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Abstract. In this paper, we propose a novel unsupervised domain
adaptation algorithm based on deep learning for visual object recog-
nition. Specifically, we design a new model called Deep Reconstruction-
Classification Network (DRCN), which jointly learns a shared encoding
representation for two tasks: (i) supervised classification of labeled source
data, and (ii) unsupervised reconstruction of unlabeled target data. In
this way, the learnt representation not only preserves discriminability,
but also encodes useful information from the target domain. Our new
DRCN model can be optimized by using backpropagation similarly as
the standard neural networks.

We evaluate the performance of DRCN on a series of cross-domain
object recognition tasks, where DRCN provides a considerable improve-
ment (up to ~8% in accuracy) over the prior state-of-the-art algorithms.
Interestingly, we also observe that the reconstruction pipeline of DRCN
transforms images from the source domain into images whose appearance
resembles the target dataset. This suggests that DRCN’s performance is
due to constructing a single composite representation that encodes infor-
mation about both the structure of target images and the classification
of source images. Finally, we provide a formal analysis to justify the
algorithm’s objective in domain adaptation context.

Keywords: Domain adaptation - Object recognition - Deep learning -
Convolutional networks + Transfer learning

1 Introduction

An important task in visual object recognition is to design algorithms that are

robust to dataset bias [1]. Dataset bias arises when labeled training instances are

available from a source domain and test instances are sampled from a related,

but different, target domain. For example, consider a person identification
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application in unmanned aerial vehicles (UAV), which is essential for a variety
of tasks, such as surveillance, people search, and remote monitoring [2]. One of
the critical tasks is to identify people from a bird’s-eye view; however collecting
labeled data from that viewpoint can be very challenging. It is more desirable
that a UAV can be trained on some already available on-the-ground labeled
images (source), e.g., people photographs from social media, and then success-
fully applied to the actual UAV view (target). Traditional supervised learning
algorithms typically perform poorly in this setting, since they assume that the
training and test data are drawn from the same domain.

Domain adaptation attempts to deal with dataset bias using unlabeled data
from the target domain so that the task of manual labeling the target data can
be reduced. Unlabeled target data provides auxiliary training information that
should help algorithms generalize better on the target domain than using source
data only. Successful domain adaptation algorithms have large practical value,
since acquiring a huge amount of labels from the target domain is often expensive
or impossible. Although domain adaptation has gained increasing attention in
object recognition, see [3] for a recent overview, the problem remains essentially
unsolved since model accuracy has yet to reach a level that is satisfactory for
real-world applications. Another issue is that many existing algorithms require
optimization procedures that do not scale well as the size of datasets increases
[4-10]. Earlier algorithms were typically designed for relatively small datasets,
e.g., the Office dataset [11].

We consider a solution based on learning representations or features from raw
data. Ideally, the learned feature should model the label distribution as well as
reduce the discrepancy between the source and target domains. We hypothesize
that a possible way to approximate such a feature is by (supervised) learning the
source label distribution and (unsupervised) learning of the target data distribu-
tion. This is in the same spirit as multi-task learning in that learning auxiliary
tasks can help the main task be learned better [12,13]. The goal of this paper
is to develop an accurate, scalable multi-task feature learning algorithm in the
context of domain adaptation.

Contribution: To achieve the goal stated above, we propose a new deep learn-
ing model for unsupervised domain adaptation. Deep learning algorithms are
highly scalable since they run in linear time, can handle streaming data, and
can be parallelized on GPUs. Indeed, deep learning has come to dominate object
recognition in recent years [14,15].

We propose Deep Reconstruction-Classification Network (DRCN), a convolu-
tional network that jointly learns two tasks: (i) supervised source label prediction
and (ii) unsupervised target data reconstruction. The encoding parameters of the
DRCN are shared across both tasks, while the decoding parameters are sepa-
rated. The aim is that the learned label prediction function can perform well on
classifying images in the target domain — the data reconstruction can thus be
viewed as an auxiliary task to support the adaptation of the label prediction.
Learning in DRCN alternates between unsupervised and supervised training,
which is different from the standard pretraining-finetuning strategy [16,17].
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From experiments over a variety of cross-domain object recognition tasks,
DRCN performs better than the state-of-the-art domain adaptation algorithm
[18], with up to ~ 8 % accuracy gap. The DRCN learning strategy also provides
a considerable improvement over the pretraining-finetuning strategy, indicating
that it is more suitable for the unsupervised domain adaptation setting. We
furthermore perform a visual analysis by reconstructing source images through
the learned reconstruction function. It is found that the reconstructed outputs
resemble the appearances of the target images suggesting that the encoding rep-
resentations are successfully adapted. Finally, we present a probabilistic analysis
to show the relationship between the DRCN’s learning objective and a semi-
supervised learning framework [19], and also the soundness of considering only
data from a target domain for the data reconstruction training.

2 Related Work

Domain adaptation is a large field of research, with related work under several
names such as class imbalance [20], covariate shift [21], and sample selection bias
[22]. In [23], it is considered as a special case of transfer learning. Earlier work on
domain adaptation focused on text document analysis and NLP [24,25]. In recent
years, it has gained a lot of attention in the computer vision community, mainly
for object recognition application, see [3] and references therein. The domain
adaptation problem is often referred to as dataset bias in computer vision [1].

