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Accidental falls are the main cause of fatal and nonfatal injuries, which typically lead to hospital admissions among elderly people.
A wearable system capable of detecting unintentional falls and sending remote notifications will clearly improve the quality of the
life of such subjects and also helps to reduce public health costs. In this paper, we describe an edge computing wearable system
based on deep learning techniques. In particular, we give special attention to the description of the classification and com-
munication modules, which have been developed by keeping in mind the limits in terms of computational power, memory
occupancy, and power consumption of the designed wearable device. (e system thus developed is capable of classifying 3D-
accelerometer signals in real-time and to issue remote alerts while keeping power consumption low and improving on the present
state-of-the-art solutions in the literature.

1. Introduction

Nowadays, unintentional falls are among the principal
causes of fatal injuries. Moreover, they are the most common
cause of hospitalization after nonfatal traumas. A study
conducted by the World Health Organization [1] highlights
that 25% of people aged over 65 years old fall every year, with
an increment to 32%–42% if considering only over 70.
Furthermore, even when the falls lead to less severe injuries,
the associated discomfort significantly reduces the quality of
life. It is worth noting that not only elderly people are af-
fected by unintentional falls, every person with some kind of
fragility related, for example, to postoperative conditions,
disability, or any other disease affecting mobility are part of
similar statistics. In addition, it is well known that the
majority of unintentional falls happens in the home
environment.

(ese facts highlight the importance of an automated
system capable of detecting unintentional falls sending re-
mote notifications so that timely help can be given. Among
the different approaches described in the literature, em-
bedded wearable devices are emerging as the best choice for

this kind of systems. (is is mainly due to their low in-
trusiveness, reduced power consumption, and cost effec-
tiveness. Moreover, the recent innovations on the
microcontroller units (MCUs), which are typically used for
wearable devices, provide the necessary computational
power that enables them to perform complex computations
directly on the MCU. (is allows to implement more
complex methods than in the past on-board wearable de-
vices, thus effectively enabling a very specific kind of edge
computing. Among these methods for fall detection, deep
learning techniques recently showed to be a very promising
approach [2, 3].

In this paper, we describe an embedded framework
based on edge computing and on machine learning for fall
detection on-board wearable devices. In particular, we ex-
tend our system proposed in [4] with a novel strategy to
improve the overall system performance together with the
design of a suitable Bluetooth Low Energy (BLE) protocol for
an effective minimization of data transmission.

It is worth highlighting that the adopted methodology
for this personal monitoring system based on deep learning
methods is very general and could be reused also for
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different applications beyond the reported one. As an ex-
ample, deep learning methods on embedded devices can be
used in different fields, such as automotive [5], security and
surveillance [6], augmented reality [7], and healthcare [8].

(e paper is organized as follows. In Section 2, the state
of the art of both wearable devices and fall detection through
machine/deep learning techniques is described. (en, the
proposed system is presented and the classification and
communication modules are described in detail, high-
lighting the reasons for the different design choices. (ese
modules are then evaluated from different points of view,
including computational complexity, power consumption,
and memory occupancy in Section 3, evaluating how these
modules impact on the performance of the overall system.
Section 4 gives some final remarks and possible future re-
search lines.

2. Materials and Methods

2.1. State of the Art. In the fall detection literature, two main
trends can be identified: one is based on ambient moni-
toring, while the other harnesses wearable or portable de-
vices. Ambient monitoring is typically based on cameras
mounted in rooms. (e main issues of this approach are the
expensiveness, the high power consumption, and the in-
trusiveness of the system in terms of privacy. Portable and
wearable devices do not suffer from these limitations. In the
latter category, two main approaches can be found: one is
typically based on smartphones [9–12] and another on
several kinds of wearable devices with specific hardware
[13–16]. As fall detection devices, smartphones suffer from
several limitations, which affect the overall performance
[17]. First, the sensors are shared and managed by the
operating system in a pre-emptive fashion. In a smartphone,
in fact, several applications are simultaneously executed and
this implies that all sensors are shared among all the ap-
plications which need sensory data, some of which run at a
high priority. (erefore, it is not possible in practice to
achieve the guarantee of a fixed sampling frequency and this
is a critical issue especially for artificial intelligence methods.
Last but not the least, in general, the typical duration of the
battery is not compatible with continuous monitoring
during the entire day. On the contrary, wearable devices are
designed for one specific task only, they have direct access
which guarantees a fixed sampling frequency; therefore,
battery duration can be made to be longer than with
smartphone-based solutions.

