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ABSTRACT

We introduce a methodology for designing and training deep neural networks (DNN) that we call
“Deep Regression Ensembles" (DRE). It bridges the gap between DNN and two-layer neural networks
trained with random feature regression. Each layer of DRE has two components, randomly drawn
input weights and output weights trained myopically (as if the final output layer) using linear ridge
regression. Within a layer, each neuron uses a different subset of inputs and a different ridge penalty,
constituting an ensemble of random feature ridge regressions. Our experiments show that a single
DRE architecture is at par with or exceeds state-of-the-art DNN in many data sets. Yet, because DRE
neural weights are either known in closed-form or randomly drawn, its computational cost is orders
of magnitude smaller than DNN.

Keywords Deep learning · Neural network · Random features · Ensembles

1 Introduction

Deep neural networks (DNN) have revolutionized machine learning and have impacted many aspects of society. They
outperform other learning methods in a vast range of applications, including image recognition, natural language
processing, robotics, and games. The standard algorithm for training DNN is stochastic gradient descent (SGD).
This requires significant computing power, typically more than available on a desktop computer and often in the
form specialized hardware like graphics processors. The properties of DNN trained by SGD are complex, and our
understanding of these properties is in its infancy.

Compared to DNN, kernel methods (reproducing kernel Hilbert spaces) are simpler and more transparent, and hence
are often used to benchmark DNN performance. Perhaps the most popular and computationally convenient kernel
method is random feature regression [1]. This is equivalent to training a wide, two-layer network with randomly drawn
input weights and output weights trained by linear ridge regression. The attractiveness of this method is its analytical
tractability and low computational cost, which occur because SGD is replaced by linear regression and randomization.

In this paper, we introduce a methodology for designing and training DNN called “deep regression ensembles" (DRE).
It combines the expressivity of DNN [e.g. 2] with the analytical tractability of random feature regression. Each layer m
in our network has a double ensemble structure, illustrated in Figure 1. To form the first ensemble, inputs from the
incoming layer (X(m)) are combined via random weights (drawn from a distribution indexed by k) and transformed
through an activation neuron. Weights are re-drawn P times, as in random feature regression, producing a set of
non-linearly transformed regressors (zk,p, p = 1, ..., P ). These are in turn combined with output weights estimated
by ridge regression. The ridge regression is myopic, targeting the final output without regard to subsequent layers in
the network (this step bypasses SGD). We run this regression not once but L times using a different choices for the
ridge penalty (λl), producing an ensemble of L predictions. To form the second ensemble, collections of P random
weights are re-drawn from K different distributions. In our formulation, random features are normally distributed, but
the variance of the weights (γk) differs across ensembles. Each of the K sets of random weight draws feeds into a
collection of L ridge regressions described above, for a total of KL predictions in the full, double ensemble.
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Figure 1: The Ensemble Map

Network depth is accommodated by iteratively feeding the ensemble of predictions into a subsequent layer, where they
are again transformed into non-linear random features and organized into an ensemble of ridge regression predictions.
The left side of Figure 1 shows this process repeated M times, after which one last ridge regression connects the last
feature layer (X(M)) to the final output, for a network with total depth of M + 1.

The two dimensions of the ensemble—one that mixes variances of random features and another that mixes ridge
penalties—can be interpreted as two dials that control the model’s resolution.1 The parameter γk modulates the
variability of the input weights and thus the extent of non-linearity extracted by the random features. When γk is close
to zero the features are nearly linear in the original data, while large γk accentuates the data’s non-linear aspects. The
ridge parameter λl modulates variability of the output weights, which can be large and highly expressive (when λl is
near zero) or dampened with heavy shrinkage (when λl is close to infinity).

DRE is analytically simple and computationally cheap to implement. All neural weights are given by either by a random
number generator or in closed form through ridge regression. DRE is trained without SGD and does not use backward
feature correction [see, e.g. 3, 4]. Thus, its implementation is orders of magnitudes faster than DNN, does not require
specialized hardware, and can be run on a laptop in minutes for moderately sized data sets. In turn, we can train DRE
networks of essentially any depth, and can feasibly select among a wide range of DRE architectures (both depth and
width) via cross-validation, an infeasible feat for SGD. In particular, DRE enjoys “free tuning” of network depth in the
sense that, once a maximum model depth M is estimated (holding width fixed), we can select among all architectures
up to depth M with no additional computation.

Our empirical experiments demonstrate that DRE is on par with or exceeds the performance of DNN. We show this first
in the context of a classic dataset in which DNN excels, FMNIST [5]. We also demonstrate the beneficial performance
of DRE relative to DNN in data simulated from a single-neuron network. This data generating process is an especially
interesting proving ground for DRE because theoretical results ensure that, in this environment, DNN is guaranteed
to outperform a wide two-layer network estimated with random feature regression or neural tangent kernels [6, 7].
Nonetheless, DRE’s predictive performance in these simulations tends to dominate DNN but with computational cost
similar to random feature regression. Throughout our empirical analyses we implement a single, universal, and rather
simple DRE neural architecture, while the state-of-the-art DNN we compare against require specialized architectures
that differ dramatically across datasets. This result, that DRE seems to feature architecture universality, is a surprising
empirical fact that warrants further theoretical investigation.

1This is analogous to architectural choices in convolutional nets that visualize image contents with various degrees of resolution.
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Lastly, we provide a theoretical motivation for the performance gains from ensembles of random feature ridge regressions
that we observe in the data. Our theoretical setting focuses on high complexity ridge models and uses random matrix
limit theory. We contrast two ridge regression approaches. One is standard ridge using all P features in a single “flat”
regression. The other splits the P features into K subsets, estimates one ridge regression within each subset, then
ensembles the fits from the K regressions. We prove the surprising result that, in the high complexity regime, the
ensemble approach enjoys large improvements in risk (test mean squared error) versus the single flat ridge regression.
Furthermore, DRE solves a well known limitation of random feature regression that its computational complexity is
cubic in the number of random features, often causing RAM limits to bind. It is easy for DRE to entertain model
specifications unthinkable for random feature regression (without requiring additional memory) because it splits its
analysis into many smaller ridge regressions that it subsequently combines in an ensemble.

Interestingly, this is related to a result posed by [8]. They examine ensembles of random neural networks to circumvent
the implementation challenges of training extremely large networks. They prove that the loss from such “random
kitchen sinks" is small. Building on recent theoretical advances in the analysis of large-dimensional regressions, we
prove that this “small loss” is actually a gain. Specifically, we show that the risk of the ensemble is always smaller than
the risk of the flat model when complexity is sufficiently high. The improvement in risk through ensembling is very
large in some conditions, and is monotonically increasing in model complexity. This theoretical result is consistent with
experimental evidence for large datasets (see, for example, [9]) suggesting that ensembling leads to significant gains.

As in [8], our theoretical results concern linear ensembling techniques. By contrast, DRE is a form of DNN and is
thus a highly non-linear technique through its iterated non-linear composition of prediction ensembles. Furthermore,
DRE ensembles not only different subsets of signals, but also ensembles across different model resolutions, which are
governed by a distribution of random weight variances and a distribution of ridge penalties. Along these lines, we prove
that an ensemble of ridge regressions with different penalties achieves a form of optimal non-linear shrinkage of the
entire eigenvalue distribution. This is in contrast with standard flat ridge, which penalizes all eigenvalues of the feature
covariance matrix equally (by adding a constant). On the whole, theoretical underpinnings of DRE require further
development and this is an important direction for future research. Fortunately, DRE (unlike SGD) enjoys analytical
tractability, providing a key opportunity for advancing our understanding of deep learning.

2 Related Literature

Our analysis relates to a number of recent and rapidly growing literatures in machine learning. First, the random
features model has become a workhorse mathematical framework for understanding generalization and approximation
properties of neural networks. We build on the analysis of “double descent” (or “benign overfit”) that has recently
garnered much attention in the literature.2 Recent theoretical findings3 imply that any neural network with infinitely
wide layers trained by scaled SGD (“lazy training”) can be approximated by a kernel method with an appropriately
chosen kernel (the so-called “neural tangent kernel,” or NTK).

The hope, based on this literature, is that depth might become unnecessary and shallow but infinitely wide random
networks (which are easier to estimate than DNN) can attain the minimal prediction risk. Prompted by this idea, the
literature directly compares the performance of easier-to-use kernel methods against DNN, and indeed a number of
studies show that DNN can be matched by kernels.4

Unfortunately, there is also evidence challenging this view. Kernel methods face a performance ceiling in some
environments, and a number of recent papers document substantial outperformance of DNN over the corresponding
NTK.5 Additionally, recent theoretical work characterizes large classes of functions for which kernel methods fail to
efficiently approximate the underlying function, leading to underperformance relative to DNN.6 For example, kernel
methods often fail at learning a simple, single-neuron function [6, 7] and hierarchical compositions of simple functions
[3, 4]. Relatedly, [41] show that kernel methods are ill-suited for handling isotropic raw features (i.e., when their
covariance matrix is close to the identity). In these conditions, kernel methods suffer from a curse of dimensionality,
while neural networks are able to accurately approximate the correct low-dimensional representation. [41] demonstrate

2See, for example, [10]. Our theoretical results relate to a quickly growing literature on random matrix methods in machine
learning, such as [11, 12, 13, 14, 15, 16]. Several of these papers derive explicit expressions for the generalization error of random
two-layer networks as a function of the network architecture. We believe that the methods from these papers can be extended to
derive analogous results for DRE.

3See [17, 18, 19, 20, 21, 22, 23].
4See, e.g., [24, 25, 26, 27, 28, 29, 30, 31].
5See, e.g., [32, 33]; in particular, a different scaling can lead to significantly improved effectiveness of DNN trained with SGD, as

shown by [34, 35, 36, 37].
6See, for example, [38, 6, 7, 39, 3, 4, 40].
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that as features become noisier (and thus more isotropic), the performance gap between DNN and kernel methods
widens. A summary perspective on these findings is that random feature regressions can only recover projections of the
true function on a subspace (see [42]). However, the subspace is model-specific, so any individual kernel model will be
limited by its partial approximation of the true process.