This paper is concerned with wunsupervised domain adaptation in which
labeled data from the target domain is not available [26]. A range of approaches
along this line of research in object recognition have been proposed [4,5,9,27-30],
most were designed specifically for small datasets such as the Office dataset [11].
Furthermore, they usually operated on the SURF-based features [31] extracted
from the raw pixels. In essence, the unsupervised domain adaptation problem
remains open and needs more powerful solutions that are useful for practical
situations.

Deep learning now plays a major role in the advancement of domain adap-
tation. An early attempt addressed large-scale sentiment classification [32],
where the concatenated features from fully connected layers of stacked denoising
autoencoders have been found to be domain-adaptive [33]. In visual recognition,
a fully connected, shallow network pretrained by denoising autoencoders has
shown a certain level of effectiveness [34]. It is widely known that deep convolu-
tional networks (ConvNets) [35] are a more natural choice for visual recognition
tasks and have achieved significant successes [14,15,36]. More recently, Con-
vNets pretrained on a large-scale dataset, ImageNet, have been shown to be
reasonably effective for domain adaptation [14]. They provide significantly bet-
ter performances than the SURF-based features on the Office dataset [37,38].
An earlier approach on using a convolutional architecture without pretraining
on ImageNet, DLID, has also been explored [39] and performs better than the
SURF-based features.

To further improve the domain adaptation performance, the pretrained Con-
vNets can be fine-tuned under a particular constraint related to minimizing a
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domain discrepancy measure [18,40-42]. Deep Domain Confusion (DDC) [41]
utilizes the maximum mean discrepancy (MMD) measure [43] as an additional
loss function for the fine-tuning to adapt the last fully connected layer. Deep
Adaptation Network (DAN) [40] fine-tunes not only the last fully connected
layer, but also some convolutional and fully connected layers underneath, and
outperforms DDC. Recently, the deep model proposed in [42] extends the idea
of DDC by adding a criterion to guarantee the class alignment between different
domains. However, it is limited only to the semi-supervised adaptation setting,
where a small number of target labels can be acquired.

The algorithm proposed in [18], which we refer to as ReverseGrad, handles
the domain invariance as a binary classification problem. It thus optimizes two
contradictory objectives: (i) minimizing label prediction loss and (ii) maximiz-
ing domain classification loss via a simple gradient reversal strategy. ReverseG-
rad can be effectively applied both in the pretrained and randomly initialized
deep networks. The randomly initialized model is also shown to perform well on
cross-domain recognition tasks other than the Office benchmark, i.e., large-scale
handwritten digit recognition tasks. Our work in this paper is in a similar spirit
to ReverseGrad in that it does not necessarily require pretrained deep networks
to perform well on some tasks. However, our proposed method undertakes a
fundamentally different learning algorithm: finding a good label classifier while
simultaneously learning the structure of the target images.

3 Deep Reconstruction-Classification Networks

This section describes our proposed deep learning algorithm for unsupervised
domain adaptation, which we refer to as Deep Reconstruction-Classification Net-
works (DRCN). We first briefly discuss the unsupervised domain adaptation
problem. We then present the DRCN architecture, learning algorithm, and other
useful aspects.

Let us define a domain as a probability distribution Dxy (or just D) on
X x Y, where X is the input space and ) is the output space. Denote the
source domain by P and the target domain by Q, where P # Q. The aim in
unsupervised domain adaptation is as follows: given a labeled i.i.d. sample from
a source domain S* = {(xf,y7)};; ~ P and an unlabeled sample from a target
domain S! = {(z})}; ~ Qx, find a good labeling function f: X — Y on S.
We consider a feature learning approach: finding a function g : X — F such that
the discrepancy between distribution P and Q is minimized in F.

Ideally, a discriminative representation should model both the label and the
structure of the data. Based on that intuition, we hypothesize that a domain-
adaptive representation should satisfy two criteria: (i) classify well the source
domain labeled data and (ii) reconstruct well the target domain unlabeled
data, which can be viewed as an approximate of the ideal discriminative rep-
resentation. Our model is based on a convolutional architecture that has two
pipelines with a shared encoding representation. The first pipeline is a standard
convolutional network for source label prediction [35], while the second one is
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a convolutional autoencoder for target data reconstruction [44,45]. Convolutional
architectures are a natural choice for object recognition to capture spatial cor-
relation of images. The model is optimized through multitask learning [12], that
is, jointly learns the (supervised) source label prediction and the (unsupervised)
target data reconstruction tasks.! The aim is that the encoding shared represen-
tation should learn the commonality between those tasks that provides useful
information for cross-domain object recognition. Figurel illustrates the archi-
tecture of DRCN.

