model 
converges between 300 and 400 epochs. Comparing to the balance model, the imbalance converges at a later 
epoch. �is may be caused by the more sequences in the imbalance training set. Figure 3 also shows that the 
balance model achieves a slighter higher MCC than the imbalance model. �e result of 10-fold cross-validation 
indicates that 500 epochs can be used in the training process and avoid the over�tting caused by a higher epoch. 
�e result of 10-fold cross-validation also indicates that the parameters of network (batch size, the number of 
neuron, learning rate) can work in this model.

Training process and model selection. In order to achieve models constructed on the whole training 
sets, the CNN network is trained in the balance and imbalance training set with the epoch determined in the 
10-fold cross-validation. �e training and testing loss are used to evaluate the models in each epoch. As shown 
in Fig. 4, the training and testing loss decrease with the epoch. �is training processes are similar to the 10-fold 
cross-validation (Fig. S1). �e testing loss decreases rapidly at the early epoch and then the value remains the 
same a�er the convergence point. In theory, all models near the convergence point can be used as the �nal model. 
In order to get the best prediction performance, the balance model of 390th epoch and imbalance model of 242th 
epoch are selected as �nal models. �e training loss of �nal balance/imbalance model is 0.15/0.17, which is almost 
equal to loss of the 10-folds validation process (Fig. S1). �e testing loss of �nal balance/imbalance is 0.23/0.24. 
�is indicates that our models is not over�tting.

Figure 3. Training process of 10-fold cross-validation on balance set (A) and imbalance set (B). In 10-fold 
cross-validation, we calculate the mean MCC of each epoch and the standard error of MCC. For balance set, the 
highest average MCC is 0.74 and the highest standard error is 0.15. For imbalance set, the highest average MCC 
is 0.73 and the highest standard error is 0.20.

Figure 4. �e training process in imbalance (A) and balance training set (B). �e loss is de�ned as the sum of 
L2 regularization loss and the cross entropy (see text).
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Performance in independent testing and comparison to other models. In this section, we compre-
hensively evaluate our deep learning models in a non-redundant testing dataset. Firstly, we compare the power of 
two of the most popular machine learning algorithms, SVM and CNN, in RBPs prediction. Secondly, the balance 
and imbalance models are compared to reveal the a�ections of these two models in predicting RBPs. �irdly, 
three RBPs prediction approaches, SONAR25, RNApred23 and RBPPred27 are compared with our deep learning 
models in a non-redundant testing dataset. All results are shown in Tables 1–3 and Fig. 5. �e ROC curves are 
plotted in Figs S2 and S3.

In order to make a comparison of the power of machine learning algorithm in predicting RBPs, we also 
train a balance model and an imbalance model with SVM. �e SVM-based models are constructed on the train-
ing sets with the libsvm-3.2241 and tested in the testing dataset. �e results are shown in Table 1. As shown, 
the SVM-imbalance model achieves MCC values of 0.50, 0.60 and 0.47 for S. cerevisiae, H. sapiens and A. 
thaliana. �e SVM-balance model achieves MCC values of 0.54, 0.50 and 0.60 for S. cerevisiae, H. sapiens and A. 
thaliana. �e result indicates there is no signi�cant di�erence for the imbalance and balance model. In Table 2, 
Deep-RBPPred-balance achieves MCC values of 0.82 for H. sapiens, 0.69 for S. cerevisiae, 0.80 for A. thaliana, 
which are both much higher than the balance and imbalance model of SVM.

For non-RBPs in the testing set, the SVM-balance model obtains an average SP of 0.78 ((0.71 + 0.70 + 0.92)/3), 
which is much better than average SP of 0.62 ((0.56 + 0.64 + 0.65)/3) for the imbalance model. For predicting 
RBPs in the testing dataset, the SVM-imbalance model achieves an average of SN 0.94 ((0.90 + 0.93 + 1.0)/3), 
which is much higher than average SN of 0.82 ((0.83 + 0.81 + 0.83)/3) for the balance model. Indeed, the 
SVM models trained on the balance or imbalance model have an e�ect on the non-RBPs prediction. �at is, 
the balance model has a better/worse predicting ability in RBPs/non-RBPs than the imbalance model. �is 

Model SVM-imbalance SVM-balance

Dataset S H A S H A

ACC 0.75 0.80 0.71 0.76 0.74 0.85

SN 0.56 0.64 0.65 0.83 0.81 0.83

SP 0.90 0.93 1.0 0.71 0.70 0.92

AUC 0.86 0.88 0.93 0.85 0.85 0.92

MCC 0.50 0.60 0.47 0.54 0.50 0.60

Table 1. Performance on the testing set for the SVM-based model. *H, S, and A stand for H. sapiens, S. 
cerevisiae, and A. thaliana species respectively.