These are incisive challenges for kernel learning, and DRE offers a rejoinder. We demonstrate that kernel methods, when
combined as a deep network of iterated random feature regression ensembles, is an effective learning algorithm even
when faced with single-neuron data generating processes and isotropic features. Our experiments show that DRE learns
narrow neural representations at least as successfully as DNN. And through experiments that add increasing amounts of
noise to our features we demonstrate that DRE overcomes isotropy, systematically matching or outperforming competing
models in every experiment we analyze. Most strikingly, this happens with no tuning, with minimal computation time
(less than a minute on an 8-core laptop computer), and using the same simple architecture for all data sets. Why does
this work? DRE ensembles multiple shallow models, and iterates this process hierarchically. We speculate that, in
doing so, it recovers projections of the true function on many different subspaces. If these subspaces are sufficiently
different, combining their projections can produce more accurate approximations of the true function.7 The success of
DRE in our numerical experiments supports this intuition.

Finally, our paper contributes to a literature on training neural networks without SGD.8 In this area, DRE is closest to
layer-wise DNN training,9 as our architecture is also composed of blocks with each block trained locally. However, our
approach to constructing and training blocks is fundamentally different from previous work. First, our architecture
alternates linear and non-linear sub-layers, and only trains the linear layers (using ridge regression). Second, we use
a vast number of output neurons to construct a double ensemble in each layer. Third, the prediction ensemble is
passed to subsequent layers where it is again non-linearly transformed. All three aspects of DRE—ensembling over the
random weighting model, ensembling over the ridge penalty, and incorporating network depth through composition of
ensembles—are crucial for model performance.

3 Deep Regression Ensembles Methodology

This section describes how we design and train DRE. We consider a dataset (yi, xi), i = 1, ..., n of n observations
with labels yi ∈ R and raw (or “intrinsic”) features xi ∈ Rd. We use X = (xi) ∈ Rn×d to denote the training sample
feature matrix, and y = (yi) ∈ Rn to denote the vector of labels in the training sample.

3.1 Anatomy of a DRE Layer

We recursively define the DRE model beginning with inputs X(m) inherited as the output from the previous layer (and
with X(0) = X initiating the recursion). Let D denote the dimension of the inherited features, so that the input training
data matrix X(m) is dimension n×D.

As illustrated in Figure 1, each DRE layer consists of two sub-layers. The first sub-layer uses a non-linear random
feature map to convert inputs X(m) into a large number of intermediate features. We generate not one, but K different
sets of random features, each having dimension P . In particular, random feature p = 1, ..., P in subset k = 1, ...,K is
given by10

z
(m)
k,p = ReLU(X(m)ωk,pD

−1/2 + bk,p) with ωk,p ∼ N(0, γkI), bk,p ∼ U(−a, a), a > 0 . (1)

In other words, the input weights in each random feature set k are generated by a different Gaussian kernel whose
variance is an element of Γ = (γ1, ..., γK). The biases are identically uniformly distributed across all feature sets.
Varying γk allows different feature sets to capture varying degrees of non-linear associations among the input features.
Together, {z(m)

k,p } (the collected blue nodes in Figure 1) constitute an ensemble of random features from heterogeneous
kernels.

In the second sub-layer, we combine each set of random features into predictions through a set of myopic ridge
regressions. Ridge regressions are run separately in each random feature set k, and are run multiple times using a grid
of ridge parameters Λ = (λ1, ..., λL). Note that in this structure the network is not fully connected. This is crucial for

7Other papers find benefits from ensembling, particularly in the presence of large label noise. See, e.g., [43].
8A number of papers propose clever algorithms for training DNN without SGD, including [44, 45, 46, 47]. The standard course

in these papers is to first select a DNN architecture, then propose an algorithm that is superior to SGD for training the network. These
methods, in one way or another, implement a form of backward feature correction.

9See, e.g., [48, 49].
10Recall that ReLU(x) = max(x, 0).
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the performance of the network as it preserves heterogeneous behavior across blocks in the ensemble so that they can
benefit each other when recombined later in the network. These regressions are myopic in the sense that weights are
assigned to random features based on directly predicting the final output label without regard to subsequent layers of
the DRE network. Considering a range of ridge parameter allows the model to consider feature weights throughout the
spectrum of bias-variance tradeoffs.

Let Z(m)
k = (λ

(m)
k,p ) denote the n× P matrix of training data for random feature set k. For a ridge parameter λl, the

corresponding regression coefficients (and thus estimated network weights) on Z(m)
k are

β̂
(m)
k,l =

(
λlI +

1

n
Z

(m)
k

>
Z

(m)
k

)−1
1

n
Z

(m)
k

>
y, (2)

and the corresponding prediction is

ŷ
(m)
k,l = Z

(m)
k β̂

(m)
k,l . (3)

The collection ofKL predictions, {ŷ(m)
k,l }, constitutes a double ensemble. It gives the model an ability to mix its learning

efforts over varying degrees of feature non-linearity (γk) and varying degrees of weight shrinkage (λl). These degrees
of freedom give DRE two dials to modulate the resolution of the model. The ensemble collects together a spectrum
of models ranging from mostly linear features with heavily constrained weights to rich non-linear specifications with
highly expressive weights.

Next, we introduce a form of batch normalization in which each n× 1 component of the prediction ensemble {ŷ(m)
k,l } is

normalized by its uncentered standard deviation. We collect the resulting normalized ensemble in the n×KL matrix
X(m+1). If m is an intermediate layer of the network, then X(m+1) is passed as input to the next layer, where the
process of double ensembling random feature ridge regressions begins again. If m is the final layer before the output
labels, then we run a final ridge regression of y on X(m+1) using a single ridge parameter, λ∗. The final penalty is the
only tuned hyperparameter in our baseline framework, and in our experiments we use a simple test-validation split to
select λ∗.

3.2 Comments

Algorithm 1 in the appendix summarizes the design and training of DRE. As the algorithm and Figure 1 illustrate, DRE
is an (M + 1)-layer neural network. But there are several important aspects that differentiate DRE from standard DNN.
First, within each layer, input weights are randomly generated and output weights are trained myopically with ridge
regression. This makes DRE a direct multi-layer analog of [1]. In addition to the obvious computational benefits, the
analytical tractability of DRE makes it amenable to rigorous mathematical analysis using recent theoretical advances
in understanding linear ridge regression with random features. Second, due to myopic training, DRE does not use
back-propagation which drastically reduces the computational cost. Third, training within a DRE layer is massively
parallelizable because each sub-model of the ensemble is trained separately. Fourth, unlike DNN, we produce a usable
prediction after each layer. An attractive implication of this is “free tuning” of network depth.

The primary computing cost for DRE is paid to invert high-dimensional covariance matrices for ridge regression, which
must be repeated for a grid of λ-values. We can significantly reduce this cost using eigenvalue decompositions. If
λ ∈ Rn×P and z>z = U diag(µ)U> (with µ the vector of eigenvalues), then the regression coefficients β̂(λ) for a
grid of λ can be computed as

(λI + n−1z>z)−1n−1z>y = U diag(µ+ λ)−1U>z>y.

Therefore, we compute the eigenvalue decomposition once, calculate ỹ = U>z>y once, then we need only compute
matrix multiplication U diag(µ+ λ)−1ỹ for each element of the λ grid to complete the necessary inverse calculations.
Finally, in a high complexity regime where the number of features is larger than n, we can work with zz> instead of z>z
as these matrices have the same non-zero eigenvalues and their eigenvectors are directly linked through multiplication
by z.

3.3 Generalizations

Our data experiments utilize the specific DRE formulation outlined above with fixed choices for network depth M + 1
and ensemble dimensions K and L that are the same in all layers. We briefly note a few ways that our specific
formulation can be generalized at low cost. First, our use of Gaussian weights with a relu activation in equation (1) can
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easily be replaced by any choice of K heterogenous kernels.11 Second, it is easy to introduce ensemble the dimensions
Km and Lm to vary the neuron configuration layer-by-layer, m = 1, · · · ,M. Lastly, thanks to the computational
simplicity of DRE, the dimensions M , K, and L can be tuned as hyperparameters through cross-validation.

4 Experiments

In this section, we report the performance of DRE on simulated and real datasets and compare it with other state-of-the-
art models.

4.1 Simulated Data

In this set of experiments, we simulate data sets from data generating processes that are provably harder for kernel
methods to learn than they are for DNN.

The first simulation experiment is motivated by [6], who show that a random feature regression is ineffective in learning
a trivial network with a single ReLU neuron. We thus compare the empirical performance of DRE to DNN and random
feature regression in simulated samples from a single-neuron network. Specifically, we consider an activation σ() that
takes one of two forms, either ReLU or sigmoid. We draw a matrix of i.i.d. input data X ∼ N(0, I) ∈ Rn×d. Next,
we draw a d-vector of weights w ∼ N(0, I) truncated at ±3. The labels are then generated as y = σ(Xw) + ε where
ε ∼ N(0, s2I) ∈ Rn×1 is i.i.d. with standard deviation s.

Our experiments fix the simulated sample size at n = 3000, feature set size at d = 50, and use noise standard deviation
s ∈ {0.1, 0.2, ..., 0.9}. In each simulated data set and each experiment, we split the sample into three equal size
samples for training, validation, and testing. We use validation performance to select the model specification and report
out-of-sample performance on the test set.

We implement DRE with the following settings. The number of features in each random feature block of an ensemble
is P = 100. The number of such blocks is K = 500, with each block k having a weight variance γk sampled from
U(0.25, 1.25). Finally, our ensembles use a grid Λ = {λi}Li=1 of L = 29 different ridge penalties.12

We compare DRE to three benchmark methods. The first is DNN, which is directly motivated by the structural
comparisons between DRE and DNN that we outline above. The second is random feature regression, which is a natural
benchmark given its role at the core of DRE and its demonstrated competitiveness with DNN in a number of empirical
applications. The third is random forest, motivated its robust success in a wide range of classification problems [50].
For DNN and random forest we choose the best performer in the validation set from several potential architectures. For
random feature regression, we set the number of features equal to the size of the final layer in DRE, K · L = 500 · 29.
Appendix B contains training details for each benchmark algorithm.

Figure 2 reports the risk (which we report as a normalized MSE, i.e., 1-R2) realized by each method. Panel (a) shows
results when the single-neuron activation is ReLU. At low levels of noise, DRE matches the performance of DNN, and
both of these dominate random feature regression and random forest by a large margin. At higher levels of noise, DNN
suffers relative to DRE, with DRE becoming the standalone best performer. Panel (b) shows performance when the data
is generated from a sigmoid activation function. Here DNN and DRE are roughly on par when noise is low, but DNN
suffers relative to DRE in noisier systems. The pattern for random features regression versus DRE is the opposite. In
low-noise data, random features cannot compete with DRE or DNN, but when noise is large, DRE and random feature
regressions are roughly on par (and better than DNN).

