
Journal of Artificial Intelligence Research 69 (2020) 1421-1471 Submitted 09/2020; published 12/2020

Deep Reinforcement Learning:
A State-of-the-Art Walkthrough

Aristotelis Lazaridis arislaza@csd.auth.gr
Aristotle University of Thessaloniki, School of Informatics
Thessaloniki, 54124, Greece

Anestis Fachantidis anestis@medoid.ai
Medoid AI
130 Egnatia St, Thessaloniki, 54622, Greece

Ioannis Vlahavas vlahavas@csd.auth.gr

Aristotle University of Thessaloniki, School of Informatics

Thessaloniki, 54124, Greece

Abstract

Deep Reinforcement Learning is a topic that has gained a lot of attention recently,
due to the unprecedented achievements and remarkable performance of such algorithms
in various benchmark tests and environmental setups. The power of such methods comes
from the combination of an already established and strong field of Deep Learning, with the
unique nature of Reinforcement Learning methods. It is, however, deemed necessary to
provide a compact, accurate and comparable view of these methods and their results for
the means of gaining valuable technical and practical insights. In this work we gather the
essential methods related to Deep Reinforcement Learning, extracting common property
structures for three complementary core categories: a) Model-Free, b) Model-Based and c)
Modular algorithms. For each category, we present, analyze and compare state-of-the-art
Deep Reinforcement Learning algorithms that achieve high performance in various environ-
ments and tackle challenging problems in complex and demanding tasks. In order to give a
compact and practical overview of their differences, we present comprehensive comparison
figures and tables, produced by reported performances of the algorithms under two popular
simulation platforms: the Atari Learning Environment and the MuJoCo physics simula-
tion platform. We discuss the key differences of the various kinds of algorithms, indicate
their potential and limitations, as well as provide insights to researchers regarding future
directions of the field.

1. Introduction

Deep Learning is one of the most popular fields in Machine Learning research, and has
allowed scientists to deal with complex problems in a wide range of domains (Chalapathy
& Chawla, 2019; Dargan et al., 2019). Reinforcement Learning (RL) is built upon the prin-
ciples of learning via agent-environment interaction through actions and rewards (Sutton &
Barto, 2018), which has opened up new pathways in the area of Artificial Intelligence (AI),
achieving never-before-seen breakthroughs when combined with Deep Learning methods
(Schrittwieser et al., 2019; Jaderberg et al., 2019; OpenAI, 2018; Silver et al., 2017; Vinyals
et al., 2019). These encouraging results have motivated a wide spectrum of researchers to
extend the boundaries of AI, and proceed towards the establishment of Artificial General

©2020 AI Access Foundation. All rights reserved.

Lazaridis, Fachantidis, & Vlahavas

Intelligence (AGI) by applying Deep Learning methods in conjunction with Reinforcement
Learning (Legg & Hutter, 2007; Geffner, 2018; Rocha et al., 2020).

A typical RL problem is mathematically formulated as a Markov Decision Process
(MDP), and consists of an environment and an agent, who has the role of traversing the
environment’s states by executing actions and receiving a corresponding numerical feedback
from it. The purpose of the agent is to maximize some kind of total cumulative reward until
a termination condition is met (e.g. a state that flags the end of the interaction process). RL
problems traditionally employ techniques that do not require the exact model of the MDP,
which is also the main point of interest for this field, but there are also cases where methods
for approximating this model are used. This is also the main categorization boundary for
Deep RL methods, as we discuss later in detail.

