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Deep regularization and direct training of the inner layers of

Neural Networks with Kernel Flows

Gene Ryan Yoo✯ Houman Owhadi❸

March 5, 2021

Abstract

We introduce a new regularization method for Artificial Neural Networks (ANNs)
based on the Kernel Flow (KF) algorithm. The algorithm was introduced in [16]
as a method for kernel selection in regression/kriging based on the minimization
of the loss of accuracy incurred by halving the number of interpolation points in

random batches of the dataset. Writing fθ♣xq ✏
�
f
♣nq
θn

✆ f
♣n✁1q
θn✁1

✆ ☎ ☎ ☎ ✆ f
♣1q
θ1

✟
♣xq

for the functional representation of compositional structure of the ANN (where
θi are the weights and biases of the layer i), the inner layers outputs h♣iq♣xq ✏�
f
♣iq
θi

✆ f
♣i✁1q
θi✁1

✆ ☎ ☎ ☎ ✆ f
♣1q
θ1

✟
♣xq define a hierarchy of feature maps and a hierarchy of

kernels k♣iq♣x, x✶q ✏ exp♣✁γi⑥h
♣iq♣xq ✁ h♣iq♣x✶q⑥2

2
q. When combined with a batch of

the dataset, these kernels produce KF losses e
♣iq
2

(defined as the L2 regression error
incurred by using a random half of the batch to predict the other half) depending
on the parameters of the inner layers θ1, . . . , θi (and γi). The proposed method
simply consists of aggregating (as a weighted sum) a subset of these KF losses with
a classical output loss (e.g., cross-entropy). We test the proposed method on Con-
volutional Neural Networks (CNNs) and Wide Residual Networks (WRNs) without
alteration of their structure nor their output classifier and report reduced test errors,
decreased generalization gaps, and increased robustness to distribution shift with-
out a significant increase in computational complexity relative to standard CNN
and WRN training (with Drop Out and Batch Normalization). We suspect that
these results might be explained by the fact that while conventional training only
employs a linear functional (a generalized moment) of the empirical distribution
defined by the dataset and can be prone to trapping in the Neural Tangent Ker-
nel regime (under over-parameterizations), the proposed loss function (defined as a
nonlinear functional of the empirical distribution) effectively trains the underlying
kernel defined by the CNN beyond regressing the data with that kernel.

1 Introduction

Despite the industrial successes of Deep Learning, training ANNs is oftentimes com-
pared to an art requiring careful tuning. Indeed, writing ♣Xi, Yiq for the input/output
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training data points, θ for the parameters of the ANN, fθ♣xq for its output, identifying
θ by minimizing an empirical risk taking the form of an average error between f♣Xiq
and Yi is oftentimes not sufficient to obtain a desirable result. This paper proposes a
principled regularization approach motivated by the observation that regressors obtained
from ANNs are essential ridge regressors (kernel interpolants) with a kernel learned from
data.

While current kernel perspectives for regularizing deep neural networks [6, 34, 31]
are based on the principle of regularizing a fixed given kernel, our approach is based on
learning a (new) kernel from data.

1.1 Connections with dynamical systems

[18] shows that the kernel learned by residual neural networks [10] (ResNet) (with L2

regularization on weights and biases) is a warping kernel [24, 21, 25] of the form

Kv :✏ K♣φv♣xq, φv♣x✶qq , (1.1)

where K is a base kernel and φv♣xq is a warping of the space learned from data. More
precisely, the regressor obtained from ResNet is of the form f ✆ φv♣x, 1q where f is the
minimizer of1

min
f

λ⑥f⑥2Kv � ⑥f ✆ φv♣X, 1q ✁ Y ⑥2
YN (1.2)

where ⑥ ☎ ⑥Kv is the RKHS norm defined by the kernel (1.1), φv♣x, tq is the flow map of
v defined as the solution of★