4.2 FMNIST

We next analyze the empirical performance of DRE on real data taken from FMNIST [5]. To adapt our regression
framework for categorical data, we conduct ten different experiments using data sets with binary outcomes.

The data for each experiment uses a pair of categories (e.g., “T-shirt/Top” versus “Trouser”). These pair-wise
comparisons have 0/1 labels that can be handled with DRE’s regression structure, and have equal numbers of observations
for each label. To keep the number of experiments to ten, we compare each category to the subsequent category in
Table 2 of [5] (for the last category, “Ankle boots,” we compare it to the first category, “T-shirt/Top.”) We compare DRE

11A generic positive definite kernel K(x1, x2) admits a representation K(x1, x2) =
∫
f(x1; θ)f(x2; θ)p(θ)dθ for some feature

map f(x; θ). Replacing z(m)
k,p in (1) with z(m)

k,p = f(X(m); θk,p) leads to a DRE with arbitrary kernel-based random features.
12The specific grid of ridge parameters is Λ = {0.0001, 0.001, 0.01, 0.1, 1.0, 5.1, 10.1, 15.1, 20.1, 25.1, 30.1, 35.1, 40.1, 45.1,

50.1, 55.1, 60.1, 65.1, 70.1, 75.1,80.1, 85.1, 90.1, 95.1, 100.1, 1000.0, 2000.0, 5000.0, 10000.0}.
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(a) ReLU (b) sigmoid

Figure 2: The figures show out-of-sample performance of DRE and three benchmarks on simulated data. The true
function is σ(Xw) + ε where X is a 3000× 50 matrix drawn from an i.i.d. normal distribution, w is a vector of random
weights of dimension 50 drawn from a truncated normal (|wi| < 3∀i), σ(·) is a ReLU function in panel (a) and a
sigmoid function in panel (b), and ε is a vector of noise drawn from a normal with variance between 0.1 (noise level =
1) and 0.9 (noise level = 9).

(a) Noise level = 0 (b) Noise level = 1 (c) Noise level = 2

Figure 3: The figures show out-of-sample performance of DRE and three benchmarks in FMNIST data with three level
of noise. Each set of bars 0-9 represents subset of FMNIST data for a pair of categories (with labels converted to 0/1).
We add varying degrees of noise to the data following [41].

performance to DNN and random feature regression, using the same estimation procedure described in Section 4.1 and
Appendix B. In addition to studying the raw data (noise level = 0), we also examine the performance effects of adding
noise to the data following the formulation of [41].

The results, shown in Figure 3, suggest three main conclusions. The first is that both DRE and DNN outperform random
feature regression in every experiment. The second is that DRE achieves similar performance to DNN across the board.
But DRE achieves this performance while reducing computation cost by a few orders of magnitude. Lastly, DRE tends
to outperform DNN in the most difficult-to-learn categories, and in these cases the outperformance is comparatively
large. On the other hand, when DNN outperforms DRE, the difference is small.
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(a) ReLU (b) FMNIST

Figure 4: The figures illustrate the role of ensembling and report DRE’s performance sensitivity to the choice of K.
Panel (a) shows results for single-neuron ReLU simulations from Figure 2 and Panel (b) shows FMNIST data from
Figure 3.

4.3 Distinguishing the Benefits of Ensembling and Depth

DRE has two primary architectural components: random feature ensembles and iterated non-linear compositions (i.e.,
depth). First, we modify the simulation analysis reported in Figure 2 in order to isolate the contribution of ensembling
to DRE’s performance.

In the simulation analysis of Figure 2, the total number of random features in each DRE layer is fixed at P ·K = 50000,
and in the FMNIST experiments of Figure 3 use P ·K = 300000. To understand the role of ensembling, we hold
the total feature count in these experiments fixed at their previous values, but divide it into K = 1, 50, 100, 200, 500
sub-models and re-run the DRE algorithm. We also consider how the role of ensembling is affected by varying the
noise environment (as in our preceding experiments).

Figure 4 reports the results for the single-neuron ReLU simulation in Panel (a) and FMNIST13 data in Panel (b).
DRE performance tends to improve by dividing features into a large number of sub-models, though the effect can be
non-monotonic. The benefits of ensembling are large at all noise levels, and corroborate the theoretical predictions
of Section 5. It is also worth noting that when we divide a fixed number of random features into more and more
sub-models, the total computational cost of DRE drops, providing an additional benefit of ensembling beyond the gains
in prediction accuracy.

Next, we investigate how the performance of DRE varies with network depth. Figure 5 reports DRE specifications
with depth M = 1, ..., 5, holding other network attributes fixed. Performance for single-neuron ReLU simulations in
Panel (a) and FMNIST data in Panel (b) improves when moving beyond a M = 1. The effects are larger in low-noise
data. They are also non-monotonic, as the additional parameterization due to more layers can eventually undermine
out-of-sample performance, as seen in Panel (a).

5 Theoretical Results: Linear Ensembling

We consider a simple setting with p features split into K groups, and features have limited dependence across groups.
We are interested in estimator behavior in the high complexity regime where p is large relative to the number of
observations n (fixed K, p, n → ∞, and p/n → c > 0). We prove that, in this environment, a single large ridge
regression using all features is inefficient. The regression involves inverting a giant covariance matrix of all features, and
the cross-group covariance terms are dominated by noise. In the limit of high model complexity, the effect of this noise
can severely inhibit the performance of the large joint ridge regression. We contrast this with ensembling; in particular,

13We continue to use the binary FMNIST formulation described earlier and, for the purposes of Figures 4 and 5, use just the
dataset corresponding to the first classes (i.e., corresponding to the set of bars labeled 0 in Figure 3).
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(a) ReLU (b) FMNIST

Figure 5: The figures illustrate the role of depth and DRE’s performance sensitivity to the choice of M , fixingK = 500
and P = 100, and at varying levels of noise. Panel (a) shows results for single-neuron ReLU simulations from Figure 2
and Panel (b) shows FMNIST data from Figure 3.

we consider the alternative of estimating separate ridge regressions for each feature group and then combining forecasts.
Ensembling has provably better performance, and in some circumstances the improvements from ensembling are drastic.
That K is fixed means that ensemble gains accrue when the ridge sub-models in the ensemble are themselves complex
(in other words, the ensemble can underperform when features are subsetted into very fine groups). The gap between
the flat ridge regression and the ensemble can be computed explicitly using random matrix theory methods from [13]
and [51]. This result provides a first motivation for the ensemble structure of DRE.

Our second theoretical observation is that selecting a single ridge penalty can also be inefficient. Ensembling ridge
regressions that use different ridge penalties can lead to further reductions in model risk, and motivates the multiple-
penalty aspect of our DRE architecture. Here again we use random matrix theory methods from [13] and [51] to
explicitly characterize the corresponding gains in predictive ability.

5.1 Data and Risk

Building on the baseline notation in Section 3, we consider i.i.d. data (yi, xi), i = 1, ..., n, with xi ∈ Rp being the
feature vector and yi ∈ R the label. We use X = (xi) ∈ Rn×p and y = (yi) ∈ Rn to denote the stacked features and
labels in the n training observations. The large, flat ridge regression (the “flat model” for short) uses the flat feature
vector xi.

We use the notation xi(k) ∈ Rp(k) to denote the subset of p(k) features that flow into the kth component of the
regression ensemble, which has training matrix analogue X(k) ∈ Rn×p(k). The sets xi(k), k = 1, ...,K, are disjoint
and exhaust the elements xi.

We assume that

yi = x>i β + εi =

K∑
k=1

xi(k)>βi(k) + εi, i = 1, ..., n, (4)

where β is the coefficient on the flat feature vector and β(k) is the subset of coefficients corresponding to xi(k). The flat
feature vector xi is i.i.d. withE[xi] = 0, Cov(xi) = Σ, with covariance sub-matrices Cov(xi(k1), xi(k1)) = Σ(k1, k2).
The errors εi are independent of xi, E[εi] = 0, and Var[εi] = σ2. Without loss of generality, we normalize σ2 = 1.

Given an estimator β̂ ∈ Rp and a test sample observation x0 sampled from the same distribution as xi, we investigate
the generalization properties of our estimator, described by the out-of-sample prediction risk:

Risk(β̂; β) = E[(x>0 β̂ − x>0 β)2|X] = E[‖β̂ − β‖2Σ|X] , (5)

where we follow the notation of [13] and denote ‖x‖2Σ = x>Σx.

9
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5.2 Ridge Regression Ensembles

We investigate properties of ridge regression sub-model estimators in feature group k

β̂(λ; k) =

(
λI +

1

n
X(k)>X(k)

)−1
1

n
X(k)>y (6)

as well as “flat models" estimated from all features

β̂(λ; flat) =

(
λI +

1

n
X>X

)−1
1

n
X>y . (7)

Note that each β̂(λ; k) is also an estimator of β where we shrink all components β(l), l 6= k, to zero. From now
on, without additional explanations, we use the notation β̂(λ; k) to denote both the vector in Rp(k) and its natural
embedding into Rp.
The risk of an ensemble of sub-models with coefficients α = (αk) and ridge parameters λk, k = 1, ...,K can be
decomposed as

Risk

(∑
k

αkβ̂(λk; k);β

)
= E

∥∥∥∥∥∑
k

αkβ̂(λk; k)− β

∥∥∥∥∥
2

Σ

|X


=

K∑
k=1

α2
kE[‖β̂(k)− β(k)‖2Σ(k)|X] (8)

+ 2αk1αk2
∑
k1<k2

E[(β̂(k1)− β(k1))>Σ(k1, k2)(β̂(k2)− β(k2))|X].

In general, the asymptotic behavior of off-diagonal terms in (8) can depend in a complex way on the covariance structure
of signals [see 51]. When the cross-block covariances Σ(k1, k2) are not too large, the corresponding elements of the
giant sample covariance matrix X>X are dominated by noise and, as we show below, this leads to large increases in
risk when model complexity is high. To compute the asymptotic gain from ensembling in the large-n limit, we need the
following additional technical assumptions.

Assumption 1 We have
x = Σ1/2z ,

where z ∈ Rp has zero first and third-order moments, and E[zz′] = I. Furthermore, the fourth moments E[z4] are
uniformly bounded and z satisfies the Lindenberg condition

lim
p→∞

1

p

p∑
i=1

E[z2
i I|zi|>ε

√
p] = 0 for all ε > 0.