A thorough analysis of the existing wearable system
solutions for fall detection highlights two main research
tracks. In the first track, we find on-board elaboration of
sensory readings; typically, the acquired sensors data are
filtered and then processed through techniques based on a
fixed threshold or via other statistical methods, and then the
results are sent to a remote device.

Cola et al. [13] proposed a head-worn device containing
an accelerometer and a barometer integrated with a TI
MSP430 MCU. Jung et al. [14] described a system including
a three-axial accelerometer, an MCU, and a Bluetooth
module. (ese components are attached to a jacket and are

connected to each other via stretchable conductive nylon.
Nyan et al. [15] proposed a system using accelerometers and
gyroscopes. In this work, sensors are connected via Zigbee
transceivers to a board based on an Intel PXA255 processor,
where the actual processing takes place. In another system
[18], a custom processor based on FPGA technology elab-
orates the data acquired from the accelerometers.

It is worth noting that this kind of elaboration is simple
and does not require high-computational capabilities. On
the contrary, the accuracy of fixed threshold-based and
statistical methods is not so high and is outperformed by
artificial intelligence techniques.

On the second track, several works adopted more so-
phisticated methods, but by abandoning the on-board
processing in favor of remote elaboration. In these ap-
proaches, the wearable device acquires data from the sensors
and then sends them to a workstation that performs the
elaboration. A relevant example is the SHIMMER (Sensing
Health with Intelligence, Modularity, Mobility, and Ex-
perimental Reusability) integrated sensors platform [19]. In
[20], the data acquired by the SHIMMER 3D accelerometers
is sent via Bluetooth to a remote workstation, which per-
forms the classification through a Support Vector Machine
(SVM) classifier. Authors also compared the SVM with
K-Nearest Neighbours (KNN) and complex trees. A similar
study is conducted in [3], where gyroscopes and acceler-
ometers data are processed by machine learning approaches.

Apart from the SHIMMER, other Commercial Off-the-
Shelf (COTS) devices are emerging. In particular, the
SensorTile board produced by STMicroelectronics is
attracting the researchers because of its computing and
memory capability together with low power consumption.
(e core of this device is the STM32L476JGY MCU with a
maximum clock frequency of 80MHz. (e board is also
equipped with two three-axial accelerometers, a magne-
tometer, a barometer, and a gyroscope. It also integrates a
Bluetooth 4.1 transceiver, which is a popular protocol for IoT
applications.

(e mounted MCU is an ARM Cortex M4 core,
equipped with a Floating-Point Unit (FPU) which is fully
compliant with the IEEE single-precision floating-point
standard. (e board is also equipped with 1MB of flash
memory and 128KB of SRAM. (is device has been suc-
cessfully employed in human activity recognition [21] and
fall detection [4]. In the above perspective, the fall detection
system presented in [4] performs data classification through
deep learning methods elaborated on the device. (is means
that it outperforms the other devices in terms of accuracy
because it adopts deep learning methods and reduces power
consumption since the elaboration is performed on board,
without the need for continuous data transfers. However,
this system can be further optimized both from the point of
view of computational complexity and power consumption.
In this paper, we present a significant improvement of our
previous work described in [4]; in particular, the system has
been enriched with a pre-elaboration step which prevents
the MCU from classifying data that does not contain rele-
vant information. Moreover, a communication protocol
based on the BLE standard has been designed in order to
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minimize the communications between the SensorTile
board and a remote host.

2.2.DeepLearning. Deep learning methods are currently the
state-of-the-art approach for many computer vision and
signal processing problems. In particular, to process time
series signals (i.e., data acquired by sensors over time),
Recurrent Neural Networks (RNNs) are considered the best
solution [22]. Such networks are a specific kind of artificial
neural network, in which part of the output is fed back as
input.