✾φ♣x, tq ✏ v
�
φ♣x, tq, t

✟
for ♣x, tq P X ✂ r0, 1s

φ♣x, 0q ✏ x for x P X .
(1.3)

and v is a minimizer of (writing ⑥ ☎ ⑥Γ for the RKHS norm associated with a given kernel
Γ) of

min
v,f

ν

2

➺ 1

0

⑥v♣☎, tq⑥2Γ dt� λ⑥f⑥2K � ⑥f ✆ φv♣X, 1q ✁ Y ⑥2
YN . (1.4)

Moreover [18] shows that a minimizer of (1.4) admits the representation

✾φv♣x, tq ✏ Γ♣φv♣x, tq, qqp , (1.5)

where the position and momentum variables ♣q, pq are in XN ✂ XN (writing X for
the input space), started from q♣0q ✏ X, and following the dynamic defined by the
Hamiltonian

H♣q, pq ✏
1

2
pTΓ♣q, qqp , (1.6)

i.e., ★
✾q ✏ Γ♣q, qqp

✾p ✏ ✁❇q♣
1
2
pTΓ♣q, qqpq ,

with initial value ♣q♣0q ✏ X, p♣0qq . (1.7)

1Writing Y for the output space, N for the number of data points, ⑥ ☎ ⑥NY for the product norm on
Y

N , X and Y for the N -vectors whose entries are the input/output data points and f ✆ φv♣X, 1q for the
N -vector with entries f ✆ φv♣Xi, 1q.
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1.2 MAP estimation vs cross-validation

While the variational formulation (1.4) leading to the identification of f and v is that
of a MAP estimator associated with the composition of residual Gaussian processes
defined Γ, and K [18], warping kernels of the form (1.5) were also recently introduced
in [16] and trained using a variant of cross-validation (described in Sec. 2). Recall that
while MAP and MLE are optimal when the model is well-specified, cross-validation is
near-optimal and has some degree of robustness to misspecification [5, 7]. Our proposed
method is based on Kernel Flows and can be interpreted as replacing MAP estimation
(and the implicit simulation of a dynamical system akin to (1.7)) by cross-validation
in the training of the inner layers of the ANN. To describe this method, we will first
provide a reminder on Kernel Flows.

2 A reminder on Kernel Flows

Kernel Flows were introduced in [16] as a method for kernel selection/design in Krig-
ing/Gaussian Process Regression (GPR) (see also [7] for a rigorous consistency analysis
and [9] for an application to the learning of dynamical systems from data). As a reminder
on KFs, consider the problem of approximating an unknown function u✿ mapping X to
R based on the input/output dataset ♣xi, yiq1↕i↕N (u✿♣xiq ✏ yi). Any non-degenerate
(positive-definite) kernel K♣x, x✶q can be used to approximate u✿ with the interpolant

u♣xq ✏ K♣x,XqK♣X,Xq✁1Y , (2.1)

writing Y :✏ ♣y1, . . . , yN qT , X :✏ ♣x1, . . . , xN q, K♣X,Xq for the N ✂ N Gram matrix
K♣xi, xiq and K♣x,Xq for the N dimensional vector with entries K♣x, xiq. The kernel
selection problem concerns the identification of a good kernel for performing this interpo-
lation. The KF approach to this problem is to simply use the loss of accuracy incurred
by removing half of the dataset as a loss of kernel selection. The application of this
process to minibatches results in a loss that is randomized by both (1) the selection of
the minibatch (2) the half sub-sampling of the minibatch. An iterated steepest descent
minimization of this loss then results in stochastic gradient descent algorithm (where
the minibatch and its half-subset are re-sampled at each step). Given a family of kernels
Kθ♣x, x

✶q parameterized by θ, the resulting algorithm can then be described as follows:
(1) Select random subvectors Xb and Y b of X and Y (through uniform sampling without
replacement in the index set t1, . . . , N✉) (2) Select random subvectors Xc and Y c of Xb

and Y b (by selecting, at random, uniformly and without replacement, half of the indices
defining Xb) (3) Let ρ♣θ,Xb, Y b, Xc, Y cq be the squared relative error (in the RKHS
norm ⑥ ☎ ⑥Kθ

defined by Kθ) between the interpolants ub and uc obtained from the two
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nested subsets of the dataset and the kernel Kθ, i.e.
2

ρ♣θ,Xb, Y b, Xc, Y cq :✏ 1✁
Y c,TKθ♣X

c, Xcq✁1Yc

Y c,TKθ♣Xb, Xbq✁1Y b
. (2.2)

(4) evolve θ in the gradient descent direction of ρ, i.e. θ Ð θ ✁ δ∇θρ (5) repeat.

