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5Department of Computing, Imperial College London, London, UK

Correspondence should be addressed to Erik Marchi; erik.marchi@tum.de

Received 12 July 2016; Accepted 25 September 2016; Published 15 January 2017

Academic Editor: Stefan Haufe

Copyright © 2017 Erik Marchi et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the emerging 	eld of acoustic novelty detection, most research e
orts are devoted to probabilistic approaches such as mixture
models or state-space models. Only recent studies introduced (pseudo-)generative models for acoustic novelty detection with
recurrent neural networks in the form of an autoencoder. In these approaches, auditory spectral features of the next short term
frame are predicted from the previous frames by means of Long-Short Term Memory recurrent denoising autoencoders. �e
reconstruction error between the input and the output of the autoencoder is used as activation signal to detect novel events.�ere is
no evidence of studies focused on comparing previous e
orts to automatically recognize novel events from audio signals and giving
a broad and in depth evaluation of recurrent neural network-based autoencoders. �e present contribution aims to consistently
evaluate our recent novel approaches to 	ll this white spot in the literature and provide insight by extensive evaluations carried out
on three databases: A3Novelty, PASCALCHiME, andPROMETHEUS. Besides providing an extensive analysis of novel and state-of-
the-art methods, the article shows howRNN-based autoencoders outperform statistical approaches up to an absolute improvement
of 16.4% average �-measure over the three databases.

1. Introduction

Novelty detection aims at recognizing situations in which
unusual events occur. �e challenging task of novelty detec-
tion is usually considered as single class classi	cation task.
�e “normal” data traditionally comprises a very big set
which allows for an accurate modelling. �e acoustic events
not included in the “normal” data are treated as novel events.
Novel patterns are tested by comparing themwith the normal
class model resulting in a novelty score. �en, the score
is processed by a decision logic—typically a threshold—to
decide whether the test sample is novel or normal.

A plethora of approaches have been proposed due to
the practical relevance of novelty detection, especially for
medical diagnosis [1–3], damage inspection [4, 5], physiolog-
ical condition monitoring [6], electronic IT security [7], and
video surveillance systems [8].

According to [9, 10], novelty detection techniques can
be grouped into two macro categories: (i) statistical and
(ii) neural network-based approaches. Extensive studies have
been made in the category of statistical and probabilistic
approaches which are evidently the most widely used in the
	eld of novelty detection. �e approaches on this category
are modelling data based on its statistical properties and
exploiting this information to determine when an unknown
test sample belongs to the learnt distribution or not. Statistical
approaches have been applied to a number of applications
[9] ranging from data stream mining [11], outlier detection
of underwater targets [12], the recognition of cancer [1],
nondestructive inspection for the analysis of mechanical
components [13], and audio segmentation [14], to many
others. In 1999, support vector machines (SVMs) were intro-
duced in the 	eld of novelty detection [15] and subsequently
applied to time-series [16, 17], jet engine vibration analysis
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[18], failure detection in jet engines [19], patient vital-sign
monitoring [20], fMRI analysis [21], and damage detection
of a gearbox wheel [22].

Neural network-based approaches—also named recon-
struction-based [23]—have gained interest in recent years
along with the evident success of neural networks in several
other 	elds. In the past decade, several works focused on the
application of a neural network in the form of an autoencoder
(AE) have been presented [10], given the huge impact and
e
ectiveness of neural networks. �e autoencoder-based
approaches involve building a regression model using the
“normal” data. �e test data are processed by analysing
the reconstruction error between the regression target and
the encoded value. When the reconstruction error shows
high score, the test data is considered novel. Examples of
applications include such to detect abnormal CPU data usage
[24, 25] and such to detect outliers [26–29] for damage
classi	cation under changing environmental conditions [30].

In these scenarios, very little studies have been conducted
in the 	eld of acoustic novelty detection. Recently, we
observed a growing research interest in application domains
involving surveillance and homeland security to monitor
public places or supervise private environments where people
may live alone. Driven by the increasing requirement of
security, public places such as but not limited to stores, banks,
subway, trains, and airports have been equipped with various
sensors like cameras or microphones. As a consequence,
unsupervised monitoring systems have gained much atten-
tion in the research community to investigate new and e�-
cient signal processing approaches.�e research in the area of
surveillance systems mainly focusses on detecting abnormal
events relying on video information [8]. However, it has to
be noted that several advantages can be obtained by relying
on acoustic information. In fact, acoustic signals—as opposed
to video information—need low computational costs and are
invariant to illumination conditions, possible occlusion, and
abrupt events (e.g., a shotgun and explosions). Speci	cally
in the 	eld of acoustic novelty detection, studies focused
only on statistical approaches by applying hidden Markov
models (HMM) and Gaussian mixture models (GMM) to
acoustic surveillance of abnormal situations [31–33] and to
automatic space monitoring [34]. Despite the number of
studies exploring statistical and probabilistic approaches, the
use of neural network-based approaches for acoustic novelty
detection has only been introduced recently [35, 36].

Contribution. Only in the last two years the use of neural
networks for acoustic novelty detection has gained interest in
the research community. In fact, few recent studies proposed
a (pseudo-)generative model in the form of a denoising
autoencoder with recurrent neural networks (RNNs). In
particular, the use of Long-Short Term Memory (LSTM)
RNNs as generative model [37] was investigated in the 	eld
of text generation [38], handwriting [38], and music [39].
However, the use of LSTM as a model for audio generation
was only introduced in our recent works [35, 36].

�is article provides a broad and extensive evaluation
of state-of-the-art methods with a particular focus on novel
and recent unsupervised approaches based on RNN-based

autoencoders. We signi	cantly extended the studies con-
ducted in [35, 36] by evaluating further approaches such
as one-class SVMs (OCSVMs) and multilayer perceptrons
(MLP), and most importantly we conducted a broad and in
depth evaluation on three di
erent datasets for a total number
of 160 153 experiments, making this article the 	rst to present
such a complete evaluation in the 	eld of acoustic novelty
detection.

We evaluate and compare all these methods with
three di
erent databases: A3Novelty, PASCAL CHiME, and
PROMETHEUS. We provide evidence that RNN-based
autoencoders signi	cantly outperformothermethods by out-
performing statistical approaches up to an absolute improve-
ment of 16.4% average �-measure over the three databases.