(source) Class

Dropout

]
SLoLid

Input

Dense ’ Conv | Conv

Unpooling Unpooling Unpooling

Unflatten
(target)
Reconstruction

Fig. 1. Illustration of the DRCN’s architecture. It consists of two pipelines: (i) label
prediction and (ii) data reconstruction pipelines. The shared parameters between those
two pipelines are indicated by the red color. (Color figure online)

We now describe DRCN more formally. Let f. : X — Y be the (supervised)
label prediction pipeline and f, : X — X be the (unsupervised) data reconstruc-
tion pipeline of DRCN. Define three additional functions: (1) an encoder/feature
mapping genc : X — F, (2) a decoder ggec : F — X, and (3) a feature labeling
giab : F — Y. For m-class classification problems, the output of g,p, usually
forms an m-dimensional vector of real values in the range [0, 1] that add up to 1,
i.e., softmaz output. Given an input z € X, one can decompose f, and f, such
that

fc(l‘) = (glab © genc)(x)v (1)
fr(z) = (gdec © gene)(T)- (2)

Let O, = {Ocnc, Olap } and O, = {Ocne, Odec } denote the parameters of the
supervised and unsupervised model. O, are shared parameters for the feature
mapping genc- Note that Oepnc, Odec, @1ap may encode parameters of multiple

layers. The goal is to seek a single feature mapping gen. model that supports
both f. and f,.

Learning algorithm: The learning objective is as follows. Suppose the inputs
lie in X C R? and their labels lie in ) € R™. Let 4. : ¥ x Y — R and

! The unsupervised convolutional autoencoder is not trained via the greedy layer-wise
fashion, but only with the standard back-propagation over the whole pipeline.
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L. : X x X — R be the classification and reconstruction loss respectively. Given
labeled source sample S* = {(x7,y7)};2, ~ P, where y; € {0,1}"™ is a one-hot
vector, and unlabeled target sample S¢, = {(xé) "t~ Q, we define the empirical

j=1
losses as:
E?S ({@enw @lab}) = Z gc (fc(va {Qenca 91ab})7 y:) ) (3)
=1
L ({Oenc, Odec}) = Z o (fr (X;»; {Ocnc; Odec}), Xg) . (4)
j=1

Typically, £. is of the form cross-entropy loss Z yr log[fe(x)]k (recall that f.(x)
k=1
is the softmax output) and ¢, is of the form squared loss ||x — f.(x)]|3.
Our aim is to solve the following objective:

min ALY ({Oenc, Otab }) + (1 — AL ({Ocnc, Odec }), (5)

where 0 < A <1 is a hyper-parameter controlling the trade-off between classifi-
cation and reconstruction. The objective is a convex combination of supervised
and unsupervised loss functions. We justify the approach in Sect. 5.

Objective (5) can be achieved by alternately minimizing £7= and L't
using stochastic gradient descent (SGD). In the implementation, we used
RMSprop [46], the variant of SGD with a gradient normalization — the current
gradient is divided by a moving average over the previous root mean squared
gradients. We utilize dropout regularization [47] during £ minimization, which
is effective to reduce overfitting. Note that dropout regularization is applied in
the fully-connected/dense layers only, see Fig. 1.

The stopping criterion for the algorithm is determined by monitoring the
average reconstruction loss of the unsupervised model during training — the
process is stopped when the average reconstruction loss stabilizes. Once the
training is completed, the optimal parameters Oenc and Oy, are used to form
a classification model f.(x; {9611C7 élab}) that is expected to perform well on
the target domain. The DRCN learning algorithm is summarized in Algorithm 1
and implemented using Theano [48].

Data augmentation and denoising: We use two well-known strategies to
improve DRCN’s performance: data augmentation and denoising. Data aug-
mentation generates additional training data during the supervised training with
respect to some plausible transformations over the original data, which improves
generalization, see e.g. [49]. Denoising involves reconstructing clean inputs given
their noisy counterparts. It is used to improve the feature invariance of denoising
autoencoders (DAE) [33]. Generalization and feature invariance are two proper-
ties needed to improve domain adaptation. Since DRCN has both classification
and reconstruction aspects, we can naturally apply these two tricks simultane-
ously in the training stage.
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Algorithm 1. The Deep Reconstruction-Classification Network (DRCN) learn-
ing algorithm.

Input:

e Labeled source data: S° = {(x§,y{)}21;

e Unlabeled target data: Sy, = {x}}7};

e Learning rates: a. and a.;

1: Initialize parameters Oenc, Odec, Olab

2: while not stop do

3: for each source batch of size ms do

4: Do a forward pass according to (1);
5 Let O: = {Oecnc, O1ab }- Update O.:

Qc — 9c - acAVQCﬁzns (@C);

6: end for
7: for each target batch of size m: do
8: Do a forward pass according to (2);
9: Let O, = {Oenc, Odec }- Update O,:
O, +— O, —a,-(1—AN)Ve, L (O,).
10: end for
11: end while
Output:

e DRCON learnt parameters: © = {éenc, Bdec, é1ab};

Let Q X denote the noise distribution given the original data from which
the noisy data are sampled from. The classification pipeline of DRCN f, thus
actually observes additional pairs {(X{,y;)};; and the reconstruction pipeline
fr observes {(x!,x!)}";. The noise distribution QX\ y are typically geometric
transformations (translation, rotation, skewing, and scaling) in data augmenta-
tion, while either zero-masked noise or Gaussian noise is used in the denoising
strategy. In this work, we combine all the fore-mentioned types of noise for

denoising and use only the geometric transformations for data augmentation.

4 Experiments and Results

This section reports the evaluation results of DRCN. It is divided into two parts.
The first part focuses on the evaluation on large-scale datasets popular with deep
learning methods, while the second part summarizes the results on the Office
dataset [11].