Figure 1: [16, Fig. 13]. Application of the original Kernel Flow approach to the selection
of a kernel KF ♣x, x

✶q ✏ exp♣✁γ⑥F ♣xq ✁ F ♣x✶q⑥2q parameterised by a deformation F :
R
2 Ñ R

2 of the input space (X ✏ R
2). The dataset is the swissroll cheesecake (red points

have labels �1 and blue points have labels ✁1). Subfigures (1-5) show the deformed
dataset Fn♣Xq (mapped points ♣Fn♣xiqq1↕i↕N (dots)) for increasing values of n along
with the gradient ✁∇Fρ averaged over 300 steps (deformation gradient 10♣Fn�300♣xq ✁
Fn♣xqq④300 (arrows)). Note that n large enough the two classes become linearly separable
under the deformation learned by KF.

Example. Fig. 1 shows an application of the proposed approach to the selection of a
kernel KF ♣x, x

✶q ✏ exp♣✁γ⑥F ♣xq ✁ F ♣x✶q⑥2q parameterised by a deformation F : R2 Ñ
R
2 of the input space (X ✏ R

2).

The l2-norm variant. In this paper we will consider3 the l2-norm variant of the KF
algorithm (introduced in [16, Sec. 10]) in which the instantaneous loss ρ in (2.2) is
replaced by the error (let ⑥ ☎ ⑥2 be the Euclidean l2 norm) e2 :✏ ⑥Y b ✁ uc♣Xbq⑥22 of uc in
predicting the labels Y b, i.e.

e2♣θ,X
b, Y b, Xc, Y cq :✏ ⑥Y b ✁Kθ♣X

b, XcqKθ♣X
c, Xcq✁1Y c⑥22 . (2.3)

2ρ :✏ ⑥ub ✁ uc⑥2Kθ
④⑥ub⑥2Kθ

, with ub♣xq ✏ Kθ♣x,X
bqKθ♣X

b, Xbq✁1Y b and uc♣xq ✏
Kθ♣x,X

cqKθ♣X
c, Xcq✁1Y c, and ρ admits [15, Prop. 13.29] the representation (2.2) enabling its com-

putation. This representation (2.2) and its optimality in the setting of numerical homogeniza-
tion/aproaximation [15] and some of the motivations for its utilization in the original method [16].

3Using (2.2) or (2.3) both showed improvements as regularizers, however (2.3) was slightly better.
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3 Kernel Flow regularization of Neural Networks

Write
fθ♣xq ✏

�
f
♣nq
θn

✆ f
♣n✁1q
θn✁1

✆ ☎ ☎ ☎ ✆ f
♣1q
θ1

✟
♣xq (3.1)

for the compositional structure of an artificial neural network (ANN) with input x and

n layers f
♣iq
θi
♣zq ✏ φ♣Wiz � biq parameterized by the weights and biases θi :✏ ♣Wi, biq,

θ :✏ tθ1, . . . , θn✉. We will use ReLU for the non-linearity φ in our experiments. For
i P t1, . . . , n✁ 1✉ let h♣iq♣xq be the output of the i-th (inner) layer, i.e.

h
♣iq
θ ♣xq :✏

�
f
♣iq
θi

✆ f
♣i✁1q
θi✁1

✆ ☎ ☎ ☎ ✆ f
♣1q
θ1

✟
♣xq , (3.2)

and let hθ♣xq :✏ ♣h
♣1q
θ ♣xq, . . . , h

♣n✁1q
θ ♣xqq be the ♣n ✁ 1q-ordered tuple representing all

inner layer outputs. Let kγ♣☎, ☎q be a family of kernels parameterized by γ and let Kγ,θ

be the family of kernels parameterized by γ and θ defined by

Kγ,θ♣x, x
✶q ✏ kγ♣hθ♣xq, hθ♣x

✶qq . (3.3)