�e remainder of this contribution is structured as
follows: First, a basic description of the di
erent statistical
methods is given in Section 2. �en, the feed-forward and
LSTM RNNs together with autoencoder-based schemes for
acoustic novelty detection are described (Sections 3 and 4).
Next the thresholding strategy and features employed in
the experiments are given in Section 5. �e used databases
are introduced in Section 6 and the experimental set-up is
discussed in Section 7 before discussing the evaluation of
obtained results in Section 8. Section 9 	nally presents our
conclusions.

2. Statistical Methods

In this section we introduce statistical approaches such as
GMM, HMM, and OCSVM. We formally de	ne the input
vector � ∈ R�, where � is the number of acoustic features
(cf. Section 5).

2.1. Gaussian Mixture Models. GMMs estimate the prob-
ability density of the “normal” class, given training data,
using a number of Gaussian components. �e training phase
of a GMM exploits the �-means algorithm or other suited
training algorithms and the Expectation-Maximisation (EM)
algorithm [40]. �e former initializes the parameters while �
iterations of EM algorithm lead to the 	nal model. Given a
prede	ned threshold (de	ned in Section 5), if the probability
produced by the GMM with a test sample is lower than the
threshold, the sample is detected as novel event.

2.2. Hidden Markov Models. A further statistical model is
the HMM [41]. HMMs di
er from GMMs in terms of
input temporal evolution. Indeed, while a diagonal GMM
tends to approximate the whole training data probability
distribution by means of a number of Gaussian components
a HMM models the variations of the input signal through
its hidden states. �e HMM topology employed in this work
is le�-right and it is trained by means of the Baum-Welch
algorithm [41] while regarding the novelty detection phase,
the decision is based on the sequence paradigm. Considering
a le�-right HMM having �� hidden states, a sequence is a
set of �� feature vectors: �̃ = {�1, . . . , ���}. �e emission
probabilities of these observable events are determined by a
probability distribution, one for each state [9]. We trained
an HMM on what we call “normal” material and exploited
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the log-likelihoods as novelty scores. In the testing phase, the
unseen signal is segmented into a 	xed length depending on
the number of states of the HMM, and if the log-likelihood is
higher than the de	ned threshold (cf. Section 5), the segment
is detected as novel.

2.3. One-Class Support Vector Machines. A OCSVM [42]
maps an input example onto a high-dimensional feature space
and iteratively searches for the hyperplane that maximises
the distance between the training examples from the origin.
In this constellation, the OCSVM can be seen as a two-class
SVM where the origin is the unique member of the second
class, whereas the training examples belong to the 	rst class.
Given the training data �1, . . . , �� ∈ 
, where � is the number
of observations, the class separation is performed by solving
the following:

min
�,�,�

12 ‖
‖2 1]�∑	 �	 − �,
subject to: (
 ⋅ Φ (�	)) ≥ � − �	, �	 ≥ 0,

(1)

where 
 is the support vector, �	 are slack variables, � is the
o
set, andΦmaps
 into a dot product space � such that the
dot product in the image ofΦ can be computed by evaluating
a certain kernel function such as a linear or Gaussian radial
base function:

� (�, �) = exp(−����� − �����22�2 ) . (2)

�e parameter ] sets an upper bound on the fraction of the
outliers de	ned to be the data being outside the estimated
region of normality. �us, the decision values are obtained
with the following function:

� (�) = 
 ⋅ Φ (�) − �. (3)

We trained a OCSVM on what we call “normal” material and
used the decision values as novelty scores. During testing, the
OCSVMprovides a decision value for the unseen pattern, and
if the decision value is higher than the de	ned threshold (cf.
Section 5), the segment is detected as novel.

3. Feed-Forward and Recurrent
Neural Networks

�is section introduces the MLP and the LSTM RNNs
employed in our acoustic novelty detectors.

�e 	rst neural network type we used is a multilayer
perceptron [43]. In a MLP the units are arranged in layers,
with feed-forward connections from one layer to the next.
Each node outputs an activation function applied over the
weighted sum of its inputs. �e activation function can be
linear, a hyperbolic function (tanh) or the sigmoid function.
Input examples are fed to the input layer, and the resulting
output is propagated via the hidden layers towards the output
layer. �is process is known as the forward pass of the
network. �is type of neural networks only relies on the
current input and not on any past or future inputs.
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Figure 1: LSTM unit, comprising the input, output, and forget gates
and the memory cell.

�e second neural network type we employed is the
LSTM RNN [44]. Compared to a conventional RNN, the
hidden units are replaced by so-called memory blocks.�ese
memory blocks can store information in the “cell variable”
c
. In this way, the network can exploit long-range temporal
context. Each memory block consists of a memory cell and
three gates: the input gate, output gate, and forget gate, as
depicted in Figure 1.

�e memory cell is controlled by the input, output, and
forget gates.

�e stored cell variable c
 can be reset by the forget gate,
while the functions responsible for reading input from x
 and
writing output to h
 are controlled by the input and output
gates, respectively:

c
 = f
 ⊗ c
−1 + i
 ⊗ tanh (W��x
 +Wℎ�h
−1 + b�) ,
h
 = o
 ⊗ tanh (c
) , (4)

where tanh and ⊗ stand for element-wise hyperbolic tangent
and element-wise multiplication, respectively. �e output of
the input gates is denoted by the variable i
, while the output
of the output and forget gates are indicated by o
 and f
,
respectively. �e variableW denotes a weight matrix, and b�
indicates a bias term.

Each LSTM unit is a separate and independent block. In
fact, the size of h
 is the same as i
, o
, f
, and c
. �e size
corresponds to the number of LSTMunits in the hidden layer.
In order to have the gates being dependent uniquely from the
memory cell within the same LSTM unit, the matrices of the
weights from the cells to the gates are diagonal.

