
Research Article

Deep Recurrent Model for Server Load and Performance
Prediction in Data Center

Zheng Huang,1,2 Jiajun Peng,1 Huijuan Lian,1 Jie Guo,1 and Weidong Qiu1

1School of Cyber Security, Shanghai Jiao Tong University, Shanghai, China
2Westone Cryptologic Research Center, Beijing 100070, China

Correspondence should be addressed to Jiajun Peng; pjj@sjtu.edu.cn

Received 31 August 2017; Accepted 2 November 2017; Published 26 November 2017

Academic Editor: Jia Wu

Copyright © 2017 Zheng Huang et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recurrent neural network (RNN) has been widely applied to many sequential tagging tasks such as natural language process (NLP)
and time series analysis, and it has been proved that RNNworks well in those areas. In this paper, we propose using RNNwith long
short-termmemory (LSTM) units for server load and performance prediction. Classical methods for performance prediction focus
on building relation between performance and time domain, which makes a lot of unrealistic hypotheses. Our model is built based
on events (user requests), which is the root cause of server performance. We predict the performance of the servers using RNN-
LSTM by analyzing the log of servers in data center which contains user’s access sequence. Previous work for workload prediction
could not generate detailed simulated workload, which is useful in testing the working condition of servers. Ourmethod provides a
new way to reproduce user request sequence to solve this problem by using RNN-LSTM. Experiment result shows that our models
get a good performance in generating load and predicting performance on the data set which has been logged in online service.
We did experiments with nginx web server and mysql database server, and our methods can been easily applied to other servers in
data center.

1. Introduction

In the past few decades, the World Wide Web (WWW) [1]
has experienced phenomenal growth and server systems have
become more and more complex and performance-hungry.
With the popularization of B/S structure, data processing is
further centralized to the server, whichmeans new challenges
to the management of server performance [2]. It is an
important part in computer system performance manage-
ment to predict the server’s infrastructure resource perfor-
mance (like CPU rate and throughput) and workload (user’s
requests) correctly and e�ectively, which helps improve qual-
ity of the service while minimizing the wastage in resource
utilization.

Many applications of big data analytics have been devel-
oped to enhance the operation of cloud computing and web
server infrastructures in recent years [3]. Previous methods
for the performance prediction job basically fall into two
categories: one is focusing on building the relation between
performance and time, such as neural network (MLP), and
linear regression [4], weighted multivariate linear regression

(MVLR) [5], and recurrent neural network (RNN) [6] even
LSTM [7] are used; another one does not consider the
sequential e�ects and predicts the performance by analyzing
the workload; for example, Yu et al. [8] use Clustering and
Multilayer Perceptron (MLP) to do this task.

Both of these two kinds of method may not explore the
essence of the problem. Since the 
uctuation of server’s per-
formance is caused by user’s request sequence, we argue that
both user’s behavior and its property of the sequence need to
be considered when predicting the web server performance.
And predicting the performance based on events sequence
(user’s requests) is our new idea.

�e workload in our research is the requests loaded to
the server; thus predicting the workload means predicting
the requests sequence accessed by the users actually, which
has few previous related studies. Previous works in this job
focused on predicting the total request situation, for example,
the total number of users or the number of requests in a
time-window, but did not consider the detail of it, such as
the research of Vercauteren et al. [9]. So it is very di�cult
to reproduce the workload to the server for testing the

Hindawi
Complexity
Volume 2017, Article ID 8584252, 10 pages
https://doi.org/10.1155/2017/8584252

https://doi.org/10.1155/2017/8584252


2 Complexity

performance of servers, which can be very useful for server
management.

Like the idea for performance prediction, we argue that
users request to servers is the base of the total workload, so the
jobmentioned here is reproducing the user’s access sequence,
which can be considered a kind of user characterization.

Recently deep neural networks start to show their great
capability in language modeling [10]. And recent research
reveals that RNN signi�cantly outperforms popular statistical
algorithms [11]. As a special kind of RNN, LSTM neural
network [12] is proved to be e�cient in modeling sequential
data like speech and text [13]. �ese previous researches
inspires us to use LSTM in these prediction tasks, because
user’s request is a sequential data.

For the purpose of improving the performance of pre-
dicting web server performance and workload, we apply
RNN-LSTM network with requests-to-vector to this task.
Our contributions can be summarized as two points:

(1) Our work is the �rst one to apply RNN-LSTM
network to predict the performance and workload of
Web servers or data center.