4.1 Experiment I: SVHN, MNIST, USPS, CIFAR, and STL

The first set of experiments investigates the empirical performance of DRCN on
five widely used benchmarks: MNIST [35], USPS [50], Street View House Num-
bers (SVHN) [51], CIFAR [52], and STL [53], see the corresponding references for
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more detailed configurations. The task is to perform cross-domain recognition:
taking the training set from one dataset as the source domain and the test set
from another dataset as the target domain. We evaluate our algorithm’s recog-
nition accuracy over three cross-domain pairs: (1) MNIST vs USPS, (2) SVHN
vs MNIST, and (3) CIFAR vs STL.

MNIST (MN) vs USPS (Us) contains 2D grayscale handwritten digit images
of 10 classes. We preprocessed them as follows. USPS images were rescaled into
28 x 28 and pixels were normalized to [0, 1] values. From this pair, two cross-
domain recognition tasks were performed: MN — US and US — MN.

In SVHN (sv) vs MNIST (MN) pair, MNIST images were rescaled to 32 x 32
and SVHN images were grayscaled. The [0, 1] normalization was then applied to
all images. Note that we did not preprocess SVHN images using local contrast
normalization as in [54]. We evaluated our algorithm on SV — MN and MN — sv
cross-domain recognition tasks.

STL (sT) vs CIFAR (cI) consists of RGB images that share eight object
classes: airplane, bird, cat, deer, dog, horse, ship, and truck, which forms 4,000
(train) and 6,400 (test) images for STL, and 40,000 (train) and 8,000 (test)
images for CIFAR. STL images were rescaled to 32 x 32 and pixels were stan-
dardized into zero-mean and unit-variance. Our algorithm was evaluated on two
cross-domain tasks, that is, ST — CI and CI — ST.

The architecture and learning setup: The DRCN architecture used in the
experiments is adopted from [44]. The label prediction pipeline has three con-
volutional layers: 100 5 x 5 filters (conv1l), 150 5 x 5 filters (coONV2), and 200
3 x 3 filters (CONV3) respectively, two max-pooling layers of size 2 x 2 after the
first and the second convolutional layers (POOL1 and POOL2), and three fully-
connected layers (Fc4, FC5, and FC_out) — FC_out is the output layer. The number
of neurons in FC4 or FCH was treated as a tunable hyper-parameter in the range
of [300, 350, ..., 1000], chosen according to the best performance on the validation
set. The shared encoder gen. has thus a configuration of CONV1-POOL1-CONV2-
POOL2-CONV3-FC4-FC5. Furthermore, the configuration of the decoder gqec is
the inverse of that of genc. Note that the unpooling operation in gge. performs
by upsampling-by-duplication: inserting the pooled values in the appropriate
locations in the feature maps, with the remaining elements being the same as
the pooled values.

We employ ReLU activations [55] in all hidden layers and linear activations
in the output layer of the reconstruction pipeline. Updates in both classification
and reconstruction tasks were computed via RMSprop with learning rate of 10~4
and moving average decay of 0.9. The control penalty A was selected according
to accuracy on the source validation data — typically, the optimal value was in
the range [0.4,0.7].

Benchmark algorithms: We compare DRCN with the following methods.
(1) ConvNetg,..: a supervised convolutional network trained on the labeled source
domain only, with the same network configuration as that of DRCN’s label
prediction pipeline, (2) SCAE: ConvNet preceded by the layer-wise pretraining
of stacked convolutional autoencoders on all unlabeled data [44], (3) SCAE;:
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similar to SCAE, but only unlabeled data from the target domain are used dur-
ing pretraining, (4) SDA, [32]: the deep network with three fully connected
layers, which is a successful domain adaptation model for sentiment classifica-
tion, (5) Subspace Alignment (SA) [27],% and (6) ReverseGrad [18]: a recently
published domain adaptation model based on deep convolutional networks that
provides the state-of-the-art performance.

All deep learning based models above have the same architecture as DRCN
for the label predictor. For ReverseGrad, we also evaluated the “original archi-
tecture” devised in [18] and chose whichever performed better of the original
architecture or our architecture. Finally, we applied the data augmentation to
all models similarly to DRCN. The ground-truth model is also evaluated, that
is, a convolutional network trained from and tested on images from the target
domain only (ConvNet;q), to measure the difference between the cross-domain
performance and the ideal performance.

Classification accuracy: Tablel summarizes the cross-domain recognition
accuracy (mean * std) of all algorithms over ten independent runs. DRCN
performs best in all but one cross-domain tasks, better than the prior state-
of-the-art ReverseGrad. Notably on the sv — MN task, DRCN outperforms
ReverseGrad with ~ 8% accuracy gap. DRCN also provides a considerable
improvement over ReverseGrad (~ 5%) on the reverse task, MN — sv, but
the gap to the groundtruth is still large — this case was also mentioned in previ-
ous work as a failed case [18]. In the case of CI — ST, the performance of DRCN
almost matches the performance of the target baseline.

DRCN also convincingly outperforms the greedy-layer pretraining-based
algorithms (SDA;,, SCAE, and SCAE;). This indicates the effectiveness of the
simultaneous reconstruction-classification training strategy over the standard
pretraining-finetuning in the context of domain adaptation.

