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Abstract—The aim of this paper is to develop a methodology
for measuring the degree of unpredictability in dynamical systems
with memory, i.e., systems with responses dependent on a history
of past states. The proposed model is generic, and can be
employed in a variety of settings, although its applicability here is
examined in the particular context of an industrial environment:
gas turbine engines. The given approach consists in approximat-
ing the probability distribution of the outputs of a system with
a deep recurrent neural network; such networks are capable of
exploiting the memory in the system for enhanced forecasting
capability. Once the probability distribution is retrieved, the
entropy or missing information about the underlying process is
computed, which is interpreted as the uncertainty with respect
to the system’s behaviour. Hence the model identifies how far
the system dynamics are from its typical response, in order to
evaluate the system reliability and to predict system faults and/or
normal accidents. The validity of the model is verified with sensor
data recorded from commissioning gas turbines, belonging to
normal and faulty conditions.

Index Terms—Entropy, Recurrent neural networks, Deep
learning, Condition monitoring, Long short-term memory, Cog-
nitive Computing

I. INTRODUCTION

A
S technology advances, the complexity of the physical

environment around us grows at an increasing rate. This

is especially conventional in complex industrial environments,

where the expansion of the so-called Industry 4.0 is rising

the degree of interactivity between the ever larger number

of subsystems. Complex systems typically display dynamics

that can only be modelled through computationally expensive

approaches [1], and do not allow for reduction to simple

systems of equations. This is a result of their dynamics being

produced by the interaction of their many subsystems – what

is known in the complexity theory as emergent phenomena.

Thus in a complex system, subsets of its subsystems cannot

explain the global emergent dynamics, making prediction tasks

particularly challenging.

C. Perrow studied the issue of low system predictability

within the setting of industrial plants. In his influential work

[2], he referred to these systems with the descriptive term of

highly coupled systems. In the same publication, numerous

examples of low probability and low predictability accidents or
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system faults are given. These accidents are termed as normal

accidents because, although uncommon, they are bound to

occur in the long run. For the reason that the unpredictability

of such systems is a consequence of subsystems interaction,

adding automatic safety mechanisms may further increase their

complexity [2], potentially generating new types of normal

accidents. Hence, the approach proposed in this paper consists

in identifying abnormal behaviour in a system, instead of

characterizing particular faulty conditions; there are far too

many potential faults, some of which can be regarded as

normal accidents. In many occasions these are originated by

concomitant causes, like control systems failure, human error

or sensor misreadings (Sec III-A).

The method studied here utilizes a measure to estimate

unpredictability or missing information with respect to a system.

When the unpredictability of the system’s state variables

increases, the behaviour of the system is regarded as anomalous.

For such a task, an uncertainty measure known as information

entropy has long been established [3]. Indeed, when Shannon

proposed this measure, he also proved that it is the only

possible formulation that satisfies the three basic reasonable

requirements that any measure of information should comply

[4]. The entropy measure is a function that takes as input a

probability function, and yields as output a value indicating how

much it is unknown about the underlying generating process;

it is a measure of the amount of missing information with

respect to the system at hand [4].

Lately, entropy analysis has received substantial attention in

the domain of biomedical signal analysis [5], [6], and a fair level

of attention for condition monitoring of industrial systems [7],

[8]. A number of modified entropy measures are surveyed in

[9]. As stated, any alternative entropy formulation must satisfy

the three basic requirements described by Shannon [4]. Hence

generally, these newly proposed measures are reformulations

of information entropy over different probability functions.

Since entropy measurement depends on a probability func-

tion, any entropy based condition monitoring method needs an

approach to estimate it. This can be done in various ways. One

common scheme is direct approximation from the response

signals of the system [10]. Nonetheless, when sequential

observations in a time series are not independent, this may

result in a biased estimate of the probability function. Another

method is to use a model to predict the state of the system. For

example, the errors between the model output and the actual

system values can be treated as samples of a random variable.