Various works have investigated the charted areas of Deep RL methodologies. Francois-
Lavet et al. (2018) and Li (2018) provide detailed guides on state-of-the-art Deep RL al-
gorithms, evaluation platforms, research challenges and applications, but do not provide a
novel restructure of algorithm categorization, or practical comparison information on per-
formances between the algorithms. Similarly, Arulkumaran et al. (2017) developed a brief
survey for Deep RL methods and algorithms that is also similar to our work, providing the
basic theoretical background on RL formulation, introducing primary state-of-the-art Deep
RL algorithms and discussing current research areas and challenges regarding this area, with
a special focus on visual understanding. Even though such survey is of significant value,
there is a non-trivial difference to the number of algorithms that are included in this work,
as well as to the level of technical details for each algorithm. Additionally, we propose new
ways for categorization of the algorithms, and also provide a novel and detailed collection of
data and figures used for comparison purposes. The work of Shao et al. (2019) is in parallel
to the style used in the aforementioned Deep RL surveys but differs in that the authors
also include discussions regarding the achievements of Deep RL methods in video games.
However, it lacks a more quantitative comparison of these methods, in contrast to our work.
In other reviews, such as the ones by Da Silva and Costa (2019) and Nguyen et al. (2020),
the authors focus solely in sub-categories of Deep RL methods, exploring in detail only a
part of Deep RL and not an overview of the complete area.

Other existing surveys have explored the different applications of Deep RL, e.g. in
healthcare (Yu et al., 2019), communications/networking (Luong et al., 2019), video games
(Justesen et al., 2019; Skinner & Walmsley, 2019), cyber security (Nguyen & Reddi, 2019),
natural language processing (Whiteson, 2019; Stylianou & Vlahavas, 2019), robotics (Tai
et al., 2016), biology (Mahmud et al., 2018), urban sustainability/transportation (Nos-
ratabadi et al., 2020), agriculture (Yang & Sun, 2019), and many others (Li, 2019).

All in all, there has been no organized attempt to gather state-of-the-art Deep RL al-
gorithms in general, present and compare their unique and shared properties in a novel
manner, as well as collect their reported performances in the most popular evaluation plat-
forms, in one place.

In this review, we perform an analysis of several state-of-the-art Deep RL algorithms and
divide them into three main categories, according to their anatomy and core functionality.
The first presented category includes model-free algorithms, i.e. algorithms that do not
rely on learning the state transition probability function for solving the optimization task
in hand. In contrast, the second category consists of model-based algorithms, which tries

1422

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

to approximate model dynamics in order to reach a solution. Each of these two categories
contain various kinds of methodologies for the implementation of algorithms.

More specifically, model-free algorithms are distinguished in two commonly referenced
subcategories: Deep Q-Learning and Policy Gradient approaches, both of which share a
common structure. On the other hand, we classify model-based algorithms in a novel way,
depending on whether the implemented methodology constructs latent states in order to
make predictions, or uses only manifested (i.e. directly observable) states.

Apart from these two families of algorithms and their corresponding subcategories, we
also explore the rest of existing Deep RL models in a unique way, presented in the category
of modular algorithms. In this family, we give special focus on dissecting the model in two
elements: the core Deep RL algorithm, which provides the essential functionality of the
model, and the framework that hosts the core algorithm. This leads to a unique reporting
of combinations between core algorithms and frameworks that have been implemented, as
well as suggests potential combinations that have not been attempted yet.

This category is based on research performed on algorithms that are used as modules
for functional Deep RL algorithms (such as the ones that fall in the two previous cate-
gories), developing robust architectures that improve original performance, and increase
implementation flexibility and stability. Such components, for example, aim at improving
exploration strategies, generalizing (transfer RL, multitasking), creating abstraction layers
to solve sub-problems (hierarchical RL), learning skills without supervision (unsupervised
RL), as well as developing distributed algorithms (distributed RL).

In this paper, we give a brief description and perform a compact comparative analysis
of the state-of-the-art algorithms for each of these categories. Then, we present higher-
level comparison figures of their performance on 57 games included in the Arcade Learning
Environment (ALE) (Bellemare et al., 2013) and the MuJoCo physics simulation platform
(Todorov et al., 2012), where applicable, as they were originally given by the corresponding
authors. The reason for choosing these two platforms is essential to this review, since they
have become the gold standard for testing Deep RL methodologies. These platforms would
therefore allow for a wider and more accurate comparison of such algorithms, in terms of
evaluation metrics, which is necessary for this analysis.