(2) We proposed to investigate the relation between
users’ requests sequence andweb server performance,
which previous researches did not paymuch attention
to.

In a word, our research consists of two models; the work-
load prediction model in this paper is used to generate an
analog workloadwhich is the user’s speci�c request sequence.
And the one for performance prediction can predict the
performance by analyzing the user’s request sequence.

�is paper is organized as follows. Section 2 introduces
LSTM network and the architecture of our models. �en
we introduce our training and application framework in
Section 3. Section 4 shows the details and results of our exper-
iments and compares our work with previous researches.
Finally, Section 5 is the conclusion of the whole paper.

2. Model

2.1. LSTMNetwork. As shown in Figure 1, the basic structure

of a LSTM unit is composed of a memory cell �� ∈ �� and
three essential gates: Input Gate �� ∈ ��, Output Gate �� ∈ ��,
and Forget Gate �� ∈ ��.

�e formulas for updating the state of each gate and cell

in a LSTMunit using the input of ��,	�−1, and ��−1 are de�ned
as follows:


� = � (
��� + ��	�−1 + ��) ,
�� = � (
��� + ��	�−1 + ��) ,
�� = � (
��� + ��	�−1 + ��) ,
�� = � (
��� + ��	�−1 + ��) ,
�� = �� ⊙ 
� + �� ⊙ ��−1,
	� = �� ⊙ ℎ (��) .

(1)

⨁

⨁

⨁

⨁

⨁

⨀

⨀

⨀

Output

Recurrent

Recurrent

Recurrent

Recurrent

Recurrent

LSTM cell

Input

Input

Input

Input

Output gate

Input gate
Forget gate

o

i

cf Cell

z

g

h







Figure 1: Schematic of LSTM unit [14].

Here ��means the input feature vector at time �. Similarly,

	�−1 and ��−1 are the output vector and cell state at time
� − 1. And each of them is a �-dimensional value. 
 in
formulas are the weight matrices of the input parts in the
gates and cell of LSTM network, and � are the ones of the
recurrent parts. � means bias vectors of each formula. As
for the ⊙ mark, it means pointwise multiplication. �e �(�),
�(�), and ℎ(�) functions are the activation functions of every
part in LSTM, which determine the amount of information
that can be passed. And we use sigmoid as the activation
function of three gates (�(�) in the formulas) and �(�), and
we use the recti�ed linear units (ReLUs) function [15] as
the function ℎ(�) in the formulas. ReLU function is a very
popular new nonlinear activation function and it is de�ned as
follows:

ℎ (�) = max (0, �) . (2)

And using ReLU as the activation function can make the
network be trained several times faster than using equivalents
with saturating neurons like tanh and sigmoid [15].

With this special structure, LSTM network is robust with
respect to exploding and vanishing gradient problems [12], so
it is able to learn long-term dependencies which RNN cannot
perform very well and makes the model be trained without
hand-generated features.

Because of the advantages of LSTM, we use LSTM as
the basic part of our model to capture the sequential infor-
mation of requests and then predict the workload and the
performance by using the highly abstract features generated
by LSTM layers.

2.2. Model for Workload Prediction. One of our preliminary
ideas for thismodel is taking each user’s request as an instance
and certain length of user’s request as a bag containing a
number of instances, and the label of the bag is set to be the
next request of the �nal one in the bag, so predicting users
requests can be regarded as a problem of multiple-instance



Complexity 3

Server log

Request vector

LSTM LSTM LSTM

LSTM LSTM LSTM

so�max

Request (n)

· · ·

· · ·

(n − 1) requests

(a) Model for workload prediction

Performance (tn)

Server log

Feature 
vector

LSTM LSTM LSTM

LSTM LSTM LSTM

n time-windows

MLP

· · ·

· · ·

· · ·

(b) Model for performance prediction

Figure 2: �e network structure for two models: (a) model for workload prediction and (b) model for performance prediction. Model (a)
takes request vectors as the input and output of the network, using the latest � − 1 requests to predict the �th request. �e input of model
(b) is the latest � feature vectors extracted from the log of every time-window, and its output is the value of certain kind of performance in �
time-window.

learning (MIL), which has been used widely in drug dis-
covery, text categorization, and graph classi�cation [16].
Previous works like the researches of Wu et al. [17, 18]
have shown good classi�cation e�ectiveness in the area of
graph classi�cation. However, the sequential features of the
requests are not considered if doing prediction in this way.
So we �nally selected using LSTM network in this prediction
task.