This strategy has been used successfully in [11] as a measure of

driver’s workload level, and later applied to calibrate steering
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control models [12]. Here an alternative method is utilized,

in which a model – by way of an Artificial Neural Network

(ANN) – yields directly as output a probability function.

Generally, system dynamics in industrial environments can be

modelled by linear systems of differential equations. But linear

approximations are only accurate in individual and restricted

operational regimes. In most cases, system dynamics are better

characterized by non-linear equations or by fractional operators

with memory [13], [14]. All these methods are even more

relevant when the response of the system examined diverges

from its typical behaviour; when higher and unpredictable

subsystem interactivity may bifurcate its response towards

chaotic dynamics or dynamics exhibiting larger hysteresis [15].

ANNs are appropriate for modelling linear as well as non-

linear dynamics [16], but their classical formulation does

not accommodate for memory properties. Nonetheless, for

sequential data analysis, Recurrent Neural Networks (RNN)

can be employed. RNNs are a specialized type of ANN that

maintain context – or memory – when trained with sequential

data [17]. Examples of its applicability include weather forecast

[18], stock market prediction [19] and machine translation [20].

One pertinent aspect of any ANN is that, when trained as a

classifier, it approximates not only the forecasted output but

also its probability distribution. Hence in this paper a RNN will

be employed to approximate a probability distribution, with

which the entropy measure can be computed. And this will be

done with the aim of characterizing system predictability, as a

way of identifying anomalous system behaviour.

Further, to provide a case study for validation purposes

Industrial Gas Turbines (IGTs) are considered. IGTs are a true

example of complex systems organized in many subsystems:

compressor, combustors, pumps, fuel supply, ignition system,

lubrication and drain modules, etc [21]. And as complex

machines, IGTs can display a wide-ranging repertoire of

anomalous behaviour (Sec. III-A). The proposed methodology

is here validated for the particular case of condition monitoring

of IGTs. Nevertheless, it has general applicability to other

systems from varying domains, such as biomedical data analysis

and any high risk technology generating sequential data or

sensor data from arrays of sensor networks [22], [23]. A review

of other information fusion methods for IGT diagnostics can

be found in [24].

The remainder of paper is organized into the following

sections: in Section II the required background elements

of information theory and RNNs are introduced. Next, in

Section III, the characteristics of the used data are specified.

Section IV describes the proposed model and the parameter

fitting procedure, while in Section V the model is tested and

validated with real-world sensor data recorded from IGTs.

Discussion and conclusions are found in Section VI.

II. UNDERLYING PRINCIPLES

A. Entropy or Missing Information

Although the concept of entropy was originated in the study

of thermodynamics, today it is often used in multiple fields

that are not related to energy transfer, e.g. language analysis

[25] and redundancy estimation in the genome [26]. Most of

these usages emerge from the information theory interpretation

of entropy, which is the topic examined here.

Information entropy (or entropy), is a measure of the amount

of missing information with respect to a process, understood

as a random variable. Given an information source modelled

by a random variable X , for which a probability distribution

P (X) is known, and assuming that X has n ∈ N possible

outcomes, the entropy Hβ(X) is defined as:

Hβ(X) := −
n
∑

i=1

pi logβ pi, (1)

where pi = P (X = xi) for i ∈ {1 . . . n}. When β = 2, the

units of H2 are bits.

Hβ(X) does not depend on the underlying process X being

divided into parts, as that does not change the amount of

uncertainty about the process [4]. This property reflects a very

important idea; the missing information about a system is equal

to the missing information of each of its subsystems plus the

missing information corresponding to subsystem interaction –

i.e., the emerging complexity in a tightly coupled system [2].

A descriptive way to understand the definition in (1), is

by comparing it to classical statistical measures. Consider

two random variables – both with uniform probabilities:

X1 = {0, 1} and X2 = {0, 0.25, 0.75, 1} (Fig. 1). X2 has

a higher number of equally likely outcomes than X1, therefore

H2(X2) > H2(X1) (X2 is less predictable and less reliable).

