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Abstract

Region learning (RL) and multi-label learning (ML)

have recently attracted increasing attentions in the field of

facial Action Unit (AU) detection. Knowing that AUs are

active on sparse facial regions, RL aims to identify these re-

gions for a better specificity. On the other hand, a strong

statistical evidence of AU correlations suggests that ML is

a natural way to model the detection task. In this paper, we

propose Deep Region and Multi-label Learning (DRML),

a unified deep network that simultaneously addresses these

two problems. One crucial aspect in DRML is a novel re-

gion layer that uses feed-forward functions to induce im-

portant facial regions, forcing the learned weights to cap-

ture structural information of the face. Our region layer

serves as an alternative design between locally connected

layers (i.e., confined kernels to individual pixels) and con-

ventional convolution layers (i.e., shared kernels across an

entire image). Unlike previous studies that solve RL and ML

alternately, DRML by construction addresses both prob-

lems, allowing the two seemingly irrelevant problems to in-

teract more directly. The complete network is end-to-end

trainable, and automatically learns representations robust

to variations inherent within a local region. Experiments on

BP4D and DISFA benchmarks show that DRML performs

the highest average F1-score and AUC within and across

datasets in comparison with alternative methods.

1. Introduction

The face reveals thoughts and feelings. Facial expres-

sions, in particular, tell a person’s internal states, psy-

chopathology, and social behavior. Facial Action Unit (AU)

detection plays a fundamental role in describing compre-

hensive facial expressions, and has become an important

problem in computer vision. In automated facial AU de-

tection, two problems have attracted an increasing atten-

tion: Region Learning (RL) and Multi-label Learning (ML).

Given the definition that an AU is active only on sparse fa-

cial regions, RL aims at identifying specific regions to im-

prove detection performance. For example, AU 12 is re-
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Figure 1. An illustration of (a) a conventional patch-based method,

and (b) the proposed DRML. DRML by construction models both

important facial regions and relations among multiple AUs, show-

ing a better capability of localization and classification.

ferred as lip corner puller, and by definition is identified

only around the region of lip corners. On the other hand,

there has been strong statistics showing evidence of corre-

lations between AUs [32, 35]. For instance, AUs 6 and 12

have been observed to frequently co-occur in a Duchenne

smile. Building upon these AU correlations, ML attempts

to jointly learn multiple AUs as one classification problem.

However, it remains unclear how these two problems can

interact with each other and jointly be solved.

Recent work on patch learning is a particular example

of RL. Conventional patch-based methods divide face im-

ages into uniform patches, as shown in Fig. 1(a), and then

model the importance for each patch as the magnitude of

corresponding model parameters (e.g., [17,18,39]). In gen-

eral, higher importance implies higher relevance for such

patches to a particular AU. The selected patches, due to

their spatial dependencies, are shown more effective and

robust to noise than individual feature values. Neverthe-

less, the patches are manually defined and the majority of

existing work ignores the relationship among AUs. More
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recently, multi-label learning showed possibilities of utiliz-

ing such AU correlations, e.g., [6, 38]. These works derive

AU correlations from FACS heuristics [5] or the statistics

from ground truth labels, and then plug the AU correlations

into learning, encouraging AUs with high correlation to co-

occur more frequently. However, these derived AU corre-

lations can be biased due to coder’s subjectiveness or vary

from one dataset to another.

In this paper, we propose Deep Region and Multi-label

Learning (DRML), a design of neural network that ad-

dresses the above issues by construction. Fig. 1 illustrates

our main idea. Instead of learning importance on uniform

facial grids as shown in Fig. 1(a), DRML propagates con-

tributing value from higher perceptive fields to lower ones.

As a result, the more influential “regions” can be discov-

ered, as shown in Fig. 1(b). Due to the multi-label nature

of the network, RL and ML can naturally interact with each

other within the network, rather than being solved sequen-

tially [39] or alternatively [38]. In addition, we introduce

a new region layer that serves as an alternative design be-

tween locally connected layers (i.e., confined kernels to in-

dividual pixels) and conventional convolution layers (i.e.,

shared kernels across an entire image). The final network

is end-to-end trainable, and converges faster with better

learned AU relations than alternative models.