Generally speaking, an RNN can be described by

y(t) � wg Wx(t) + Uh(t− 1) + b  + c, (1)

where x(t) and y(t) are the input and the output at the time t,
respectively,W, U, w, b, and c are the network parameters,
and g denotes a nonlinear function. (e term h(t) indicates
the hidden state, which is defined as follows:

h(t) � g Wx(t) + Uh(t− 1) + b  + c. (2)

(e drawback of this kind of network is the training
phase, which is very hard to perform both in theory and in
practice.(e standard trainingmethod for RNNs is temporal
unfolding, where each training input sequence of predefined
length is fed as input to the unfolded network. (is tech-
nique is shown in Figure 1.

To analyze time series (e.g., accelerometers acquisitions
over time) the input data stream is scanned through a sliding
window of a suitable size, which must match the predefined
level of unfolding for training.

Once the training is completed, the obtained RNN can be
used to analyze an input stream by sliding a window of size
ωω over the input stream, resetting and rerunning the RNN
for each input window. (is process is known as inference
and is used to recognize specific patterns in the input. To
reduce the computational cost of inference, the input
windowωi is typically slid at interval s≫ 1 of constant length
called strides. All the concepts related to the sliding window
technique are shown in Figure 2.

Long Short-Term Memory (LSTM) [23, 24] cells are a
particular kind of RNN which are able to detect and
reproduce long-term temporal dependencies. (ey fea-
ture the capability to learn how to forget and filter part of
their hidden state during the inference. (e main ad-
vantage is that those networks are easier to train because
they do not suffer from the so-called vanishing gradient
problem. On the contrary, they are more complex than
standard RNNs from the computational point of view.
(e behavior of an LSTM cell is described by the fol-
lowing equations:

c(t)in � tanh Wxcx
(t)
+Whch

(t− 1)
+ bc , (3)

i(t) � sigmoid Wxix
(t)
+Whih

(t− 1)
+ bi , (4)

o(t) � sigmoid Wxox
(t)
+Whoh

(t− 1)
+ bo + bforget , (5)

f(t) � sigmoid Wxfx
(t)
+Whfh

(t− 1)
+ bf , (6)

c(t) � f(t)c(t− 1) + i(t)c(t)in , (7)

h(t) � o(t)tanh c(t) , (8)

whereW ∈ RLS×LS, x(t), h(t), c(t)in , i
(t), o(t), f(t), c(t), b ∈ RLS.

LS is a hyperparameter, called the LSTM size, and is defined
upfront by design as constant among all cells.

Figure 3 shows the typical structure of an LSTM cell, where
x(t) and h(t− 1) are given as input for computing equations
(3)–(6), indicated as circles in the figure. (e small circles with
a point inside indicate the element-wise multiplications needed
for preparing the inputs for the evaluation of equations (7) and
(8). (e result of equation (8) is the output of the cell.

2.3. Fall Detection with Deep Learning for Embedded
System. Different deep learning methods have been suc-
cessfully used for fall detection [2, 25–28]. Analyzing those
systems, we see that all these methods rely either on models
with a huge number of parameters or on remote commu-
nication. In terms of potential criticalities, in the former
approach, the set of binary parameters (usually called the
model of a network) can easily become too heavy to be
elaborated in real-time on a wearable device, while in the
latter approach, if we consider a 24/7 monitoring, intensive
data communication might well drain the battery charge too
quickly [29].

(e implementation of deep learning methods on an
embedded system is a topic of current interest, as witnessed
by the development of TensorFlow Lite [30]. (is software is
a reduced version of the complete TensorFlow software
framework and can be executed on mobile and embedded
devices. However, this software is still in an early devel-
opment stage and at present has some limitations: first, only
some MCUs are currently supported and, among the low-
power microcontrollers, only the ARM Cortex M3 MCU is
currently supported. Moreover, the part of the complete
TensorFlow framework which is implemented is at present
insufficient to implement LSTMs. To the best of the authors’
knowledge, RNNs have been successfully deployed to an
ARM Cortex M4MCU only in our previous work [4], where
we described a runtime inference module based on an RNN
network. In this work, the communication module plus
other energy-saving provisions were not discussed and, as
we will see here, such improvements can be significantly
beneficial to the whole embedded module.