Contrarily, for the standard deviation σ(X1) > σ(X2). Simul-

taneously, both random variables exhibit the same expected

value E(X1) = E(X2) = 1/2. Hβ is a measure about the

potentiality of a system (Fig. 2), and not a static simplification

like mean and variance.

With respect to condition monitoring techniques, although

machine learning algorithms based on classical statistics have

been successfully applied for particular operational regimes

[27], they are challenged when hardware-controlled or environ-

mental variations dominate the sensor data. Diversely, entropy

based techniques are able to characterize how little it is known

about the system, irrespective of the summary statistics [10].

(a)

0 1
0

0.25

0.5

(b)

0 0.25 0.75 1
0

0.25

Fig. 1: The probability function P1(X1) in (a) has a higher

variance (σ2 = 0.25) than that in (b) (σ2 ≈ 0.16). On the other

hand, P2(X2) in (b) has a higher entropy (H2(X2) = 2) than

P1(X1) in (a) (H2(X1) = 1). In both cases E(X1,2) = 0.5.
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Fig. 2: While summary statistics give information about the

minority of elements that can be known about a stochastic

process, Hβ shows how much it is not known – informally it

yields the size of the unknown (shaded gray area).

Increased entropy can indicate system anomalies in different

operational regimes – such as varying system workload.

B. Recurrent Neural Networks

ANNs and information entropy originated from participants

of the influential Macy Conferences on cybernetics (1941-

60) [28], which established principal foundations towards

interdisciplinary science. Today, both computational approaches

are deeply intertwined, as ANNs employed as classifiers are

often trained by means of an entropy loss function (see Eq. 2).

ANNs allow for the modelling of complex systems without

the need of extensive domain knowledge, and have been used

for condition monitoring purposes through supervised [7], [29]

and unsupervised approaches [8], [30]. When the input features

are sequential in nature, one common approach is to use

recurrent models with a delayed feedback loop in each layer,

i.e., RNNs. Each layer in a RNN includes a memory block that

maintains information across an arbitrary number of iterative

steps.

The first ANNs with recurrent properties can be traced back

to the 1980s [31], but it was not until much later that models,

robust to the vanishing gradients problem, were developed:

notably, the Long Short-term Memory (LSTM) model [17] and

models based on Gated Recurrent Units (GRUs) [32]. In both

architectures, the degree of memory retention is controlled by

a gating mechanism. Although the relative efficacy between

these methods is still under debate [33], LSTM models seem

more suitable when large data are available. Thus in the present

paper the LSTM architecture is adopted. Novel applications

of LSTM cells to model complex systems include: medical

diagnosis [34] and monitoring superconducting magnets [35],

[36]. Several improvements of the original LSTM model can

be found in the literature. Here it is considered the LSTM

implementation incorporated in the TensorFlow library [37],

[38].

In the literature different optimization algorithms have been

proposed to train the ANN. These range from the Levenberg-

Marquardt methods [39] to the Widrow-Hoff rule [40]. RNNs

are typically trained by using a variant of the standard

backpropagation algorithm, which is named backpropagation

through time (BPTT). The choice of loss function depends

on the particular problem. For regression problems the Mean

Squared Error (MSE) can be employed, while for classification

tasks the cross-entropy measure is more suitable. The latter is

defined as:

H2(p, q) := −
n
∑

i=1

pi log2 qi (2)

where pi are the true probabilities inferred from the labels in

the training data, and qi are approximated by the model through

a softmax layer stacked after the recurrent layer. Additionally,

when sufficient data are available, it is possible to augment

the effectiveness by stacking one recurrent layer after another

– leading to a deep learning model (Fig. 4).