Furthermore, we employed bidirectional RNN (BRNN)
[45], which are capable of learning the context in both
temporal directions. In fact, a BRNN contains two distinct
hidden layers, which are processing the input vector in each
direction. �e output layer is then connected to both hidden
layers. A more complex architecture can be obtained by
combining a LSTM unit with a BRNN, which is referred
to as bidirectional LSTM (BLSTM) [46]. BLSTM exploits
context from both temporal directions. Note that, in the case
of BLSTM, it is not possible to perform online processing as
a short bu
er to look ahead is required.
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When the layout of a neural network comprises more
hidden layers, it is de	ned as deep neural network (DNN)
[47]. An incrementally higher level representation of the
input data is provided when multiple hidden layers are
stacked on each other (deep learning).

In the case of multiple layers, the output of a BRNN is
computed as

y
 = W�→
h
��

�→
h
�

 +W←�

h
��

←�
h
�

 + b�, (5)

where the forward and backward activation of the �th

(last) hidden layer are denoted by
�→
h�
 and

←�
h�
 , respectively.

�e reconstructed signal is generated by using an identity
activation function at the output.�e best network layout was
obtained by conducting a number of preliminary evaluations.
Several con	gurations were evaluated by changing the size
and the number of hidden layers (i.e., the number of LSTM
units for each layer).

�e training procedure was iterated up to a maximum of
100 epochs.�e standard gradient descent with backpropaga-
tion of the sum squared error was used to recursively update
the network weights. �ose were initialized with a random
Gaussian distribution with mean 0 and standard deviation
0.1, as it usually provides an acceptable initialization in our
experience.

4. Autoencoders for Acoustic
Novelty Detection

�is section introduces the concepts of autoencoders and
describes the basic autoencoder, compression autoencoder,
denoising autoencoder, and nonlinear predictive autoen-
coder [36].

4.1. Basic Autoencoder. A basic autoencoder is a neural
network trained to set the target values equal to the inputs. Its
structure typically consists of only one hidden layer, while the
input and the output layers have the same size. �e training
setXtr consists of background environmental sounds, while
test set Xte is composed of recordings containing abnormal
sounds. It is used to 	nd common data representation from
the input [48, 49]. Formally, in response to an input example� ∈ R�, the hidden representation ℎ(�) ∈ R� is

ℎ (�) = � (!1� + "1) , (6)

where �(#) is a nonlinear activation function, typically a
logistic sigmoid function �(#) = 1/(1 + exp(−#)) applied
componentwisely,!1 ∈ R�×� is a weight matrix, and "1 ∈ R�

is a bias vector.
�e network output maps the hidden representation ℎ

back to a reconstruction �̃ ∈ R�:

�̃ = � (!2ℎ (�) + "2) , (7)

where !2 ∈ R�×� is a weight matrix and "2 ∈ R� is a bias
vector.

Given an input set of examples X, AE training consists
in 	nding parameters $ = {!1,!2, "1, "2} that minimise the

reconstruction error, which corresponds to minimising the
following objective function:

J ($) = ∑
�∈X

‖� − �̃‖2 . (8)

A well-known approach tominimise the objective function is
the stochastic gradient descent with error backpropagation.
�e layout of the AE is shown in Figure 2(a).

4.2. Compression Autoencoder. �e compression autoen-
coder (CAE) learns a compressed representation of the input
when the number of hidden units % is smaller than the
number of input units �. For example, if some of the input
features are correlated, these correlations are learnt and
reconstructed by the CAE. �e structure of the CAE is given
in Figure 2(b).

4.3. Denoising Autoencoder. In the denoising AE (DAE)
[50] con	guration the network is trained to reconstruct the
original input from a corrupted version of it.�e initial input� is corrupted by means of additive isotropic Gaussian noise

in order to obtain �� | � ∼ �(�, �2'). �e corrupted input ��
is then mapped, as with the AE, to a hidden representation

ℎ (��) = � (!�1�� + "�1) , (9)

forcing the hidden layer to retrieve more robust features and
prevent it from simply learning the identity.�us, the original
signal is reconstructed as follows:

�̃� = � (!�2� + "�2) . (10)

�e structure of the denoising autoencoder is shown in
Figure 2(c). In the training phase, the set of network weights
and biases $� = {!�1 ,!�2 , "�1, "�2} are updated in order to

have �̃� as close as possible to the uncorrupted input �. �is
procedure corresponds to minimising the reconstruction
error objective function (8). In our approach, to corrupt the
initial input �
 we make use of additive isotropic Gaussian
noise, in order to obtain �� | � ∼ �(�, �2').
4.4. Nonlinear Predictive Autoencoder. �e basic idea of a
nonlinear predictive (NP) AE is to train the AE in order
to predict the current frame from a previous observation.
Formally, the input up to a given time frame �
 is mapped
to a hidden representation ℎ:

ℎ (�
) = � (!∗1 , "∗1 , �1,...,
) , (11)

where ! and " denote weights and bias, respectively. From
this, we reconstruct an approximation of the original signal
as follows:

�̃
+� = � (!∗2 , "∗2 , ℎ1,...,
) , (12)

where � is the prediction delay and ℎ	 = ℎ(�	). A prediction
delay of � = 1 corresponds to a shi� of 10ms in the
audio signal in our setting (cf. Section 5). �e training of
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Figure 2: Block diagram of the proposed acoustic novelty detector with di
erent autoencoder structures. Features are extracted from the
input signal and the reconstruction error between the input and the reconstructed features is then processed by a thresholding block which
detects the novel or nonnovel event. Structure of the (a) basic autoencoder, (b) compression autoencoder, and (c) denoising autoencoder on
the training setXtr or testing setXte.Xtr contains data of nonnovel acoustic events;Xte consists of novel and nonnovel acoustic events.

the parameters is performed by minimising the objective
function (8)—the di
erence is that �̃ is now based on
nonlinear prediction according to (11) and (12). �us, the
parameters $∗ = {!∗1 ,!∗2 , "∗1 , "∗2 } are trained to minimise
the average reconstruction error over the training set, to have�̃
+� as close as possible to the prediction delay. �e resulting
structure of the nonlinear predictive denoising autoencoder
(NP-DAE) is similar to the one depicted in Figure 2(c), but
with input and output updated as described above.

5. Thresholding and Features

�is section describes the thresholding decision strategy and
the features employed in our experiments.