2.4. Architecture of the Proposed Edge Computing System.
Overall, the proposed software system can be divided into
two main components: the first component is devoted to the
offline training of the LSTM network, while the second
relates to the real-time classification of sensor readings and
the communication to a gateway of relevant events. (e
training of a deep network directly onboard with a typical
MCU like the one used in this project is unfeasible due to
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memory and computational power constraints. �us, net-
work training must be performed off-board, on a work-
station. In the proposed system, the training is performed on
a Dell 5810 workstation using TensorFlow 1.8. �e training
set was collected during an extensive campaign conducted at
the University of Pavia in which over 40 volunteers par-
ticipated in recording sensory data while performing sim-
ulated activities and falls, according to a predefined protocol
of 17 standard maneuvers. Each recording is associated to a

video sequence that describes the performed activity, and
annotations are added subsequently by identifying and
marking the actual time intervals in which specific events
took place [31]. Once trained, the model can be deployed on
the MCU.

In the literature, there are several strategies to optimize
both memory occupancy and power consumption. One of
the most popular techniques is integer quantization. �is
method requires the definition of a range of values for
parameters and variables and uses 8-bit integer encoding for
converting back and forth floating-point values into such
range. �e gain in memory occupancy is clear since every
parameter or variable has a footprint four times lower than
adopting floating point. However, from the computational
point of view, quantization raises also some critical issues. In
particular, the LSTM cell requires both linear and nonlinear
operations. If the precision loss in linear operations is
negligible, the nonlinear operations suffer from a substantial
inaccuracy compared to the floating-point counterparts. In
addition, depending on the approach adopted, quantization
may require several bidirectional conversions between in-
tegers and floats, thus making the overall gain in terms of
computational efficiency to be clearly assessed.

Another possible strategy which is very popular in
custom hardware architectures is the fixed-point repre-
sentation. In this technique, the data are represented using a
subset of the bits of a word for the integer part and the
remaining bits for the decimal part. In this way, the basic
mathematical operations can be performed using only the
integer arithmetic unit of the MCU. However, according to
the experiments performed in our laboratory, the precision
is again a critical issue because, also in this case, the non-
linear operations suffer from significant precision loss. We
also evaluated a hybrid approach when the linear operations
are performed in fixed-point format and the nonlinear
functions adopt the floating-point format. In this case, a
conversion between the two different numeric representa-
tions is mandatory. �is leads to a significant loss in
computational time, which does not allow to achieve the
real-time constraint. Moreover, this solution performs even
worse than a pure floating-point inference because the
adopted MCU is equipped with a floating-point unit, which
can perform basic arithmetic operations in only one clock
cycle. �erefore, for those reasons, we adopted the single-
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precision floating-point representation in our runtime
module.

Once the LSTM network is deployed on the SensorTile
device, the wearable system is ready to act as a wearable,
intelligent fall detector. �e device should be worn by the
monitored subject and, at this point, it begins to acquire
sensory data and to classify events. If the classifier detects a
fall or a warning situation, the device sends via BLE a
message to the gateway, which then forwards it to the cloud
for the notification of the alert to the service actors that are
designated to intervene.

Both the classifier module and the BLE protocol de-
veloped in this work are described in detail in the following
sections.

�e general architecture of the fall detection system is
depicted in Figure 4.

�e LSTM training is performed on a workstation using
TensorFlow, and the model is then deployed on the MCU by
uploading a custom firmware. Events classification is per-
formed online and in real-time and, when dangerous sit-
uations are detected, the device issues a BLE message to a
gateway that forwards this information to a remote monitor
through the cloud.

2.5. Inference Runtime Module on the MCU. As a basis for
our classifier module, we adopted the same network ar-
chitecture described in [4]. Such an architecture includes
two LSTM layers, two fully connected layers, and a softmax
layer.�e inner dimension of the LSTM cell is 32. In [4], this
network architecture performs the classifying inference in
real-time by considering a 1 second window width.

In the work described here, we have improved the overall
classifying module by introducing a procedure for the
preliminary detection of operating conditions, in particular,
whether the device has been worn by the monitored subject,
which engages the full classifying network only when sensor
readings are compatible with the occurrence of a significant
event. We also modified the initialization phase to perform
some self-diagnostics and signal to the gateway of hardware
malfunctions, if any. In particular, the system can detect
hardware malfunctions related to the sensors, i.e., if the chip
is not responding to theMCU requests.�e flow chart of this
extended classifying module is shown in Figure 5.