III. EXPERIMENTAL DATA

A. Elements of Industrial Gas Turbines

In this paper, sensor data recorded from IGT engines are

employed (Fig. 3a). Essentially an IGT engine transforms fuel

energy into shaft power. When the engine is in operation, shaft

rotation causes the rotor blades to turn into the air compressor.

The rotors action induces the intake of atmospheric air from the

compressor inlet (Fig. 3b), and its subsequent pressurization

as it flows through the various rotor and stator blades, which

are sequentially spaced within the compressor. The resulting

high pressure air is then released into the combustors, where

the temperature of the compressed air is highly increased

by burning liquid or gas fuel. Subsequently, the expansion

produced by the high pressure and temperature causes the

air to expand towards the power generator part of the engine,

which consists of another series of rotors connected to the

same shaft. A part of the generated shaft power is employed to

compress new atmospheric air via a self-sustaining mechanism,

which was initiated by an auxiliary electric motor. The new

air prevents the flow from reverting backwards and stalling the

engine.

There are two types of IGT engines. In the first kind, the

residual air from the power generator is directly pushed out

through the exhaust as new air comes in. These engines have

a single shaft and are typically employed for electrical power

generation. Unlike single-shaft engines, twin-shaft engines have

a supplementary shaft, immediately after but decoupled from

the first shaft. This mechanism yields more control on the

applied shaft torque. Thus twin-shaft engines, such as the ones

investigated here, are generally used for mechanical power

generation – for example, on offshore drilling rigs.

B. Data Characteristics

The data were recorded from 10 twin-shaft IGT engines,

situated in different geographical locations with varying envi-

ronmental conditions. The dataset was prepared by Siemens

to analyze the performance and to monitor the condition of

their machines. Typically a customer can choose to install a

number of sensors on an IGT. The raw data from these sensors

are recorded in real time and stored by the OEM for future

use, without any preprocessing or filtering. The majority of the

data correspond to IGTs in healthy operating conditions. The

dataset also includes message logs, annunciated by the control

system – such as warnings and automatic shutdowns – and site
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visit reports written by the operators. These allow to identify

segments of data corresponding to a faulty machine. The data

from healthy machines were used to train the model (Sec. IV),

while the samples from faulty machines were employed for the

case studies (Sec. V). Further information of the dataset, such

as the geographical location of the engines, the exact position

of the sensors and their specifications is confidential.

Measurements from 35 sensors were employed in this

study; these coincide with health indicators known to be

correlated to different IGT component conditions [27] (Tab. I).

The sampling period was of 1 min, and comprised several

months of data collected from each engine. Besides the

data corresponding to normal engine functionality, data from

different faulty conditions were collected (see Sec. V). Prior

to their use for RNN training, the data were curated; data

segments with missing sensors were discarded and the data

were standardized1 (Sec. IV-B). The curated data were split

into training, development and testing sets (see Tab. II).

IV. ANN MODEL ARCHITECTURE

In this section, two RNN models are described: a regressor

and a classifier. The regressor is applied for demonstrating the

feasibility of the methodology and to select the appropriate

RNN architecture. The classifier, referred to as the Deep

Recurrent Entropy Adaptive Model (DREAM), is an extension

1To zero mean and unit variance.

(a)

(b)

Fig. 3: (a) Visual depiction of a twin-shaft IGT engine. (b)

Diagram of the basic operation flow in a single-shaft IGT

engine.

of the regressor, and is able to approximate the probability

distribution of the outputs of a system and compute its entropy.

The DREAM is used as an algorithm for system unreliability

evaluation (Sec. V).