Comparison of different DRCN flavors: Recall that DRCN uses only the
unlabeled target images for the unsupervised reconstruction training. To verify

Table 1. Accuracy (mean £ std %) on five cross-domain recognition tasks over ten
independent runs. Bold and underline indicate the best and second best domain adap-
tation performance. ConvNet;y; denotes the ground-truth model: training and testing
on the target domain only.

Methods MN — US US — MN SV — MN MN — SV ST — CI CI — ST

ConvNetgre 85.55 + 0.12 65.77 + 0.06 62.33 £+ 0.09 25.95 + 0.04 54.17 £+ 0.21 63.61 + 0.17
SDA g5, [32] 43.14 £+ 0.16 37.30 £ 0.12 55.15 + 0.08 8.23 + 0.11 35.82 + 0.07 | 42.27 + 0.12
SA [27] 85.89 + 0.13 51.54 + 0.06 63.17 + 0.07 28.52 £+ 0.10 54.04 £+ 0.19 62.88 + 0.15
SCAE [44] 85.78 + 0.08 63.11 + 0.04 60.02 £ 0.16 27.12 £ 0.08 54.25 + 0.13 62.18 + 0.04
SCAE; [44] 86.24 + 0.11 65.37 + 0.03 65.57 + 0.09 27.57 £ 0.13 54.68 £ 0.08 61.94 £ 0.06
ReverseGrad [18] | 91.11 £ 0.07 74.01 + 0.05 | 73.91 £ 0.07 35.67 £ 0.04 56.91 + 0.05 | 66.12 + 0.08
DRCN 91.80 + 0.09 | 73.67 £ 0.04 81.97 + 0.16 | 40.05 + 0.07 | 58.86 + 0.07 | 66.37 + 0.10
ConvNettqt 96.12 4+ 0.07 98.67 £+ 0.04 98.67 + 0.04 91.52 £+ 0.05 78.81 + 0.11 66.50 + 0.07

2 The setup follows one in [18]: the inputs to SA are the last hidden layer activation
values of ConvNetgyc.
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the importance of this strategy, we further compare different flavors of DRCN:
DRCN, and DRCNy;. Those algorithms are conceptually the same but different
only in utilizing the unlabeled images during the unsupervised training. DRCNj
uses only unlabeled source images, whereas DRCNy; combines both unlabeled
source and target images.

The experimental results in Table2 confirm that DRCN always performs
better than DRCN; and DRCN,;. While DRCNy; occasionally outperforms
ReverseGrad, its overall performance does not compete with that of DRCN.
The only case where DRCN; and DRCNy; flavors can closely match DRCN is
on MN— US. This suggests that the use of unlabeled source data during the
reconstruction training do not contribute much to the cross-domain generaliza-
tion, which verifies the DRCN strategy in using the unlabeled target data only.

Table 2. Accuracy (%) of DRCNs and DRCNy;.

Methods | MN — US US — MN SV — MN MN — SV ST — CI Cl — ST

DRCN; |89.92 £+ 0.12 |65.96 &+ 0.07 | 73.66 & 0.04 | 34.29 + 0.09 | 55.12 + 0.12 | 63.02 £ 0.06
DRCNg; | 91.15 4+ 0.05 68.64 + 0.05 75.88 + 0.09 37.77 £ 0.06 55.26 + 0.06 | 64.55 + 0.13
DRCN 91.80 + 0.09 | 73.67 + 0.04 | 81.97 + 0.16 | 40.05 + 0.07 | 58.86 + 0.07 | 66.37 + 0.10

Data reconstruction: A useful insight was found when reconstructing source
images through the reconstruction pipeline of DRCN. Specifically, we observe the
visual appearance of f.(x%),..., fr(23,), where z5,... , x are some images from
the source domain. Note that xf,...,z7 are unseen during the unsupervised
reconstruction training in DRCN. We visualize such a reconstruction in the case
of sv —MN training in Fig. 2. Figure2(a) and (b) display the original source
(SVHN) and target (MNIST) images.

The main finding of this observation is depicted in Fig. 2(c): the reconstructed
images produced by DRCN given some SVHN images as the source inputs. We
found that the reconstructed SVHN images resemble MNIST-like digit appear-
ances, with white stroke and black background, see Fig. 2(b). Remarkably, DRCN
still can produce “correct” reconstructions of some noisy SVHN images. For exam-
ple, all SVHN digits 3 displayed in Fig. 2(a) are clearly reconstructed by DRCN,
see the fourth row of Fig. 2(c). DRCN tends to pick only the digit in the middle and
ignore the remaining digits. This may explain the superior cross-domain recog-
nition performance of DRCN on this task. However, such a cross-reconstruction
appearance does not happen in the reverse task, MN — Sv, which may be an indi-
cator for the low accuracy relative to the groundtruth performance.

We also conduct such a diagnostic reconstruction on other algorithms that
have the reconstruction pipeline. Figure 2(d) depicts the reconstructions of the
SVHN images produced by ConvAE trained on the MNIST images only. They do
not appear to be digits, suggesting that ConvAE recognizes the SVHN images as
noise. Figure 2(e) shows the reconstructed SVHN images produced by DRCN;.
We can see that they look almost identical to the source images shown in
Fig.2(a), which is not surprising since the source images are included during
the reconstruction training.