Given the random mini-batch ♣Xb, Y bq let Lc-e♣fθ♣X
bq, Y bq :✏

➦
i Lc-e♣fθ♣X

b
i q, Y

b
i q

be the cross-entropy loss associated with that mini-batch. Given the (randomly sub-
sampled) half sub-batch ♣Xc, Y cq, let LKF♣γ, θ,X

b, Y b, Xc, Y cq be the loss function (with
hyper-parameter λ ➙ 0) defined by

LKF :✏ λ⑥Y b ✁Kγ,θ♣X
b, XcqKγ,θ♣X

c, Xcq✁1Y c⑥22 � Lc-e♣fθ♣X
bq, Y bq . (3.4)

Our proposed KF-regularization approach is then to train the parameters θ of the
network fθ via the steepest descent ♣γ, θq Ð ♣γ, θq✁δ∇γ,θLKF. Note that this algorithm
(1) is randomized through both the sampling of the minibatch and its subsampling (2)
adapts both θ and γ (since the KF loss term depends on both θ and γ) (3) simultane-
ously trains the accuracy of the output via the cross-entropy term4 and the generalization
properties of the feature maps defined by the inner layers via the KF loss term. Fur-
thermore while the cross-entropy term is a linear functional of the empirical distribution
1
Nb

➦
i δ♣Xb

i
,Y b

i
q defined by the mini-batch (writing Nb for the number of indices contained

in the mini-batch), the KF loss term is non-linear. While Kγ,θ may depend on the output
of all the inner layers, for the sake of simplicity in our numerical experiments, we have
restricted its dependence to the output of only one inner layer or used a weighted sum
of such terms.

4 Numerical experiments

We will now use the proposed KF-regularization method to train a simple Convolu-
tional Neural Network (CNN) on MNIST and Wide Residual Networks (WRN) [35] on
CIFAR-10 and CIFAR-100. Our goal is to test the proposed approach and compare its
performance with popular ones (Batch Normalization and Drop Out).

4The training of which is relatively cheap when using typical batch sizes of around 100.
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Layer Type Number of
filters

Filter size Padding Output shape

Input layer 28✂ 28✂ 1

Convolutional layer 1, ReLU 150 3✂ 3 Valid 26✂ 26✂ 150

Convolutional layer 2, ReLU 150 3✂ 3 Valid 24✂ 24✂ 150

Convolutional layer 3, ReLU 150 5✂ 5 Same 24✂ 24✂ 150

Max Pool 2✂ 2 12✂ 12✂ 150

Convolutional layer 4, ReLU 300 3✂ 3 Valid 10✂ 10✂ 300

Convolutional layer 5, ReLU 300 3✂ 3 Valid 8✂ 8✂ 300

Convolutional layer 6, ReLU 300 5✂ 5 Same 8✂ 8✂ 300

Max Pool 2✂ 2 4✂ 4✂ 300

Average Pool 4✂ 4 300

Dense layer 1, ReLU 1200

Dense layer 2, ReLU 300

Dense layer 3 10

Softmax Output layer 10

Table 1: The architecture of the CNN used in KF-regularization experiments is charted.
Convolutional layers are divided by horizontal lines. The middle block shows layer
specifics, and the shapes of the outputs of each layer is on the right.