A. Deep Regressor RNN model

The regressor RNN is designed to predict the shaft power

produced by an IGT (S-35 in Tab. I) at time step < t >, from

the inputs of the sensors S-01, . . . , 34 within a window of

length LW : {< t >−LW + 1, . . . , < t >}. Thus the model

uses as input the last LW observations of the states of the

machine. The last layer of the model is fully connected – i.e., a

dense layer, to generate a one-dimensional output: the predicted

standardized shaft power. The regressor was optimized by

minimizing the MSE from the training data thought BPTT,

with the Adaptive Moment (Adam) algorithm. Hyperparameter

tuning was conducted by random search [41]. This approach

is known to be more effective than grid search, as for the

same number of evaluations more values of each particular

hyperparameter are tested. In total the RNN was trained

50 times with different hyperparameter combinations. The

combination that resulted in the lowest error in the development

set (Tab. II) is the one reported in the paper. The optimized

hyperparameters include the window length, Adam’s learning

rate, number of cells per LSTM layer and number of LSTM

layers. The retention probability of a dropout regularization

method [42] was also tuned, which acted by randomly switching

off a percentage of the inputs at each layer during the training.

The tuned hyperparameters are shown in Table II. Longer or

shorter memory windows than LW = 5 resulted in reduced

RNN performance, but this value is highly dependent on the

sampling rate.

For the examined data, a two LSTM layer model conveys the

best performance. Dropout regularization is not significantly

effective in this case, possibly because the degree of overfitting

is low for the selected number of epochs – which was selected

through the early-stopping method; more epochs decreased

performance on the development set. Nevertheless, as it makes

the model more robust to sensor misreadings, it is retained in

the model. For the final hyperparameter selection (Table II),

S# SENSOR MEASUREMENT UNIT

S-01 Fuel Power kW

S-02 Inlet air temperature ◦C

S-03 Inlet air pressure Bar

S-04 Compressed air temperature ◦C

S-05 Compressed air pressure Bar

S-06,..,11 Combustors temperature (1-6) ◦C

S-12,..,15 Combustors vibration (1-4) Hz

S-16,..,28 Interduct temperatures (1-13) ◦C

S-29 Shaft displacement – x axis µm

S-30 Shaft displacement – y axis µm

S-31, 32 Shaft temperatures (1-2) ◦C

S-33 Shaft Speed RPM

S-34 Exhaust air temperature ◦C

S-35 Shaft Power kW

TABLE I: Sensor data, recorded from the IGT engines used in

this study.
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the respective MSE over the training, development and testing

sets are 0.0069, 0.0084 and 0.0103.

SET #OF INSTANCES %

Training 2 115 232 80%
Development 396 606 15%
Testing 132 202 5%

SYMBOL HYPERPARAMETER VALUE

lr Learning rate 0.0005
Nepoch Number of epochs 90
LW Window length 5
NL Number of LSTM layers 2

N1

c Number of cells in layer 1 70

N2

c Number of cells in layer 2 30
Pkeep Dropout keep probability 0.99
Nσ Number of bins (DREAM) 10

TABLE II: Data-set split from an initial set of 2 644 040
instances, along with the hyperparameter selection for the

regressor model and the DREAM.

B. Deep Recurrent Entropy Adaptive Model

Based on the regressor model (Sec. IV-A), a classifier is

constructed. In the DREAM, the fully connected layer, with one-

dimensional output, is replaced by a ten-dimensional softmax

layer, i.e., a fully connected ten-dimensional output layer (with

outputs y<t>,1, y<t>,2, . . . , y<t>,10) followed by a softmax

activation function:

σ(y<t>,j) =
ey

<t>,j

10
∑

i=1

ey<t>,i

. (3)

To train the DREAM, the standardized output (from Sensor

S-35) was converted to a categorical variable. This was done

by binning the numerical values into 10 classes (Tab. III),

where classes 2 to 9 cover two standard deviations away

from the mean in each direction (≈ 95% of the data). This

bucketing strategy represents a range of arbitrary width within

a finite number of classes, which was 10 in this case – this

number keeps the number of RNN parameters to a minimum

while yielding acceptable resolution. Sensor signals from IGTs

under constant load display fluctuations, due to instantaneous

variability of the dynamics and measurement noise. The number

of buckets was chosen so that the corresponding signals stay

within the same bucket while the machine is kept at constant

load. This effect can be observed by comparing Figs. 5 and 6,

where the signal of an IGT is displayed for a period of 21 days

during which the load was altered multiple times. The central

bins (2 to 9) embed the typical IGT dynamics, while the

boundary bins (1 and 10) characterize outlier behaviour.