Ourmodel for workload prediction is designed to predict
the request sequence of users, which is similar to natural
language generation. As shown in Figure 2, the base layer
of both our models is two layers of RNN-LSTM, which
can capture the features of the user request sequence. And
we only use the outputs of the �nal LSTM unit to do
the prediction, which is the many-to-one model of LSTM.
�is means we use the previous � − 1 request to predict
the �th request (suppose the length of the sequence is
�).

�e output layer of the model for workload prediction is
obviously a multiclassi�cation task for every user request. So
the output of the LSTM layer is designed to be passed into a
hidden layer with so�max function, which �nally outputs the
probability of each request in the [0, 1] interval. Suppose the
input vector of the so�max layer is (	̂1� , 	̂2� , . . . , 	̂�� ); we get the

output vector of this layer (�1� , �2� , . . . , ��� ) by using following
formula:

�(	̂	� ) = ��̂��
∑��=1 ��̂��

, � ∈ [1, �] . (3)

And the model is trained by minimizing the cross-
entropy error between the output of the whole network and
the true value. Using cross-entropy as the loss function is the
most popular choice in the area of multiclassi�cation task,
which also achieves goodperformance. Suppose the true label
is 	� ∈ [1, �], and the true vector is one-hot, so the loss
function is de�ned as follows:

 (!) = −
�
∑
	=1

1 {	� = �} log�(	̂	� ) , (4)

where !means the parameters of the network, and the symbol
1{⋅}means an indicator that equals one when the condition in
the brackets returns true and it equals zero otherwise.

2.3. Model for Performance Prediction. Di�erent from the
traditional work of RNN-LSTM in NLP task and the model
for workload prediction, of which the output layer is usually



4 Complexity

designed as a classi�er, the output layer of this model is
designed as a liner regression task for every performance.
We want to predict the performance like throughput, request
delay, and CPU rate, which are not classi�cations but certain
numbers, by analyzing the requests sequence recorded by the
server. So the output layer of this model is designed to be a
Multilayer Perceptron (MLP), which can �t any continuous
function with enough neurons in theory [19].

And ReLU is also used as the activation functions of each
fully connected layer here. To prevent the neural networks
from over�tting, a dropout [20] layer is connected between
two fully connected layers and LSTM layers with the �xed
probability� = 0.5.�is probabilitymeans half of the units in
the network will be randomly selected and then temporarily
removed from the network when training the network. It
has been proved by previous work that performance of
the networks can be improved dramatically when applying
dropout layers at multiple LSTM layers [21].

As shown in Figure 2(b), this model uses the latest
requests in � time-windows to predict the performance in the
�th time-window, which is a small but important di�erence
between the models for workload, because the performance
is a�ected by not only previous requests but also current
operation of users, while the �th request is just strongly
related to previous requests.

For the linear regression tasks, L1 norm (absolute di�er-
ences), L2 norm (squared di�erences), and smooth L1 [22] are
well-known loss functions. �e L1 norm is not smooth when
the error is close to 0, so it is seldom used. Smooth L1 is a
robust L1 loss, and it is less sensitive to outliers than the L2
loss [22]. But all of our data are fed a�er normalization, and
there is little outliers out data set; considering the simplicity
of realization, we choose L2 norm as the loss function of this
model.

Supposing that the input vector is ��, 	̂� is the value
predicted by themodel, and !means the network parameters,
we use the variance between the real value of the performance

and the predicted one (	̂� − 	�)2 as the cost of 	̂�. So the total
loss function of the model is de�ned as follows:

 (!) = 1
'


∑
�=1

(	̂� − 	�)2 , (5)

which is the mean squared error (MSE) between predicted
and true value, and' is the number of sequences in a batch.

3. Training and Application Framework

3.1. Training Framework. Training framework of our models
is shown in Figure 2; (a) is the model for workload prediction
and (b) is the one for performance prediction.