Figure 5. ROC for Deep-RBPPred-imbalance (A) and Deep-RBPPred-balance (B). �e AUC for balance/
imbalance model is 0.95/0.95.

Model Deep-RBPPred-balance Deep-RBPPred-imbalance RBPPred

Dataset H S A H S A H S A

ACC 0.91 0.81 0.95 0.91 0.85 0.94 0.91 0.88 0.90

SN 0.96 0.94 0.94 0.89 0.83 0.94 0.85 0.85 0.88

SP 0.87 0.71 1.0 0.93 0.85 0.92 0.96 0.90 1.0

AUC 0.97 0.90 0.99 0.96 0.91 0.98 0.98 0.95 0.98

MCC 0.83 0.65 0.85 0.82 0.69 0.80 0.81 0.76 0.72

Table 2. Performance comparison on the testing set. *H, S, and A stand for H. sapiens, S. cerevisiae, and A. 
thaliana species respectively.
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effect is not significant in CNN when comparing with SVM. As shown in Table 2, Deep-RBPPred-balance 
achieves an average SN of 0.95 ((0.96 + 0.94 + 0.94)/3). For non-RBPs, Deep-RBPPred-balance achieves an 
average SP of 0.86 ((0.87 + 0.71 + 1.0)/3), which is lower than average SP of 0.90 ((0.93 + 0.85 + 0.92)/3) of 
Deep-RBPPred-imbalance. Figure 5 shows the ROC of Deep-RBPPred.

Deep-RBPPred is also tested and compared to other models on the testing set. Total three predictors are 
compared. �e �rst approach is RBPPred, which is developed by our group previously. �e second approach is 
RNApred which employees the amino acid composition or PSSM to predict RBPs. �e third method is SONAR 
which integrates protein-protein interaction network and other features to predict the RBPs. The result of 
SPOT-Seq-RNA is not shown here because it has been compared with RBPPred22.

As shown in Table 2, Deep-RBPPRed-balance achieves MCC values of 0.83, 0.65 and 0.85 for H. sapiens, 
S. cerevisiae, A. thaliana, respectively. �e performance of the imbalance model of Deep-RBPPred is almost as 
good as the balance model. RBPPred achieves MCC values of 0.81, 0.76 and 0.72 for H. sapiens, S. cerevisiae, A. 
thaliana respectively. We can �nd that RBPPred and Deep-RBPPred have di�erent performances in S. cerevi-
siae and A. thaliana proteomes. �e average MCC of Deep-RBPPred-balance ((0.83 + 0.65 + 0.85)/3) has a value 
almost as high as RBPPred ((0.81 + 0.76 + 0.72)/3). As shown in Table 3, Deep-RBPPred achieves a much higher 
MCC than RNApred ((0.38 + 0.41 + 0.42)/3). Deep-RBPPred also performs better than SONAR in the human 
proteome.

Capacity of prediction new RBPs. To test the predicting ability of Deep-RBPPred on new RBPs, we col-
lect 299 new RBPs created between 2015-05-24 (consistent with RBPPred) and 2017-09-27 from Uniprot. In this 
section, only the RBPPred is compared because that the RBPPred have been proved to have better predicting 
ability than other methods22. 280 and 265 of 299 new RBPs are correctly predicted by Deep-RBPPred-balance 
and Deep-RBPPred-imbalance, but only 260 RBPs are predicted by RBPPred22. Deep-RBPPred performs better 
than RBPPred. One protein (Uniprotid: P0DOC6) can’t be calculated by RBPPred for that no protein sequences 
can be found by Blast. We also collect the 130 experimently determined human RBPs published in Wen and 
the co-workers’ work42. RBPPred correctly predicts 24 of 130 RBPs, while Deep-RBPPred-imbalance and 
Deep-RBPPred-balance correctly predict 63 and 92 RBPs respectively. �ese results indicate that Deep-RBPPRed 
has better predicting ability than RBPPred.

Computational time. Running time is an important metric to measure a model. We list the computational 
time of Deep-RBPPred in Table 4. �e table shows that Deep-RBPPred is a very fast RBP predictor. Here we do 
not list the computational time of RBPPred because it costs much more computational time. Comparing with 
RBPPred, Deep-RBPPred predicts RBPs without using blast to generate PSSM matrix which is a time-consuming 
step. Take the advantage of computational time, Deep-RBPPred can be used to estimate RBPs in proteome scale 
quickly.