5.1. �resholding. Auditory spectral features (ASF) in
Section 5.2 used in this work are composed by 54 coe�cients,
which means that the input and output layer of the network
have 54 units each. �e trained AE reconstructs each
sample and novel events are identi	ed by processing the
reconstruction error signal with an adaptive threshold. �e
input audio signal � is segmented into sequences of 30
seconds of length. In the testing phase, we compute—on a

frame basis—the average Euclidean distance between the
networks’ outputs and each standardized input feature value.
In order to compress the reconstruction error to a single
value, the distances are summed up and divided by the
number of coe�cients. �en we apply a threshold $th to
obtain a binary signal, shi�ing from the median of the error
signal of a sequence 30 by a multiplicative coe�cient 4. �e
coe�cient ranges from 4min = 1 to 4max = 2:

$th = 4 ∗median (30 (1) , . . . , 30 (�)) . (13)

Figure 3 shows the reconstruction error for a given
sequence. �e 	gure clearly depicts a low reconstruction
error in reproducing normal input such as talking, television
sounds, and other normal environmental sounds.

5.2. Acoustic Features. An e�cient representation of the
audio signal can be achieved by extracting the auditory
spectral features (ASF) [51]. �e audio signal is split into
frames with the size equal to 30ms and a frame step of
10ms, and then the ASF are obtained by applying Short
Time Fourier Transform (STFT), which yields the power
spectrogram of the frame. Mel spectrograms630(�,%) (with
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Figure 3: Spectrogram of a 30-second sequence from (a) the A3Novelty Corpus containing a novel siren event (top), (b) the PASCALCHiME
database containing three novel events, such as a siren and two screams, and (c) the PROMETHEUS database containing a novel event
composed by an alarm and people screaming together (top). Reconstruction error signal of the related sequence obtained with a BLSTM-
DAE (middle). Ground-truth binary novelty signal: novel (0), and not-novel (0) (bottom).

� being the frame index and % the frequency bin index)
are calculated converting the power spectrogram to the Mel-
frequency scale using a 	lter-bankwith 26 triangular 	lters. A
logarithmic scaling is chosen to match the human perception
of loudness:

630log (�,%) = log (630 (�,%) + 1.0) . (14)

In addition, the positive 	rst-order di
erences 730(�,%) are
calculated from each Mel spectrogram following

730 (�,%) = 630log (�,%) −630log (� − 1,%) . (15)

Furthermore, the frame energy and its derivative are
also included as feature ending up in a total number of 54
coe�cients. For better reproducibility, the features extraction
process is computed with our open-source audio analysis
toolkit openSMILE [52].

6. Databases

�is section describes the three databases evaluated in our
experiments: A3Novelty, PASCAL CHiME, and PROME-
THEUS.

6.1. A3Novelty. �e A3Novelty Corpus (http://www.a3lab
.dii.univpm.it/research/a3novelty) includes around 56 hours
of recording acquired in a laboratory of the Università
Politecnica delle Marche. �ese recordings were performed
during di
erent day and night hours, so very di
erent
acoustic conditions are available. A variety of novel events
were randomly played back by a speaker (e.g., scream, fall,
alarm, or breakage of objects) during the recordings.

Eight microphones were used in the recording room for
the acquisitions: four Behringer B-5 microphones with car-
dioid pattern and an array of fourAKGC400BLmicrophones

spaced by 4 cm, and then A MOTU 8pre sound card and the
NU-Tech so�ware were utilised to record the microphone
signals. �e sampling rate was equal to 48 kHz.

�e abnormal event sounds (cf. Table 1) can be grouped
into four categories and they are freely available to download
from http://www.freesound.org/:

(i) Sirens, three di
erent types of sirens or alarm sounds.

(ii) Falls, two occurrences of a person or an object falling
to the ground.

(iii) Breakage of objects, noise produced by the breakage of
an object a�er the impact with the ground.

(iv) Screams, four di
erent human screams, both pro-
duced by a single person or by a group of people.

�e A3Novelty Corpus is composed of two types of
recordings: background, which contains only background
sounds such as human speech, technical tools noise, and
environmental sounds and background with novelty, which
contains in addition to the background the arti	cially gen-
erated novelty events.

In the original A3Novelty database the recordings are
segmented in sequences of 30 seconds. In order to limit the
size of training data, we randomly selected 300 sequences
from the background partition to compose training material
(150 minutes) and 180 sequences from the background with
novelty partition to compose the testing set (90 minutes).�e
test set contains 13 novelty occurrences.

For reproducibility, the list of randomly selected record-
ings and the train and test set are made available (http://www
.a3lab.dii.univpm.it/research/a3novelty).

6.2. PASCAL CHiME. �e original dataset is composed of
around 7 hours of recordings of a home environment, taken
from the PASCALCHiME speech separation and recognition

http://www.a3lab.dii.univpm.it/research/a3novelty
http://www.a3lab.dii.univpm.it/research/a3novelty
http://www.freesound.org
http://www.a3lab.dii.univpm.it/research/a3novelty
http://www.a3lab.dii.univpm.it/research/a3novelty
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Table 1: Acoustic novel events in the test set. Shown are the number of di
erent events per database, the average duration, and the total
duration in seconds per event type.�e last column indicates the total number of events and total duration across the databases. �e last line
indicates the total duration in seconds of the test set including normal and novel events per database.

Events
A3Novelty PASCAL CHiME

PROMETHEUS
Total

ATM Corridor Outdoor Smart-room

# Time (avg.) # Time (avg.) # Time (avg.) # Time (avg.) # Time (avg.) # Time (avg.) # time

Alarm — — 76 435.8 (6.0) — — 6 84.0 (14.0) — — 3 9.0 (3.0) 85 528.8

Anger — — — — — — — — 6 293.0 (48.8) — — 6 293.0

Fall 3 4.2 (2.1) 48 89.5 (1.8) — — 3 3.0 (1.0) — — 2 2.0 (1.0) 55 98.7

Fracture 1 2.2 32 70.4 (2.2) — — — — — — — — 33 72.6

Pain — — — — — — 2 8.0 (4.0) — — 5 67.0 (13.4) 7 75.0

Scream 6 10.4 (1.7) 111 214.6 (1.9) 5 30.0 (6.0) 25 228.0 (9.1) 4 48.0 (12.0) 10 234.0 (23.4) 159 762.2