4.1 Kernel Flow regularization on MNIST

We consider a Convolutional Neural Network (CNN) with six convolutional layers and
three fully connected layers, as charted in Table 1 (this CNN is a variant of a CNN
presented in [3] with code used from [2]). Convolutional layers all have stride one in this
network with the number of convolutional channels and the convolutional kernel size in
the second and third columns from the left. “Valid” padding implies no 0-padding at
the boundaries of the image while “same” 0-pads images to obtain convolutional outputs
with the same sizes as the inputs. The “Max Pool” layers downsample their inputs by
reducing each 2 ✂ 2 square to their maximum values. The “Average Pool” layer in the
final convolutional layer takes a simple mean over each channel. The final three layers
are fully connected, each with outputs listed on the right column. All convolutional
and dense layers include trainable biases. Using notations from the previous section,
the outputs of the convolutional layers, which include ReLU and pooling, are h♣1q♣xq
to h♣6q♣xq with output shapes described in the left column. The dense layers outputs
are h♣7q♣xq to h♣9q♣xq. We do not pre-process the data and, when employed, the data
augmentation step, in this context, passes the original MNIST image to the network with
probability 1

3
, applies an elastic deformation [26] with probability 1

3
, and a small random

translation, rotation, and shear with probability 1
3
. The learning rate, as selected by

validation, begins at 10✁3 and smoothly exponentially decreases to 10✁7 while training
over 20 epochs.

4.1.1 Comparisons of dropout and KF-regularization

The first experiment presents results obtained by training the CNN with the architecture
given in Table 1 and (1) Batch Normalization (BN) [11] (2) BN, and KF-regularization
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(3) BN and dropout (DO) [27] (4) BN, KF-regularization, and DO. We use the same
dropout structure as in [3], and use a rate of 0.3, as selected with validation.

Training

Method

Original MNIST Data augmented QMNIST

BN only 0.395✟ 0.030% 0.302✟ 0.026% 0.389✟ 0.014%

BN+KF 0.300✟ 0.024% 0.281✟ 0.033% 0.341✟ 0.013%

BN+DO 0.363✟ 0.028% 0.314✟ 0.024% 0.400✟ 0.015%

BN+KF+DO 0.296✟ 0.023% 0.287✟ 0.022% 0.344✟ 0.015%

Table 2: A comparison of the average and standard deviation of testing errors each over
20 runs for networks. The first data column on the left shows networks trained and
tested on original MNIST data. The middle is trained using data augmentation and
uses original MNIST testing data. The right column shows the same data augmented
trained network, but uses QMNIST testing data [33].

We present a KF-regularization experiment using the following Gaussian kernel on
the final convolutional layer h♣6q♣xq P R

300:

K
♣6q
γ6,θ

♣x, x✶q ✏ k♣6qγ6
♣h♣6q♣xq, h♣6q♣x✶qq ✏ e✁γ6⑥h♣6q♣xq✁h♣6q♣x✶q⑥2 . (4.1)

We optimize the loss function in (3.4) with kernel K
♣6q
γ6 over the parameters θ and γ6.

Specifically, given the random mini-batch ♣Xb, Y bq and the (randomly sub-sampled) half
sub-batch ♣Xc, Y cq, we evolve θ and γ6 in the steepest descent direction of the loss

LKF ✏ λ♣6q⑥Y b ✁K
♣6q
γ6,θ

♣Xb, XcqK
♣6q
γ6,θ

♣Xc, Xcq✁1Y c⑥22 � Lc-e♣fθ♣X
bq, Y bq . (4.2)

The second experiment is a slight variant where we use both K♣6q and

K
♣3q
γ3,θ

♣x, x✶q ✏ k♣3qγ3
♣h♣3q♣xq, h♣3q♣x✶qq ✏ e✁γ3⑥a♣h♣3q♣xqq✁a♣h♣3q♣x✶qq⑥2 , (4.3)

where a is a 12✂ 12 average pooling reducing each channel to a single point.
The comparison between the dropout and KF-regularization training methods, as

well as their combination, is made in Table 2. KF-regularization and the network ar-
chitecture were inspired by the work in [16, Sec. 10] (the GPR estimator on the final
convolutional output space is here replaced by a fully connected network to minimize
computational complexity). On a 12GB NVIDIA GeForce GTX TITAN X graphics
card, training one network with BN+DO (20 epochs) takes 1605s to run, compared
with 1629s for BN+KF+DO. Furthermore, this KF-regularization framework has an-
other advantage of being flexible, both allowing the control of generalization properties
of multiple layers of the network simultaneously and being able to be used concurrently
with dropout.

