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Abstract— Modeling ionospheric variability throughout a
proper total electron content (TEC) parameter estimation is
a demanding, however, crucial, process for achieving better
accuracy and rapid convergence in precise point positioning
(PPP). In particular, the single-frequency PPP (SF-PPP) method
lacks accuracy due to the difficulty of dealing adequately with
the ionospheric error sources. In order to apply ionosphere
corrections in techniques, such as SF-PPP, external information
of global ionosphere maps (GIMs) is crucial. In this article,
we propose a deep learning model to efficiently predict TEC
values and to replace the GIM-derived data that inherently
have a global character, with equal or better in accuracy
regional ones. The proposed model is suitable for predicting the
ionosphere delay at different locations of receiver stations. The
model is tested during different periods of time, under different
solar and geomagnetic conditions and for stations in various
latitudes, providing robust estimations of the ionospheric activity
at the regional level. Our proposed model is a hybrid model
comprising of a 1-D convolutional layer used for the optimal
feature extraction and stacked recurrent layers used for temporal
time series modeling. Thus, the model achieves good performance
in TEC modeling compared to other state-of-the-art methods.

Index Terms— 3-D tensor, global navigation satellite system,
ionospheric variability, recurrent neural network (RNN), total
electron content (TEC).

I. INTRODUCTION

THE ionosphere is typically defined as that part of the
Earth’s upper atmosphere with a sufficient concentration

of free electrons affecting the propagation of electromagnetic
waves. The electrons density depends on the time of the day
and the Sun’s activity, the atmospheric density profile, the geo-
graphic location, and the magnitude and orientation of the
Earth’s magnetic field [2]. The total electron content (TEC),
defined as the integral of the electron density over a signal
path, is often used to describe ionosphere variability [3], [4].
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Since radio wave signals pass through the electrons of the
ionosphere, the signal velocity and the ray path change [5].

Consequently, the transmitted signals from the Global Nav-
igation Satellite Systems (GNSS) are directly affected by
the ionospheric variations, causing delays [6]. These delays
depend on the signal frequency and the electron density
along the transmission path. Hence, ionospheric variability
introduces an additional error source in GNSS position-
ing [7]. The use of multiple navigation signals of distinct
center frequency transmitted from the same GNSS satel-
lite allows direct estimation of these ionospheric delays.
Exploiting the fact that different signal frequencies are
affected differently by the ionosphere, an appropriate process-
ing strategy of multiple-frequency GNSS signals, eliminates
the ionospheric error [7]. Contrary to multifrequency GNSS
receivers, real-time (RT) single-frequency (SF) positioning
with a low-cost receiver has received increasing attention in
recent years due to its large amount of possible applications.
However, in this case, one major challenge is the effective mit-
igation of these ionospheric delays [8]. RT-SF-standard point
positioning (SPP)/precise point positioning (PPP) techniques
use ionospheric vertical TEC (VTEC) products released by the
International GNSS Service (IGS) RT service [9] to eliminate
the ionospheric error and apply corrections to the model as
external parameters [1]. However, these ionospheric VTEC
products have global coverage.

Many researchers investigate the ionospheric variation,
applying regional models. Linear or nonlinear filters are
employed to model the TEC values at the regional level.
As far as linear modeling is concerned, autoregressive (AR)
or AR moving average (ARMA) filters derived from
the time series signal processing research community are
applied [10], [11]. These filters are linear regressions in
the time domain, and thus, they cannot capture the com-
plex and highly nonlinear phenomena that occurred in the
ionosphere.

There are various useful indicators for TEC modeling.
These parameters (indicators) related to geomagnetic and solar
activity conditions are given as follows.

Geomagnetic Indices: Here, the planetary Kp-index and the
Ap-index are used, while the disturbance storm-time Dst-index
is related with ionosphere short-term changes from several
hours to several days [12].

Solar Indices: The sunspot number (SSN) and the solar
radio flux F10.7 better suit long-term variations of the order
of months (27-day solar rotation) [13].
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In this article, we overcome the aforementioned limitation
of the linear filers by constructing robust nonlinear regional
models for ionospheric variability modeling, applying as
external ionosphere corrections. In particular, we propose a
spatiotemporal deep learning architecture for electron density
modeling, combining a convolutional neural network (CNN)
to capture the spatial variability of TEC, and a gated recurrent
unit (GRU) for temporal variability modeling. The proposed
deep recurrent architecture successfully models ionosphere
conditions and estimate the ionospheric delays on the GNSS
satellite signals, treating ionosphere variations as a nonlinear
time series regression problem.

A. Related Work

An AR model is a common linear regression approach
for modeling of TEC values at a regional level [14], [15].
Such architectures model the TEC values based on previously
measured electron density data. The limitation of an AR
filter is that no external measurable parameters are allowed
to be utilized by the model. Thus, ARMA filters have been
investigated for TEC modeling [10], [16]. The main difference
between an AR and ARMA process is that the first (i.e.,
AR) models a time series in terms of its own lags (previous
observable measurements), while an ARMA filter includes two
parts: an AR where previous observations affect the output and
the moving average (MA) part where external observations
trigger the output. In this context, the work of [11] proposes
an adaptive AR process to capture the time variations of
the electron density. In addition, the work of [17] combines
wavelet transform with AR models for ionosphere variations
estimation. However, the main common drawback of these
linear models is that they fail to capture the abrupt changes
in electron density values due to the linear assumptions made.
In addition, linear regressions are not adequate to model abrupt
changes existing in TEC signals.