Siren 3 20.4 (6.8) — — — — — — — — — — 3 18.1

Total 13 38.1 (2.9) 267 810.3 (3.1) 5 30.0 (5.0) 36 323.0 (9.0) 10 341.0 (34.1) 20 312.0 (15.6) 348 1848.4

Test time — 5400.0 — 4188.0 — 750.0 — 960.0 — 1620.0 — 1020.0 — 13938.0

challenge [53]. It consists of a typical in-home scenario (a
living room), recorded during di
erent days and times, while
the inhabitants (two adults and two children) perform com-
mon actions, such as talking, watching television, playing, or
eating.�e dataset was recorded with a binaural microphone
and a sample-rate of 16 kHz. In the original PASCAL CHiME
database the recordings are segmented in sequences of 5
minutes’ duration. In order to limit the size of training data,
we randomly selected sequences to compose 100 minutes
of background for the training set and around 70 minutes
for the testing set. For reproducibility, the list of randomly
selected recordings and the train and test set are made
available (http://a3lab.dii.univpm.it/webdav/audio/Novelty
Detection Dataset.tar.gz). �e test set was generated adding
di
erent types of sounds (taken from http://www.freesound
freesound.org/), such as screams, alarms, falls, and fractures
(cf. Table 1), a�er their normalization to the volume of the
background recordings. �e events in the test set were added
at random position; thus the distance between one event and
another is not 	xed.

6.3. PROMETHEUS. �ePROMETHEUS database [31] con-
tains recordings of various scenarios designed to serve a wide
range of real-world applications. �e database includes (1)
a smart-room indoor home environment including phases
where a user is interacting with an automated speech-driven
home assistant and (2) an outdoor public space consisting of
(a) interaction of people with anATM, (b) an outdoor security
scenario in which people are waiting in front of a counter, and
(3) an indoor o�ce corridor scenario for security monitoring
in standard indoor space. �ese scenarios substantially di
er
in terms of acoustic environment. �e indoor scenarios
were recorded under quiet acoustic conditions, whereas the
outdoor recordings were conducted in an open-air public
area and contain nonstationary backgroundnoise.�e smart-
home scenario contains recordings of 	ve professional actors
performing 	ve single-person and 14 multiple-person action
scripts. �e main activities include human-machine interac-
tion with a virtual home agent and a number of alternat-
ing normal and abnormal activities speci	cally designed to

monitor and interpret human behaviour. �e single-person
and multiple-person actions include abnormal events, such
as falls, alarm followed by panic, atypical vocalic reactions
(pain, fear, and anger), or fractures. Examples are walking to
the couch, sitting, or interacting with the smart environment
to turn the TV on, open the windows, or decrease the
temperature.�e scenarios were recorded three to 	ve times,
by changing the actors and their roles in the action scripts.
Table 1 provides details on the number of abnormal events per
scenario, including average time duration.

7. Experimental Set-Up

�e networks were trained with the gradient steepest descent
algorithm on the sum of squared errors (SSE). In the case
of all the LSTM and BLSTM networks, we used a constant
value of learning rate � = 13−6 since it showed better
performances in our previous works [35], whereas di
erent
values of � = {13−8, 13−9} were used for MLP networks.
Di
erent noise sigma values � = {0.01, 0.1, 0.25}were applied
to the DAE. No Gaussian noise was applied to the basic
AE and to the CAE following the architectures described
in Section 4. �e prediction delay was applied for di
erent
values: � = {1, 2, 3, 4, 5, . . . , 10}. �e AEs were trained using
our open-source CUDA RecurREnt Neural Network Toolkit
(CURRENNT) [54] ensuring reproducibility. As evaluation
metrics we used �-measure in order to compare the results
with previous works [35, 36].We evaluated several topologies
for the nonlinear predictive DAE ranging from 54-128-54
to 216-216-216 and from 54-30-54 to 54-54-54 in the case
of CAE and basic AE, respectively. Every network topology
was evaluated for each of the 100 epochs of training. In
order to compare our results with our previous studies we
kept the same optimisation procedure as applied in [35,
36]. We employed further three state-of-the-art approaches
based on OCSVM, GMM, and HMM. In the case of
OCSVM, we trained models at di
erent complexity values; = {0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}. Radial basis
function kernels were used with di
erent gamma values < ={0.01, 0.001}, and we controlled the fraction of outliers in

http://a3lab.dii.univpm.it/webdav/audio/Novelty_Detection_Dataset.tar.gz
http://a3lab.dii.univpm.it/webdav/audio/Novelty_Detection_Dataset.tar.gz
http://www.freesound.org/
http://www.freesound.org/
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Table 2: Comparison over the three databases of methods by percentage of �-measure (�1). Indicated prediction (D)elay and average �1
weighted by the # of instances per database. Reported approaches are GMM, HMM, OCSVM, compression autoencoder with MLP (MLP-
CAE), BLSTM (BLSTM-CAE), and LSTM (LSTM-CAE), denoising autoencoder withMLP (MLP-DAE), BLSTM (BLSTM-DAE), and LSTM
(LSTM-DAE), and related versions of nonlinear predictive autoencoders NP-MLP-CAE/AE/DAE and NP-(B)LSTM-CAE/AE/DAE.

Method
A3Novelty PASCAL CHiME

PROMETHEUS
Weighted average

ATM Corridor Outdoor Smart-room

D(�) �1 D(�) �1 (%) D(�) �1 (%) D(�) �1 (%) D(�) �1 (%) D(�) �1 (%) �1 (%)