Primarily, this comparative survey is to be used as a guide for becoming acquainted
with state-of-the-art Deep RL algorithms, knowing their pros and cons, their relations, per-
formance capabilities, as well as distinguishing the cases where it’s more appropriate for
particular methods to be used. Such work allows the Deep RL community and researchers
in general (especially early-stage researchers) to view specific traits of state-of-the-art algo-
rithms in a categorized manner, as well as distinguish particular architectural designs de-
veloped for the means of advancing the fields of Deep Learning and Deep RL. Additionally,
this kind of survey aims at giving insights regarding novel algorithm implementations and
variations of existing algorithms. Lastly, we believe that the reader can develop intuition
regarding capabilities and potential of the algorithms and their particular characteristics,
under different evaluation scenarios.

In Section 2 we introduce the first family of algorithms, model-free algorithms.

1423

Lazaridis, Fachantidis, & Vlahavas

2. Model-free Algorithms

Algorithms with a model-free nature make up the first major type of Deep RL algorithms,
and constitute the epitome of a direct learning process through experience. More specifically,
an agent within an environment attempts to learn the optimal policy for solving a task
by directly transforming the experience gathered as a result of performed actions, into
a resulting policy. In the following subsections, we describe two main categories of the
model-free family, namely Deep Q-Learning and Policy Gradient algorithms.

2.1 Deep Q-Learning

Deep Q-Learning is based on Q-Learning approaches (Watkins, 1989), and has the purpose
of approximating the optimal action-value function Q∗(s, a) through the use of deep neural
networks. To that end, the action-value function is parametrized as Q∗(s, a; θ), where θ is a
vector of parameters on which the action-values rely to obtain their values, and is also the
main target of approximation by the networks (known as Q-Networks), formally described
in the following way:

Y Q
k = r + γmax

a′∈A
Q(s′, a′; θk) (1)

Deep Q-Networks (DQN) (Mnih et al., 2015) is the basis for all Deep Q-Learning ap-
proaches, motivated by the fact that it is impractical to use the traditional tabular Q-
Learning method in environments consisting of large state spaces with high dimensions.
However, DQN methods are limited to supporting discrete action and state spaces.

DQN showed notable performance on a wide range of Atari games, and partially owes
this achievement to functionalities implemented by the authors that further increased sta-
bility in several cases where the system would diverge due to the use of a non-linear function
approximator (Bhatnagar et al., 2009a). These modifications include using a separate Q-
Network (called a target Q-Network) apart from the original (online) Q-Network. The
target network is actually a clone of the original that is updated periodically to match the
online network, which, on the other hand, is updated at every step. This is to maintain
for a longer period the same action-values, in contrast to weight updates, which occur at
every step. The lack of a target Q-Network introduces a high chance of divergence of the
policy (Mnih et al., 2015). Additionally, the Experience Replay (ER) (Lin, 1992) technique
is implemented in order to perform action-value updates from mini-batches of stored ex-
periences, consequently increasing performance on a broad range of states. At the same
time, variance of the updates is reduced since experience samples are drawn at random,
which reduces correlation between samples, as opposed to single experience-tuple updates
(Mnih et al., 2015). According to the authors’ experiments, even though both modifications
improve significantly model performance, the use of ER boosted results greatly, reaching in
some cases about 30-70x higher performance scores in the ALE platform. An extra modifi-
cation in this work was clipping rewards to the [−1, 1] range so as to limit derivative error
scale and use the same learning rate across different games, at the expense of introducing
bias (Francois-Lavet et al., 2018).