Recently, and mainly due to the advances in artificial
intelligence (AI) research, many efforts are utilized to develop
TEC models using nonlinear regression architectures based
on machine learning algorithms. In this context, a widely
used model is the feedforward neural network, consisting of
interconnected artificial neurons capable of modeling nonlin-
ear input-output relationships [18]. The feedforward neural
network examples for modeling electron density signals are
the works of [19], [20], and [21]. In fact, feedforward neural
networks are capable of approximating nonlinear ARMA
relationships, therefore improving the performance in TEC
modeling. Nonlinear ARMA filters with recursive capabilities
have been also proposed in [22] and [23]. Other works in
this field apply radial basic function (RBF) models [24], with
advance nonlinear interpolation capabilities, or support vector
machines (SVMs) [25]. The latter are supervised learning
paradigms for data classification and regression.

The main limitations of the aforementioned nonlinear
regression models are that they present convergence instabili-
ties, especially when a large number of neurons are employed
in the network. In addition, there are no recurrent feedback
mechanisms among the artificial neurons. Therefore, such

filters fail to approximate temporal dependencies and high
abrupt changes in TEC time series values with high precision
accuracy.

For this reason, recently, deep machine learning has been
proposed as an alternative paradigm for regression and classi-
fication [26]. Deep learning incorporates multiple hidden neu-
rons and applies advanced learning algorithms, such as input
compression and dimensionality data reduction, to handle the
computational issues arising when a large number of neurons
are considered. Recurrent neural networks (RNNs) are a class
of networks allowing connections (feedback) between the
nodes (neurons) in order to model the temporal behaviors of
a time series signal [27]. Thus, RNNs are capable of handling
the time dependencies in TEC modeling. However, RNNs
fail to approximate more complex temporal dependencies,
presenting also computational issues in computing the gradient
during the learning process, especially when a large number
of neurons are employed (the so-called vanishing gradient
problem [28]).

To address these limitations and simultaneously to retain
the advantages of deep learning in approximating temporal
dependencies, long short-term memory (LSTM) architectures
have been recently proposed [29]. In the context of TEC
modeling, LSTM networks memorize temporal correlations
of the TEC signals, therefore providing better modeling
capabilities [30]–[32].

Although the aforementioned architectures are good model-
ing approximators of TEC, they mainly focus on the temporal
modeling dimension, which is of estimating TEC changes
between different temporal epochs. However, a TEC time
series signal also depends on the geographic location, and
therefore, different weights should be assigned to the model
for different station latitudes. This so-called spatial variability
cannot be modeled through the traditional LSTM deep learn-
ing architectures. In addition, LSTMs have more trainable
parameters (e.g., weights) compared to the traditional RNN
models. Consequently, they give us, on the one hand, more
controllability and, thus, better results but with the cost, on the
other hand, of more complexity and the need for large amount
of training (annotated) data.

B. Contribution

To overcome the aforementioned issues, in this article,
we introduce a new a spatiotemporal deep learning paradigm
for TEC modeling. The proposed method combines two deep
learning structures: a CNN and a GRU. These two structures
are combined together, forming a common trainable model.

In particular, the Earth’s ionosphere shows marked varia-
tions with latitude, longitude, universal time, season, solar,
and geomagnetic activity. Thus, our proposed model feeds all
these variables as inputs to the model and relates them under
a nonlinear relationship. TEC is characterized by high com-
plexity, and it is space- and time-varying. In order to capture
the spatiotemporal behavior of TEC, in our proposed model,
measurements of every satellite visible from the observing
location (ground station) are taken into account. This means
that the model’s input data form a spatial–temporal 3-D tensor.
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The tensor consists of several time series data corresponding
to different single satellite visible from the station over a time
window period.

The CNN captures the spatial variability of the TEC val-
ues assigning different learnable weights to the following
GRU, taking into account all the visible time series data
from a ground station. The main operational unit of a CNN
architecture is the convolutional kernels, units able to model
with high-efficiency spatial signal properties under complex
nonlinear relationships [26]. In other words, the purpose of
the CNN is to appropriately adjust the model weights to better
capture the particularities of each station.

On the other hand, the GRUs model the temporal variability
of the ionosphere variability. GRUs are similar deep learning
structures with LSTM, however requiring fewer parameters.
Therefore, they retain the temporal-dependent capabilities
of the LSTM, but they advance in terms of complexity
(and, therefore, convergence) and the need for smaller
training (annotated) datasets. For this reason, GRUs have
been selected in this article for modeling the temporal
ionospheric variability. In other words, our model leverages
the capability of the CNNs to optimally approximate the
spatial particularities of each station, based on a set of
weights, along with GRUs able to learn the temporal
dependencies of the TEC values.

Another contribution of this article is that our nonlin-
ear model is based on the so-called sequence-to-sequence
(Seq2seq) modeling framework; a family of machine learning
algorithms to transform one sequence into another sequence.
Seq2seq methods have been originated by Google engine for
text-/speech-language translation [33], but they have recently
been adopted in solving complex time series problems in the
power energy domain [34]. The Seq2seq structure permits
modeling of the ionosphere values for all satellites in view at
every epoch [35]. Given that there are multiple input and out-
put time steps, this problem is referred to as “many-to-many”
sequence modeling problem. The Seq2seq modeling approach
means that we are able to model not only the electron density
values at the next epoch but a sequence of successive epochs.

The remainder of this article is structured as follows.
Section II presents a brief background on GNSS and
ionospheric variability before providing a formulation of the
problem discussed. Section III describes the proposed spa-
tiotemporal deep learning TEC model. Section IV describes
the proposed model architecture that combines convolu-
tional and recurrent layers together in an optimal structure.
In Section V, an extensive experimental evaluation of the
discussed methods is provided, while Section VI closes this
article with a summary of findings.