As shown in Figure 2, log �les of servers are the raw
data source of our models, so the step for data processing is
quite similar, and the main idea of our models is predicting
the web server performance and workload by analyzing the
log �les. Each request has an one-to-one ID in the form
of integer which is stored in a dictionary. �e dictionary is
generated by collecting all the unique request string in the
whole data set. Using this ID, the requests can be abstracted

to a one-hot vector with �-dimensional, and we call it request
vector. �e request vector of the request with ID 1 is V =
(1, 0, 0, . . .) and the one with ID 2 is V = (0, 1, 0, . . .) and
so on. �e feature vectors of requests during a time-window
can be generated by adding each request vector, and thus
every dimension of which means the number of times user
requests the server during a time-window. Take feature vector

V = (�1, �2, . . . , ��) as an example; �� � ∈ [1, �] in V means

that user sends the request whose ID is � altogether �� times
in a time-window.

Actually, this step is not limited to abstract a certain form
of user’s requests. For example, the request to a database and
URL record of a web site also can be done in this way. Its key
point is to describe the user’s request in a mathematical way,
which is using the ID to represent di�erent kinds of user’s
behavior. And this initialization step is regarded as request-
to-vector. A�er the step of request-to-vector, a long sequence
of feature vectors or request vectors can be generated, which
is the input of our models.

For the model for workload prediction, previous � − 1
request vector should be fed into the network, and the �th
request vector is the true label of this request vector sequence.
Because of using themany-to-onemodel of LSTM, the output
of the model for workload is the �th request, which is the
same as the model for natural language generation. Although
the meaning of the label output by the network is di�erent,
the principle is the same. So 1 to � − 1 request vector is set to
be the �rst sequence, and 2 to � is the second one, and so on,
which is similar to the e�ect of slidingwindowwith the length
of � − 1. Figure 3(a) shows the process of data set generation
for this model.

As for the model for performance prediction, � feature
vectors should be fed into the network; the output of the
network should be the performance at time ��. �e process of
data set generation for this model is shown in Figure 3(b). As
the previous feature vectors and the current one both should
be put into the network, the process of data set generation
has a little di�erence between the ones shown in Figure 3(a).
All of the performance values are normalized by dividing
the maximum value in theory before feeding them into the
network, which can improve the e�ciency of training and the
performance of the network [23]. �eoretically, this model is
not limited to use the speci�c kinds of performance, CPU, and
memory occupancy rate of the server and other performances
also can be trained if data exits.

Finally, sequences of request vector or feature vector are
put into the LSTM layer of ourmodels. And the output vector
of the LSTM is then passed to the upper layer, which is the
so�max layer for the model of workload prediction and the
MLP network for the one of performance prediction. And
we apply the RMSPROP gradient descent algorithm when
training both two networks which is an improved version of
SGD algorithm and has batter performance withminibatches
[24].

3.2. Application Framework. With regard to the use of the
model, we propose an application framework, which consists
of three kinds of model selection, as shown in Figure 4. We
can use the models to predict the workload and performance



Complexity 5

1

2

3

Sequence Label

Request
vectors

· · ·

· · ·

· · ·

(a) Data set generation for the model for workload predic-
tion

Sequence

Label

· · ·

· · ·

Performance

Feature
vectors

(b) Data set generation for the model for perfor-
mance prediction

Figure 3: Data set generation for two models: (a) model for workload prediction and (b) model for performance prediction. �e blue boxes
are the input sequence of the model, and the red box means the label of the sequence. (a) Model for workload prediction: input sequence is
a certain number of previous request vectors, and the label is the request vector right a�er the last request vector of the input sequence. (b)
Model for performance prediction: input sequence is a certain number of previous feature vectors, and the label is the performance value of
the last feature vector of the input sequence.

Server log

True request
sequence

Mode selection

1

3

2

Model for

workload

Analog request

sequence

Output

Model for
performance

Figure 4: Application framework for two models.

of the server by analyzing new log �les. �e two models
can be used separately, which is the basic way to use our
models (1, 2 in Figure 4). A�er training the model for
workload prediction, request sequences under di�erent load
conditions can be produced by feeding di�erent seeds into
the network. �e training and application methods of this
model are very similar to the usage of RNN-LSTM in the
area of natural language generation (NLG). As for the model
for performance prediction, it can predict the performance of
server under di�erent workload conditions.

And two models can be used in combination; the model
for workload prediction can �rst output analog request
sequence and then feed the sequence into the model for

performance prediction (3 in Figure 4). By using the model
for workload prediction, request sequence with the original
load features can be generated. �is model of usage can meet
the needs such aswhen the data of new log is too little, and the
performance under a long-term workload is required. With
these 3 kinds of options to apply these twomodels, themodels
can be used more 
exibly and adapted to more situations.