�e first step is the initialization of the accelerometers,
the BLE module, and the inference module. �e latter
module is the most interesting one since it is not a standard
software routine. It manages all the memory allocations for
the network variables and initializes the weights matrices by
loading the values from the flash memory.

During the accelerometer initialization, the routine
checks if there are hardware malfunctions and, in this case,
issues a BLE message to the gateway.

When all the initializations have been performed cor-
rectly, the main loop begins.

At every second, a window containing the accelerometer
readings is ready to be processed.�e first step is to compute
the variance of the accelerations. �e ARM Cortex M family
can exploit the ARM CMSIS library which includes several

floating-point routines among which there is the variance
computation [32]. However, the variance is computed there
using the standard formula, which is not optimized. For this
reason, we implemented the variance computation
according to the Welford online algorithm:

M2,n �∑
n

i�1

xi − xn( )2,

M2,n �M2,n− 1 + xn − xn− 1( ) xn − xn( ),

s
2
n
�
M2,n

n − 1
,

(9)

where xi is the ith sample and xn is the mean after n samples.
�is algorithm computes the variance inspecting each
sample only once, avoiding to loop over the data to compute
the mean of the sample window. �e obtained variance is
compared with two different thresholds. As said before, the
first comparison is used to know if the device is worn by the
monitored subject (wear threshold), while the latter detects if
the dynamics of the signal is compatible with the occurrence
of interesting events (classify threshold). �ese two thresh-
olds have been experimentally estimated by recording the
accelerometer data in different conditions. For the wear
threshold, the device has been put on a flat surface in dif-
ferent positions, in order to record the accelerometer out-
puts at different orientations. After that, we evaluated the
accelerometer readings when the device is worn by people
performing daily activities such as walking, standing up, and
sitting down.

If the variance is lower than the wear threshold, the
device sends a BLE message to the gateway in order to signal
that the device is not worn by the monitored subject.
Otherwise, the second threshold is considered. If the dy-
namics of the reading is low, a more sophisticated and
expensive classification is not necessary, since the occur-
rence of any relevant events can be simply ruled out.
Otherwise, when the sensory dynamics are higher, readings
are passed as input to the classificationmodule, which acts as

Trained
model

Off-board training

Online inference

Remote
monitor

Public
internet

Figure 4: �e architecture of the proposed system.
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described in [4]. When the classification module detects in
turn either a fall or a warning situation, the BLE module
sends an alert message to the gateway, which notifies the
service actors that are designed to intervene.

�e firmware of the wearable device repeats these op-
erations every second until the user switches off the system.

2.6. Bluetooth Low Energy Protocol. �e communication
between the wearable device and the gateway relies on the
BLE protocol.�is protocol is designed to transmit data only
occasionally. Figure 6 shows the BLE protocol stack [33].

As can be seen from Figure 6, a generic BLE application
is made up of three main components: the Application, the
Host, and the Controller [34]. �e Application is the highest
level and contains all the logic and data handling.

�e Host consists of the following layers:

(i) Logical Link Control and Adaptation Protocol
(L2CAP): it encapsulates data into BLE packets and

manages data fragmentation and recombination
tasks.

(ii) Attribute Protocol (ATT): it is a simple client/server
protocol based on attributes presented by a device.
A client requests data from a server, and the server
then sends data to its clients.

(iii) Generic Attribute Profile (GATT): it adds a data
model and hierarchy defining how data are orga-
nized and exchanged between different applications.

(iv) Generic Access Profile (GAP): it controls adver-
tising and connections and specifies how devices
perform control procedures such as device dis-
covery, connection, and security levels.

(v) Security Manager Protocol (SMP).

�e Controller includes the following layers:

(i) Link Layer (LL): it is in charge of establishing
connections and filters out advertising packets
depending on the Bluetooth address or based on the
data itself

(ii) Physical Layer (PHY): it contains the circuitry to
modulate and demodulate analog signals and to
convert them into digital signals

�e GATT is the most important component to develop
in order to design an effective protocol. It is organized in
Services, each one containing one or more Characteristics.
�e BLE standard defines Services for the most common and
general task of an application, such as the Battery Service,
which includes the Battery Level characteristic, containing
the charge percentage of the battery. Besides the default
services, custom services and characteristics can be added to
the GATT.�is is of crucial importance for the fall detection
system since the actual BLE standard does not include a
service related to this task. For this reason, we defined a
custom service with specific characteristics. Figure 7 shows a
diagram of the GATT services included in our wearable
device.