II. IONOSPHERE MODELING PROBLEM FORMULATION

BASED ON GNSS OBSERVATIONS

A. GNSS Observations Preprocessing

As we have previously stated, our goal is to construct
robust regional models of the ionosphere variability, applied
in SF-PPP methods as external ionosphere correction infor-
mation. During the training of these models, the ground-truth

TEC values are taken into consideration. The workflow is
given as follows: we first apply a dual-frequency undifferenced
and unconstrained PPP model to estimate slant TEC (STEC)
values. These values are then separated from satellite and
receiver differential code biases (DCBs). Then, having pure
STEC values, we convert them to VTEC ones. These VTEC
ground-truth (labeled) values are combined with solar and geo-
magnetic indicators to construct the TEC model using a super-
vised learning framework [26], as explained in Section II-B.
For this reason, in the following, we describe the methodology
adopted for VTEC values estimation.

The code P and phase φ observations in a given frequency
band fi between a receiver r and a GNSS satellite s are written
as [36]

Ps
( f i)r

= ρs
r + c · �

dtr + dts
� + d( f i)r − ds

f i

+T s + I s
( f i) + �s

P( f i)
(1)

φs
( f i)r

= ρs
r + c · �

dtr + dts
� + δ( f i)r − δs

f i

+T s − I s
( f i) + λNs

( f i) + �s
φ( f i)

(2)

where Ps
( f i)r

and φs
( f i)r

denote pseudorange and carrier
phase observables, respectively; ρs

r is the geometric dis-
tance between the receiver to the satellite; dtr and dts are
the receiver and satellite clock offsets, respectively; d( f i)r

is the frequency-dependent receiver uncalibrated code delay
(UCD), while ds

f i is the frequency dependent satellite UCD;
T s is troposphere delay; I s

( f i) is the line of sight (LOS)
ionospheric delay on the frequency f i ; δ( f i)r and δs

f i are the
frequency-dependent receiver and satellite uncalibrated phase
delay, respectively; Ns

( f i) is the phase ambiguity; and �s
P( f i)

and
�s
φ( f i)

are the sum of measurement noise and multipath error
for pseudorange and carrier phase observations.

In the case of dual-frequency GPS observations and assum-
ing the frequencies f1 and f2 noted as “1” and “2,” respec-
tively, (1) is written as

PG
1r

= ρG
r + c · �

dtr + dtG
� + d1r − dG

1

T G + I G
1 + �G

P1
(3)

PG
2r

= ρG
r + c · �

dtr + dtG
� + d2r − dG

2

T G + I G
2 + �G

P2
. (4)

The code biases are commonly referred as DCBs DCB =
DCBP1/P2 = d f1 − d f2 , and given that γ2 = f 2

1 / f 2
2 , we have

d f1 = dIF + 1/(1 − γ2) · DCB and

d f2 = dIF + γ2/(1 − γ2) · DCB. (5)

Then,

d f1r
− dG

f1
= d(IF)r − dG

IF

+ 1

(1 − γ2)
· (DCBr − DCBs) (6)

d2r − dG
2 = d(IF)r − dG

IF

+ γ2

(1 − γ2)
· (DCBr − DCBs). (7)

The term Ĩ1 is computed as

Ĩ1 = I1 − 1

(1 − γ2)
DCBs + 1

(1 − γ2)
DCBr . (8)
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Fig. 1. Stacked RNN-based structures for TEC modeling.

The uncombined PPP (UPPP) model computes the
ionosphere delay as unknown parameter, in contrast to the
traditional ionosphere-free (IF) model that combines multiple
frequency observations to eliminate the ionospheric error. Our
model is ionosphere-constrained dual-frequency PPP model
that estimates the STEC values. These values are then sepa-
rated from satellite and receiver DCBs, using the products of
IGS service [37]. Finally, the VTEC values, called with the
variable vtec in this article, are estimated as

vtec = 1

MFI
·
�

Ĩ1 + 1

(1 − γ2)
DCBs − 1

(1 − γ2)
DCBr

�
. (9)

The above equation evaluates the ground-truth VTEC val-
ues. Then, the STEC, denoted with the variable stec, is con-
verted into vtec through the mapping function MFI [38]

MFI = stec

vtec
= 1�

1 −
�

Re
Re+hs

cosθ
�2

�1/2 (10)

where Re is the mean Earth’s radius, θ is the satellite’s
elevation angle, and h is the height of the ionospheric layer
and usually has been taken about 350 km.

The GNSS preprocessing is implemented using the GAMP
[36] GNSS processing software. Further details about the
experimental setup are provided in Table I.

B. Nonlinear Ionosphere TEC Modeling

In Section II-A, we have estimated the ground-truth
values of VTEC through (9). A typical model assumes
that the ionosphere is a thin shell above the Earth, located near
the mean altitude of maximum TEC (approximately 350 km).
The intersection between a signal’s LOS and this shell is

TABLE I

STATIC PPP EXPERIMENTAL SETUP

called the ionospheric pierce point (IPP). In our model, we use
as input the IPP points coordinates, noted by xφ and xλ.
In addition, the information of daily time hour xdt has been
incorporated into the model to boost its performance. Let us
denote as vtecs(t) the value of the VTEC at a time instance t
for a visible satellite s. Then, we have that

vtecs(t) = f (x(t)) + e(t)

= f (xφ(t), xλ(t), xSSN(t), xDST(t), xF10.7(t),

x Ap(t), xK p(t), xdt (t)) + e(t). (11)

In (11) f (·) refers to the nonlinear relationship between the
VTEC values and the inputs of solar and geomagnetic indices.
It is clear that this nonlinear relationship is actually unknown,
and therefore, it is approximated by the proposed spatiotem-
poral deep learning model. The model parameters (weights)
of the model are used to approximate f (·). These weights
are estimated through the application of a supervised learning
methodology [26]. In (11), variables xSSN and xF10.7 refer
to the input solar indices, and xDST, xK p , and x Ap are the
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geomagnetic indices used as input variables of the proposed
nonlinear model (see Section I).