For each of the training methods, we experiment with using original MNIST training
and testing data, augmenting the MNIST training set and testing on the original data,
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and finally training on the augmented set, but testing on QMNIST, which is re-sampled
MNIST test data [33]. These three regimes are presented in the data columns of Table
2 from left to right. The difference between the original data augmented and QMNIST
testing errors quantifies the effect of the distributional shift of the testing data [23].
This effect is observed to be reduced when using KF-regularized trained networks, which
suggests some degree of robustness to distributional shift.

Figure 2: Training and testing errors are plotted over single runs trained with orig-
inal data using (1) BN only (2) BN+KF (3) BN+DO (4) BN+KF+DO. Data aug-
mented trained network errors are shown using (5) BN only (6) BN+KF (7) BN+DO
(8) BN+KF+DO.

The training and testing errors of single runs of networks trained with BN only,
BN+DO, BN+KF, and BN+KF+DO are plotted in Fig. 2. Observe that the gen-
eralization gap (the gap between the training and testing errors) decreases with the
use of dropout, and that decrease is even more pronounced in the experiments with KF-
regularization. We observe similar findings on networks trained using data augmentation,
albeit less pronounced. We finally examine the KF-regularization component of the loss

function as in equation (4.2). This KF loss, ⑥Y b ✁ K
♣6q
γ6,θ

♣Xb, XcqK
♣6q
γ6,θ

♣Xc, Xcq✁1Y c⑥22,
is computed for batch normalization, dropout, and KF-regularized training in Fig. 3.
Furthermore, we compare the average pairwise distance ⑥h♣6q♣xq ✁ h♣6q♣x✶q⑥ for x and x✶

when both in the same class and when they are in different classes. We observe in the
figure that both BN+KF and BN+KF+DO reduce the KF loss and increase the ratio of
inter-class and in-class pairwise distances within each batch. The class-dependent clus-
tering within hidden layer outputs highlights the difference between traditional training
techniques and KF-regularization.
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Figure 3: Single run with each of BN only, BN+KF, BN+DO, and BN+KF+DO training
methods plotting (1) 6th layer KF-loss using the original MNIST training set (2) 6th
layer KF-loss using an augmented training set (3) ratio of mean inter-class and in-class
distances of 6th layer outputs using the original training set (4) ratio of mean inter-class
and in-class distances of 6th layer outputs using an augmented set.

Layer/Block name Number of
filters

Filter size Number of
residual layers

Output shape

Input layer 32✂ 32✂ 3

Convolutional block 1 16 3✂ 3 1 32✂ 32✂ 16

Convolutional block 2 16k 3✂ 3 N 32✂ 32✂ 16k

Convolutional block 3 32k 3✂ 3 N

Max Pool 2✂ 2 16✂ 16✂ 32k

Convolutional block 4 64k 3✂ 3 N

Max Pool 2✂ 2 8✂ 8✂ 64k

Average Pool 8✂ 8 64k

Dense layer 64k

Softmax Output layer 10

Table 3: The architecture of the WRN used in KF-regularization experiments with
CIFAR input images. Convolutional blocks are divided with horizontal lines. The middle
portion shows block specifics such as filter width and depth in each block and the shapes
of the outputs of each layer is on the right. Note that max pooling occurs within the
last residual layer of each block.

Neural collapse. The neural collapse recently featured in [20] is closely related to the
inner layers class clustering presented in Fig. 3 (and also observed in [16]).

4.2 Kernel Flow regularization on CIFAR

We now consider the Wide Residual Network (WRN) structure described in [35, Table
1] with the addition of a dense layer. For convenience, we show this architecture in
Table 3. Note that there are four convolutional blocks, each with a certain number of
residual layers, which are as described in [35, Fig. 1c,d] for BN and BN+DO training,
respectively. Each layer consists of two convolutional blocks, with dropout applied be-
tween the blocks in dropout training, added to an identity mapping from the input of the
layer. In our dropout experiments, we drop each neuron in the network with probability
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0.3, as selected with cross-validation in [35]. Note that k and N are hyper-parameters
of the WRN architecture governing width and depth, respectively, and a network with
such k,N is written WRN-k-N . In these presented WRN experiments, we use data
augmentation where training images are randomly translated and horizontally flipped.
In our implementations, we have modified the code from [1] (which uses TensorFlow).
Batches consisting of 100 images are used in these experiments. In CIFAR-10, each half
batch contains 5 random images from each of the 10 classes. Meanwhile, in CIFAR-100,
we require each class represented in the testing sub-batch to also be represented in the
training sub-batch.