RBPs estimation in the 139 reviewed proteomes. Deep-RBPPred is applied to estimate the RBPs in 
139 reviewed proteomes for 109 bacteria and 30 eukaryote species. �ere are two problems in the Uniprot pro-
teome dataset. Firstly, reviewed and un-reviewed sequences are both included in the Uniprot. �e un-reviewed 
sequence may not be a real protein. So, the reviewed proteomes are used in the prediction. �e second prob-
lem is that almost all reviewed proteomes are incomplete. For example, truepera radiovictrix (proteome id: 
UP000000379) only contained one reviewed sequence. �ese two problems can result in a bias prediction. In 

Proteome UP000000559 UP000005640 UP000000589 UP000006548

Times (CPU) 4 s 40 s 33 s 30 s

Times (GPU) 3 s 14 s 13 s 12 s

Table 4. Computational time of Deep-RBPPred running in Centos with Intel(R) Xeon(R) CPU E5-2620 v2 @ 
2.10 GHz and GeForce GTX 1080Ti. *UP000000559, UP000005640, UP000000589 and UP000006548 include 
1000, 20231, 16946 and 15524 protein sequences. Reviewed proteomes are downloaded from the Uniprot.

Method RNApred SONAR

Dataset S H A H

ACC 0.65 0.68 0.86 0.88

SN 0.90 0.88 0.93 0.92

SP 0.45 0.52 0.46 0.85

AUC 0.82 0.80 0.83 0.84

MCC 0.38 0.41 0.42 0.77

Table 3. Performance of RNApred in testing dataset. *H, S, and A stand for H. sapiens, S. cerevisiae, and A. 
thaliana species respectively. SONAR is developed for the human, and gene name is used as input (not protein 
sequence). �e gene name may be the same between di�erent species, so we only test the performance in human 
proteome.
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order to select some appropriate proteomes, we �lter the proteomes with the number of sequences. For eukaryote 
species, the amount is set to 1/10 of S. cerevisiae. For bacteria, the number is set to 1/10 of E. coli. Finally, we �lter 
out 109 bacteria and 30 eukaryote proteomes from all the bacteria and eukaryote proteomes.

�e results of prediction are shown in Fig. 6. �e balance model predicts more RBPs than the imbalance 
model in bacteria and eukaryote. For the predicting results with the balance model and imbalance model, we 
found an interesting phenomenon that the rate of RBPs in eukaryotes proteome is higher than bacteria. �is 
result implies RBPs may function in more complex cellular processes in eukaryotes. For the human proteome, we 
estimate 14,744 RBPs with the imbalance model.

Discussion
In this study, we develop two RBPs predicting models (the balance and imbalance model) based on CNN which 
only need hydrophobicity, normalized van der waals volume, polarity and polarizability, charge and polarity 
of side chain of protein sequence. Comparing with SVM models, we show that the CNN-based model per-
forms better than SVM-based model. In comparing the balance and imbalance model, both the CNN-based 
and SVM-based classi�cation show a preference for the major class. �e result from the testing dataset shows 
that our deep learning models perform as good as RBPPred which is the best model so far. More importantly, 
Deep-RBPPred needs fewer features than RBPPred. Deep-RBPPred was then applied to estimate RBPs in 139 
reviewed proteomes from the Uniprot dataset. �e result shows that the RBPs rate in the bacteria is smaller 
than the eukaryote proteome. Deep-RBPPred-imbalance predicts 14,744 RBPs for the whole reviewed human 
proteomes. �is number is almost 10-fold more than the number of the RBPs identi�ed by high through exper-
iments. �is may be caused by these high throughput experimental limitations. For example, “Interactome 
Capture” only identi�es the RBPs which bind to mRNA2. It may lose the RBPs binding to the non-coding RNA.

In general, deep learning methods are applied in a large-scale data. A classic application of CNN-based meth-
ods is to classify the image. In this application, data augmentation approaches are used to enlarge the number 
of samples. And a large dataset may reduce the risk of deep learning model in over�tting. In Deep-RBPPred, we 
remove the redundant sequences as other researches have done. �e process can be regarded as the opposite of 
data augmentation process in image recognition. In addition, L2 regularization and dropout layer43 are added to 
avoid over�tting in the architecture of our deep learning. �e process of 10-cross validation (Fig. 3) shows the 
MCC is almost no longer increases a�er 100th epoch. �e process of training (Fig. 4) also shows the training/test-
ing loss does not change too much round 0.2/0.14. �ese phenomena imply Deep-RBPPred is not over�tting. �e 
real number of RBPs is still unknown and new RBPs are discovered as time goes by. Our prediction may bene�t 
the RBP community.

Data Availability
Deep-RBPPred is written in the python, availability as an open source tool at http://www.rnabinding.com/Deep_
RBPPred/Deep-RBPPred.html.
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