OCSVM — 91.8 — 63.4 — 60.2 — 65.3 — 57.3 — 57.4 73.3

GMM — 89.4 — 89.4 — 50.2 — 49.4 — 56.4 — 59.1 78.7

HMM — 88.2 — 91.4 — 52.0 — 49.6 — 56.0 — 59.1 78.9

MLP-CAE 0 97.6 0 85.2 0 76.1 0 76.2 0 64.8 0 61.2 84.8

LSTM-CAE 0 97.7 0 89.1 0 78.5 0 77.8 0 62.6 0 64.0 86.2

BLSTM-CAE 0 98.7 0 91.3 0 78.4 0 78.4 0 62.1 0 63.7 87.3

MLP-AE 0 97.2 0 85.0 0 76.1 0 77.0 0 65.1 0 61.8 84.8

LSTM-AE 0 97.7 0 89.1 0 78.7 0 77.9 0 61.6 0 61.4 86.0

BLSTM-AE 0 97.8 0 89.4 0 78.5 0 77.6 0 63.1 0 63.4 86.4

MLP-DAE 0 97.3 0 87.3 0 77.5 0 78.5 0 65.8 0 64.6 86.0

LSTM-DAE 0 97.9 0 92.4 0 79.5 0 78.7 0 68.0 0 65.0 88.1

BLSTM-DAE 0 98.4 0 93.4 0 78.7 0 79.8 0 68.5 0 65.1 88.7

NP-MLP-CAE 4 98.5 5 88.3 1 78.8 2 75.0 1 65.2 5 64.0 86.4

NP-LSTM-CAE 5 98.8 1 92.5 1 78.7 2 74.4 2 64.7 3 63.8 87.7

NP-BLSTM-CAE 4 99.2 3 92.8 2 78.3 1 75.2 2 65.7 2 63.2 88.1

NP-MLP-AE 4 98.5 5 85.9 1 79.0 2 74.6 1 64.7 2 62.8 85.5

NP-LSTM-AE 5 98.7 1 92.1 1 78.1 1 75.0 1 65.0 3 64.4 87.6

NP-BLSTM-AE 4 99.2 2 94.1 3 78.4 2 75.6 1 65.6 1 63.6 88.5

NP-MLP-DAE 5 98.9 5 88.8 1 81.6 1 77.5 1 67.0 4 64.3 87.3

NP-LSTM-DAE 5 99.1 1 94.2 4 80.4 1 76.4 2 66.2 1 65.2 88.8

NP-BLSTM-DAE 5 99.4 3 94.4 2 80.7 3 78.5 2 66.7 1 65.6 89.3

the training phase with di
erent values ] = {0.1, 0.01}. �e
OCSVM was trained via the LIBSVM library [55]. In the
case of GMM, models were trained at di
erent numbers of
Gaussian components 2� with � = {1, 2, . . . , 8}, whereas
le�-right HMMs were trained with di
erent numbers of
states ? = {3, 4, 5} and 2� Gaussian components with � ={1, 2, . . . , 7}. GMMs and HMMs were trained using the Torch
[56] toolkit. �e decision values produced as output of the
OCSVM and the probability estimates produced as output of
the probabilistic models were postprocessed with a similar
thresholding algorithm (cf. Section 5) in order to fairly
compare the performance among the di
erent methods. For
all the experiments and settings we maintained the same
feature set.

8. Results

In this section we present and comment on the results
obtained in our evaluation across the three databases.

8.1. A3Novelty. Evaluations on the A3Novelty Corpus are
reported in the second column of Table 2. In this dataset
GMMs and HMMs perform similarly; however, they are
outperformed by the OCSVM with a maximum improve-
ment of 3.6% absolute �-measure. �e autoencoder-based
approaches are signi	cantly boosting the performance up

to 98.7%. We observe a vast absolute improvement by up
to 6.9% against the probabilistic approaches. Among the
three CAE, AE, and DAE, we observe that compression
and denoising layouts with BLSTM units perform closely to
each other at up to 98.7% in the case of the BLSTM-CAE.
�is can be due to the fact that the dataset contains fewer
variations in the background material used for training, and
the feature selection operated internally by the AE increases
the sensitivity of the reconstruction error.

�e nonlinear predictive results are shown in the last
part of Table 2. We provide performance in the three named
con	gurations and with the three named unit types. In
concordance to what we found in the PASCAL database, the
NP-BLSTM-DAE method provided the best performance in
terms of �-measure of up to 99.4%. A signi	cant absolute
improvement (one-tailed z-test [57], A < 0.01 (in the rest
of the manuscript we reported as “signi	cant” the improve-
ments with at least A < 0.01 under the one-tailed z-test
[57])) of 10.0% �-measure is observed against the GMM-
based approach, while an absolute improvement of 7.6% �-
measure is exhibited with respect to the OCSVM method.
We observe an overall improvement of ≈1% between the
“ordinary” and the “predictive” architectures.

�eperformance obtained by progressively increasing the
prediction delay (�) values (from 0 up to 10) is reported in
Figure 4. We evaluated the compression autoencoder (CAE),
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Figure 4: A3Novelty: performances obtained with NP-Autoencod-
ers by progressively increasing the prediction delay.

the basic autoencoder (AE), and the denoising autoencoder
(DAE) with MLP, LSTM, and BLSTM units, and we applied
di
erent layouts (cf. Section 7) per network type. However,
for the sake of brevity, we only show the best con	gurations.
�e best results across all the three unit types are 99.4%
and 99.1% �-measure for the NP-BLSTM-DAE and NP-
LSTM-DAE networks, respectively.�ese are obtained with a
prediction delay of 5 frames, which translates into an overall
delay of 50ms. In general, the best performances are achieved
with � = 4 or � = 5. Increasing the prediction delay up to 10
frames produces a heavy decrease in performance down to
97.8% �-measure.

8.2. PASCAL CHiME. In the 	rst column of Table 2 we
report the performance obtained on the PASCAL dataset
using di
erent approaches. Parts of the results obtained on
this database were also presented in [36]. Here, we con-
ducted additional experiments to evaluate OCSVM andMLP
approaches. �e one-class SVM shows lower performance
compared to probabilistic approaches such as GMM and
HMM, which seems to work reasonably well up to 91.4% �-
measure. �e OCSVM low performance can be due to
the fact that the dataset was generated arti	cially and the
abnormal sound dynamics were normalized with respect
to the “normal” material making the margin maximisation
more complex and less e
ective.Next, we evaluatedAE-based
approaches in the three con	gurations: compression (CAE),
basic (AE), and denoising (DAE). We also evaluated MLP,
LSTM, and BLSTM unit types. Among the three con	gura-
tions we observe that denoising ones perform better than the
others independently of the type of unit. In particular, the
best performance is obtained with the denoising autoencoder
realised as BLSTM RNN showing up to 93.4% �-measure.
�e last three groups of rows in Table 2 show results of the
NP approach again in the three con	gurations and with the
three unit types.