We write the outputs of each of the four convolutional blocks as h♣1q♣xq, . . . , h♣4q♣xq.
Again defining a as the average pooling operator, we have a♣h♣1q♣xqq P R

16, a♣h♣2q♣xqq P
R
16k, a♣h♣3q♣xqq P R

32k, and a♣h♣4q♣xqq ✏ h♣4q♣xq P R
64k. We define corresponding RBF

kernels
K♣lq

γl
♣x, x✶q ✏ k♣lqγl

♣h♣lq♣xq, h♣lq♣x✶qq ✏ e✁γl⑥a♣h
♣lq♣xqq✁a♣h♣lq♣x✶qq⑥2 . (4.4)

Given the random mini-batch ♣Xb, Y bq and the (randomly sub-sampled) half sub-
batch ♣Xc, Y cq, we evolve θ (and γ) in the steepest descent direction of the loss

LKF ✏
4➳

l✏1

λ♣lq⑥Y b ✁K
♣lq
γl,θ

♣Xb, XcqK
♣lq
γl,θ

♣Xc, Xcq✁1Y c⑥2
2
� Lc-e♣fθ♣X

bq, Y bq . (4.5)

4.2.1 Comparison to Dropout

Training

Method

CIFAR-10 CIFAR-10.1 CIFAR-100

BN 4.72✟ 0.17% 11.07✟ 0.55% 20.42✟ 0.25%
BN+KF 4.43✟ 0.12% 10.38✟ 0.40% 20.37✟ 0.27%
BN+DO 4.39✟ 0.08% 10.50✟ 0.39% 19.58✟ 0.41%
BN+KF+DO 4.05✟ 0.11% 10.20✟ 0.32% 19.38✟ 0.18%

Table 4: A comparison of the average and standard deviation of test errors over 5 runs for
networks trained on augmented data on CIFAR-10, CIFAR-10.1, and CIFAR-100. The
second column to the right trains on augmented CIFAR-10 data but tests on CIFAR-10.1
data [22, 30].

Table 4 compares the test errors obtained after training with only batch normal-
ization (BN) with the incorporation of dropout (DO), KF-regularization, as well as a
combination of all three. The network architecture WRN-16-8 is used, and the testing
error statistics over five runs are listed. We train with step exponentially decreasing
learning rates over 200 epochs with identical hyperparameters as [35]. We observe that
KF-regularization improves testing error rates against training with BN and BN+DO.
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Figure 4: Single run using WRN-16-8 with each of BN only, BN+KF, BN+DO, and
BN+KF+DO plotting (1) CIFAR-10 KF loss (2) CIFAR-100 KF loss (3) CIFAR-10
ratio of mean inter-class and in-class distances h♣4q (4) CIFAR-100 ratio of mean inter-
class and in-class distances h♣4q.

We also run a distributional shift experiment for CIFAR-10 using the data set CIFAR-
10.1, [22] which is sampled from [30]. As with the QMNIST experiment, we also observe
improvements with the addition of KF-regularization

We finally compare the KF loss, LKF, and ratios of inter-class and in-class Euclidean
distances on the output of the final convolutional layers within each batch in Figure 4.
These statistics are plotted over runs of WRN trained with CIFAR-10 and CIFAR-100.
We again observe reduced KF losses and increased ratios of mean inter-class and in-class
distances on the final convolutional layer output h♣4q when comparing between BN and
BN+KF as well as BN+DO and BN+KF+DO. That is, KF-regularization reduces the
distance (defined on the outputs of the inner layers) between images in the same class
and increases the distance between images in distinct classes (thereby enhancing the
separation). The opposite effect is observed with the addition of dropout in training,
suggesting they improve testing errors through distinct mechanisms.