Hasselt (2010) proposed Double Q-Learning, which, when combined with DQN (DDQN)
(Van Hasselt et al., 2016b), improves performance by removing overestimation bias intro-

1424

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

duced that would occur in some cases, because the same network would both evaluate and
select an action. This is achieved by separating these two functions and using two inde-
pendent estimators for each: the online Q-Network, which uses a set of weight vectors for
selecting an action for the next state, and the target Q-Network, which uses a different set
of weight vectors for the evaluation of the Q-value of that action. In particular, separation
of action selection and evaluation is performed by decoupling the max operation in the
original update rule (eq. 1). Then, the online network can select an action and the target
network can evaluate that action, modifying the update rule as follows:

Y DDQN
k = r + γQ(s′, argmax

a∈A
Q(s′, a′; θk); θ

−
k) (2)

Where θk and θ−k are the weights of the online and target networks, respectively. Human-
normalized median of DDQN performance is 115% and 111% for the no-ops and human-
starts schemes respectively (see Section 5.1) in the ALE platform environments, in contrast
to 79% and 68% in DQN respectively (Hessel et al., 2018).

Another extension of DQN, Dueling DQN (Wang et al., 2016), is an architecture that
splits the network into two streams, each of which corresponds to the decoupled Q-action
value function, that is, the value function V (st) and advantage function Aπθ(st, at), through
their relationship Aπθ (st, at) = Qπθ (st, at) − V (st). More specifically, instead of following
the original DQN network architecture, a modification is implemented at the point where
the convolutional neural network sends the output to a single sequence of fully connected
layers. Instead of this structure, the output signal is sent to two different streams, with
one being responsible for estimating the value function, and the other for estimating the
advantage function. The outputs of these estimators are combined in order to produce a
more accurate action-value function. The authors of this method found that the Dueling
Network architecture on top of DDQN has a human-normalized median of 151% and 117%
in the ALE platform games (Hessel et al., 2018), showing significant increase over both
DQN and DDQN scores.

A variation of Dueling DQN, called Prioritized Dueling DQN (Wang et al., 2016), further
improves performance of the original algorithm by incorporating the concept of Prioritized
Experience Replay (PER) (Schaul et al., 2015b). PER appends a priority to each experience
(i.e. transition) that corresponds to the Temporal Difference (TD) error from the last time
it encountered that experience, with the purpose of sampling experiences with a larger TD-
error more often during experience replay. However, this extension alone introduces high
bias towards high-priority samples. To patch this issue, Importance Sampling (IS) weights
(Hinton, 2007; Mahmood et al., 2014) are used to limit the effect of those priority experiences
during updates. However, the practical impact of PER in overall model performance is not
clearly visible, since the human-normalized median for the human-starts regime (128%) of
Prioritized Dueling DDQN is slightly higher than Dueling DDQN (117%), but in the no-ops
scheme it is slightly lower (140% vs. 151%) (Hessel et al., 2018).

DQN can also be modified to use Multi-Step Temporal Difference methods (Sutton,
1988; Hessel et al., 2018; Hernandez-Garcia & Sutton, 2019), which means that the loss
to be minimized replaces the original one-step return from a state with an N-step return.
This implies that bootstrap is performed over longer time periods, in contrast to one-step
returns, which perform an action at the next step and bootstrap directly after receiving a

1425

Lazaridis, Fachantidis, & Vlahavas

reward. While multi-step TD methods increase variance, it is proven that bias is decreased
(Jaakkola et al., 1994), and a fine-tuned value of the step parameter can hasten the learning
process (Sutton & Barto, 2018).