Assumption 2 The matrix Σ has a block structure, Σ = (Σ(k1, k2))Kk1,k2=1 with Σ(k) ≡ Σ(k, k) ∈ Rp(k)×p(k).

For each k1 6= k2, we have tr(Σ(k1, k2)Σ(k2, k1)) = o(p) as p → ∞.14 We use µi(Σ), i = 1, · · · , p, to denote the
eigenvalues of an arbitrary matrix Σ. In the limit as p(k)→∞, the spectral distribution FΣ(k) of the eigenvalues of
Σ(k) ,

FΣ(k)(x) =
1

p(k)

p(k)∑
i=1

1µi(Σ(k))≤x (9)

converges to a non-random probability distribution H(k) supported on (0,+∞).15 Furthermore, Σ(k) is uniformly
bounded as p(k)→∞. We will use

σ∗,i(k) = lim
p(k)→∞

p(k)−1 tr(Σ(k)i) , i ≥ 1

to denote asymptotic moments of the eigenvalues of Σ(k).

Our last assumption governs the behavior of the true predictive coefficients, β. We assume that the distribution of β is
isotropic.16

14For example, this is the case when Σ(k1, k2) have uniformly bounded ranks, in which case tr(Σ(k1, k2)Σ(k2, k1)) is also
bounded when Σ itself is bounded. This assumption guarantees that cross-covariances, Σ(k1, k2), have no impact on asymptotic
risk.

15If 0 is in the support of H , then Σ(k) is strictly degenerate, meaning that some signals are redundant.
16As [13] show, in general the asymptotic behaviour depends on the distribution of projections of β on the eigenvectors of Σ.
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Assumption 3 We assume β(k) is random, β(k) = (βi(k))
p(k)
i=1 ∈ Rp(k), independent of z and ε, and satisfies E[β] =

0, and E[β(k)β(k)>] = p(k)−1b∗,p(k)(k)I for some constant b∗,p(k) = E[‖β(k)‖2],17 and satisfies b∗,p(k) → b∗(k)

almost surely, for some b∗(k) > 0. Furthermore, E[β4
i ] ≤ q · p(k)−2 for some constant q > 0, and β satisfies the same

Lindenberg condition as z.

Randomness of β in Assumption 3 is a technical condition that simplifies the analysis. As [13] show, it is possible to
derive explicit expressions for asymptotic risk without this assumption, but the expressions become more complex. In
this case, the asymptotic behavior depends on the distribution of projections of β on the eigenvectors of Σ (the feature
principal components).18 We leave this important generalization for future research.

5.3 Main Results

In this subsection, we fix the ensemble size K ≥ 1 and consider the limit as p(k) → ∞ for all k and n → ∞ while
p(k)/n → c(k). We use the following auxiliary objects:

mk(−λ; c(k)) = lim
p(k),n→∞

p(k)−1 tr(λI + Σ̂(k))−1, Σ̂(k) =
1

n
X(k)>X(k)

m(−λ) = lim
p(k),n→∞

P−1 tr(λI + Σ̂)−1, Σ̂ =
1

n
X>X

(10)

These limits exist almost surely [see, e.g. 13, 51]. Furthermore, due to the tr(Σ(k1, k2)Σ(k2, k1)) = o(p) condition in
Assumption 2, asymptotic risk coincides with that of a block-diagonal Σ :

m(−λ) =

K∑
k=1

c̄−1c(k)mk(−λ; c(k)), (11)

where c̄ =
∑K
k=1 ck. Using classic results [see, e.g. 13], we have existence of the following probability limits:

ξk(λ; c(k)) = lim
p(k),n→∞

p(k)−1 tr(Σ(k)(λI + Σ̂(k))−1 =
1− λmk(−λ; c(k))

c(k)−1 − 1 + λmk(−λ; c(k))

ξ(λ) = lim
p(k),n→∞

P−1 tr(Σ(λI + Σ̂)−1) =
1− λm(−λ)

c̄−1 − 1 + λm(−λ)
.

(12)

Then, we define

νk(λ; c(k)) = σ∗,1(k)− c(k)−1λξk(λ; c(k)) = lim p(k)−1 tr(Σ̂(k)(λ+ Σ̂(k))−1Σ(k)) > 0

ν′k(λ; c(k)) = − c(k)−1(ξk(λ; c(k)) + λξ′k(λ; c(k))) = − lim p(k)−1 tr(Σ̂(k)(λI + Σ̂)−2Σ) < 0

ν̂k(λ; c(k)) = ν(λ; c(k)) + λν′(λ; c(k)) = lim p(k)−1 tr(Σ̂(k)2(λI + Σ̂(k))−2Σ) > 0.

(13)

From here, we compute the asymptotic risk of ridge estimators and their ensembles.

5.3.1 Ensembling With Common Ridge Penalty

We start by characterizing the asymptotic risk (8) of an arbitrary ridge ensemble.

Proposition 1 (Risk of the Ensemble) In the limit as p(k)/n → c(k) > 0, n → ∞, the risk of ensemble in (8)
converges to

Risk∗

(∑
k

αkβ̂(λk; k);β

)
=

K∑
k=1

Risk∗(αkβ̂(λk; k);β(k)) , (14)

where

Risk∗(αkβ̂(λ; k);β(k)) = lim
p(k),n→∞
p(k)/n→c(k)

E[‖αkβ̂(λ, k)− β(k)‖2Σ(k)|X]

= b∗(k)σ∗,1(k)− 2αkb∗(k)νk(λ) (15)

+ α2
k(b∗(k)ν̂k(λ) − c(k)ν′k(λ)(1 + b̄∗ − b∗(k)σ∗,1(k))).

17This identity follows because b∗(k) = trE[β(k)β(k)>] = E[tr(β(k)β(k)>)] = E[b∗].
18See, [13]. In particular, when β is concentrated on the top principal components, the phenomenon of benign overfit emerges

([52], [53]), and the optimal ridge penalty is zero.
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When αk = 1, risk is minimized by19

λ∗k = c(k)(1 + b̄∗ − b∗(k)σ∗,1(k))/b∗(k)

where b̄∗ =
∑K
k=1 b∗(k)σ∗,1(k).

For a fixed λ, risk is minimized by

α∗k =
b∗(k)νk(λ)

b∗(k)ν̂k(λ) − c(k)ν′k(λ)(1 + b̄∗ − b∗(k)σ∗,1(k))
.

The joint minimum of risk over (αk, λk) is attained by (1, λ∗k).

Proposition 1 has a close connection to DRE. It states that optimal ensemble weights (αk) are equal to one when the
optimal ridge penalty for each ensemble is known. Naturally, this is infeasible and the ridge penalty must be inferred
from data using cross-validation or restrictions imposed by random matrix theory. However, Proposition 1 also shows
that when λk is fixed at an arbitrary (sub-optimal) value, then optimizing the ensemble weights salvages some of the
performance that would be otherwise lost due to imperfect λk. In each DRE layer, we first estimate a range of models
using generic (non-optimized) ridge penalties. Then, we combine these models with a second-tier ridge regression that
seeks to optimally weight sub-models in the spirit of α∗k.

We now proceed to computing the risk of the flat model with and without optimal penalty. This will serve as a benchmark
against which we compare the ensemble. We focus here on a simplified setting where p(k) = p and Σ(k) has an
eigenvalue distribution that is independent of k (the general case is somewhat cumbersome and requires solving a fixed
point system). For simplicity, we normalize σ∗(k) = 1 for all k. The following is true.

Proposition 2 (Risk of the Flat Model) Suppose that p(k) = p for all k and p/n → c, and that the eigenvalue
distribution of Σ(k) is independent of k. Then, the risk of the flat estimator β̂(λ) is

Risk∗(β̂(λ);β) = lim
p,n→∞
p/n→c

E[‖aβ̂(λ)− β‖2Σ|X] = b̄∗ − 2ab̄∗ν(λ) + a2(b̄∗ν̂(λ) − cKν′(λ)) , (16)

where a is the scale of the prediction. When a = 1, the risk is minimized by λ̄∗ = cK/b̄∗. For a fixed λ, the risk is
minimized by

ā∗ =
b̄∗ν(λ)

b̄∗ν̂(λ) − cKν′(λ)
. (17)

The joint minimum of risk over (a, λ) is attained by (1, λ̄∗).

5.3.2 Numerical Illustration

To provide a direct comparison between the ensemble and flat model, and to provide a numerical illustration, we set
Σ(k) = I for all k.20 In this case, if the ridge penalty is set optimally for each sub-model to λ∗k21 (which also implies
optimal ensemble weights equal one), then the optimizer of (14) is given by

∑
k β̂(λ∗k, k) and the asymptotic risk of

the ensemble is

Risk∗

(∑
k

β̂(λ∗k; k);β

)
= b̄∗ −

K∑
k=1

b∗(k)ν(λ∗k; c). (18)

Likewise, the risk of the flat model with its own optimal penalty λ̄∗ is

Risk∗(β̂(λ∗);β) = b̄∗(1− ν(λ̄∗)). (19)

19The optimality of this λ∗k follows by the same arguments as in [51].
20Σ(k) = I leads to the Marcenko-Pastur law:

ξk(λ) = cm(−λ; c), ξ(λ) = cKm(−λ; cK) ,

with

m(−λ; c) =
2√

((1− c) + z)2 + 4cz + ((1− c) + z)
, and m′(−λ; c) =

cm2(−λ; c) +m(−λ; c)

2czm(−λ; c) + (1− c+ z)
.

21In reality, this would requires estimating b∗(k). It is possible to use random matrix theory to estimate b∗ using the training data.
Alternatively, one can estimate λ∗k via cross-validation.
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Figure 6: The Figure shows theoretical risk of the ensemble and the flat model as a function of model complexity c in
the setting of Proposition 3 with K = 10. “Flat" is the risk of the flat model (19), “Ensemble (optimal)" is the risk of
the optimal combination of sub-models (18), and “Ensemble (sub-optimal)" is risk of the ensemble with a homogeneous
penalty of λ∗.

A interesting question regarding the ensemble is what happens when we run the flat model with its optimal λ∗, and use
the same λ∗ for all sub-models in the ensemble. To answer this, note that for generic (potentially suboptimal) λ, the
optimal ensemble risk with weights α∗k = α∗k(λ) is given by

Risk∗

(∑
k

α∗kβ̂(λ; k);β

)
= b̄∗ −

∑
k

(b∗(k)ν(λ; c))2

b∗ν̂(λ; c) − cν′(λ; c)(1 + b̄∗ − b∗(k))
. (20)

As we now show, this ensemble achieves lower risk than the flat model in the high complexity regime.