2. Related Work

Automated facial AU detection has been a vital research

field for objectively describing facial actions. To tackle AU

detection under complex conditions, a majority of studies

have been devoted to various features [1, 6, 13, 15, 19] and

classifiers [2, 11, 30, 34, 36, 38]. This study is motivated by

convolutional neural networks (CNN), and closely related

to region learning (RL) and multi-label learning (ML) for

AU detection. Below we review each in turn.

Region learning (RL): Conventional methods for AU

detection utilize geometric features [4, 19], appearance fea-

tures [2,6,13] or both [3]. Such features are typically quan-

tified as histograms, losing the specificity about facial re-

gions that are critical to indicate existence of AUs [24, 25].

Region learning has thus attracted an increasing attention.

Zhong et al. [39] and Liu et al. [18] divided a face image

into uniform patches, which are then categorized into com-

mon and specific patches to describe different expressions.

However, dividing a face image into uniform patches would

easily fail on faces with modest or large pose. Taheri et

al. [27] defined regions for different AUs, and proposed a

two-layer group sparsity coding to recover facial expres-

sions using the composition rule of AUs. These regions

are pre-defined, and thus can not be learned. Since then,

learning the region-AU relation and adaptation to viewpoint

changes became a rising demand. Recently, Zhao et al. [38]

exploited patches centered at facial landmarks, and pro-

posed a multi-label learning framework to infer discrimi-

native patches.

Multi-label learning (ML): Conventional AU detection

methods, such AdaBoost [15], GentleBoost [11], or linear

SVMs [20], perform detection on individual AUs. On the

other hand, given the prior that the occurrence of AUs are

strongly correlated [5], multi-label learning (ML) uses the

assumption that the correlation exists between labels, so as

to improve the detection performance [8]. In addition, AUs

are generally unbalanced, i.e., positive samples are outnum-

bered by negative ones. ML shows potential to address im-

balance data learning [35]. For studies considering rela-

tionships between AUs, Bayesian Networks (BN) [30] and

dynamic BN [32] have been used to learn AU correlations.

Recently, Stefanos et al. [6] adopted a latent variable CRF

to jointly detect multiple AUs. However, they only focus

on AUs that co-occur frequently (positive correlation), re-

gardless of the ones that unlikely co-occur (negative com-

petition). Zhao et al. [38], instead, statistically derived pos-

itive correlations and negative competitions from annota-

tions, and jointly learned multiple AUs using both corre-

lations. Considering pairs or triplets of co-occurring AUs,

Zhang et al. [36] proposed a multi-task learning approach

to learn a common kernel representation that describes the

AU correlations.

The aforementioned studies leveraged AU correlations

through either FACS heuristic [5] or the statistics from an-

notations. Such derived AU relations can, thus, be biased

due to subjectiveness or data imbalance and could be less

transferable. Instead, DRML by construction learns the AU

relations and active regions in a unified way. In addition,

compared to the closest work Joint Patch and Multi-label

Learning (JPML) [38], DRML is an end-to-end trainable

and non-linear model, providing a more powerful model

to describe AUs under complex conditions. As DRML is

inspired by the huge success in convolutional neural net-

works, we review them below.

Convolutional neural networks (CNNs): CNNs have

drastically improved the performance of vision systems, in-

cluding face verification [10, 28, 29], object detection [14],

and video tracking [31]. A standard convolutional layer

applies one filter bank to an entire image. For face veri-

fication, this spatial stationarity assumption would not hold

because different regions have different local statistics for

face images [28]. Considering the details of local regions

and intra-personal differences, Taigman [28,29] proposed a

locally connected layer (LCN), confining different filters to

each pixel location. An LCN, thus, results in a burden of a

large number of parameters. For facial expression analysis,

Liu et al. [17] and Liu et al. [16] used convolutional mod-

els to learn discriminative local regions for holistic expres-

sions. Liu et al. [16] greedily selected AU-aware receptive

regions by iteratively learning feature maps with the highest
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Figure 2. An outline of the proposed DRML architecture. From left to right, a standard convolution layer filtering on an aligned face image,

followed by the region layer, one pooling layer and four convolution layers, three fully connected layers, and one multi-label cross-entropy

loss layer at the end. Colors illustrate feature maps produced at each layer.

relevance to the target label, then used RBM for classifica-

tion; CNNs are only used to extract feature maps. Instead

of greedily learning local regions, Liu et al. [17] proposed

an end-to-end framework, utilizing multiple DBNs to learn

features with respect to different face regions and strength-

ening these weak classifiers to top layer in a boosting way.