III. SEQUENCE-TO-SEQUENCE SPATIOTEMPORAL

AI FOR TEC MODELING

As we have previously stated, a spatiotemporal deep learn-
ing model is used, in this article, to model the ionospheric
variability. The proposed deep learning model consists of
a convolutional layer (see Section III-A) and stacked GRU
recurrent layers (see Section III-B).

A. Spatial Variability Modeling: The Convolutional Neural
Network Layer

The purpose of the convolutional layer is to encode the
spatial variability of the input signals by assigning different
weights to the model depending on the station latitude. In other
words, the output of the convolutional layer is to transform
the input signals into a vector representation more suitable
for TEC modeling. The weights of the convolutional layer are
learnable during the training phase and each input contributes
in a different way to the model, for different ground stations.
Let us denote as Iinput the input sequence of data which are
feeding to the convolutional layer. Then, the CNN transforms
these inputs Iinput to an encoded vector fM more suitable for
TEC modeling

fM ∼ ConvM
�Iinput

�
with

Iinput(t) = [xφ xλ xssn xDst x Ap xF107 xK p xdt ]T . (12)

Then, the encoded vector fM feeds the GRU. The convo-
lutional layer architecture and its position with respect to the
whole deep learning model are shown in Fig. 2.

B. Temporal Variability Modeling: The Gated Recurrent Unit
Layer

As we have previously stated, GRUs are simpler forms of
LSTM models having fewer gates than the LSTM memory
cell [39]. In addition, the LSTM networks are deep learning
extensions of the RNN model, better modeling the nonlinear
attributes of a time series signal [31]. Therefore, before
describing the GRU used for modeling the temporal variability
of TEC, we discuss the structure of the RNNs and their stacked
version and LSTM networks

A stacked recurrent model is an extension to the tradi-
tional one consisting of several recurrent layers one stacked
over the other [40]. This is presented in Fig. 1. A stacked
model has two main types of operation; the in-depth and the
temporal operation. The in-depth operation implies that the
response of one layer is propagated as input to the next layer.
Instead, the temporal operation assumes that inputs at previous
time instances trigger the current unit. The stacked approach
adopted in this article is applied for all recurrent structures,
that is, the RNN, the LSTM and its bidirectional mode, and
the GRU.

1) Stacked Recurrent Neural Networks: Recurrent models
are powerful tools for time series modeling. The main oper-
ational unit of an RNN is an artificial neuron, approximating
a nonlinear operation of an inner product of the network
weights (parameters) and output responses of other neurons
or model input vectors. The difference of an RNN with a
traditional neural network model is that, in an RNN, each
neuron is also triggered from the response of other neurons at
previous time instances, allowing the modeling of temporal
dependencies. These neurons are also called hidden states
since they are located between the input vector and the output
of the model. In particular, the response of an artificial neuron
is given by

hl(t) = tanh
�
WT

l hl(t − 1) + UT
l hl−1(t)

�
, l > 1 (13)

where tanh(·) is the hyperbolic tangent function, referring
to the nonlinear operational unit of a single neuron of the
RNN. Variables W and U are the learnable weight parameters
of the model. The hl(t) is the response of a neuron at the
lth level of the network at a time instance t . It should be
mentioned h0(t) ≡ fM coincides with the output response of
the convolutional layer, that is, the vector fM of (12), instead
of the previous hidden state hl−1(t).

Once the top-level hidden state is computed, the estimate
of the output ̂vtec

s
is obtained using (see Fig. 1)

̂vtec
s
(t) = tanh

�
VT hl(t)

�
(14)

where V is a matrix corresponding to the output learnable
parameters (weights) of the model.

2) LSTM Structure: LSTM is a special kind of the tradi-
tional RNN structure, where each node in the hidden layer
is replaced by a more complex structure, called memory cell,
instead of RNN’s single neuron [41]. The core structure of a
single memory cell is presented in Fig. 1. The memory cell
contains three different components: 1) the forget gate f (t);
2) the input gate i(t); 3) the cell candidate g(t); and 4) the
output gate o(t). For each component, a nonlinear relation to
the inner product between the input vectors and respective
weights is applied during the training process. In some of
the components, the sigmoid function σ(·) is applied, while,
in others, the hyperbolic tangent function tanh(·) is used. The
forget gate f (t) keeps unnecessary information out of the
memory cell, thus separating the worth-remembering informa-
tion from the useless one [42]. The input gate i(t) regulates
whether the information is relevant enough to be applied in
future steps for the accurate estimation of TEC values. The
cell candidate g(t) activates appropriately the respective state
(true or false output from the tanh activation). The output gate
o(t) decides if the response of the current memory cell is
“significant enough” to contribute to the next cell.

Regarding stacked LSTMs, the additional LSTM layers can
recombine the learned representation from prior layers and cre-
ate new representations at high levels of abstraction. Stacked
LSTMs or deep LSTMs were introduced by Graves [43] in
their application of LSTMs to speech recognition, beating a
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benchmark on a challenging standard problem⎡
⎢⎢⎣

i l(t)
f l(t)
ol(t)
gl(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

σ
σ
σ

tanh

⎤
⎥⎥⎦Wl

�
hl(t − 1)
hl−1(t)

�
+

⎡
⎢⎢⎢⎣

bl
i

bl
f

bl
o

bl
g

⎤
⎥⎥⎥⎦. (15)

When l = 1, the state is computed using the encoded vector
fM (see Section III-A) instead of hl−1(t).

The cell state at time step t is given by

cl(t) = f l(t) � cl(t − 1) + i l(t) � gl(t) (16)

where � denotes the Hadamard product (elementwise multi-
plication of vectors).