Proposition 3 Suppose we have heterogeneous b∗, so that maxk b∗(k) > mink b∗(k). Then,

Risk∗(β̂(λ);β) > Risk∗

(∑
k

α∗kβ̂(λ; k);β

)
.

for all sufficiently large λ.

Figure 6 illustrates the result of Proposition 3. When complexity is sufficiently high, the ensemble achieves a lower risk
than the flat model even with a suboptimal penalty. For low complexity levels, sub-optimal shrinkage can be detrimental
and flat model may dominate. Interestingly, at high levels of complexity, the sub-optimal ensemble scheme performs at
par with the infeasible optimal ensemble.

Note that the risk of the ensemble and flat model are increasing at sufficiently high levels of complexity. This may
at first glance appear to violate the now well established “double descent” property of high-dimensional regression.
However, this pattern arises because each value of c on the plot also corresponds to a different choice of optimal ridge
penalty, λ∗ = c/b∗, and thus merely reflects that (for correctly specified models) it is harder to learn a more complex
model. See, for example, Figure 1 of [13].

5.3.3 Non-linear Shrinkage Interpretation of Ensembles With Heterogenous Ridge Penalty

Our final comment on the theoretical motivation of DRE architecture regards its use of heterogeneous ridge penalties.
Standard ridge linearly shrinks eigenvalues of the feature covariance matrix through an additive adjustment equal to λI .
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Consider an ensemble of ridge models with a range of penalties, and define this estimator as

β̂(Λ;w) =

L∑
`=1

w`β̂(λ`) (21)

for a grid Λ = {λ`}L`=1 of ridge penalties. Proposition 4 solves the problem of minimizing the risk of this estimator.
Interestingly, standard random matrix results imply that the ensemble weights w can be chosen deterministically,
independent of X.

Proposition 4 The solution to the problem

Risk∗(β̂(Λ;w);β) = min
w

lim
p,n→∞
p/n→c

E[‖β̂(Λ;w) − β‖2Σ|X] (22)

is given by
w = Γ−1γ

where
γ = (ν(λ`))

L
`=1, Γ = (Γ(λ`1 , λ`2))L`1,`2=1

with22

Γ(λ1, λ2) = b∗

(
Σ∗,1 + c−1(λ2 − λ1)−1(λ2

1ξ(λ1)− λ2
2ξ(λ2))

)
+ (λ2 − λ1)−1(λ2ξ(λ2)− λ1ξ(λ1)) ,

and ξ given by (13). The optimal asymptotic risk (22) is then

b∗σ∗,1 − γ>Γ−1γ.

The ensemble (21) admits another interpretation—it achieves non-linear eigenvalue shrinkage. To see this, consider a
function f and define23

β̂f(·) = f(Σ̂)
1

n
X>y , (23)

where ridge regualization corresponds to the choice of fλ(x) = (λ+ x)−1 :

β̂fλ(·) = β̂λ . (24)

Now, find the function f(·) attaining minimal risk for the prediction problem. Solving this optimization problem directly
is non-trivial, yet a simple ensemble approach can be used to find an approximate solution. Namely, for any vector
w = (w`)

L
`=1 of coefficients and any grid Λ = (λ`)

L
`=1, we can define

f(x; Λ;w) =
∑
`

w`(x+ λ`)
−1 . (25)

Any smooth function on a bounded interval can be uniformly approximated by a function f(x; Λ;w) with some Λ and
w. Proposition 4 solves the risk minimization problem over all functions in the class (25).

That an ensemble of heterogeneous ridge penalties achieves non-linear shrinkage is a potentially powerful tool in real
world applications, and motivates its role in the DRE architecture. Recent advances [e.g. 54, 55] demonstrate that
non-linear eigenvalue shrinkage is superior to linear shrinkage when eigenvalues are dispersed (a typical condition
observed in empirical covariance matrices).

6 Conclusions

We introduce deep regression ensembles (DRE), a novel deep neural architecture that combines the rich expressivity of
DNN with the analytical tractability and computational simplicity of random features. In prediction tasks where random
features (and kernel methods more generally) are well known to underperform DNN, we show that DRE performs at
least as well as DNN while reducing computation cost by orders of magnitude relative to DNN. In addition to being a
useful alternative to classic DNN trained by SGD, DRE offer a new road towards a theoretical understanding of deep
learning and optimal DNN design based on recent theoretical advances in random matrix theory [11, 12, 13, 14, 15, 16].
Our theoretical results for linear ensembles provide a first step in this direction.

22Note that the diagonal of this matrix has to be computed as a limit: Γ(λ1, λ1) = limλ2→λ1 Γ(λ1, λ2) and can be expressed in
terms of the derivatives of the functions involved.

23As usual, f(Σ̂) is defined through functional calculus: If Σ̂ = U diag(µ)U> is the eigenvalue decomposition of Σ̂, then
f(Σ̂) = U diag(f(µ))U>.
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A Proofs

Proof of Proposition 1. Throughout the proofs, we use X ≈ Y to denote the fact that X − Y converges to zero in
probability.

Using that β>Σβ ≈
∑
k σ∗(k)b∗(k) = b̄∗, we can decompose the risk of any estimator β̂ as

E[‖β − β̂‖2Σ] ≈ b̄∗ − 2β>Σβ̂ + β̂>Σβ̂ (26)

We will use the identity

β̂(k) = (λI + Σ̂(k))−1 1

n

∑
i

xi(k)(x>i β + εi) = (λI + Σ̂(k))−1(Σ̂(k, :)β + q(k)) , (27)

where we have defined

q(k) =
1

n

∑
i

xi(k)εi , (28)

and where
Σ̂(k, :) (29)
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ALGORITHM 1 Deep Regression Ensemble
INPUT:

Training sample, (y,X) , y ∈ Rn, X ∈ Rn×d

Validation sample,
(
ỹ, X̃

)
Test sample, (y,X)
Number of layers, M + 1
Number of random feature sets per layer, K, and associated parameter grid Γ = (γ1, ..., γK)
Number of random features per set, P
Number of ridge parameters, L, associated parameter grid Λ = (λ1, ..., λL)
bias parameter a

OUTPUT: Out of sample forecast for the test sample: ŷ
Set x = X ∈ Rn×d

′
, d′ = d (likewise x̃ = X̃ and x = X)

for m← 1 to M do
for k ← 1 to K do

for p← 1 to P do
Draw ωk,p ∈ Rd

′×1 ∼ N(0, γkI)
Draw bk,p ∈ R ∼ U(−a, a)

Construct z(m)
k,p = ReLU(xωk,p + bk,p) (likewise z̃(m)

k,p and z
(m)
k,p )

end for
Set Z(m)

k = (λ
(m)
k,p ) ∈ Rn×P (likewise Z̃(m)

k = (z̃
(m)
k,p ) and Z

(m)
k = (z

(m)
k,p ))

for l← 1 to L do
Run ridge β̂(m)

k,l = arg minβ‖Z
(m)
k β − y‖2 + λl||β||2 ∈ RP

Set ŷ(m)
k,l = Z

(m)
k β̂

(m)
k,l (likewise ˆ̃y

(m)
k,l = Z̃

(m)
k β̂

(m)
k,l and ŷ

(m)
k,l = Z

(m)
k β̂

(m)
k,l )

end for
end for
set x = (ŷ

(m)
k,l ) ∈ Rn×d

′
, d′ = KL (likewise x̃ = (ˆ̃y

(m)
k,l ) and x = (ŷ

(m)
k,l ))

end for
Select optimal penalization in last layer from validation sample:
for l← 1 to L do

Run ridge β̂l = arg minβ‖xβ − y‖
2 + λl||β||2 ∈ Rd

′

Set ŷl = xβ̂l (likewise ˆ̃yl = x̃β̂l and ŷl = xβ̂l)
end for
Find λ∗ = λl∗ where l∗ = arg minl‖ỹ − ˆ̃yl‖2
Set ŷ = ŷl∗

is the k-th block row of Σ̂. We start with the first term: Using the block-diagonal structure of Σ and the fact that q
converges to zero in probability, as well as the fact that ββ> ∼ diag(p(k)−1b∗(k)) (see, e.g., [51]), we get24

β>Σβ̂(k)

= β(k)>Σ(k)(λI + Σ̂(k))−1(Σ̂(k, :)β + q)

prob→ β(k)>Σ(k) (λI + Σ̂(k))−1Σ̂(k, :)β

= tr
(

Σ (λI + Σ̂)−1Σ̂(k, :)ββ>
)

prob→ b∗(k)p(k)−1 tr
(

Σ(k) (λI + Σ̂(k))−1Σ̂(k)
)

= b∗(k) p(k)−1 tr
(

Σ(k) (λI + Σ̂(k))−1(λI + Σ̂(k)− λI)
)

≈ b∗(k)(σ∗,1(k) − λξk(λ)) = b∗(k)νk(λ)

(30)

24Standard martingale arguments (see, e.g., [56]) imply that, asymptotically, the traces of the resolvent can be replaced by their
expectations.
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by (12)-(13). We now deal with the last term in (26). It is given by

tr(Σ(k)β̂(k)β̂(k)>)

= tr(Σ(k)(λI + Σ̂(k))−1(Σ̂(k, :)β + q(k))(Σ̂(k, :)β + q(k))>(λI + Σ̂(k))−1)

= tr(Σ(k)(λI + Σ̂(k))−1(Σ̂(k, :)β + q(k))(β>Σ̂(k, :)> + q(k)>)(λI + Σ̂)−1)

≈ tr(Σ(λI + Σ̂(k))−1(Σ̂(k, :)ββ>Σ̂(k, :)> + q(k)q(k)>)(λI + Σ̂)−1)

(31)

where we have used the fact that the terms that are linear in q(k) converge to zero in probability. Now,

E[q(k)q(k)>|X] =
1

n2
E[
∑
i

xi(k)εi
∑
i1

εi1xi1(k)|X]

=
1

n2
E[
∑
i,i1

xi(k)εiεi1xi1(k)|X]

=
1

n2
E[
∑
i

xi(k)εiεixi(k)>|X]

=
1

n2

∑
i

xi(k)xi(k)>

=
1

n
Σ̂(k)