Compared to these models, DRML concentrates on learning

discriminative regions. The structural information in local

regions is more prominent for AU detection, because AUs

depict the local appearance change of faces [5].

Considering dependencies of both local features and

AUs correlations, we propose a region layer embedded in

DRML. The region layer confines the same filter for each

local region, making the weights in the each region updated

individually. Meanwhile, as filters are learned for local re-

gions instead of each pixel [28, 29] or an entire image [14],

the updated parameters stand as an alternative between a

locally connected layer and a standard convolutional layer.

On the other hand, DRML takes both domain knowledge

and computation efficiency into account, resulting in an ef-

ficient model with comparable performance.

3. Deep Region and Multi-label Learning

(DRML)

A common assumption for standard convolutional lay-

ers is the shared kernels, or filters, for an entire image.

However, for structured objects like faces, such assumption

would fail to capture local (and could thus be subtle) ap-

pearance changes. To remedy this limitation and make use

of AU correlations, we construct a DRML network, with

a newly proposed region layer, for multi-label AU detec-

tion. In this section, we first discuss the DRML architec-

ture. Then we illustrate the effectiveness of the region layer

on learning important regions for different AUs. Finally, we

compare similarities and differences between DRML and

alternative methods.

3.1. DRML architecture

Fig. 2 shows the outline of the proposed DRML archi-

tecture. The principle of designing this network is inspired

by the networks for face verification [28, 29]. Because fa-

cial appearance changes of AUs are regional and could be

subtle, a rule of thumb is to ensure each layer preserves suf-

ficient facial information from its previous layer. Unlike

most expression analysis studies that use small face images

as input (e.g., 48×48 in [22]), we set the input image to

170×170. As shown in Fig. 2, conv7 still maintain a rough

face outline to pass to subsequent fully connected layers.

Below we detail each layer throughout this network.

The input is an aligned RGB face image, which is

then passed to a convolutional layer (conv1) with 32 fil-

ters of size 11×11×3. In this paper, we use the notion

32×11×11×3@160×160. The conv1 layer generates 32

feature maps, which are fed into a region layer (region2).

Sec. 3.2 provides more details of the region layer, which

outputs 32 160×160 feature maps. Following up is a max-

pooling layer (pool3), which takes a max operator over 2×2

spatial neighborhoods with a stride 2, separately for each

channels of feature maps from the region layer. Because the

input face image could obtain modest head pose, the pool3

layer makes the network more robust to small translation er-

rors caused by face alignment. In DRML, we use only one

max-pooling layer to avoid losing too much spatial informa-

tion. The pool3 layer is followed by another four convolu-

tional layers (conv4∼conv7), performing local abstraction

as regular CNNs. Finally, two fully connected layers (fc8

and fc9) are placed on top of the conv layers to capture the

global correlations across the entire face images. Note that

the number of output AUs are relatively small compared

to the 1,000 categories in ImageNet [14] or 4,300 identi-

ties in DeepFace [28], we keep fc9 as 2048-D instead of

4096-D. The fc9 layer will be extracted as a feature vector

for each image. Let the number of AUs be C, the number

of samples be N , the ground truth Y ∈ {−1, 0, 1}N×C ,
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Figure 3. An illustration of the proposed region layer. A feature map is inputed from conv1, and uniformly divided into 8×8 patches. Each

20×20-pixel patch (Pj) is applied with a convolution layer. Re-weight each original patch by adding the convolved one. The output of

region layer is a concatenation of all re-weighted patches.

Yij indicate the (i, j)-th element of Y, and the predictions

Ŷ ∈ R
N×C . The output layer was designed as a multi-label

sigmoid cross-entropy loss:

L(Y, Ŷ) =−
1

N

N∑

n=1

C∑

c=1

{[Ync > 0] log Ŷnc

+ [Ync < 0] log(1− Ŷnc)},

where [x] is an indicator function returning 1 if the state-

ment x is true, and 0 otherwise. It is noteworthy that our

resulting model has about 56 million parameters, which is

7% less than AlexNet [14] (60 million) and 53% less than

DeepFace [28] (120 million).