It is worth noticing that, in our wearable system, the BLE
standard Battery Service coexists with the custom Fall Service
we defined. �e Fall Probability and Warning Probability
characteristics are represented as unsigned 8 bit integers
since their value ranges from 0 to 100. Also, the Status is an
unsigned 8 bit integer. In this case, the least significant bit is
used to signal if the device is worn or not, while the bit in
position 1 is used for alerting in the case of hardware
malfunctions. �e Wear  reshold, Classify  reshold, and
Alert  reshold are characteristics that can be written by the
gateway in order to change the value of their respective
variables used as a threshold in the inference module. �ese
characteristics are represented as single-precision floating-
point numbers. �e Postural Monitoring is a long charac-
teristic, which can have a maximum size of 512 bytes,
according to the BLE standard. It is used to transmit 10
seconds of recording to the gateway, in order to monitor the
accelerometer values which are related to the status of the
monitored subject after a fall. Even if the BLE standard
defines the maximum size of a long characteristic as

Start

Initialize sensors, BLE
and inference module

HW
malfunction

Send BLE message Stop

No

Acquire sensor data

Compute variance

Device
worn

Send BLE message

Inference

Yes

No

No

Yes

Perform inference

Fall/warning
No

Yes

Send BLE message

Figure 5: �e flow chart of the classification module implemented
on the ARM Cortex M4 MCU.
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512 bytes, in the SensorTile this limit has been set to
256 bytes by the vendor. �e 3D-accelerometer data are
sampled at a frequency of 100Hz; therefore, the total
amount of data needed for the postural monitoring is
1200 bytes. Since this value exceeds the size limit of the
device, we decided to under-sample the acquired data by a
factor of 5, achieving a data size to transmit of 240 bytes,
which is compatible with the restriction of our device.

3. Results and Discussion

In an offline computational validation, the embedded
component has been tested against the TensorFlow results in
order to ensure that the classification module produces the
correct outputs. We tested the wearable system classification
module by feeding different prerecorded signals sequences
to the network as inputs. �e results of the embedded
classification module differed from those obtained with
TensorFlow of about 10− 7, which is a negligible error con-
sidering that the outputs are probability values ranging from
0 to 1. �e classification achieves an accuracy of 90%. �e
total number of tracks acquired during the campaign per-
formed at the University of Pavia is 18032. About 80% of
those tracks have been used to train the system, while the
remaining 20% as test set. It is worth noticing that the size of
this database is much bigger than the size of other databases
in the literature.

To evaluate the impact of the proposed classification
module compared to the one described in [4], it is necessary
to estimate the computational complexity of the Welford
online algorithm, used for the variance estimation, which is
the main modification to the runtime module, whereas the
comparison between the variance and the threshold can be
neglected since their computational weight is not

comparable to the whole network complexity. �e Welford
online algorithm requires 30ωω + 5 FLOPS, which is sig-
nificantly lower than the number of FLOPS needed by the
data classification complexity reported in [4]. �is consid-
eration is confirmed by the experimental data, which
highlighted that the differences in the elaboration times are
negligible. On the other hand, the gain in computational
time is evident when considering that the classification is
performed only for certain signal windows. �is means that
also the power consumption decreases since fewer opera-
tions are needed and theMCU can be put into sleepmode for
a longer time than performing the classification.

In addition, if we consider memory occupancy, the
impact of the proposed module is negligible compared to the
work in [4]. Indeed, the Welford algorithm and the BLE
module require only some scalar variables, except for the
postural monitoring, which needs a 3ωω long array of float
elements, which is significantly smaller than the 82 kB taken
by the network parameters.