(32)

and it is straightforward to show that

tr(Σ(λI + Σ̂(k))−1q(k)q(k)>(λI + Σ̂)−1)
prob→ tr(Σ(λI + Σ̂(k))−1 1

n
Σ̂(k)(λI + Σ̂)−1)

converge to zero in probability. Therefore, standard martingale arguments (see, e.g., [13] and [51]) combined with the
fact that E[ββ>] = diag(p(k)−1b∗(k)) imply that

tr(Σ(k)β̂(k)β̂(k)>)

prob→ tr(Σ(k)(λI + Σ̂(k))−1(Σ̂(k, :)ββ>Σ̂(k, :)> + q(k)q(k)>)(λI + Σ̂)−1)

= tr(Σ(k)(λI + Σ̂(k))−1(Σ̂(k, :)ββ>Σ̂(k, :)> +
1

n
Σ̂(k))(λI + Σ̂(k))−1)

= tr(Σ(k)(λI + Σ̂(k))−1Σ̂(k, :)ββ>Σ̂(k, :)>(λI + Σ̂(k))−1)

+ tr(Σ(k)(λI + Σ̂(k))−1 1

n
Σ̂(k)(λI + Σ̂(k))−1)

prob→ tr(Σ(k)(λI + Σ̂(k))−1
∑
k1

p(k1)−1b∗(k1)Σ̂(k, k1)Σ̂(k, k1)>(λI + Σ̂(k))−1)

+ tr(Σ(k)(λI + Σ̂(k))−1 1

n
(λI + Σ̂(k)− λI)(λI + Σ̂(k))−1)

= tr(Σ(k)(λI + Σ̂(k))−1p(k)−1b∗(k)Σ̂(k)2(λI + Σ̂(k))−1)

+ tr(Σ(k)(λI + Σ̂(k))−1
∑
k1 6=k

p(k1)−1b∗(k1)Σ̂(k, k1)Σ̂(k, k1)>(λI + Σ̂(k))−1)

+
1

n
tr(Σ(k)(λI + Σ̂(k))−1) − λ

1

n
tr(Σ(k)(λI + Σ̂(k))−2)

prob→ tr(Σ(k)(λI + Σ̂(k))−1p(k)−1b∗(k)Σ̂(k)2(λI + Σ̂(k))−1)

+ tr(Σ(k)(λI + Σ̂(k))−1
∑
k1 6=k

p(k1)−1b∗(k1)Σ̂(k, k1)Σ̂(k, k1)>(λI + Σ̂(k))−1)

+ ξk(λ) + λξ′k(λ) .

(33)

Standard martingale arguments imply that we can replace these expressions with their expectations (in the sense of
convergence in probability; see, e.g., [13] and [51]). The same calculations as above imply that

tr(Σ(k)(λI + Σ̂(k))−1p(k)−1b∗(k)Σ̂(k)2(λI + Σ̂(k))−1) → b∗(k)(σ∗,1(k)− 2λc(k)−1ξk(λ)− λ2c(k)−1ξ′k(λ)) .
(34)
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Thus, it remains to deal with the second term in (33). We have by symmetry across i that

tr(Σ(k)(λI + Σ̂(k))−1p(k1)−1b∗(k1)Σ̂(k, k1)Σ̂(k, k1)>(λI + Σ̂(k))−1)

= p(k1)−1b∗(k1)
1

n2
trE[Σ(k)(λI + Σ̂(k))−1

(
nxi1(k)xi1(k1)>xi1(k1)xi1(k)>

+ n(n− 1)xi1(k)xi1(k1)>xi2(k1)xi2(k)>

)
(λI + Σ̂(k))−1]

= Term1 + Term2 .

(35)

for some i1 6= i2. Here,

Term1 = p(k1)−1b∗(k1)
1

n
trE[Σ(k)(λI + Σ̂(k))−1xi1(k)xi1(k1)>xi1(k1)xi1(k)>(λI + Σ̂(k))−1] (36)

and

Term2 = (1− p(k1)−1)p(k1)−1b∗(k1) trE[Σ(k)(λI + Σ̂(k))−1xi1(k)xi1(k1)>xi2(k1)xi2(k)>(λI + Σ̂(k))−1] .
(37)

Using the Sherman-Morrison formula (see [57]),

(λI + Σ̂)−1 = (λI + Σ̂i)
−1 − 1

T
(λI + Σ̂i)

−1xix
>
i (λI + Σ̂i)

−1 1

1 + n−1x>i (λI + Σ̂i)−1xi
(38)

where Σ̂i = 1
n

∑
j 6=i xjx

>
j , and defining C = n−1x>i (λI + Σ̂(k)i)

−1xi, we get

(λI + Σ̂(k))−1xi1(k) = (λI + Σ̂(k)i)
−1xi1(k)(1 + C)−1 , (39)

and therefore

Term1

= p(k1)−1b∗(k1)
1

n
trE[Σ(k)(λI + Σ̂(k)i)

−1xi1(k)(1 + C)−1

× xi1(k1)>xi1(k1)(1 + C)−1xi1(k)>(λI + Σ̂(k)i)
−1]

= p(k1)−1b∗(k1)
1

n
trE[xi1(k)>(λI + Σ̂(k)i)

−1Σ(k)(λI + Σ̂(k)i)
−1xi1(k)xi1(k1)>xi1(k1)(1 + C)−2]

(40)

We will use the following two lemmas

Lemma 1 For any sequence of bounded matrices AP , we have

P−1x′iAPxi − P−1 tr(APΣ) → 0 (41)

is probability.

Proof of Lemma 1. The proof follows directly from Proposition 2.1 in [58].

�

Lemma 2 We have

P−1 tr(QP ((λI + Σ̂))−1) − E[P−1 tr(QP ((λI + Σ̂))−1)] → 0 (42)

almost surely for any sequence of uniformly bounded matrices QP .

See, e.g., [51] for a proof.

Now, Lemmas 1, and 2, and the Vitali Theorem imply that

1

n
xi1(k)>(λI+ Σ̂(k)i)

−1Σ(k)(λI+ Σ̂(k)i)
−1xi1(k) → 1

n
E[tr(Σ(k)(λI+ Σ̂(k)i)

−1Σ(k)(λI+ Σ̂(k)i)
−1)] (43)

in L2, whereas
p(k1)−1xi1(k1)>xi1(k1)(1 + C)−2 → σ∗(k1)/(1 + ξk(λ))2
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in L2. Therefore,
Term1→ b∗(k1)ξ̂k(λ)σ∗,1(k1)/(1 + ξk(λ))2 (44)

where we have defined25

ξ̂k(λ) =
1

n
E[tr(Σ(k)(λI + Σ̂(k))−1Σ(k)(λI + Σ̂(k))−1)]

We will now need the following lemma.

Lemma 3 We have

1

n
E[tr(Σ(k)(λI + Σ̂(k))−1Σ(k)(λI + Σ̂(k))−1)] → ξ̂k(λ) = (ξk(λ) + λξ′k(λ))(1 + ξk(λ))2 (45)

Proof of Lemma 3. We have
1

n
trE[Σ(k)(λI + Σ̂(k)i)

−1] → ξk(λ)

by (13) and therefore

1

n
trE[(λI + Σ̂(k)i)

−1Σ(k)(λI + Σ̂(k)i)
−1] =

1

n
trE[Σ(k)(λI + Σ̂(k)i)

−2] → −ξ′k(λ) .

Lemmas 1, and 2, and the Vitali Theorem together with the fact that xi1 is independent of Σ̂(k)i imply that

1

n
xi1(k)>(λI + Σ̂(k)i)

−1Σ(k)(λI + Σ̂(k)i)
−1xi1(k) ≈ 1

n
trE[Σ(k)(λI + Σ̂(k)i)

−1Σ(k)(λI + Σ̂(k)i)
−1]

≈ 1

n
trE[Σ(k)(λI + Σ̂(k))−1Σ(k)(λI + Σ̂(k)i)

−1]

(46)

is probability. In the next equation, to simplify the expressions, we will use X ≈ Y to denote the fact that X − Y → 0
as n→∞. By (39) and (46),

ξk(λ) ≈ 1

n
trE[Σ(k)(λI + Σ̂(k))−1]

=
1

n
trE[(λI + Σ̂(k))(λI + Σ̂(k))−1Σ(k)(λI + Σ̂(k))−1]

≈ −λξ′k(λ) +
1

n
trE[Σ̂(k)(λI + Σ̂(k))−1Σ(k)(λI + Σ̂(k))−1]

= {Σ̂(k) = n−1
∑
i

xi(k)xi(k)>}

= −λξ′k(λ) +
1

n2

∑
i

trE[xi(k)xi(k)>(λI + Σ̂(k))−1Σ(k)(λI + Σ̂(k))−1]

= −λξ′k(λ) +
1

n
trE[xi(k)xi(k)>(λI + Σ̂(k))−1Σ(k)(λI + Σ̂(k))−1]

= −λξ′k(λ) +
1

n
trE[(λI + Σ̂(k))−1xi(k)xi(k)>(λI + Σ̂(k))−1Σ(k)]

= −λξ′k(λ)

+
1

n
trE[(λI + Σ̂(k)i)

−1xi(k)(1 + C)−1xi(k)>(λI + Σ̂(k))−1Σ(k)]

= −λξ′k(λ)

+
1

n
trE[(1 + C)−2xi(k)>(λI + Σ̂(k)i)

−1Σ(k)(λI + Σ̂(k)i)
−1xi(k)]

≈ −λξ′k(λ) + (1 + ξk(λ))−2ξ̂k(λ)

(47)

and the claim follows. The proof of Lemma 3 is complete. �

25We systematically abuse the notation and use ξ̂k(λ) to denote both finite n object and its n→∞ limit.
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Thus, it remains to deal with Term2 in (35). By (39),

Term2 ≈ p(k1)−1b∗(k1) trE[Σ(k)(λI + Σ̂(k))−1xi1(k)xi1(k1)>xi2(k1)xi2(k)>(λI + Σ̂(k))−1]

= p(k1)−1b∗(k1) trE[xi2(k)>(λI + Σ̂(k))−1Σ(k)(λI + Σ̂(k))−1xi1(k)xi1(k1)>xi2(k1)]

≈ p(k1)−1b∗(k1) trE[(1 + C)−1xi2(k)>(λI + Σ̂(k)i2)−1

× Σ(k)(λI + Σ̂(k)i1)−1xi1(k)(1 + C)−1xi1(k1)>xi2(k1)]

≈ p(k1)−1b∗(k1) trE[(1 + C)−1xi2(k)>

×

(
(λI + Σ̂(k)i1,i2)−1 − 1

n
(λI + Σ̂(k)i1,i2)−1xi1(k)(1 + C)−1xi1(k)>(λI + Σ̂(k)i1,i2)−1

)