DRCN for Unsupervised Domain Adaptation 607

00
\ /
22
33
Yy
Ss
A
7
& 3
? 7

(f) ConvAE+ConvNet

Fig. 2. Data reconstruction after training from SVHN — MNIST. Figure (a)—(b) show
the original input pixels, and (c)—(f) depict the reconstructed source images (SVHN).
The reconstruction of DRCN appears to be MNIST-like digits, see the main text for a
detailed explanation.

Finally, we evaluated the reconstruction induced by ConvNetg,.. to observe
the difference with the reconstruction of DRCN. Specifically, we trained ConvAE
on the MNIST images in which the encoding parameters were initialized from
those of ConvNetg,.. and not updated during training. We refer to the model
as ConvAE+ConvNetg,.. The reconstructed images are visualized in Fig. 2(f).
Although they resemble the style of MNIST images as in the DRCN’s case, only
a few source images are correctly reconstructed.
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To summarize, the results from this diagnostic data reconstruction corre-
late with the cross-domain recognition performance. More visualization on other
cross-domain cases can be found in the Supplemental materials.

4.2 Experiments II: Office Dataset

In the second experiment, we evaluated DRCN on the standard domain adap-
tation benchmark for visual object recognition, OFFICE [11], which consists of
three different domains: AMAZON (A), DSLR (D), and WEBCAM (W). OFFICE has
2817 labeled images in total distributed across 31 object categories. The number
of images is thus relatively small compared to the previously used datasets.

We applied the DRCN algorithm to finetune AlexNet [14], as was done with
different methods in previous work [18,40,41].% The fine-tuning was performed
only on the fully connected layers of AlexNet, fc6 and fc7, and the last con-
volutional layer, conv5. Specifically, the label prediction pipeline of DRCN con-
tains conv4-convb- fc6- fcT-label and the data reconstruction pipeline has conv4-
convb-fc6- fcT- fcb’-convd’-convd’ (the " denotes the inverse layer) — it thus does
not reconstruct the original input pixels. The learning rate was selected follow-
ing the strategy devised in [40]: cross-validating the base learning rate between
10~° and 10~2 with a multiplicative step-size 10'/2.

We followed the standard unsupervised domain adaptation training protocol
used in previous work [7,39,40], that is, using all labeled source data and unla-
beled target data. Table 3 summarizes the performance accuracy of DRCN based
on that protocol in comparison to the state-of-the-art algorithms. We found that
DRCN is competitive against DAN and ReverseGrad — the performance is either
the best or the second best except for one case. In particular, DRCN performs
best with a convincing gap in situations when the target domain has relatively
many data, i.e., AMAZON as the target dataset.

Table 3. Accuracy (mean £ std %) on the Office dataset with the standard unsuper-
vised domain adaptation protocol used in [7,39].

Method A— W W — A A — D D — A W — D D— W

DDC [41] 61.8 £ 04 |52.2 4+ 04 644+ 0.3 52.1 +£0.8 |98.5+04 |95.0=% 0.5
DAN [40] 68.5 £ 0.4 | 53.1 + 0.3 |67.0+ 0.4 |54.0+ 0.4 | 99.0 £ 0.2 | 96.0 + 0.3
ReverseGrad [18] | 72.6 £ 0.3 | 52.7 £ 0.2 | 67.1 + 0.3 |54.5 + 0.4 | 99.2 £ 0.3 |96.4 £+ 0.1
DRCN 68.7 + 0.3 | 54.9 + 0.5|66.8 £ 0.5 | 56.0 £ 0.5|99.0 + 0.2 | 96.4 + 0.3

5 Analysis

This section provides a first step towards a formal analysis of the DRCN algo-
rithm. We demonstrate that optimizing (5) in DRCN relates to solving a semi-
supervised learning problem on the target domain according to a framework

3 Recall that AlexNet consists of five convolutional layers: convl, . .., conv5 and three
fully connected layers: fc6, fc7, and fc8/output.
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proposed in [19]. The analysis suggests that unsupervised training using only
unlabeled target data is sufficient. That is, adding unlabeled source data might
not further improve domain adaptation.

Denote the labeled and unlabeled distributions as Dxy =: D and Dx respec-
tively. Let P?(-) refer to a family of models, parameterized by 6§ € O, that is
used to learn a maximum likelihood estimator. The DRCN learning algorithm
for domain adaptation tasks can be interpreted probabilistically by assuming
that P?(x) is Gaussian and P?(y|z) is a multinomial distribution, fit by logistic
regression.

The objective in Eq. (5) is equivalent to the following maximum likelihood
estimate:

6 = arglgnax/\Zbg Png(yﬂxf) +(1-=X Zlog Pg;pz(mﬂi;), (6)
i=1 j=1

where Z is the noisy input generated from Q X)X The first term represents the
model learned by the supervised convolutional network and the second term
represents the model learned by the unsupervised convolutional autoencoder.
Note that the discriminative model only observes labeled data from the source
distribution Px in objectives (5) and (6).