The hidden state at time step t is given by

hl(t) = ol(t) � σ
�
cl(t)

�
(17)

where σ denotes the state activation function.
3) Bidirectional LSTM: The stacked bidirectional

LSTM (BILSTM) has a similar structure with the LSTM
model with the difference that it allows bidirectional data
processing. Therefore, the operational units of a bidirectional
LSTM model are defined by two parts: the forward and
backward parts. As far as the forward part is concerned,
we have the following equations:

c



l(t) = f



l(t) � c



l(t + 1) + i



l(t) � g



l(t) (18)

h



l(t) = o



l(t) � σ
�

c



l(t)
�

(19)

and backward

c
�

l(t) = f
�

l(t) � c
�

l(t − 1) + i
�

l(t) � g
�

l(t) (20)

h
�

l(t) = o
�

l(t) � σ(c
�

l(t)). (21)

4) Stacked GRU Architecture: The GRU is simpler form of
the LSTM unit, having two control gates: the reset gate r l(t)
and the update gate ul(t) (see Fig. 1). The reset gate r l(t)
is responsible for determining how much of information to
forget. The update gate ul(t) is responsible for determining
the worth-remembering information of the previous states that
should be forwarded to the next state. Therefore, the gates
r l(t) and ul(t) are related with the hidden states hl(t) and
hl(t − 1) as follows:�

ul(t)
r l(t)

�
=

�
σ
σ

�
Wl

�
hl(t − 1)
hl−1(t)

�
+

�
bl

u

bl
r

�
. (22)

In (22), σ is the sigmoid function, and b1
u and b1

r are the
respective biases of each component for the GRU. Variables
W and U are the transition matrices of the lth GRU.

In stacked GRU configuration, a recursive approach is
considered as regards the operation of each GRU. A new
memory state, denoted as h̃l(t), acts as the consolidation of
the hidden state of the previous layer hl−1(t) and the previous
hidden state hl(t − 1) of the current layer. The consolidated
hidden state h̃l(t) is given by

h̃l(t) = tanh
�

r l(t)Uhl(t − 1) + Whl−1(t)
�
. (23)

In (23), function tanh(·) refers to the hyperbolic tangent
relationship. Equation (23) means that the consolidated state
is related with the output of the hidden state hl(t − 1) at the
time instance t − 1 and the output of the previous hidden
layer hl−1(t) at the time instance t . Using the values of the
consolidated state h̃l(t) and the values of the update gate
ul(t), the value of the hidden state of the lth GRU element is
estimated

hl(t) =
�

1 − ul(t)
�

h̃l(t) + ul(t)hl(t − 1). (24)

In more detail, the GRU-related abovementioned operations
are illustrated in Fig. 1.

IV. PROPOSED CNN-GRU ARCHITECTURE FOR VTEC
MODELING

A. Implementation Details

Fig. 2 illustrates the CNN-GRU architecture. The network
configuration setup consists of: 1) the input layer; 2) a 1-D
convolutional layer; 3) two stacked recurrent GRUs; and
4) two dense layers (Fig. 2). The GRU accepts a 3-D tensor
input. The number of kernels of the convolutional layer is
60 with a size of 5. The first GRU layer consists of 90 fil-
ters with a size of 1 × 5, while the second layer consists
of 180 filters of the same size. The output is the sequence of
VTEC values.

B. Evaluation Metrics

Here, we present the metrics used for model evaluation and
comparisons with other linear and nonlinear approximators.

For each satellite si , visible in ground station, a sequence of
VTEC values is produced using the proposed CNN-GRU deep
learning model. Then, we compute the absolute difference
between the ground-truth vtecsi (t) value, as obtained from the
GAMP software, and the estimated from our model ̂vtec

si

r (t),
that is, dvtecsi (t) = |vtecsi (t) −̂vtec

si
(t) |, for a time instance

t . Based on the values of dvtecsi (t), the following metrics are
considered:

mae = 1

S

S�
si =1

maesi = 1

S

S�
si =1

��T
t=1 dvtecsi (t)

T

�
(25)

mse = 1

S

S�
si =1

msesi = 1

S

S�
si =1

��T
t=1[dvtecsi (t)]2

T − 1

�
(26)

min = 1

S

S�
si =1

min∀t∈T
dvtecsi (t) (27)

max = 1

S

S�
si =1

max∀t∈T
dvtecsi (t). (28)

In the aforementioned equations: 1) mae refers to mean
absolute error (mae) for all satellite si per ground sta-
tion; 2) mse to the respective mean square error; and
3) min (max) to the average minimum (maximum) of
dvtecsi (t) for all visible satellites. Variable T denotes the time
period over which the evaluation takes place.

Another evaluation metric used in this article is the per-
centiles values of (50th, 68th, and 95th) of the dvtec(t)
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Fig. 2. Proposed model CNN-GRU architecture, consisting of two parts: the CNN for spatial variability modeling and the GRU for temporal variability
modeling.

TABLE II

SELECTED SITES FROM THE IGS NETWORK

error distribution per ground station. The error dvtec(t) =
|vtec(t)−̂vtec(t)| is defined as the absolute different between
the estimated VTEC value and the ground truth for a station.
A 95th percentile quantity means that the values 95% of the
VTEC errors are contained, after having sorted all errors in
ascending order. Reflecting the error by percentiles is better
than by simple mae.

V. EXPERIMENTAL EVALUATION

The experimental setup covers various aspects of the
ionosphere phenomenon in order to accurately evaluate the
performance of our proposed model. Thus, in our experimental
evaluation, we have included stations installed in various
latitudes and longitudes at a worldwide level (see Table II).
Also, we have included data from different years ranging from
2014 to 2018 to create robust training, validation, and test
sets. We have chosen different years under different solar
and geomagnetic activities, and also, we have tested different
months in order to evaluate our algorithm under different
weather and seasonal conditions.