�e NP-BLSTM-DAE achieved the best result of up
to 94.4% �-measure. Signi	cant absolute improvements of
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Figure 5: PASCAL CHiME: performances obtained with NP-
Autoencoders by progressively increasing the prediction delay.

4.0%, 3.0%, and 1% are observed over GMM, HMM, and
“ordinary” BLSTM-DAE approaches, respectively.

Interestingly, applying the nonlinear prediction scheme
to the compression autoencoders NP-(B)LSTM-CAE
(92.8% �-measure) also increased the performances in
comparison with the (B)LSTM-CAE (91.3% �-measure).
In fact, in a previous work [35], the compression learning
process alone showed scarce results. However, here the CAE
with the nonlinear prediction encodes information on the
input more e
ectively.

Figure 5 depicts results for increasing values of the
prediction delay (�), ranging from 0 to 10. We evaluated
CAE, AE, and DAE with MLP, LSTM, and BLSTM neural
networks with di
erent layouts (cf. Section 7) per network
type. However, due to space restrictions, we only report the
best performances. Here, the best performances are obtained
with a prediction delay of 3 frames (30ms) for the NP-
BLSTM-DAE network (94.4% �-measure) and of one frame
in the case of NP-LSTM-DAE (94.2% �-measure). As in
the A3Novelty database, we observe a similar decrease in
performance down to 86.2% �-measure when the prediction
delay increases up to 10, which corresponds to 100ms. In
fact, applying a higher prediction delay (e.g., 100ms) induces
higher values of the reconstruction error in the presence of
fast periodic events, which subsequently leads to an increased
false detection rate.

8.3. PROMETHEUS. �is subsection elaborates on the
results obtained on the four subsets present in the PROME-
THEUS database.

8.3.1. ATM. �e ATM scenario evaluations are shown in
the third column of Table 2. �e GMM and HMM perform
similarly at chance level. In fact, we observe an �-measure
of 50.2% and 52.0% for GMMs and HMMs, respectively.
�e one-class SVM shows slightly better performance of up
to 60.2%. On the other hand, AE-based approaches in the
three con	gurations—compression (CAE), traditional (AE),
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Figure 6: PROMETHEUS-ATM: performances obtained with NP-
Autoencoders by progressively increasing the prediction delay.

and denoising (DAE)—show a signi	cant improvement in
performance up to 19.3% absolute �-measure against the
OCSVM. Among the three con	gurations we observe that
DAE performs better independently of the type of network.
In particular, the best performance considering the ordinary
(without nonlinear prediction) approach is obtained with the
DAEwith a LSTMnetwork leading to an�-measure of 79.5%.

�e last three groups of rows in Table 2 show results of the
nonlinear predictive approach (NP).�enonlinear predictive
denoising autoencoder performs best up to 81.6% �-measure.
Surprisingly, the best performance is obtained using MLP
units suggesting that for long events—as those contained
in the ATM scenario (with an average duration of 6.0 s, cf.
Table 1)—memory-enhanced units such as (B)LSTM are not
as e
ective as for shorter events.

A signi	cant absolute improvement of 21.4% �-measure
is observed against the OCSVM approach, while an absolute
improvement of 31.4% �-measure is exhibited with respect
to the GMM-based method. Among the two autoencoder-
based approaches we report an absolute improvement of 1.0%
between the, namely, “ordinary” and “predictive” structures.
Itmust be observed that the performance presented in [31] are
higher than the one provided in this article since the tolerance
window used in that study was set to 1 s whereas here
we aimed at a higher temporal resolution with a tolerance
window of 200ms which is suitable also for abrupt events.

Figure 6 depicts performance for progressive values of
the prediction delay (�) ranging from 0 to 10, applying a
CAE, AE, and DAE with MLP, LSTM, and BLSTM networks.
Several layouts (cf. Section 7) were evaluated per network
type; however, we report only the best con	gurations. Setting
a prediction delay of 1 frame, which corresponds to a total
prediction delay of 10ms, leads to the best performance of
up to 81.6% �-measure in the NP-MLP-DAE network. In the
case of the NP-BLSTM-DAE we observe better performance
with a delay of 2 frames up to 80.7% �-measure. In general,
we do not observe a consistent trend by increasing the
prediction delay, corroborating the fact that, for long events,
as those contained in the ATM scenario, memory-enhanced

units and a nonlinear predictive approach are not as e
ective
as for shorter events.

8.3.2. Corridor. �e evaluations on the corridor subset are
shown in the fourth column of Table 2.�eGMM andHMM
perform similarly at chance level. We observe an �-measure
of 49.4% and 49.6% for GMM and HMM, respectively.
�e OCSVM shows better performance up to 65.3%. As
observed in the ATM scenario, again a signi	cant improve-
ment in performance up to 16.5% absolute �-measure is
observed using the autoencoder-based approaches in the
three con	gurations (CAE, AE, and DAE) with respect to
the OCSVM. Among the three con	gurations, we observe
that the denoising autoencoder performs better than the
others. �e best performance is obtained with the denoising
autoencoder with a BLSTM unit of up to 79.8% �-measure.

�e “predictive” approach is reported in the last three
groups of rows in Table 2. Interestingly, the nonlinear pre-
dictive autoencoders do not improve the performance as we
have seen in the other scenarios. A plausible explanation
can be found based on the nature of the novelty events
present in the subset. In fact, the subset contains very
long events with an average duration of up to 14.0 s per
event. With such long events, the generative model does not
introduce a more sensitive reconstruction error. However,
the delta in performance between the BLSTM-DAE and the
NP-BLSTM-DAE is rather small (1.3% �-measure) in favour
of the “ordinary” approach. �e best performance (79.8%)
is obtained using BLSTM units con	rming that memory-
enhanced units are more e
ective in the presence of short
events. In fact this scenario—besides very long events—also
contains fall and pain short events with an average duration
of 1.0 s and 3.0 s, respectively.

A signi	cant absolute improvement up to 16.5% �-
measure is observed against the OCSVM approach, while
being even higher with respect to the GMM and HMM.