× Σ(k)

(
(λI + Σ̂(k)i1,i2)−1 − 1

n
(λI + Σ̂(k)i1,i2)−1xi2(k)(1 + C)−1xi2(k)>(λI + Σ̂(k)i1,i2)−1

)
xi1(k)(1 + C)−1xi1(k1)>xi2(k1)]

= p(k1)−1b∗(k1) trE[(1 + C)−1xi2(k)

×

(
(λI + Σ̂(k)i1,i2)−1 − 1

n
(λI + Σ̂(k)i1,i2)−1xi1(k)(1 + C)−1xi1(k)>(λI + Σ̂(k)i1,i2)−1

)

× Σ(k)

(
(λI + Σ̂(k)i1,i2)−1 − 1

n
(λI + Σ̂(k)i1,i2)−1xi2(k)(1 + C)−1xi2(k)>(λI + Σ̂(k)i1,i2)−1

)
xi1(k)(1 + C)−1xi1(k1)>xi2(k1)]

= p(k1)−1b∗(k1) trE[(1 + C)−1xi2(k)>

×

(
(λI + Σ̂(k)i1,i2)−1Σ(k)(λI + Σ̂(k)i1,i2)−1

− 1

n
(λI + Σ̂(k)i1,i2)−1xi1(k)(1 + C)−1xi1(k)>(λI + Σ̂(k)i1,i2)−1Σ(k)(λI + Σ̂(k)i1,i2)−1

− (λI + Σ̂(k)i1,i2)−1Σ(k)
1

n
(λI + Σ̂(k)i1,i2)−1xi2(k)(1 + C)−1xi2(k)>(λI + Σ̂(k)i1,i2)−1

+
1

n
(λI + Σ̂(k)i1,i2)−1xi1(k)(1 + C)−1xi1(k)>(λI + Σ̂(k)i1,i2)−1Σ(k)

× 1

n
(λI + Σ̂(k)i1,i2)−1xi2(k)(1 + C)−1xi2(k)>(λI + Σ̂(k)i1,i2)−1

)
xi1(k)(1 + C)−1xi1(k1)>xi2(k1)]

= Term21 + Term22 + Term23 + Term24 .

(48)

Note that the different 1 + C factors differ from each other slightly, but we will abuse the notation and treat them as
identical. Dealing with them separately requires minor modifications in the proofs. By direct calculation,

E[xi2(k)>Qxi2(k1)|xi2 ] = tr(QΨ2,1) (49)

for any Q independent of xi2 . Thus,

Term21 = p(k1)−1b∗(k1) trE[(1 + C)−1xi2(k)>

×

(
(λI + Σ̂(k)i1,i2)−1Σ(k)(λI + Σ̂(k)i1,i2)−1

)
xi1(k)(1 + C)−1xi1(k1)>xi2(k1)]

= p(k1)−1b∗(k1) trE[(1 + C)−2xi2(k)>Qxi2(k1)] = 0

(50)

because there are no cross-group correlations; here we have defined

Q =

(
(λI + Σ̂(k)i1,i2)−1Σ(k)(λI + Σ̂(k)i1,i2)−1

)
xi1(k)xi1(k1)> .
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Proceeding to the next term in (48), we get
Term22

= p(k1)−1b∗(k1) trE[(1 + C)−1xi2(k)>

×

(
− 1

n
(λI + Σ̂(k)i1,i2)−1xi1(k)(1 + C)−1xi1(k)>(λI + Σ̂(k)i1,i2)−1Σ(k)(λI + Σ̂(k)i1,i2)−1

)
xi1(k)(1 + C)−1xi1(k1)>xi2(k1)]

(51)

We have
1

n
xi1(k)>(λI + Σ̂(k)i1,i2)−1Σ(k)(λI + Σ̂(k)i1,i2)−1xi1(k)

→ 1

n
trE[Σ(k)(λI + Σ̂(k)i1,i2)−1Σ(k)(λI + Σ̂(k)i1,i2)−1]

= ξ̂k(λ)

(52)

is probability by Lemmas 1 and 2 and the Vitali Theorem. Hence,
Term22

→ p(k1)−1b∗(k1) trE[(1 + C)−1xi2(k)

×

(
− (λI + Σ̂(k)i1,i2)−1xi1(k)>(1 + C)−1ξ̂k(λ)

)
(1 + C)−1xi1(k1)xi2(k1)>]

→ 0

(53)

where we have used simple Cauchy-Schwarz-based arguments to pass to an L2-limit.26 Once again, the limit is zero
due to the assumed zero cross-group covariance. Proceeding to the next term in (48), we get

Term23 ≈ p(k1)−1b∗(k1)E[(1 + C)−1xi2(k)>(
− (λI + Σ̂(k)i1,i2)−1Σ(k)

1

n
(λI + Σ̂(k)i1,i2)−1xi2(k)(1 + C)−1xi2(k)>(λI + Σ̂(k)i1,i2)−1

)
xi1(k)(1 + C)−1xi1(k1)>xi2(k1)]

= −b∗(k1)E[XY ]

(54)

where we have defined

X = −(1 + C)−1xi2(k)>(λI + Σ̂(k)i1,i2)−1Σ(k)
1

n
(λI + Σ̂(k)i1,i2)−1xi2(k)

and
Y = p(k1)−1(1 + C)−2xi1(k1)>xi2(k1)xi2(k)>(λI + Σ̂(k)i1,i2)−1xi1(k) .

By Lemma 3 and (13), X → (1 + ξk(λ))−1ξ̂(λ) in L2, whereas Y has a bounded L2-norm. Then,

E[XY ] − (1 + ξk(λ))−1ξ̂(λ)E[Y ] → 0

Integrating over xi2 gives
E[Y ] = 0

Thus, Term23 in (48) converges to zero due to zero cross-correlation across signal groups.

Finally, the last term in (48) also converges to zero by a similar argument. See [51] for details.

Gathering the terms, we get
tr(Σ(k)β̂(k)β̂(k)′)

prob→ b∗(k)(σ∗,1(k)− 2λc(k)−1ξk(λ)− λ2c(k)−1ξ′k(λ)) + ξk(λ) + λξ′k(λ)

+ tr(Σ(k)(λI + Σ̂(k))−1
∑
k1 6=k

p(k1)−1b∗(k1)Σ̂(k, k1)Σ̂(k, k1)>(λI + Σ̂(k))−1)

prob→ b∗(k)(σ∗,1(k)− 2λc(k)−1ξk(λ)− λ2c(k)−1ξ′k(λ)) + (ξk(λ) + λξ′k(λ))(1 +
∑
k1 6=k

b∗(k1)σ∗,1(k1))

= b∗(k)(σ∗,1(k)− 2λc(k)−1ξk(λ)− λ2c(k)−1ξ′k(λ)) + (ξk(λ) + λξ′k(λ))(1 + b̄∗ − b∗(k)σ∗,1(k)) .

(55)

26Note that it may seem that we need six bounded moments for the signals. But, in fact, the normalization by 1 + C ensures all
the necessary terms stay bounded.
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We now proceed to computing the risk of β estimated using the full model. Let Πk be the orthogonal projection onto
the k-th component of the decomposition RP = ⊕Kk=1Rp(k). Then,

β>Σβ̂

= β>Σ(λI + Σ̂)−1(Σ̂β + q)

prob→ β>Σ (λI + Σ̂)−1Σ̂β

= tr
(

Σ (λI + Σ̂)−1Σ̂ββ>
)

prob→
∑
k

b∗(k)p(k)−1 tr
(

Σ(λI + Σ̂)−1Σ̂Πk

)
=
∑
k

b∗(k)p(k)−1 tr
(

Σ (λI + Σ̂)−1(λI + Σ̂− λI)Πk

)
(56)

Under the assumption of identical p(k) = p and identical eigenvalue distributions, tr
(

Σ (λI+Σ̂)−1(λI+Σ̂−λI)Πk

)
is independent of k and, hence,

p(k)−1 tr
(

Σ (λI + Σ̂)−1(λI + Σ̂− λI)Πk

)
= P−1 tr

(
Σ (λI + Σ̂)−1(λI + Σ̂− λI)

)
where p(k) = p and P = pK. Thus, the same arguments as above imply that

β>Σβ̂ =
∑
k

b∗(k)ν(λ)

Similarly, using the same arguments as in (33), we get

tr(Σβ̂β̂>)

prob→ tr(Σ(λI + Σ̂)−1(Σ̂ββ>Σ̂> + q(k)q(k)>)(λI + Σ̂)−1)

= tr(Σ(λI + Σ̂)−1(Σ̂ββ>Σ̂> +
1

n
Σ̂)(λI + Σ̂)−1)

= tr(Σ(λI + Σ̂)−1Σ̂ββ>Σ̂>(λI + Σ̂)−1)

+ tr(Σ(λI + Σ̂)−1 1

n
Σ̂(λI + Σ̂)−1)

prob→
∑
k

b∗(k)p(k)−1 tr(Σ(λI + Σ̂)−1Σ̂ΠkΣ̂(λI + Σ̂)−1)

+ tr(Σ(λI + Σ̂)−1 1

n
(λI + Σ̂− λI)(λI + Σ̂)−1)

=
∑
k

b∗(k)p(k)−1 tr(Σ(λI + Σ̂)−1Σ̂ΠkΣ̂(λI + Σ̂)−1)

+
1

n
tr(Σ(λI + Σ̂)−1) − λ

1

n
tr(Σ(λI + Σ̂)−2)

prob→
∑
k

b∗(k)p(k)−1 tr(Σ(λI + Σ̂)−1Σ̂ΠkΣ̂(λI + Σ̂)−1)

+ ξ(λ) + λξ′(λ) .