We highlight that our proposed model is not a “pure” GRU
model but a hybrid model comprising of convolutional and
stacked recurrent GRU layers: the proposed spatiotemporal
deep learning paradigm. We experimentally validate the supe-
riority of the proposed CNN-GRU model for TEC modeling
in comparison to other deep learning networks (LSTM [31],
[44], BILSTM [30], and RNN [45] models) and state-of-the-art
techniques for TEC modeling (AR [11] and ARMA [11]
models). Also, the proposed method is compared with the con-
ventional global ionosphere map (GIM) and IRI2016 global
ionosphere models.

A. Data Preprocessing and Experiment Setup

This section describes the preprocessing approach used
to extract the recurrent model inputs and outputs based on
observables from the global IGS network of permanent GNSS
stations. The necessary observation, navigation, precise orbit
and clock, IGS ANTEX (igs14.atx), IGS SINEX, ocean tide
loading coefficients, and DCBs are fed into the GAMP soft-
ware for static PPP processing (see Table I). As described
in Section II-A, the GNSS observations are preprocessed to
estimate the VTEC values. GNSS observables for the years
2014 to 2018 were processed with 1-min data granularity for
the selected ground stations (see Table II).

As far as the deep learning models are concerned, they have
been trained and deployed using the Python Tensorflow and
Keras libraries. The proposed CNN-GRU and the compared
deep learning models have been trained using the adaptive
moment estimation optimization algorithm (ADAM) [46] with
a learning rate of 10−4. The model weights are updated using a
minibatch size of 28 samples at each training iteration. We set
the maximum number of epochs for training to 200, that
is, the maximum number of training cycles of the network.
In our experiments, we use a dataset of the years 2014–2018
(a five-year dataset). This dataset is divided into three subsets:
the Training, the Validation, and the Test Set. The training set
is used for the estimation of the model parameters (weights)
during the learning process. The validation set assesses the
performance of the model during the learning process on a
set different than the one used for training to avoid overfit-
ting. Finally, the test set evaluates the model on data that
have not been used during training. In our experiments,
the training set consists of 70% of the total available data,
while both the validation and the test sets consist of the
remaining 15% of the total data. Both training and validation
sets cover the period between the years 2014–mid-2018.
Data from the second half of 2018 are used as test
data.

The AR and ARMA models [11] (see Section I-A) are
implemented in Python using the statsmodels library. The
order of the AR part for both AR and ARMA is selected
to be 60, while the order of the MA part equals 5 in the case
of the ARMA model.
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TABLE III

PERFORMANCE METRICS (MAE, MSE, MIN, AND MAX) FOR VTEC MODELING FOR SIX SELECTED STATIONS (GRAZ, IQAL, MAL2, QAQ1, RAMO, AND
TIXI) AMONG THE RNN -BASED METHODS AND TWO OTHER COMMONLY USED METHODS (ARMA AND AR) FOR OCTOBER 9, 2018. MAE AND

MSE METRICS ARE THE AVERAGE VALUES OF THE INDIVIDUAL PRN METRICS IN EVERY STATION, WHEREAS MIN AND MAX ARE THE

MINIMUM AND MAXIMUM MAE VALUES OBSERVED FOR THE INDIVIDUAL PRNS. THE BEST VALUES ARE PRESENTED IN BOLD

B. Performance Evaluation and Comparison

In this section, we compare the various learning architec-
tures to model the temporal dynamics of the ionospheric TEC.
In particular, we implement and evaluate the traditional RNN,
the unidirectional LSTM, the BILSTM, and the proposed
CNN-GRU deep learning model (see Section III). We also
compare our model performance against linear regressors of
AR and ARMA. The comparison is carried out in terms of
performance accuracy and computational efficiency.

Table III shows the performance evaluation metrics,
as described in Section IV-B, of: 1) mae in TEC units (TECU);
2) mean squared error (mse) in TECU2; and 3) minimum
(min) and maximum (max) TEC values again in TECU. The
results in Table III have been calculated for the six stations (see
Table II) and a randomly selected testing period of a whole
day (October 9, 2018). In this table, we have also depicted
the performance of the four compared nonlinear architectures
(i.e., the proposed CNN-GRU, the BILSTM, the LSTM, and
the RNN) along with the traditional AR and ARMA models.
As is observed, the proposed CNN-GRU model has the best
performance, in most cases, with a mae value between the
interval [0.7 − 1.8]. On the other hand, the worst performance
is for the AR and ARMA linear models with a mae value
between [2.2 − 5.7]. Regarding the compared deep learning
models, the mae values are as follows: RNN lies in [0.9−1.8],
LSTM in [0.8 − 2.2], and BILSTM in [0.8 − 2.2]. The same
conclusions are drawn for the other evaluation metrics.

Fig. 3 illustrates the Quantile–Quantile (Q-Q) plots for the
“iqal” station between the ground truth and the evaluated deep
learning architectures. In the case of a perfect performance,
the points of the Q-Q plot will lie on the line y = x (the
red line in Fig. 3). The closer the data points are to the red
line, the better is the model accuracy. Thus, the proposed
CNN-GRU method has a better performance compared to the
other ones since the blue points are closer to the red line.
We also observe that higher vtec values are more challeng-
ing to be accurately modeled. However, again, the proposed
CNN-GRU model achieves better performance for these high
vtec values compared to the other models.

TABLE IV

50%, 65%, AND 98% PERCENTILE SCORES FOR THE EVALUATION OF THE

DIFFERENT RNN-BASED NETWORKS WITH THE PROPOSED ONE

Table IV illustrates the 50%, 65%, and 98% percentile
scores for the proposed and the compared nonlinear models.
The proposed models of the “graz,” “iqal,” and “tixi” ground
stations have the best performance, whereas the model of the
“mal2” ground station presents the worst one. Again, the pro-
posed CNN-GRU model has a better performance against the
compared architectures. Based on the values of Table IV,
we have concluded that the proposed CNN-GRU model, in the
case of 98% percentile, achieves an improvement of 16.77%
with respect to the RNN architecture and 12.71% and 9.49%
with respect to the LSTM and BILSTM models, respectively.
This means that the proposed CNN-GRU modeling error is
not as large as in the case of the compared models.