On the other hand, our models are not limited by
the network architecture theoretically. Our models can be
deployed on the load balance node to predict the operation
situation of the whole network or just deployed on the service
nodes like data center node or calculation node to predict the
operation situation of certain node.

In a word, ourmodels canmeetmany di�erent prediction
needs regardless of the network architecture, which could be
helpful in the management of data center.

4. Experiment

4.1. Setup. We keep the length of LSTM network to 15 (15
seconds), because we assume that a request cannot a�ect the
web server performance and workload a�er 15 seconds in
general. So the requests in each 15 seconds are organized into
one sequence. Our model is trained and tested on the GPU:
NVIDIAGeForce GTX 1080Ti, and themodel was developed
on the framework of theano and lasagne with CUDA to
accelerate calculation. It took about 6 to 7 hours to �nish the
training of the model on the GPU. As a comparison, it will
take more time to complete this job on an ordinary CPU.

For the model for workload prediction, it is very hard
to measure the degree of similarity between the analog
load and the real load. In our research, we just do the
preliminary measure, which uses the di�erence between real
and simulated proportion of each ID of request to measure
the e�ciency of this model. So cosine similarity is used to do
this job, and the de�nition is shown follows:

similarity = cos (!) = ∑��=1 / �3�
√∑��=1 /2�√∑��=1 32�

, (6)



6 Complexity

where / and 3 are the proportion vectors of the true one
and generated one, and / � and 3� are components of vectors
/ and 3, respectively, which means the proportion of the
request with ID �. So the value of the similarity is [0, 1], and
the closer the number is to 1, the more similar the two vectors
are.

As for the one for performance prediction, we use mean
squared error (MSE), which is also the loss function of the
network to measure the e�ciency of the model.

4.2. Experiment on Data Set A

4.2.1. Data Set. Data set A for evaluating the performance
of our models contains the log �les of 191 web servers nodes
in one day. �e web servers are set up using nginx and have
been deployed in production environment, which means the
records in log �les are real. �e log �les of nginx can record
the request in the form of URL. Besides the URL sequences,
we can also get status code, the delay of each request, and the
number of bytes of data transmission for each request from
the log �les.We can obtain the server’s error rate, throughput,
and average request delay, which is the three performances
in this experiment. Table 2 shows the performance we tested
in this experiment and their description. We regard the
maximum throughput of the network card as the maximum
of throughput, which is 12.5Mb/S. 100ms is the maximum
of request delay. As for error rate, it is in [0, 1] interval
originally.

Because of the limit of GPU memory and the large
number of log �les, we choose to use log �les of several
random nodes which has the biggest log �les to train the
model.

4.2.2. Data Processing. First of all, we �lter some requests
which are not user’s main operation, such as the requests for
a picture or a json data. �en we get 57453 valid requests,
which contain 2049 di�erent URLs. For the model for
workload prediction, all of the requests were set as training
set. A�er requests-to-vector for URL requests and calculation
of the performance mentioned in Section 3.1, a one-to-one
relationship with URL requests and performance can be
established. Finally, the data sets in the form of sequence
according to the chronological order of URL requests are
generated. We split the whole data sets into training set and
test set, in accordance with the ratio of four to one. And one-
��h of the training set are set as validation set.

4.2.3. Result. In the experiment for performance prediction,
three performances including request error rate, throughput,
and request delay are simulated. �e features of the network
which has the best result on the validation set are saved, and
then we perform a �nal test to see the performance of our
network by using the test set.

Figure 7 shows a declining trend of the error in training,
which means our model converges quite well. Because the

value of objective function (	̂� − 	�)2 is very small in this

experiment, we draw the picture using the data of log(	̂�−	�)2
which can show the trend more clearly. A�er training about

0

0.1

0.2

0.3

0.4

0.5

0.6

2 10 18 41 35 30 149 96 24 314

ID

Real proportion

Generated proportion

P
ro

p
o

rt
io

n

Figure 5: Proportion of top 10 ID on data set A.

200 epochs, the model gets the best result in training set and
validation set.

Table 3 is the data of the �nal result about the objective

function (	̂� − 	�)2 on the test set, compared with the results

on the training set. �e data of average (	̂� − 	�)2 in Table 3
shows that this model performs well in the task of predicting
web server performance, which is a new area of using LSTM.
On the other hand, the results of the two data sets (validation
set and test set) are similar, sowe think themodel has a certain
generalization ability.