We now recall a semi-supervised learning problem formulated in [19]. Suppose
that labeled and unlabeled samples are taken from the target domain Q with
probabilities A and (1 — ) respectively. By Theorem 5.1 in [19], the maximum
likelihood estimate ( is

om@m%m#mMHkM[mﬁw] (7)

E
Qx
The theorem holds if it satisfies the following assumptions: consistency, the
model contains true distribution, so the MLE is consistent; and smoothness and
measurability [56]. Given target data (zf,%i),..., (z},,4},) ~ Q, the parameter
¢ can be estimated as follows:

Nt

¢ = argmax A Y llog PS(at yf)] + (1 2) Y llog S ()] ®)

¢ i=1 i=1

Unfortunately, CA cannot be computed in the unsupervised domain adaptation
setting since we do not have access to target labels.

Next we inspect a certain condition where 6 and é are closely related. Firstly,
by the covariate shift assumption [21]: P # Q and Py |x = Qy|x, the first term in
(7) can be switched from an expectation over target samples to source samples:

Qx (z)

]Px(x) 'IOgPC(m?y) : (9)

gP%P%%m}=g[

Secondly, it was shown in [57] that P;}l %

an ergodic Markov chain whose asymptotic marginal distribution of X converges
to the data-generating distribution Px. Hence, Eq. (8) can be rewritten as

(x]Z), see the second term in (6), defines
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¢reamgmax A Y T 100 pe(ar ) (12 0) Y llow P (@] (10)

S
¢ o Px(a) =

The above objective differs from objective (6) only in the first term. Notice that ¢

would be approximately equal 0 if the ratio QX ((y)) is constant for all z°. In fact,

it becomes the objective of DRCN;. Although the constant ratio assumption is
too strong to hold in practice, comparing (6) and (10) suggests that ¢ can be a
reasonable approximation to 0.

Finally, we argue that using unlabeled source samples during the unsuper-
vised training may not further contribute to domain adaptation. To see this, we
expand the first term of (10) as follows

x () (s
Z ; log P Y|X (y3]x3) +>\Z ; logPC( 2).

'Tz mz

Observe the second term above. As ny — o0, Pg} will converge to Px. Hence,
since [, » %}’;((Zf)) logPx (z) < [, _p  P(z), adding more unlabeled source data
will only result in a constant. This implies an optimization procedure equivalent
to (6), which may explain the uselessness of unlabeled source data in the context
of domain adaptation.

Note that the latter analysis does not necessarily imply that incorporating
unlabeled source data degrades the performance. The fact that DRCNy; performs
worse than DRCN could be due to, e.g., the model capacity, which depends on
the choice of the architecture.

6 Conclusions

We have proposed Deep Reconstruction-Classification Network (DRCN), a novel
model for unsupervised domain adaptation in object recognition. The model
performs multitask learning, i.e., alternately learning (source) label prediction
and (target) data reconstruction using a shared encoding representation. We
have shown that DRCN provides a considerable improvement for some cross-
domain recognition tasks over the state-of-the-art model. It also performs better
than deep models trained using the standard pretraining-finetuning approach.
A useful insight into the effectiveness of the learned DRCN can be obtained
from its data reconstruction. The appearance of DRCN’s reconstructed source
images resemble that of the target images, which indicates that DRCN learns
the domain correspondence. We also provided a theoretical analysis relating the
DRCN algorithm to semi-supervised learning. The analysis was used to support
the strategy in involving only the target unlabeled data during learning the
reconstruction task.



DRCN for Unsupervised Domain Adaptation 611

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR, pp. 1521-1528
(2011)

Hsu, H.J., Chen, K.T.: Face recognition on drones: issues and limitations. In: Pro-
ceedings of ACM DroNet 2015 (2015)

Patel, V.M., Gopalan, R., Li, R., Chellapa, R.: Visual domain adaptation: a survey
of recent advances. IEEE Signal Process. Mag. 32(3), 53-69 (2015)

Aljundi, R., Emonet, R., Muselet, D., Sebban, M.: Landmarks-based kernelized
subspace alignment for unsupervised domain adaptation. In: CVPR, (2015)
Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Unsupervised
domain adaptation by domain invariant projection. In: ICCV, pp. 769-776 (2013)
Bruzzone, L., Marconcini, M.: Domain adaptation problems: a DASVM classifi-
cation technique and a circular validation strategy. IEEE TPAMI 32(5), 770-787
(2010)

Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: discrimina-
tively learning domain-invariant features for unsupervised domain adaptation. In:
ICML (2013)

Long, M., Ding, G., Wang, J., Sun, J., Guo, Y., Yu, P.S.: Transfer sparse coding
for robust image representation. In: CVPR, pp. 404-414 (2013)

Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsu-
pervised domain adaptation. In: CVPR, pp. 1410-1417 (2014)

Pan, S.J., Tsang, . W.H., Kwok, J.T., Yang, Q.: Domain adaptation via transfer
component analysis. IEEE Trans. Neural Netw. 22(2), 199-210 (2011)

Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category mod-
els to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6314, pp. 213-226. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15561-1_16

Caruana, R.: Multitask learning. Mach. Learn. 28, 41-75 (1997)

Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Scholkopf,
B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 19, pp. 41-48. MIT Press, Cambridge (2006)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Classification with deep convolutional
neural networks. In: NIPS, vol. 25, pp. 1106-1114 (2012)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

Hinton, G.E., Osindero, S.: A fast learning algorithm for deep belief nets. Neural
Comput. 18(7), 1527-1554 (2006)