Table V illustrates the average mae error in TECU over
the six stations for the training and validation sets. The results
have been obtained for all the nonlinear models. In most cases,
the proposed CNN-GRU model has a better performance than
the other methods. In particular, from Table V, CNN-GRU
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Fig. 3. Q-Q plots for the “iqal” station between the ground truth and the other deep learning techniques used for comparison.

TABLE V

PERFORMANCE METRIC MAE VALUES FOR THE TRAINING AND VALIDATION SETS AND THE SIX STATIONS AMONG

THE RNN -BASED METHODS (GRU, BILSTM, LSTM, AND RNN)

achieves an average mae of 1.98% for the training set and
1.97% for the validation set. The other nonlinear models have
an average mae of BILSTM 2.05% (training set) and 2.25%
(validation set); LSTM 2.09% (training set) and 2.23% (valida-
tion set); and RNN 2.23% (training set) and 2.59% (validation
set). This means that the proposed CNN-GRU model has
an improvement of 11.07% and 23.9% with respect to the
conventional RNN architecture in the training and validation
sets, respectively. In addition, the proposed CNN-GRU model
achieves an improvement of 3, 69% and 12.65% with respect
to the BILSTM model for the training and validation sets.
It should be mentioned that the improvement in the validation
set is more significant than one of the training sets since
the latter refers to data that they have not to be used during
training.

The processing time in minutes and the number of
the required trainable parameters per method are listed
in Table VI. As is observed, the most efficient is the RNN
architecture, which requires 23 min (for 200 training epochs),
while the heaviest is the BILSTM model needing 280 min (for
the same 200 epochs). The proposed CNN-GRU architecture
requires 67 min for its training (again for 200 epochs).

The abovementioned processing time refers to the training
phase of the models. It should be mentioned that training
is carried out once. After model training is completed and
the model parameters (weights) have been estimated, the time
needed for modeling the TEC values is negligible. In partic-
ular, our trained CNN-GRU model requires 0.96 s to model
the TEC values of over a period of a half year (test dataset:
the second half of 2018).

Fig. 4 illustrates the training and validation learning curves,
as computed for four evaluated models, for the “ramo” station.
As is observed, all models converge to an acceptable mae error
after 200 training epochs.

TABLE VI

COMPARISON AMONG DIFFERENT RNN-BASED METHODS ARCHITEC-
TURE (GRU, BILSTM, LSTM, AND RNN) CHARACTERISTICS AND

PARAMETERS (TRAINABLE PARAMETERS AND PROCESSING TIME)

C. Performance Evaluation for Stations at Different
Latitudes and Days of Different Ionosphere Activities

Fig. 5 illustrates the VTEC values versus time for the four
evaluated nonlinear models (CNN-GRU, LSTM, BILSTM,
and RNN) at three different ground stations. In this figure,
we also depict the ground-truth data as a dashed line. The
satellites selected in this figure are GNSS visible from the
sites: “graz” (mid-latitude), “mal2” (near the equator), and
“tixi” (aurora region). Also, the satellites depicted in this fig-
ure have been selected in various time intervals during the day
from each site, focusing more where the highest values of the
ionospheric variability are observed. For each station/site, two
days are presented in this figure: 1) September the 3rd, which
is a day with low ionospheric activity and 2) September the
11th, in which high ionosphere activity is observed. For
these two days, the values of Dst and F10.7 parameters are
illustrated in the top-left diagram of Fig. 6. As observed
from this figure, September 11 is a day of increased solar
activity. On the contrary, September 3 is a day with normal
solar and geomagnetic conditions. As expected, the model
performance on 3/9 is slightly better in contrast to estimations
during the of 11/9, in which abnormal ionosphere variability
is observed [see Fig. 5]. However, the model catches the
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Fig. 4. Loss curve per RNN-based method (GRU, BILSTM, LSTM, and RNN) for training and validation sets for the ramo station.

Fig. 5. VTEC for individual PRNs (unique pseudorandom noise that each GPS satellite transmits) between the GPS ground-truth values and GRU, BILSTM,
LSTM, and RNN methods in various hours two different days: a day of low ionospheric activity (3/9) and a day of high ionospheric activity (11/9). VTEC
values estimated per satellite from a low-latitude station (“mal2”) and a mid-latitude station (“graz”) and a high-latitude station (“tixi”).

trend of the line in both cases. Also, the model for the
“graz” mid-latitude station shows better performance than
the respective model of the “tixi” station. Overall, what is
immediately noticeable in this figure is the CNN-GRU model’s
ability to adequately estimate VTEC values for every satellite
separately.

Fig. 6 shows the predicted VTEC values per station for
a time period of a month (September 2018). The predicted

values of the proposed CNN-GRU model are illustrated with
green color, whereas the red line is the ground-truth data.
The top-left figure shows the F10.7 and DST values for the
days of September. As observed, CNN-GRU predicted values
achieve good performance. Also, the proposed CNN-GRU
model catches the local maximum VTEC values during the
days of increased ionospheric activity as mentioned above (i.e.,
September 11).
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Fig. 6. (Top Left) Daily variations of the solar F10.7 index and the Dst-index. (Top Right) Map shows the location of each station. (Bottom) Diagrams illustrate
the VTEC values per station on September 2018.

Fig. 7. VTEC sequences per satellite (colorful lines) of each ground station for GRU method for four days on September 2018 and the mean VTEC time
series per station (red line). On top of each diagram, the mean red line per station is compared to mean ground-truth data per station, as illustrated with a
black line.