In the experiment for workload prediction, the model
generated 43077 URL requests with the same number of
di�erent request IDs. Because the number of di�erent ID
is too much, and most of the requests just appear so little
times, we just compare the proportion vectors of top 10
frequent requests. Table 1 and Figure 5 show the result of this
experiment. As shown in the table, the proportion of most
kinds of request is less than 1%, and more than half of the
requests are the request with ID: 2.

�e cosine similarity is 0.996607614, which means the
workload generated is very similar to the real workload and
the model can capture the features of request sequence and
regenerate them.

4.3. Experiment on Data Set B

4.3.1. Data Set. Because the requests in data set A concen-
trated in several requests, and the number of all requests is
too much, we test our models on another data set, which
we call it data set B. Di�erent from A, data set B contains
the log �les of a database which also has been deployed
in production environment. �e requests of users are much
more simple, and it contains only 4 types of requests. On the
other hand, the performance data in this data set is recorded
by other tools, so the logs of the server only provide the
user request sequences and performance data is provided
by the tools. Table 4 shows the performance we tested in
this experiment and its description.We regard the maximum
value in the data set as the maximum of average delay and



Complexity 7

Table 1: Proportion of top 10 ID on data set A.

ID
Proportion

2 10 18 41 35 30 149 96 24 314

Real proportion 0.5497 0.0305 0.0226 0.0125 0.0124 0.0123 0.0123 0.0117 0.0111 0.0106

Generated proportion 0.5603 0.0789 0.0188 0.0193 0.0206 0.0128 0.0153 0.0141 0.0110 0.0083

Table 2: Performance and description on data set A.

Performance Description

Error rate �e percentage of requests errors (like 404, 403,. . .)
�roughput �e total amount of data the server transmits

Request delay �e average delay in processing user requests

Table 3: Result of model for di�erent performance on data set A.

Performance Training set Validation set Test set

Error rate 1.61 ∗ 10−6 1.71 ∗ 10−06 2.89 ∗ 10−5
�roughput 1.59 ∗ 10−15 1.60 ∗ 10−15 1.37 ∗ 10−15
Request delay 5.65 ∗ 10−12 6.33 ∗ 10−12 6.48 ∗ 10−12

Table 4: Performance and description on data set B.

Performance Description

CPU rate �e occupancy rate of the server’s CPU

Average delay Average delay of the requests

QPS Query per second

Table 5: Result of model for di�erent performance on data set B.

Performance Training set Test set

CPU rate 1.002635 ∗ 10−4 8.360695 ∗ 10−4
Average delay 8.25704107 ∗ 10−5 2.9352345 ∗ 10−3
QPS 1.039598 ∗ 10−4 1.413895 ∗ 10−4

QPS to do normalization. As for CPU rate, it is in [0, 1]
interval originally.

4.3.2. Result. In the experiment for performance prediction,
three performances including CPU rate, average delay, and
QPS are simulated. Table 5 is the data of the �nal result about
the loss function (	̂�−	�)2, and the error of the predicted value
is acceptably small.

In the experiment for workload prediction, the model
generated 2000 request sequences with the length of 15 �nally.
�e statistical result is shown in Table 6 and Figure 6, and
the cosine similarity is 0.9985807, so the angle between two
vectors is about 3∘, which means that the workload is quite
similar at the level of proportion.

�e result on this data set shows that our model also
performs well when the requests are in the form of the access
to the database, which proves our theory that the form of
the records or the requests does not a�ect the results of our
model. And our model has the ability to adapt to a variety of
situations.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4

ID

Generated proportion

Real proportion
P

ro
p

o
rt

io
n

Figure 6: Proportion of each ID on data set B.

Error rate

�roughput

Request delay

40 80 120 160 2000

(epoch)

−16

−12

−8

−4

0

ＦＩ
Ａ
( y

i
−
y
i)
2

Figure 7: Illustration of declining trend of the error in training.

Table 6: Proportion of each ID on data set B.

Type (ID) Generated proportions Real proportions

1 0.41843333 0.4262904

2 0.10083333 0.1205442

3 0.48056667 0.4510679

4 0.00016667 0.0020976

In conclusion, the recurrent network can predict the web
server performance and workload by analyzing the request
sequences and turn out to have good performance both in
accuracy and in generalization ability.