3.2. Region layer

One crucial aspect of DRML is to the usage of a re-

gion layer that captures local appearance changes for dif-

ferent facial regions. Such regional information has shown

to provide unique cues to recognize AUs and holistic ex-

pressions [24, 25]. Inspired by these works, we designed

a region layer, whose weights are shared only within a lo-

cal facial region. Below we interpret its construction and

effects on detecting facial AUs.

Most deep learning literature utilize standard convolu-

tional layers to learn image representations (e.g., [14, 16]),

and assume weights are shared across an entire image.

However, for face images, the spatial stationarity assump-

tion does not hold: Face is more structured than natural

images, and, thus, different facial regions follow different

local statistics. Motivated by this observation, the authors

of DeepFace [28] introduced locally connected layers for

face verification. The locally connected layers confine each

kernel at each pixel location, resulting in performance that

closely approaches humans. However, due to its exhaustive

nature, such layers cause a huge number of parameters in

the network, i.e., >120 million in DeepFace. For the AU

detection task in hand, AU annotations are typically insuf-

ficient even for contemporary datasets. For example, there

are only ∼140,000 frames in BP4D dataset [37]. Having

such a large network could, thus, easily lead to overfitting.

Fig. 3 depicts the proposed region layer, which contains

three components: patch clipping, local convolution, and

identity addition. The patch clipping component uniformly

slices a 160×160 response map into a 8×8 grid. We enu-

merated different clipping parameters starting from 5×5,

and found 8×8 performed the best for our datasets. Each

mini-batch is normalized using Batch Normalization (BN),

and passed through ReLU [23]. A local convolution compo-

nent learns to capture local appearance changes, forcing the

learned weights in each patch to be updated independently.

An identity addition component is introduced along with a

“skip connection” from the input patch, which helps avoid

vanishing gradient issues during training the network [9].

Imposing the skip connection also simplifies the learning

hypothesis: If an input patch contains no useful information

for detecting a particular AU, it would be easier to directly

forward the patch than learning a filter bank to reduce the

patch’s effect. As we will see in our experiments, adding

this layer helps preserve sparse facial regions activated by

particular AUs [5].

What does region layer capture for AU detection?

Here we illustrate that region layer can induce important

facial regions for identifying different AUs. Specifically,

we adopt a “saliency map” [26] to visualize the regions se-

lected by different models with and without a region layer.

The saliency map is image-specific, and computed as the
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Figure 4. Visualization of AU-specific saliency maps for three networks: DRML (second row), ConvNet (third row), and AlexNet [14]

(bottom row). The top row illustrates the appearance of 10 AUs. Colors on each map indicate saliency intensity from low high.

magnitude of per-pixel gradients with respect to a particular

AU. We treat such gradient magnitude as the “active region”

of a face image. In this way, we are able to investigate the

important and active regions for each AU.

To show the specificity of facial regions learned using

the region layer, we compare DRML with a standard Con-

vNet (DRML architecture without the region layer) and the

AlexNet [14]. All networks were trained on the BP4D

dataset [37] and used the multi-label sigmoid cross-entropy

loss. Fig. 4 shows the learned active patches of 10 common

AUs. For illustration purpose, the face images were selected

manually with apparent AUs from the CK+ dataset [20]. As

can be seen, DRML learns a more specific and concentrated

regions for the corresponding AUs. Below we summarize

our observations:

• AUs 1, 2: For AU1, DRML identifies important re-

gions around inner eyebrow, emphasizing the appearance

changes by pulling inner eyebrows. On the contrary,

ConvNet and AlexNet emphasize some eye regions, but

not as concentrated as DRML. For AU2, DRML has a

high saliency on the forehead and strong outer brows.

The presence with slight saliency on inner brows indi-

cates its likely co-occurrence with AU1. ConvNet marks

some lower face and AlexNet fail to concentrate.
• AUs 6, 7: For AU6 (check raiser), DRML identifies the

center of the mouth due to the strong positive correla-

tion of AU6 and AU12 [38]. For AU7, DRML gives

much more importance on eyelids than the other iden-

tified regions. ConvNet also identifies mouth regions for

AU6, but check regions for AU7. AlexNet fails to iden-

tify saliency for AU6 and AU7.
• AU12: AU12 depicts lip corner puller, commonly seen in

smiley face. DRML concentrates more on the teeth and

slight on the eyes and cheek. ConvNet not only identified

the mouth but also some chin regions. AlexNet fails to

identify meaningful regions for AU12.