Fig. 7 shows the estimated mean VTEC values, as illustrated
with a red line, for each station, for four different days between
September 9 and 13, 2018, compared to ground-truth values
with a black line. Here, we can observe the diurnal changes,
as the VTEC values are varying during each day, depending

on the electron density in the ionosphere. As observed,
the ionospheric delay changes slowly through a daily cycle.
It has its minimum values (2−4 TECU) between midnight and
early morning and reaches its peak during the daylight hours.
The “mal2” stations reach the bigger mean VTEC values
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Fig. 8. Monthly box plots for the testing period during the second half of 2018 per station.

Fig. 9. Comparison between VTEC (TECU) RNN-based methods and the estimated GPS ionospheric VTEC values (ground truth), as well as the VTEC
models (GIM, NeQuick, IRI2001, and IRI01-cor), for days between September 9 and 12.
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Fig. 10. Correlation matrices per station between VTEC (TECU) RNN-based
estimations (GRU, BILSTM, LSTM, and RNN) and the estimated GPS
ionospheric VTEC values (ground truth), as well as the VTEC models (GIM
and IRI2016), for the time interval between September 9 and 12. In most of
the stations, except for the “tixi” station in the aurora region, the correlation
coefficient r ranges in the interval [0.75, 1).

(∼ 30 TECU), whereas the “tixi” station (located in the aurora
region) has the minimum observed values. However, the “tixi”
station appears with various fluctuations. The mean standard
deviation values are 1.20 for “graz,” 0.80 for “iqal,” 2.81 for
“mal2,” 0.70 for “qaq1,” 1.78 for “ramo,” and 1.04 for “tixi”
ground station. This is illustrated in Fig. 7 where we have
depicted with gray the standard deviation values.

D. Performance Evaluation for Different Months

At every time instance (point), the difference between the
ground-truth VTEC values and the estimated ones from the
various nonlinear learning models is computed. Thus, for
the test time period of half a year (second half of 2018),
we have an error time series for every station, deriving from
the timewise differences of VTEC values (see Section IV-B).
Fig. 8 depicts the distribution of these errors per month for the
testing period (second half of the year 2018). Each box plot
graphically depicts groups of vtec error values through their
quartiles. Outliers are plotted as individual points, with the red
cross symbol. The horizontal red line is the median value of
the vtec error (50%), whereas the first and third quartiles, that
is the 25th and 75th percentiles, respectively, are illustrated in
a black dashed line. As observed, the performance evaluation
per month is slightly different; however, these differences are
not significant. In most of the cases, the proposed CNN-GRU
method has a better performance as it concerns the outlier
values, which are slightly fewer compared to other methods
outliers (difference errors > 75%). In August, there are 18%
fewer outliers in the proposed CNN-GRU compared to the

RNN method. In the other months, this percentage is 5% for
September, 13% for October, 17% for November, and 9% for
December.

E. Performance Evaluation Between Different Ionosphere
Models

Fig. 9 shows the mean VTEC values at every station, for
IRI2016 and GIM TEC estimates compared to the ground-truth
values and CNN-GRU TEC estimations, during four days
between September 9 and 12. The VTEC maxima are shown
for all stations between 8:00 and 12:00 A.M. In most cases,
the CNN-GRU predicted values are similar to the ground truth.
GIM-aided TEC values are also close to CNN-GRU TEC
values. IRI2016 values seem to underestimate the ionospheric
variability compared to the ground-truth TEC and TEC values
from the GIM model.

Fig. 10 shows the correlation coefficient between the pro-
posed CNN-GRU, the compared nonlinear learning methods,
the ground-truth GPS TEC data, and the values derived
from IRI2016 and GIM models. Yellow blocks indicate high
correlation, whereas blue blocks show smaller values for the
correlation index r . Overall, the stations “iqal,” “mal2,” and
“‘ramo” attain higher correlation values (r > 0.75), whereas
“tixi” (located near the equator) performs the worst values of
correlation.

VI. CONCLUSION

In this article, we have proposed a combined CNN-GRU
deep learning architecture for TEC modeling. The proposed
model has been compared with other linear (e.g., AR and
ARMA) and nonlinear (RNN, LSTM, and BILSTM) regres-
sion methods. Our main conclusions are given as follows.

1) The proposed CNN-GRU model achieves an improve-
ment of 16.77% with respect to the RNN architecture
and 12.71% and 9.49% with respect to the LSTM
and BILSTM models, respectively, in the case of 98%
percentile. This implies the capability of the proposed
CNN-GRU network to capture TEC values both in
normal and high solar activity periods.

2) The average mae improvement of the proposed model
compared to the traditional RNN architecture is 23.9%
with respect to the validation set, a set that it has not
been used during training. In the case of the BILSTM
model, the mae improvement is 12.65%.

3) The computational complexity of the proposed model is
retained low although its performance accuracy is higher.
In particular, as far as model testing is concerned, our
CNN-GRU architecture requires less than 1 s (0.96 s)
to model the TEC values over a period of a half year.
Instead, regarding training, our model requires about
67 min to be trained for 200 epochs in contrast to
the BILSTM architecture where training is executed
within 280 min for the same number of epochs. It should
be mentioned that the training of the model is carried
out once.

4) The mean standard deviation value of mae of our model
is 1.38 over all the six examined ground stations. The
worst performance is for the “mal2” station, which is
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located near the equator, while the best is for the “graz”
station (mid-latitude).

As future work, we intend to assess the accuracy of the
TECs computed by the model in the position domain, with
precise coordinates of the IGS stations. Also, we will further
investigate model reliability, given as inputs GNSS observa-
tional data from a regional network of stations close to each
other, to examine the extent to which such models capture
the regional anomalies. In addition, more complicated deep
learning architectures, such as semisupervised learning [47],
[48] and/or generative adversarial networks (GANs) [39], can
be examined to see if they can improve the results while
retaining small computational cost.
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