Class 1 2 3 4 5

Range σ (-∞,-2] (-2,-1.5] (-1.5,-1] (-1,-0.5] (-0.5,0]

Class 6 7 8 9 10

Range σ (0,0.5] (0.5,1] (1,1.5] (1.5,2] (2,∞)

TABLE III: Bucketing of the standardized output from sensor

S-35 into ten different classes – according to the standard

deviation (σ = 1).

LSTMx
<t>

c
<t>

a
<t>
1

1 LAYER 2
LSTM

LAYER 1
H

c
<t>

a
<t>
2

2

 SOFT

 MAX

LAYER

<t>

Fig. 4: Computational graph of the DREAM unpredictability

measure, consisting in this case of two LSTM layers and a

softmax layer. From the output of the softmax layer the entropy

H<t> is computed.

The loss function is the cross-entropy (2), where the true

conditional probabilities are given by the corresponding class;

for a particular training set input sample x<t> ∈ R
34 with

class label k

ỹ<t> = k ∈ {1, . . . , 10}, (4)

the assigned conditional probability function is:
{

p<t>
k = P (ỹ<t> = k | x<0,...,t>) = 1

p<t>
j = P (ỹ<t> = j | x<0,...,t>) = 0 if j 6= k.

(5)

The approximated probability function is estimated by the RNN

from Eq. (3): q<t>
j = σ(y<t>,j), satisfying

∑

10

j=1
q<t>
j = 1.

The fundamental element of the DREAM relies on the

following property of the entropy measure [4]:

H<t>
β (p) = −

n
∑

i=1

p<t>
i logβ p

<t>
i ≤

−
n
∑

i=1

p<t>
i logβ q

<t>
i = H<t>

β (p, q).

(6)

Specifically, the cross-entropy is always greater than or equal

to the entropy, and only equal when p<t>
j = q<t>

j for all

j. Accordingly, as the optimization process minimizes the

cross-entropy, it approximates the true conditional probability

function of the output variable for a particular input, and

consequently its entropy:

lim
<t>−→∞

q<t>
j = p<t>

j , ∀j ∈ {1, . . . , 10}, (7)

where the limit denotes the ideal case of unrestricted training

data – representative of the underlying dynamics – over an

idealized recurrent model, with capacity to learn fully the

conditional probabilities in the data.

The DREAM was trained with the same hyperparameter set

as in the regressor model (Tab. II), as it was found that further

hyperparameter tuning does not provide significant difference

in performance. The respective values of the cross-entropy loss

over the training, development and testing sets are 0.036, 0.059
and 0.082.

The computational graph of the model is shown in Fig. 4.

The trained model, when used for feed-forward prediction,

contains an additional step to compute the entropy. For simpler

interpretation, the entropy is normalized H<t> ∈ [0, 1]:

H<t> := H<t>
10

(q) = −

10
∑

i=1

q<t>
i log

10
q<t>
i . (8)
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Fig. 5: Standardized shaft power produced by a healthy IGT

engine during approximately 21 days and output of the deep

RNN regressor model.

V. CASE STUDIES AND RESULTS

Typically, fault diagnosis of IGTs has been based on

identifying specific types of faults [27]. In a real industrial

setting, there are innumerable things that could potentially

go wrong, thus the human cannot be completely removed

from the diagnosis loop – indeed, some types of faults are

associated to human error and are virtually impossible to predict

algorithmically. For example, occasionally the operators shut-

off valves accidentally, and this is identified by a safety system

as a particular type of mechanical problem [2]. As the response

of the operators to the system warnings does not correspond to

the actual issue – which is being ignored – a normal accident

may be generated through a successive chain of inadequate

decisions by the operators.