• AU14: AU14 is dimpler, causing appearance changes of

mouth corners. DRML emphasizes the regions around

nose; ConvNet regions around mouth. AlexNet fails to

identify the subtle appearance changes of AU14.

• AUs 15, 17: AU15 and AU17 depict lip corner depres-

sor and chin raiser, which both could cause appearance

changes around lower mouth. We observe that DRML

is able to concentrate salient regions on lower mouth for

AU15 and AU17. ConvNet emphasizes regions around

mouth and some regions on the upper face. AlexNet

shows saliency over the whole face for AU15 and AU17.

• AUs 23, 24: AUs 23 and 24 depict lip tightener and lip

pressor. DRML identifies strong saliency around mouth,

while ConvNet emphasizes on regions of both mouth and

the upper face. AlexNet fails these two AUs.

In all, DRML identifies concentrated and sparse regions

than alternative methods. These identified regions also co-

incide with the important patches in JPML [38]. We found

AlexNet consistently fails to identify specific active regions.

One reason is the per-pixel contribution of gradient could

look like salt-and-pepper noise. Adding further regulariza-

tion (e.g., [33]) might help the visualization. Recall that

ConvNet is a special case of DRML without the region

layer. From this perspective, adding the region layer can be

regarded as an regularizer that helps reveal the sparse and

discriminative regions. We thus infer that the architecture

constructed in this paper is more suitable for AU detection.

3.3. Comparison with related work

DRML shares similarities with patch-based methods for

AU detection, i.e., Active Patch Learning (APL) [39], JPML

[38], AUDN [16], and Boosted DBN (BDBN) [17]. All

aims to select a discriminative subset of facial regions for

better AU detection. However, they differ in several aspects.

Table 1 summarizes these differences.

3395



Table 1. Comparisons between DRML and alternative methods

Methods ET ML LR NL OU

APL [39] × × × × ×

AUDN [16] × × X X ×

BDBN [17] X × X X X

JPML [38] × X × × ×

DRML X X X X X

*ET: end-to-end trainable, ML: multi-label learning, LR:

learning representation, NL: non-linearity, OU: online update.

APL [39] selects patches for different expression by in-

ducing sparsity on “groups”, which are defined over uni-

form patches. Different from expression recognition, AU

is a multi-label learning problem. In view of dependencies

among features and AUs, JPML [38] jointly learns discrim-

inative patches for multiple AUs. The proposed DRML is

inspired by JPML. However, they bear several differences.

First, JPML defines AU relations through dataset statis-

tics; DRML by construction learns correlations among AUs.

Second, JPML uses manually-crafted feature (i.e., SIFT);

DRML learns the features that adapts to multi-label AU de-

tection. Third, JPML learns the PL and ML alternatively;

DRML naturally fuses two tasks into one framework, al-

lowing ML and PL to interact more directly. Finally, JPML

is linear; DRML stacks non-linear functions that potentially

better models the non-linearity of facial AUs.

Learning representations from raw face images is an-

other crucial property of DRML. AUDN [16] and BDBN

[17] also have this property for expression recognition.

AUDN [16] sequentially combined three modules that re-

spectively learn expression-specific representation, search

subset of the representation that best simulates an AU, and

concatenate the subset for recognition. However, these

three modules are trained independently; DRML is end-

to-end trainable. BDBN [17] integrated feature learning,

patch selection and classifier construction into one end-to-

end trainable framework. Each patch is associated with one

DBN. The selection process was done by forming the DBNs

as a strong boosted classifier. However, building a network

for each patch can be very expensive. Instead, DRML per-

forms the selection through a region layer, containing much

smaller units and an identity connection that allows more

direct gradient flows.

4. Experiments

4.1. Settings

Datasets: We evaluated DRML on two spontaneous

datasets: BP4D [37] and DISFA [21]. For BP4D, we

adopted a 3-fold partition to ensure subjects were mutually

exclusive in train/val/test sets. For DISFA, we reported re-

sults using the best model obtained from BP4D.