4.4. Related Works. Both of our models are built based on
event (requests of users), which is a totally new method for



8 Complexity

Output layer Output layer Output layer Output layer

LSTM block LSTM block LSTM block LSTM block

Input layer Input layer Input layer Input layer

LSTM model

History 1
History 2

History 3
History 4

Host load

Prediction 1
Prediction 2

Prediction 3
Prediction 4

Figure 8: Model of Song et al. [7].

LSTM LSTM LSTM

MLP MLP MLP

Performance Performance Performance

Nginx log

Feature 

vector

· · ·

· · ·

(t0) (t1) (tn)

Figure 9: Model of our previous work.

Table 7: Result of model of Song et al. on data set B.

Performance Training set Test set

CPU rate 3.6827354 ∗ 10−3 4.0699269 ∗ 10−3
Average delay 6.2893999 ∗ 10−4 2.7876459 ∗ 10−3
QPS 1.3815304 ∗ 10−4 2.3197048 ∗ 10−3

the prediction task of the server or data center. So our model
for performance prediction is very di�erent form previous
works in this prediction task. Take the work of Song et al. [7]
as an example, which also uses LSTM in their work.

As shown in Figure 8, their work uses the previous
performance to predict the future one, which means �tting
the curve of performance with time. And it is also the key
idea of previous work, but the �tting method of each is not
the same.

As a comparative experiment, we did an experiment on
data set B using the model of Song et al. [7]. �e result is
shown in Table 7, and the mean squared error (MSE) of each

performance is larger than ours, which means our model
achieves a better result.

As for the model for workload prediction, there is so
little previous research, so we did not do the comparative
experiment.

On the other hand, the research in this paper is an
extension of our previous work [25], as shown in Figure 9.We
change themodel for performance prediction frommany-to-
many to many-to-one version of LSTM, and we propose the
model for load prediction and the application framework of
two models to improve our research.

In a word, our work is completely a newmethod to do this
prediction job for sever and data center.

5. Conclusion

In this paper, we propose to use RNN-LSTM to predict web
server performance and workload. Model for performance
prediction is composed of RNN-LSTM and Multilayer Per-
ceptron (MLP), and the one for workload prediction consists



Complexity 9

of RNN-LSTM and so�max layer. Doing the research based
on events is a new way in this prediction area. �e models
can extract features automatically during the learning process
without any prior knowledge or hand-generated features for
segmentation. Experiments conducted on real data sets show
that our models can achieve a good performance and gen-
eralization on predicting the performance of di�erent kinds
of severs. And the result also shows that the load generated
by our model is very similar to the real one, which can be
applied to test data center and other kinds of servers. Our
results suggest that RNN-LSTM performs well on sequential
tagging tasks; moreover RNN-LSTMwith requests-to-vector
is a new e�ective method to predict sever performance and
workload which is worth further exploration. Most servers in
data center has log system.As long as the log �le recording the
operation of the users is provided, our method can be used to
generate load for the server and predict server performance
under di�erent load conditions. �is can save a lot operation
and maintenance work in data center.

Conflicts of Interest

�e authors declare that there are no con
icts of interest
regarding the publication of this paper.

Acknowledgments

�is work is supported by the National Key Research
and Development Program of China under Grants
2017YFB0802704 and 2017YFB0802202 and Program
of Shanghai Technology Research Leader under Grant
16XD1424400.

References

[1] T. Berners-Lee, R. Cailliau, J.-F. Gro�, and B. Pollermann,
“World-wide web:�e information universe,” Internet Research,
vol. 20, no. 4, pp. 461–471, 2010.

[2] J.-F. Tu and R.-F. Guo, “�e application reseach of mixed
program structure based on client-server, browser-server and
web service,” in Proceedings of the 2011 International Conference
onBusinessManagement andElectronic Information, BMEI 2011,
pp. 193–195, May 2011.

[3] R. Buyya, K. Ramamohanarao, C. Leckie, R. N. Calheiros, A. V.
Dastjerdi, and S. Versteeg, “Big data analytics-enhanced cloud
computing: Challenges, architectural elements, and future
directions,” in Proceedings of the 21st IEEE International Con-
ference on Parallel and Distributed Systems, ICPADS 2015, pp.
75–84, December 2015.

[4] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the cloud,” Future
Generation Computer Systems, vol. 28, no. 1, pp. 155–162, 2012.