An actual example of a normal accident in an IGT is that of

debris left inside the fuel ring supplying the combustors, which

caused perplexity among the operators. Fuel flow induced the

debris to move inside the ring, affecting different combustors

at different times. A number of erroneous mechanical causes

were considered – all based on previous characterizations of

particular faults from sensor readings. An engineer was able

to determine the problem only upon dismantling the engine

and inspecting the fuel ring.

Therefore, the interest here is on identifying abnormal system

behaviour as such, so that potential faulty systems are flagged

for further analysis by human experts. In this section, the

DREAM (Sec. IV-B) is validated through sensor data from a

healthy IGT engine and four faulty IGT cases, exhibiting rotor

damage, rotor vibration, compressor damage and worn shaft

bearing vibration respectively.

A. Unimpaired IGT Engine

This case study illustrates the behaviour of a healthy IGT

engine, and corresponds to independent testing data (Tab. II)

spanning a period of approximately 21 days. This data segment
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Fig. 6: Standardized shaft power (categorical) produced by a

healthy IGT engine during approximately 21 days and output

of the DREAM. (b) Entropy of the DREAM prediction (H<t>).

The dashed lines at H<t> = 0.34 (blue) and H<t> = 0.5
(red) are empirically established.

was selected because it displays an engine subject to extensive

load variations. Nonetheless, the regressor model (Sec. IV-A)

is able to accurately predict the power output (Fig. 5).

The same data are analyzed with the DREAM (Sec. IV-B):

Fig. 6a shows the prediction for the shaft power as a categorical

variable (Tab. III), while Fig. 6b shows the entropy resulting

from the softmax layer output (Eq. 8). The visual thresholds

(dashed lines) in Fig. 6b were empirically set from the currently

tested healthy and faulty cases; more than 98% of the samples

satisfy H<t> < 0.34 for this case study. The exceptions are

sporadic spikes due to operator induced variations. Moreover,

all the faulty conditions studied next consistently display

average H<t> over 0.5. In reality, these threshold values are

dependent on the examined system and may also reflect system

degradation through time. Hence they should be tuned in an

adaptive manner according to the type of system and unit being

monitored.

B. Rotor Blade Damage

The blades of the first rotor after the combustors are exposed

to the highest temperatures, thus are more likely to suffer

damage. The case of an IGT with this particular condition is

analyzed in Fig. 7. The DREAM exhibits lower predictability

capacity and higher entropy. In the same figure, the time signal

segments with higher variability and entropy correspond to
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Fig. 7: (a) Standardized shaft power (categorical) produced by

an IGT engine with rotor blade damage during approximately

14 days and output of the DREAM. (b) Entropy of the DREAM

prediction (H<t>). The dashed lines at H<t> = 0.34 (blue)

and H<t> = 0.5 (red) are empirically established.

human induced unpredictability; the operators were trying to

restart the machine in order to mitigate vibrations.

C. Rotor Bearing Vibration in Compressor

In another case study, intense rotor vibrations at the com-

pressor turbine were affecting an IGT engine. This was caused

by blockage in the lube oil supply to the bearings. Fig. 8

shows the corresponding entropy analysis for this case; while

the entropy prediction is larger than for the previous case, the

variability is lower. (Fig. 8b), evidencing the reduced predictive

capacity of the RNN (Fig. 8a).

D. Compressor Damage

Because compressor discharge air temperature and pressure

determine the performance of the combustion in an IGT,

compressor efficiency and IGT performance are directly related.