(1) BP4D [37] contains 2D and 3D videos of 41 young

adults during various emotion inductions while interact-

ing with an experimenter. We used 328 videos (41

participants×8 videos each) with 10 AUs coded, resulting

in ∼140,000 valid face images. For each AU, we sampled

100 positive frames and 200 negative frames for each video.

(2) DISFA [21] contains 27 subjects watching video

clips, and provides 8 AU annotations with intensities. There

were ∼130,000 valid face images. We used the frames with

AU intensities with C-level or higher as positive samples,

and the rest as negative ones. To be consistent with the 8-

video setting of BP4D, we sampled 800 positive frames and

1600 negative frames for each video.

Metrics: The performance was evaluated on two com-

mon frame-based metrics: F1-frame and AUC. F1-frame is

the harmonic mean of precision and recall, and widely used

in AU detection. AUC quantifies the relation between true

and false positives. For each method, we computed average

metrics over all AUs (denoted as Avg.).

Implementation: We registered face images to

200×200 using similarity transform [34, 38]. Each face

was randomly cropped into 170×170, or horizontally mir-

rored for data augmentation. All models were initialized

with learning rate of 0.001, which was further reduced after

8000 iterations. A momentum of 0.9 and weight decay of

0.0005 was used. All implementations were based on the

Caffe toolbox [12] with modifications to support the region

layer and multi-label cross-entropy loss. All experiments

were performed on one NVIDIA Tesla K40c GPU. Our im-

plementation is available online1.

Comparative methods: We compared DRML to alter-

native methods, including a baseline linear SVM (LSVM)

[7], a patch-learning method APL [39], and the state-of-

the-art Joint Patch and Multi-label Learning (JPML) [38].

For baseline networks, we compared to AlexNet [14], Con-

vNet (DRML excluding the region layer), and LCN (Con-

vNet with locally connected layer [28]). These alternative

approaches were picked to answer several questions: (1)

whether the learned features are more descriptive than hand-

crafted ones, (2) whether using AU correlations and/or re-

gion layer improves the performance of AU detection, (3)

whether, compared to JPML, the proposed DRML provides

a more direct and effective way to jointly learn RL and ML.

We excluded JPML in the DISFA experiments due to the

lack of reported AU correlations; instead we only reported

APL. Below we discuss the results.

4.2. Results

Tables 2 and 3 show the results of 12 AUs for BP4D and

8 AUs for DISFA, respectively. Below we discuss the re-

sults from five perspectives: feature representation, multi-

label learning, effects of region layer, joint learning of re-

gions and multi-label, and running time.

1https://github.com/zkl20061823
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(a) Convergence curve (b) Ground truth relation (c) DRML-learned relation (d) AlexNet-learned relation
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Figure 5. Comparison between DRML and AlexNet [14]: (a) training loss, (b)-(d) relation tables, where each entry (i, j) is computed as

the coefficient correlation between the i-th and the j-th AUs.

Feature representation: This paragraph discusses the

benefits of the learned features. Comparing the results of

AlexNet and LSVM in Table 2, 9 out of 12 AUs in F1-frame

and 12 out of 12 AUs in AUC are higher for AlexNet. The

improvement of AlexNet became larger on DISFA, show-

ing its better generalizability in a cross-dataset scenario.

Recall that the results on DISFA were reported using a

cross-dataset protocol, i.e., we selected the best performing

model from BP4D to report the results. As shown in Ta-

ble 3, compared to LSVM, AlexNet achieved about 2% and

13% higher F1-frame and AUC. It is worth noticing that the

feature dimensions for LSVM, AlexNet, LCN, DRML are

6272 (128 SIFT features for 49 landmarks), 4096, 2048, and

2048, respectively. In fact, even though the learned features

are of lower dimension, more than 40% of learned features

for AlexNet, LCN, and DRML, are zeros. We can infer that

the learned features, compared to the best performing hand-

crafted SIFT feature [40], capture more discriminative and

sparse characteristics for detecting AUs.

Multi-label learning: Multi-label learning could im-

prove AU detection by taking AU correlations into account.