(57)

Under the assumption of identical p(k) = p and identical eigenvalue distributions, we get that

p(k)−1 tr(Σ(λI + Σ̂)−1Σ̂ΠkΣ̂(λI + Σ̂)−1) = P−1 tr(Σ(λI + Σ̂)−1Σ̂Σ̂(λI + Σ̂)−1)

and the same argument as above implies that

P−1 tr(Σ(λI + Σ̂)−1Σ̂Σ̂(λI + Σ̂)−1)
prob→ σ∗ − 2λc−1ξ(λ)− λ2c−1ξ′(λ) = ν̂(λ) (58)

The proof is complete. �

24



Deep Regression Ensembles

Proof of Proposition 4. By direct calculation,

n−1 trE[(λ1I + Σ̂)−1(λ2I + Σ̂)−1] = n−1(λ1 − λ2)−1(m(−λ2; c)−m(−λ1; c)) (59)

We then have

tr

(
(λ1I + Σ̂)−1(Σ̂β + q)(Σ̂β + q)>(λ2I + Σ̂)−1Σ

)

≈ tr

(
Σ(Σ(λ1I + Σ̂)−1(Σ̂ββ>Σ̂ + qq′)(λ2I + Σ̂)−1)

)

≈ tr(Σ(λ1I + Σ̂)−1(Σ̂ββ>Σ̂ +
1

n
Σ̂)(λ2I + Σ̂)−1)

= tr(Σ(λ1I + Σ̂)−1Σ̂ββ>Σ̂(λ2I + Σ̂)−1)

+ tr(Σ(λ1I + Σ̂)−1 1

n
Σ̂(λ2I + Σ̂)−1)

= tr(Σ̂(λ1I + Σ̂)−1Σ(λ2I + Σ̂)−1Σ̂ββ>)

+ tr(Σ(λ1I + Σ̂)−1 1

n
(λ2I + Σ̂− λ2I)(λ2I + Σ̂)−1)

prob→ b∗P
−1 tr[Σ̂(λ1I + Σ̂)−1Σ(λ2I + Σ̂)−1Σ̂]

+
1

n
tr(Σ[(λ1I + Σ̂)−1(λ2I + Σ̂)(λ2I + Σ̂)−1])

− λ2
1

n
tr(ΣE[(λ1I + Σ̂)−1(λ2I + Σ̂)−1])

= b∗P
−1 trE[ΣΣ̂(λ1I + Σ̂)−1(λ2I + Σ̂)−1]

+
1

n
tr(ΣE[(λ1I + Σ̂)−1])

− λ2
1

n
tr(ΣE[(λ2I + Σ̂)−1(λ1I + Σ̂)−1])

= Term1 + Term2 + Term3 .

(60)

We now proceed with each term:

(λ1I + Σ̂)−1Σ̂2(λ2I + Σ̂)−1

= {all matrices commute} = (λ2 − λ1)−1((λ1I + Σ̂)−1 − (λ2I + Σ̂)−1)Σ̂2
(61)

whereas
(λI + Σ̂)−1Σ̂2

= (λI + Σ̂)−1(Σ̂2 + 2λΣ̂ + λ2I − 2λΣ̂− λ2I)

= (λI + Σ̂)−1(Σ̂2 + 2λΣ̂ + λ2I − 2z(Σ̂ + λI) + λ2I)

= (λI + Σ̂)−1
(

(λI + Σ̂)2 − 2z(Σ̂ + λI) + λ2I
)

= (λI + Σ̂) − 2zI + λ2(λI + Σ̂)−1 .

(62)

Therefore,
Term1 = b∗P

−1 trE[ΣΣ̂(λ1I + Σ̂)−1(λ2I + Σ̂)−1]

= b∗P
−1(λ2 − λ1)−1 trE[Σ

(
((λ1I + Σ̂) − 2λ1I + λ2

1(λ1I + Σ̂)−1)

− ((λ2I + Σ̂) − 2λ2I + λ2
2(λ2I + Σ̂)−1)

)
]

= b∗Σ∗,1 + b∗c
−1(λ2 − λ1)−1(λ2

1ξ(λ1)− λ2
2ξ(λ2))

(63)

Furthermore,

Term2 =
1

n
tr(ΣE[(λ1I + Σ̂)−1]) → ξ(λ1)
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Finally,

Term3 = −λ2
1

n
tr(ΣE[(λ2I + Σ̂)−1(λ1I + Σ̂)−1])

= −λ2
1

n
(λ2 − λ1)−1 tr(ΣE[−(λ2I + Σ̂)−1 + (λ1I + Σ̂)−1])

→ −λ2(λ2 − λ1)−1(ξ(λ1)− ξ(λ2))

(64)

Thus,

β̂>λ1
Σβ̂λ2

prob→ Term1 + Term2 + Term3

prob→ b∗Σ∗,1 + b∗c
−1(λ2 − λ1)−1(λ2

1ξ(λ1)− λ2
2ξ(λ2))

+ ξ(λ1)− λ2(λ2 − λ1)−1(ξ(λ1)− ξ(λ2))

= b∗

(
Σ∗,1 + c−1(λ2 − λ1)−1(λ2

1ξ(λ1)− λ2
2ξ(λ2))

)
+ (λ2 − λ1)−1(λ2ξ(λ2)− λ1ξ(λ1))

= Γ(λ1, λ2) = Γ(λ2, λ1)

(65)

�

Proof of Proposition 4. Let a be the scale of the full-ridge model. Then, we will use

b̄∗ =
∑
k

b∗(k) (66)

We have

Risk(flat) = b̄∗ −
(b̄∗ν(λ; cK))2

b̄∗ ν̂(λ; cK) − (cK) ν′(λ; cK)
(67)

and

Risk(ensemble) = b̄∗ −
∑
k

(b∗(k)ν(λ; c))2

b∗(k) ν̂(λ; c) − c (1 + (b∗ − b∗(k)))ν′(λ; c)
(68)

We have

ξ(λ) =
1− λm(−λ; c)

c−1 − 1 + λm(−λ; c)
(69)

We will also need the following asymptotic characterization (see, e.g., [51]):

(1− λm(−λ; c)) = λ−1σ∗,1 − λ−2(σ∗,2 + cσ2
∗,1) + λ−3(σ∗,3 + 3cσ∗,2σ∗,1 + c2σ3

∗,1) + O(λ−4) . (70)

Then,

ξ(λ) = −1 +
1

1− c+ cλm

= −1 +
1

1− c(1− λm(−λ))
= c(1− λm(−λ)) + c2(1− λm(−λ))2 + c3(1− λm(−λ))3 + O(λ−4)

= c
(
λ−1σ∗,1 − λ−2(σ∗,2 + cσ2

∗,1) + λ−3(σ∗,3 + 3cσ∗,2σ∗,1 + c2σ3
∗,1)
)

+ c2(λ−2σ2
∗,1 − 2λ−3σ∗,1(σ∗,2 + cσ2

∗,1)) + c3λ−3σ3
∗,1 + O(λ−4)

= cλ−1σ∗,1 − cλ−2σ∗,2 + cλ−3(σ∗,3 + 3cσ∗,2σ∗,1 + c2σ3
∗,1 − 2cσ∗,1σ∗,2 − 2c2σ3

∗,1 + c2σ3
∗,1) + O(λ−4)

= cλ−1σ∗,1 − cλ−2σ∗,2 + cλ−3(σ∗,3 + cσ∗,2σ∗,1) + O(λ−4) ,
(71)

and hence
ν(λ; c) = λ−1σ∗,2 − λ−2(σ∗,3 + cσ∗,2σ∗,1) + O(λ−3)

and
ν′(λ; c) = −λ−2σ∗,2 + 2λ−3(σ∗,3 + cσ∗,2σ∗,1) + O(λ−4)

and
ν̂(λ; c) = ν(λ; c) + λν′(λ; c) = λ−2(σ∗,3 + cσ∗,2σ∗,1) + O(λ−3)

and hence

ν2

b∗ν̂ − cν′
=

σ2
∗,2 − 2λ−1σ∗,2(σ∗,3 + cσ∗,2σ∗,1) + λ−2(σ∗,3 + cσ∗,2σ∗,1)2 + O(λ−1)

b∗(σ∗,3 + cσ∗,2σ∗,1) + O(λ−1) + cσ∗,2
(72)
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Thus, for λ→∞, the desired inequality is equivalent to

∑
k

b∗(k)2σ2
∗,2

b∗(k) (σ∗,3 + cσ∗,2σ∗,1) + c(1 + (b̄∗ − b∗(k))σ∗,1)σ∗,2
>

(
b̄∗(k)

)2
σ2
∗,2

b̄∗(k) (σ∗,3 +Kcσ∗,2σ∗,1) + Kcσ∗,2
, (73)

which is in turn equivalent to

∑
k

b∗(k)2σ2
∗,2

b∗(k)σ∗,3 + c(1 + b̄∗σ∗,1)σ∗,2
>

(
b̄∗(k)

)2
σ2
∗,2

b̄∗(k) (σ∗,3 +Kcσ∗,2σ∗,1) + Kcσ∗,2
, (74)

The function

f(x) =
x2

x+ a
(75)

has

f ′(x) =
x2 + 2xa

(x+ a)2
, f ′′(x) =

(2x+ 2a)(x+ a)− 2(x2 + 2xa)

(x+ a)3
=

2a2

(x+ a)3
> 0

and hence it is convex for x > 0. Thus,

1

K

∑
k

b∗(k)2σ2
∗,2

b∗(k)σ∗,3 + c(1 + b̄∗σ∗,1)σ∗,2
>

K−2b̄2∗σ
2
∗,2

K−1b̄∗ σ∗,3 + c(1 + b̄∗σ∗,1)σ∗,2

which is equivalent to ∑
k

b∗(k)2σ2
∗,2

b∗(k)σ∗,3 + c(1 + b̄∗σ∗,1)σ∗,2
>

b̄2∗σ
2
∗,2

b̄∗ σ∗,3 +Kc(1 + b̄∗σ∗,1)σ∗,2

and the claim follows. �

B Benchmark Algorithms

In the simulation experiments of Section 4 we compare DRE to two benchmark algorithms. We implement the first,
DNN, by selecting the architecture with best validation performance among 16 candidate networks. One of these
networks aims at harvesting the strength of double descent. It uses a DNN with 7 layers and gradually halves the
number of neurons in each successive layer, beginning 29 neurons in the first layer and concluding with 23 neurons in
the last layer. We train this network with ADAM, an initial learning rate of 0.01, and batch size equal to the training size.
We train the network for up to 12× 104 epochs. We train the remaining 15 networks for 200 epochs with early stopping
based on the validation sample. The network architecture is defined as J layers with J ∈ {2, ..., 6}, and neuron count
halving from 2J+3 in the first layer to 23 in the last. For each architecture, we consider three different batch sizes,
64, 32, and 16. In each data sample the network that maximizes the performance measure on the validation sample.

The second benchmark model that we implement is random forests regression. We train six different forests with
number of trees N ∈ {10, 100, 500, 1000, 5000, 10000}. We train the model to minimize the MSE and expand the trees
until the leaves are pure or contain less than two samples. We select the best random forest based on its performance on
the validation sample.
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