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy Layer-Wise training
of deep networks. In: NIPS, vol. 19, pp. 153-160 (2007)

Ganin, Y., Lempitsky, V.S.: Unsupervised domain adaptation by backpropagation.
In: ICML, pp. 1180-1189 (2015)

Cohen, 1., Cozman, F.G.: Risks of semi-supervised learning: how unlabeled data
can degrade performance of generative classifiers. In: Semi-Supervised Learning.
MIT Press (2006)

Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell.
Data Anal. 6(5), 429-450 (2002)

Shimodaira, H.: Improving predictive inference under covariate shift by weighting
the log-likelihood function. J. Stat. Plann. Infer. 90(2), 227-244 (2000)


http://dx.doi.org/10.1007/978-3-642-15561-1_16
http://dx.doi.org/10.1007/978-3-642-15561-1_16

612

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

M. Ghifary et al.

Zadrozny, B.: Learning and evaluating classifiers under sample selection bias. In:
Proceedings of the 21th Annual International Conference on Machine Learning,
pp. 114-121 (2004)

Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345-1359 (2010)

Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural corre-
spondence learning. In: Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, pp. 120-128 (2006)

Daumé-I11I, H.: Frustratingly easy domain adaptation. In: Proceedings of ACL
(2007)

Margolis, A.: A literature review of domain adaptation with unlabeled data. Tech-
nical report, University of Washington (2011)

Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual
domain adaptation using subspace alignment. In: ICCV, pp. 2960-2967 (2013)
Ghifary, M., Balduzzi, D., Kleijn, W.B., Zhang, M.: Scatter component analy-
sis: a unified framework for domain adaptation and domain generalization. CoRR
abs/1510.04373 (2015)

Gopalan, R., Li, R., Chellapa, R.: Domain adaptation for object recognition: an
unsupervised approach. In: ICCV, pp. 999-1006 (2011)

Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow Kernel for unsupervised
domain adaptation. In: CVPR, pp. 2066-2073 (2012)

Bay, H., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. CVIU
110(3), 346-359 (2008)

Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment
classification: a deep learning approach. In: ICML, pp. 513-520 (2011)

Vincent, P., Larochelle, H., Lajoie, 1., Bengio, Y., Manzagol, P.A.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371-3408 (2010)

Ghifary, M., Kleijn, W.B., Zhang, M.: Domain adaptive neural networks for object
recognition. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNATI), vol.
8862, pp. 898-904. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13560-1_76
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278-2324 (1998)

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: CVPR (2014)

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
DeCAF: a deep convolutional activation feature for generic visual recognition. In:
ICML (2014)

Hoffman, J., Tzeng, E., Donahue, J., Jia, Y., Saenko, K., Darrell, T.: One-Shot
Adaptation of Supervised Deep Convolutional Models (2013). CoRR abs/1312.6204
Chopra, S., Balakrishnan, S., Gopalan, R.: DLID: deep learning for domain adap-
tation by interpolating between domains. In: ICML Workshop on Challenges in
Representation Learning (2013)

Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with
deep adaptation networks. In: ICML (2015)

Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
maximizing for domain invariance (2014). CoRR abs/1412.3474

Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across
domains and tasks. In: ICCV (2015)


http://dx.doi.org/10.1007/978-3-319-13560-1_76

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

DRCN for Unsupervised Domain Adaptation 613

Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Scholkopf, B., Smola,
A.J.: Integrating structured biological data by Kernel maximum mean discrepancy.
Bioinformatics 22(14), e49-e57 (2006)

Masci, J., Meier, U., Ciresan, D., Schmidhuber, J.: Stacked convolutional auto-
encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami,
M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52-59. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21735-7_7

Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks.
In: CVPR, pp. 25282535 (2010)

Tieleman, T., Hinton, G.: Lecture 6.5-RmsProp: divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. (2012)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. JMLR 15,
1929-1958 (2014)

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A.,
Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: Deep
Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)
Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural
networks applied to visual document analysis. In: ICDAR, vol. 2, pp. 958-962
(2003)

Hull, J.J.: A database for handwritten text recognition research. IEEE TPAMI
16(5), 550-554 (1994)

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning (2011)

Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, April 2009
Coates, A., Lee, H., Ng, A.Y.: An analysis of single-layer networks in unsupervised
feature learning. In: AISTATS, pp. 215-223 (2011)

Sermanet, P., Chintala, S., LeCun, Y.: Convolutional neural networks applied to
house number digit classification. In: ICPR, pp. 3288-3291 (2012)

Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: ICML (2010)

White, H.: Maximum likelihood estimation of misspecified models. Econometrica
50(1), 1-25 (1982)

Bengio, Y., Yao, L., Guillaume, A., Vincent, P.: Generalized denoising auto-
encoders as generative models. In: NIPS, pp. 899-907 (2013)


http://dx.doi.org/10.1007/978-3-642-21735-7_7

	Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation
	1 Introduction
	2 Related Work
	3 Deep Reconstruction-Classification Networks
	4 Experiments and Results
	4.1 Experiment I: SVHN, MNIST, USPS, CIFAR, and STL
	4.2 Experiments II: Office Dataset

	5 Analysis
	6 Conclusions
	References