8.3.3. Outdoor. �e evaluations on the outdoor subset are
shown in the 	�h column of Table 2. �e OCSVM, GMM,
and HMM perform better in this scenario as opposed to
ATMand corridor.Weobserve an�-measure of 57.3%, 56.4%,
and 56.0% for OCSVM, GMM, and HMM, respectively. In
this scenario, the improvement brought by the autoencoder
is not as vast as in the previous subsets but still signi	cant.
We report an absolute improvement of 11.2% �-measure
between OCSVM and BLSTM-DAE. Again, the denoising
autoencoder performs better than the other con	gurations.
In particular, the best performance obtained with BLSTM-
DAE is 68.5% �-measure.

As observed in the corridor scenario, the nonlinear
predictive autoencoders (last three groups of rows in Table 2)
do not improve the performance. �ese results corroborate
our previous explanation that the long duration nature of the
novelty events present in the subset a
ects the sensitivity of
the reconstruction error in the generative model. However,
the delta in performance between the BLSTM-DAE and NP-
BLSTM-DAE is rather small (1.3% �-measure).

It must be observed that the performance in this scenario
is rather low compared to the one obtained in the other
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datasets. We believe that the presence of anger novel sounds
introduces a higher degree of complexity in our autoencoder-
based approach. In fact, anger novel events may contain
di
erent level of aroused content which could be acoustically
similar to neutral spoken content present in the training
material. Under this condition, the generative model shows a
low reconstruction error.�is issue could be solved by setting
the novel events to only contain the aroused segments or—
considering anger as a long-term speaker state—increasing
the temporal resolution of our system.

8.3.4. Smart-Room. �esmart-room scenario evaluations are
shown in the sixth column of Table 2. �e OCSVM, GMM,
and HMM perform better in this scenario as opposed to
ATM, corridor, and outdoor. We observe an �-measure of
57.4%, 59.1%, and 59.1% for OCSVM, GMM, and HMM,
respectively. In this scenario, the improvement brought about
by the autoencoder is still signi	cant. We report an absolute
improvement of 6.0% �-measure between GMM/HMM and
the BLSTM-DAE. Again, the denoising autoencoder per-
forms better than the other con	gurations. In particular, the
best performance in the ordinary approach is obtained with
the BLSTM-DAE of up to 65.1% �-measure.

�e last three groups of rows in Table 2 show results of the
nonlinear predictive approach (NP). �e NP-BLSTM-DAE
performs best at up to 65.6% �-measure.

As in the outdoor subset, we report a low performance
in the smart-room subset as well. In fact, the subset contains
several long novel events related to spoken content expressing
pain and fear. As commented in the outdoor scenario,
under this condition the generative model may be able
to reconstruct the novel event without producing a high
reconstruction error.

8.4. Overall. Overall, the experimental results proved that
theDAEmethods achieved superior performances compared
to the CAE/AE schemes. �is is due to the combination of
two leaning processes of a denoising autoencoder, such as
the process of encoding of the input by preserving the infor-
mation about the input itself and simultaneously reversing
the e
ect of a corruption process applied to the input of the
autoencoder.

In particular, the predictive approachwith (B)LSTMunits
showed the best performance of up to 89.3% average �-
measure among all the six di
erent datasets weighted by the
number of instances per database (cf. Table 2).

To better understand the improvement brought by the
RNN-based approaches, we provide in Figure 7 the compar-
ison between state-of-the-art methods in terms of weighted
average �-measure computed across the A3Novelty Cor-
pus, PASCAL CHiME, and PROMETHEUS. In general, we
observe that the recently proposedNP-BLSTM-DAEmethod
provided the best performance in terms of average�-measure
of up to 89.3%. A signi	cant absolute improvement of
16.0% average �-measure is observed against the OCSVM
approach, while an absolute improvement of 10.6% and 10.4%
average�-measure is exhibitedwith respect to theGMM- and
HMM-based methods. An absolute improvement of 0.6%
is observed over the “ordinary” BLSTM-DAE. It has to be
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Figure 7: Average �-measure computed over A3Novelty Corpus,
PASCAL, and PROMETHEUS weighted by the # of instance per
database. Extended comparison of methods.

noted that the average �-measure is computed including
the PROMETHEUS database for which the performance has
been shown to be lower because it contains long-term events
and a lower resolution in the labels (1 s).

�e RNN-based schemes also bring an evident bene-
	t when applied to the “normal” autoencoders (i.e., with
no denoising or compression); in fact, the NP-BLSTM-AE
achieves an �-measure of 88.5%. Furthermore, when we
applied the nonlinear prediction scheme to a denoising
autoencoder, the performance achieved with LSTM was in
this case comparable with BLSTM units and also outper-
formed state-of-the-art approaches.

In conclusion, the combination of the nonlinear pre-
diction paradigm and the various (B)LSTM autoencoders
proved to be e
ective, outperforming signi	cantly other
state-of-the-art methods. Additionally, there is evidence that
memory-enhanced units such as LSTM and BLSTM outper-
formed MLP without memory, showing that the knowledge
of the temporal context can improve the novelty detector
abilities.

9. Conclusions and Outlook

We presented a broad and extensive evaluation of state-of-
the-art methods with a particular focus on novel and recent
unsupervised approaches based on RNN-based autoen-
coders. We signi	cantly extended the studies conducted
in [35, 36] by evaluating further approaches such as one-
class support vector machines (OCSVMs) and multilayer
perceptron (MLP), and most importantly we conducted a
broad evaluation on three di
erent datasets for a total number
of 160153 experiments, making this article the 	rst to present
such a complete evaluation in the 	eld of acoustic novelty
detection. We show evidently that RNN-based autoencoders
signi	cantly outperform other methods by achieving up to
89.3% weighted average �-measure on the three databases,
with a signi	cant absolute improvement of 10.4% against
the best performance obtained with statistical approaches
(HMM). Overall, a signi	cant increase in performance was
achieved by combining the (B)LSTM autoencoder-based
architecture with the nonlinear prediction scheme.

Future works will focus on using multiresolution features
[51, 58], likely more suitable to deal with di
erent event
durations in order to face the issues encountered in the
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PROMETHEUS database. Further studies will be conducted
on other architectures of RNN-based autoencoders ranging
from dynamic Bayesian networks [59] to convolutional neu-
ral networks [60].
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