Considering the BLE communication module, it uses the
very low-power BLE single-mode network processor in-
tegrated in the SensorTile board. �is network processor has
a current consumption of about 1.7 μA when the module is
active but not transmitting to the gateway. On the other
hand, the maximum drained current is about 8.2mA, which
is higher than the current consumption of the MCU when
performing the classification (about 5mA [4]). �is is a
critical issue because it limits the quantity of data that can be
transmitted without draining the battery charge too fast. In
fact, continuous data transmission will nearly reduce to one-
third of the battery charge duration, since the absorbed
current diminishes from 5mA to about 13mA. For this
reason, the proposed communication protocol has been
designed in order to transmit only alerts related to particular

Application (app)

Generic Access Profile
(GAP)

Generic Attribute Profile
(GATT)

Security Manager Protocol
(SMP)

Attribute Protocol
(ATT)

Logical Link Control and Adaptation Protocol
(L2CAP)

Host Controller
Interface

(HCI)

Link Layer (LL)

LE Physical Layer (PHY)

Application

Host

Controller

Figure 6: �e BLE stack.
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events. Moreover, the number of packets to transmit and
receive to/from the gateway is minimal. When considering
unsigned 8-bit integers, these data can fit in a single BLE
packet, while float data require two BLE packets. �e main
limit of the proposed protocol is represented by the Postural
Monitoring long characteristic, which requires 12 packets to
be transmitted to the gateway. For this reason, the Postural
Monitoring should be performed only when it is strictly
necessary, in order to preserve the battery charge.

It is worth noticing that the transmitted data are related
to events that are infrequent, therefore, the BLE radio is
inactive for most of the time, keeping the BLU module
current consumption negligible.

�e improvements with respect to the work presented in
[4] are summarized in Table 1.

Table 1 clearly shows that the proposed system improves
and outperforms our previous work, both from the com-
putational and power consumption point of view. �e table
shows both the best case and the worst case analysis of the
proposed solution. �e first is related to all those situations
when the variance is below the inference threshold and
therefore it is possible to save computational power by
avoiding to evaluate the whole LSTM network. �e latter is
about data that should be analyzed by the LSTM network,

and a BLE message is sent to the remote host. It is worth
noticing that the best case is the more frequent one, since the
variance threshold has been estimated in order to avoid to
perform inference on data related to normal daily living
activities. �erefore, it is possible to say that the proposed
system is operating in the best case conditions for the
majority of the time, allowing a significant gain in power
consumption. Moreover, this modification requires a neg-
ligible memory occupancy increase, as it can be seen from
Table 1. Finally, this system is capable of communication
with a remote host, through a BLE protocol that has been
designed in order tominimize data transfers (again to reduce
the impact on the power consumption).

4. Conclusions

In this paper, we described the development of an edge-
computing wearable device for personal monitoring
exploiting deep learning methods, capable of detecting
unintentional falls. In particular, we discussed the optimi-
zation of the real-time classification module embedded on
the wearable device, together with the developed strategies to
avoid unnecessary computations and to reduce power
consumption.

�ose strategies have been developed after analyzing the
data collected during an extensive campaign conducted at
the University of Pavia that allowed to carry out one of the
biggest databases that can be found in the literature. In
particular, the two thresholds used to avoid unnecessary
computations have been defined after a careful analysis of
this data.

We also described the developed BLE protocol, in order
to minimize the communications between device and
gateway, enabling a suitable alerting when specific events
happen, without affecting the battery charge duration.

�ese results clearly improve on and further complete
our previous system described in [4], enriching it with
significant extensions. To the best of the authors’ knowledge,
this is the first edge computing wearable system for fall
detection including such deep learning techniques and with
the level of performance obtained.

Future works will be focused on integrating data from
different kinds of sensors (i.e., barometers and/or gyro-
scopes) in order to improve the classification accuracy.

Moreover, the developed prototype could include dif-
ferent hardware architectures, with better potential support
for the quantization of both network parameters and
nonlinear operation processing. �is is a further in-
vestigation line to explore for our research.

Sensortile

Fall service

Fall probability

Warning probability

Status

Postural monitoring

Wear threshold

Classify threshold

Alert threshold

Battery service

Charge level

Figure 7: �e GATT services and characteristics of our wearable
system.

Table 1: Comparison between [4] and this work.

System
Processing
time (ms)

Memory
occupancy

Power consumption

[4] 342 82 kB 5mA for 342ms

�is work
best case

0.264 83.2 kB
5mA for 0.264ms and

1.7 μA for BLE

�is work
worst case

∼342 83.2 kB
5mA for 342ms and

8.2mA for BLE
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