5 Concluding remarks

5.1 On our contributions and the novelty of the method

While deep kernels [32], and network regularization techniques are not new; the proposed
framework for simultaneously training inner and output layers inspired by kernel flows is
new. Furthermore, the proposed Kernel Flow (KF) regularization is not the same as the
one presented in [16]. The proposed KF regularization approach uses a kernel to learn a
network classifier, while [16] uses a network to learn a kernel classifier. Furthermore, our
method is not the same as and has a different purpose than the early exit BranchyNet
approach [29]. The early exit BranchyNet approach leverages the observation that “fea-
tures learned at an early layer of a network may often be sufficient for the classification
of many data points.” Our method establishes a framework that utilizes the early (and
other) layers of a network to train a classifier on the output of the network. The kernel
interpretation is only used to construct a total loss that incorporates the status of the
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network’s inner layers. A Kernel Flows loss (which is a variant of cross-validation) is
then used to quantify the quality of the feature maps learned by those inner layers (this
loss has a theoretical justification in numerical approximation [7]).

5.2 Why the proposed Kernel flow regularizer can improve perfor-

mance?

To answer this question, observe that ANNs can be interpreted as ridge regression meth-
ods [18] performed with a feature map learned from data and parameterized by the inner
layers for the network [18]. While minimizing the training loss lets the ANN fit the
training data, it does not guarantee the learning a good kernel. In particular, in the
overparameterized regime, training Neural Networks (or models) f♣x, θq with gradient
descent and cross-entropy or mean squared loss is essentially equivalent to interpolating
the data with the Neural Tangent Kernel K♣x, x✶q ✏ ∇θf♣x, θ0q ☎∇θf♣x

✶, θ0q [12, 14], i.e.,
when combined with gradient descent, losses defined as linear functionals (generalized
moments) of the empirical distribution simply interpolate the data with a kernel fixed
at initialization (θ0). Kernel Flows, on the other hand, use nonlinear functionals of the
empirical distribution designed to actually train the underlying kernel defined by the ar-
chitecture of the Neural Network. Furthermore, while dropout prevents overfitting (see
[18] for a rigorous interpretation and alternative in terms of adding nuggets (multiple of
the identity matrix) to the kernel representation of the ANN), it also does not guarantee
the learning of a good kernel.

The importance of learning adapted kernels is well understood in numerical approx-
imation [17, 19, 15] where it can be shown that interpolants/regressors obtained from
non-adapted kernels can be arbitrarily slow to converge as the number of data points
goes to infinity [4]. Beyond using the structure of the underlying problem [17], there
are essentially two main approaches to learning adapted kernels: The hierarchical Bayes
approach (which includes MLE and MAP estimation) and the cross-validation approach.
Adding l2-regularization on weights and biases is equivalent to using Bayesian MAP es-
timation for learning the kernel [18]. Although the Bayesian approach (e.g., MLE or
MAP) is optimal (in MSE), when the model is well-specified, it is not robust to model
misspecification, whereas cross-validation is nearly optimal and has some degree of ro-
bustness [28, 13, 5, 7]. As a variant of the cross-validation, Kernel Flow [16] inherits
these properties, and it has been rigorously shown to achieve an optimal rate of con-
vergence in the approximation of target functions sampled from a GP with a Matérn
covariance function with unknown parameters. Its application to regression problems
and to learning dynamical systems has already been shown to not only be effective on
synthetic problems [9], it has also been shown to outperform (in terms of both accuracy
and complexity) both PDE and ANN-based methods for the extrapolation of geophysical
time-series [8].
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 Neural networks are trained with kernels parameterized by inner layer outputs. 
 Kernel Flows (cross-validation variant) enables the direct training of inner layers.
 KF regularization improves generalization error, robustness to distributional shift.
 The underlying inner layer kernels are learned from data.
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