[5] I. Davis, H. Hemmati, R. C. Holt, M.W. Godfrey, D. Neuse, and
S. Mankovskii, “Storm prediction in a cloud,” in Proceedings of
the 2013 5th InternationalWorkshop on Principles of Engineering
Service-Oriented Systems, PESOS 2013, pp. 37–40, May 2013.

[6] B. Luo and S.-w. Ye, “Server performance prediction using
recurrent neural network,” Computer Engineering and Design,
vol. 8, p. 57, 2005.

[7] B. Song, Y. Yu, Y. Zhou, Z. Wang, and S. Du, “Host load
prediction with long short-term memory in cloud computing,”
	e Journal of Supercomputing, pp. 1–15, 2017.

[8] Y. Yu, V. Jindal, I. Yen, and F. Bastani, “Integrating Clustering
and Learning for ImprovedWorkload Prediction in the Cloud,”
in Proceedings of the 2016 IEEE 9th International Conference on
Cloud Computing (CLOUD), pp. 876–879, San Francisco, Calif,
USA, June 2016.

[9] T. Vercauteren, P. Aggarwal, X. Wang, and T.-H. Li, “Hierarchi-
cal forecasting of web server workload using sequential Monte
Carlo training,” IEEE Transactions on Signal Processing, vol. 55,
no. 4, pp. 1286–1297, 2007.

[10] M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint language
and translation modeling with recurrent neural networks,” in
EMNLP, vol. 3, 8 edition, 2013.

[11] M. Osawa, H. Yamakawa, and M. Imai, in Proceedings of the
Neural formation processg-23rd ternational conference, iconip
2016, Springer Verlag, 2016.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] M. Sundermeyer, H. Ney, and R. Schluter, “From feedforward to
recurrent LSTM neural networks for language modeling,” IEEE
Transactions on Audio, Speech and Language Processing, vol. 23,
no. 3, pp. 517–529, 2015.

[14] X. Ma and E. Hovy, “End-to-end Sequence Labeling via
Bi-directional LSTM-CNNs-CRF,” in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1064–1074, Berlin, Germany,
August 2016.

[15] A. Krizhevsky, I. Sutskever, andG. E.Hinton, “Imagenet classi�-
cation with deep convolutional neural networks,” in Proceedings
of the 26th Annual Conference on Neural Information Processing
Systems (NIPS ’12), pp. 1097–1105, December 2012.

[16] J. Wu, S. Pan, X. Zhu, C. Zhang, and X. Wu, “Positive and
UnlabeledMulti-Graph Learning,” IEEE Transactions on Cyber-
netics, vol. 47, no. 4, pp. 818–829, 2016.

[17] J. Wu, S. Pan, X. Zhu, C. Zhang, and P. S. Yu, “Multiple
Structure-View Learning for Graph Classi�cation,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. PP, no.
99, pp. 1–16, 2017.

[18] J. Wu, S. Pan, X. Zhu, C. Zhang, and X. Wu, “Multi-instance
Learning withDiscriminative BagMapping,” IEEE Transactions
on Knowledge and Data Engineering, vol. PP, no. 99, pp. 1–14,
2017.

[19] K. Hornik, M. Stinchcombe, and H.White, “Multilayer feedfor-
ward networks are universal approximators,” Neural Networks,
vol. 2, no. 5, pp. 359–366, 1989.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: a simple way to prevent neural net-
works from over�tting,” Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[21] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dropout
Improves Recurrent Neural Networks for Handwriting Recog-
nition,” in Proceedings of the 14th International Conference on
Frontiers inHandwriting Recognition, ICFHR 2014, pp. 285–290,
September 2014.

[22] R. Girshick, “Fast R-CNN,” in Proceedings of the 15th IEEE
International Conference on Computer Vision (ICCV ’15), pp.
1440–1448, December 2015.

[23] S. Io�e and C. Szegedy, “Batch normalization: accelerating deep
network training by reducing internal covariate shi�,” Learning,
vol. 3, 2015.



10 Complexity

[24] G. Hinton, N. Srivastava, and K. Swersky, Neural networks for
machine learning lecture 6a overview of mini-batch gradient
descent, Coursera Lecture slides, 2012.

[25] J. Peng, Z. Huang, and J. Cheng, “A Deep Recurrent Network
for Web Server Performance Prediction,” in Proceedings of the
2017 IEEE Second International Conference on Data Science in
Cyberspace (DSC), pp. 500–504, Shenzhen, China, June 2017.



Submit your manuscripts at

https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