In our experiments, this improvement is more obvious for

highly skewed AUs, given the skewness factor defined as

the ratio of the number of negative samples to the num-

ber of positive samples. Take the BP4D dataset for exam-

ple. The skewness for frequently occurring AUs (10,12)

are (0.7, 0.8) respectively; for infrequently occurring AUs

(1,2,23,24), their skewness are (3.8, 4.9, 5.0, 5.5). Com-

pared to the baseline LSVM results, the improvement of

methods using multi-label learning (i.e., AlexNet, ConvNet,

LCN, and DRML) improves more on AUs with larger skew-

ness. For instance, for both the F1-frame and AUC, the per-

formance of these methods on AUs (1,2,23,24) are 1.5 to

1.8 times higher than the baseline LSVM. That being said,

when the training data are relatively rare, multi-label learn-

ing helps reduce the effects of the imbalance nature for AU

detection. Regardless of the overall improvement across 12

AUs, it is noticeable that, for AUs (10,12), the LSVM base-

line achieved satisfactory performance. One possible ex-

planation is that AUs 10 and 12 have relatively abundant

training samples compared to other AUs.

Region layer: This paragraph discusses the effective-

ness of the region layer. Observing the results of ConvNet

and LCN in Table 2, LCN reached higher F1-frame in 11 out

of 12 AUs and higher AUC in 7 out of 12 AUs. It validates

the observation that LCN learns more discriminative infor-

mation of face regions than a standard convolutional layer

as ConvNet [28]. In BP4D, DRML outperformed LCN in

6 out 12 AUs for F1-Frame, and 8 out 12 AUs for AUC.

In DISFA (Table 3), on average, DRML outperformed LCN

with 11.3% higher in F1-frame and 11.7% higher in AUC.

This justifies that, compared to LCN applied to individual

pixels, the region layer better expresses the structural in-

formation in local facial regions. Recall that ConvNet is

a special case of DRML without the region layer, we con-

firmed the effectiveness of DRML. Qualitatively, as shown

in Fig. 4, the saliency maps of DRML show better speci-

ficity than alternative models. All results suggest that the

proposed region layer helps AU detection by considering

structural information in facial regions.

Joint learning of regions and multi-label: To better

understand the effects of a joint learning framework, we

compared the proposed DRML with an AlexNet [14]. Both

networks were trained on the BP4D dataset using 12 AUs.

Fig. 5 shows the convergence curves and learned relation ta-

bles of both models. As shown in Fig. 5(a), DRML conver-

gences faster than AlexNet and obtains lower training loss.

Fig. 5(b)-(d) show the table of correlation coefficients be-

tween pairwise AUs for ground truth, DRML and AlexNet,

respectively. The element-wise Euclidean distance between

DRML and ground truth is 0.0068, while it is 0.0077 for

AlexNet. This shows that DRML was able to learn AU re-

lations close to ground truth statistics. In addition, we com-

pared DRML with the state-of-the-art JPML [38]. Note that

one difference is that JPML [38] reported their results us-

ing a 10-split partition, while, for fairness, we implemented

JPML using a 3-split partition. Observing the results in Ta-

ble 2, on average, DRML achieved 5.0% higher in F1-frame

and 11.7% higher in AUC. The results suggest that the di-

rect interaction between RL and ML, along with the non-
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Table 2. Results on the BP4D dataset. Bracketed and bold numbers indicate the best performance; bold numbers indicate the second best.

F1-frame AUC

AU LSVM JPML AlexNet ConvNet LCN DRML LSVM JPML AlexNet ConvNet LCN DRML

1 23.2 32.6 27.0 40.4 [45.0] 36.4 20.7 40.7 34.9 49.4 51.9 [55.7]

2 22.8 25.6 25.5 [46.1] 41.2 41.8 17.7 42.1 25.8 [51.3] 50.9 [54.5]

4 23.1 37.4 31.9 42.8 42.3 [43.0] 22.9 46.2 36.1 47.4 53.6 [58.8]

6 27.2 42.3 51.4 51.8 [58.6] 55.0 20.3 40.0 48.3 52.2 53.2 [56.6]

7 47.1 50.5 55.4 54.3 52.8 [67.0] 44.8 50.0 54.3 [64.8] 63.7 61.0

10 [77.2] 72.2 52.8 54.0 54.0 66.3 73.4 [75.2] 54.3 61.4 62.4 53.6

12 63.7 [74.1] 49.0 61.0 54.7 65.8 55.3 60.5 50.0 60.2 [61.6] 60.8

14 64.3 [65.7] 51.7 56.7 59.9 54.1 46.8 53.6 47.7 29.8 [58.8] 57.0

15 18.4 38.1 25.5 [44.1] 36.1 33.2 18.3 50.1 34.9 50.6 49.9 [56.2]