The presented case study belongs to an IGT engine suffering

compressor damage, possibly as a result of ice formation inside

the compressor – through cold air intake. The data analysis

for this case is shown in Fig. 9. The DREAM associates

large entropy values to this engine after being started, hence

the damaged engine is a system with high unpredictability;

the model is unsure as to what bin the forecasts should be

associated to, because the sensor inputs do not correspond to

the typical behaviour in the training set. Interestingly, as a

result of reduced efficiency in reality – due to the damage in
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Fig. 8: (a) Standardized shaft power (categorical) of an IGT

engine exhibiting large rotor vibration spanning approximately

35 days, and estimated output by the DREAM. (b) Entropy of

the DREAM prediction (H<t>).

the compressor, the DREAM overestimates the power output.

To date, there was no established methodology on detecting

compressor icing cases.

E. Worn Bearing Vibration in Power Turbine

Furthermore, the case study of an IGT engine experiencing

severe shaft bearing vibration due to lack of lubrication is

analyzed. In this case, the actual power output of the engine was

not available. Nonetheless, unlike other model-based methods,

where the actual output is strictly required in order to calculate

the residuals which act as a health indicator [43], the DREAM

can predict not only the power output, but also the entropy level

with the absence of the real output measures. The DREAM

prediction (Fig. 10a) shows when the machine was being shut

down and restarted by the operators, to reduce vibration levels.

As a result of the stabilization effect of the first restart sequence,

the entropy was reduced (Fig. 10b). However, the DREAM

indicates relatively low system predictability – or slightly higher

entropy – suggesting that there is some system change, e.g. by

the replacement of the faulty bearing.

VI. CONCLUSIONS

In nearly all industries, technological development goes hand

in hand with an increase in complexity, which is generally

associated with a larger number of subsystems, resulting in

higher subsystem interactivity. Frequently, considering that the

human operators in industrial environments typically interact
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Fig. 9: (a) Standardized shaft power (categorical) produced by

an IGT engine with compressor damage during approximately

3 days and output of the DREAM. (b) Entropy of the DREAM

prediction (H<t>). The dashed lines at H<t> = 0.34 (blue)

and H<t> = 0.5 (red) are empirically established.

with each of the subsystems independently, the nature and

degree of the complexity is not obvious or intuitive. In addition,

as the relevance of the so-called Industry 4.0 unfolds, cognitive

computing techniques are gaining importance, and system

complexity is likely to increase even more – and thus, normal

accidents may become more likely.

With this in mind, a measure to determine the predictability

of a complex system, that requires little or no knowledge about

the underlying dynamics, is here introduced. The measure

consists of using a recurrent neural network to estimate the

conditional probability of an output variable, given the system

inputs. From the probability function, the information entropy

is calculated – indicating how certain is the artificial neural

network about the system output, or how predictable is the

system. The algorithm is named Deep Recurrent Entropy

Adaptive Model (DREAM).

The use of an artificial neural network with memory

(or recurrent) is justified theoretically – most real-world

complex systems present memory and/or hysteresis effects,

and experimentally – it is tested that the chosen memory

window yields better results than a memory-less model through

hyperparameter tuning. For the case of systems that do not

present significant memory effects, the recurrent model can

be replaced with a non-recurrent neural network architecture –

e.g., a convolutional neural network.

The proposed DREAM is validated by testing its efficacy

in the particular context of industrial gas turbine engines; it is
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Fig. 10: (a) Standardized shaft power (categorical) of an IGT

engine exhibiting large bearing vibration spanning approxi-

mately 35 days, and estimated output by the DREAM. (b)

Entropy of the DREAM prediction (H<t>).

shown that the model is able to discriminate between normal

dynamics, corresponding to healthy engines, and anomalous

dynamics, corresponding to engines presenting different fault

conditions. Moreover, for the case of healthy engines, the given

approach can be used as a tool for system efficiency prediction.

The potential applicability of this research covers other

types of industries, for example high risk technologies such

as nuclear, financial technologies (FinTech) and biomedical

imaging. Future work is intended towards extending the

approach to a broader range of complex systems.
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