17 33.0 40.0 41.4 38.3 46.6 [48.0] 36.4 42.5 48.5 [53.5] 48.4 50.0

23 19.4 30.4 26.1 [41.8] 33.2 31.7 19.2 51.9 40.5 49.5 50.3 [53.9]

24 20.7 [42.3] 23.5 32.8 35.3 30.0 11.7 53.2 31.7 52.5 47.7 [53.9]

Avg. 35.3 45.9 38.4 47.0 46.6 [48.3] 32.2 50.5 42.2 51.8 54.4 [56.0]

Table 3. Results on the DISFA dataset. Bracketed and bold numbers indicate the best performance; bold numbers indicate the second best.

F1-frame AUC

AU LSVM APL AlexNet ConvNet LCN DRML LSVM APL AlexNet ConvNet LCN DRML

1 10.8 11.4 12.0 11.7 12.8 [17.3] 21.6 32.7 47.8 44.2 44.1 [53.3]

2 10.0 12.0 11.6 12.0 12.0 [17.7] 15.8 27.8 52.1 37.3 52.4 [53.2]

4 21.8 30.1 27.6 28.9 29.7 [37.4] 17.2 37.9 44.0 47.9 47.7 [60.0]

6 15.7 12.4 22.6 21.4 23.1 [29.0] 8.7 13.6 44.3 38.5 39.7 [54.9]

9 11.5 10.1 11.5 11.5 [12.4] 10.7 15.0 [64.4] 48.7 49.5 40.2 51.5

12 [70.4] 65.9 31.1 31.0 26.4 37.7 93.8 [94.2] 55.3 54.8 54.7 54.6

25 12.0 21.4 44.4 40.7 [46.2] 38.5 3.4 [50.4] 50.2 48.4 48.6 45.6

26 22.1 26.9 28.2 27.7 [30.0] 20.1 20.1 [47.1] 45.8 45.8 47.0 45.3

Avg. 21.8 23.8 23.6 23.1 24.0 [26.7] 27.5 46.0 49.1 45.8 46.8 [52.3]

Table 4. Running time (ms) of all alternative networks

Time ConvNet AlexNet [14] DRML LCN

Train 6.4±0.003 3.6±0.005 19.1±0.001 40.0±0.006

Test 3.3±0.002 2.2±0.002 12.1±0.003 34.7±0.008

linearity, bring more advantages to DRML over JPML.

Running time: We evaluated the running speed of

DRML and alternative networks using a NVIDIA Tesla

K40c GPU. Table 4 shows the execution time (ms) for both

training and test phases. Specifically, using the same set-

tings as described in Sec. 4.1, we ran each network for 20

trials over 1,000 iterations, evaluated the running time for

each iteration, and then computed the mean and standard

deviation over the 20 trials. Because DRML serves an alter-

native architecture between ConvNet and LCN, both train-

ing and test time of DRML falls between them. Note that

DRML is significantly faster than LCN, which was pro-

posed for face verification [28]. It is worth noticing that,

even ConvNet has slightly smaller number of parameters

than AlexNet, the computation complexity could vary, caus-

ing the running time of ConvNet slightly larger. In partic-

ular, the 11×11 filters in conv1 lead to the major FLOP

(multiply-adds) operations.

5. Conclusion

This paper presents Deep Region and Multi-label Learn-

ing (DRML) for facial AU detection. DRML is a unified

architecture for AU detection, and allows two seemingly ir-

relevant tasks, region learning (RL) and multi-label learn-

ing (ML), to interact directly. DRML is end-to-end train-

able, and able to identify more specific regions for different

AUs than conventional patch-based methods. To this end,

we introduce a region layer that uses feed-forward functions

to capture structural information in different facial regions.

Experiments conducted on within- and across-dataset sce-

narios manifest the effectiveness of DRML. Future work

includes imposing group sparsity loss into the objective of

DRML to learn sparser facial regions. The proposed region

layer introduces potential applications to more structured

objects, such as cats, cars, and pedestrians.
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