Oftentimes, the environment is less likely to reward the agent immediately after an
action, making it necessary to perform a sequence of many actions until a reward is received.
This difficulty of the agent interacting with the environment and obtaining “insights” about
it, with the purpose of efficient learning, is known as the credit assignment problem in
RL (Minsky, 1961; Sutton & Barto, 2018). Noisy Nets (Fortunato et al., 2018) is one
method that improves the exploration process, something that is crucial in environments
with sparse rewards. Exploration with this method is performed by replacing the fully
connected layers of the network with noisy layers, which is, in essence, a randomized value
function (Osband et al., 2019, 2016) that learns to adjust the intensity of exploration over
time. DQN combined with NoisyNets surpassed standard DQN in terms of median human-
normalized scores when evaluated in the ALE platform environments, achieving 118% and
102% in the no-ops and human starts regimes respectively (Hessel et al., 2018).

Another variant of DQN approaches, is to use a distribution-based algorithm instead,
such as C51, in which one estimates the distribution of the returns, instead of the values
of the expected returns (Bellemare et al., 2017). In their work, the authors highlight the-
oretically and empirically the significance of modelling this value distribution, and showed
that C51 outperformed previous DQN variants in most games within the ALE platform,
thus becoming a state-of-the-art algorithm. In particular, C51 managed to perform equally
good or better than the aforementioned methods, achieving 125% (human-starts) and 164%
(no-ops) median human-normalized scores (Hessel et al., 2018).

Rainbow (Hessel et al., 2018), an algorithm that is able to achieve remarkable perfor-
mance in the ALE platform, is a combination of the aforementioned extensions of DQN,
namely DDQN, Dueling DQN, Prioritized Dueling DQN, along with Noisy Nets, distribu-
tional RL and Multi-Step TD features. The achieved results are contributed to the per-
formance gains of each one of its components, reaching 223% (no-ops) and 153% (human-
starts) median normalized scores (Hessel et al., 2018), but it should be noted that the
authors of Rainbow state that the dueling network component plays a less significant role
in the Rainbow system, in general.

2.2 Policy Gradient Methods

In general, algorithms which make use of the Policy Gradient Theorem (Sutton & Barto,
2018) belong to the family of Policy Gradient (PG) methods. The base algorithm that
belongs to this category is Vanilla Policy Gradient (VPG), or REINFORCE (Williams,
1992). In REINFORCE, the target is to maximize the expected finite-horizon undiscounted
return J with respect to policy π, which, in turn, depends on parameters θ, with the help
of gradient ascent methods. Gradient of J(πθ) is defined as:

∇J (πθ) = E
τ∼πθ

[
T∑
t=0

∇θ log πθ(at|st)Qπθ(st, at)

]
(3)

Where τ is a trajectory, i.e. an interaction sequence (states, actions and rewards)
between the agent and the environment until a terminal state is reached (also called episode).

1426

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

Q is the action-value function for the current policy. The gradient is taken with respect to
the policy parameters θ.

In other words, the purpose is to optimize the policy directly, which has the added
benefit of supporting continuous action and state spaces, in contrast to DQN methods.
This is derived by producing a policy parameterization, which outputs the parameters
of a particular probability distribution (typically the mean and standard deviation of a
Gaussian distribution), instead of computing the probabilities for an infinite amount of
actions. Therefore, the policy can be defined as the probability density function of the
Gaussian distribution, with the mean µ and standard deviation σ depending on parameters
θ (for a particular state):

πθ(at|st) =
1

σθ(st)
√

2π
exp

(
−(at − µθ(st))2

2σθ(st)
2

)
(4)

It should be noted that π on the right-hand side of eq. 4 refers to the mathematical
constant, and not the policy. This way, one can know how likely an action is. By tuning µ
and σ through θ, the probability distribution is optimized.

Even though PG methods are unbiased, they suffer from high variance and low con-
vergence (Marbach & Tsitsiklis, 2003; Peters & Schaal, 2006; Sehnke et al., 2010). To
reduce variance, a state-dependent baseline value b is usually subtracted from Qπθ , which
keeps bias unchanged. A common approach in this case is to set the value of b as the state-
value function, and subsequently compute the advantage function in the gradient, but other
baseline values (e.g. action-dependent) can be chosen instead (Williams, 1992; Greensmith
et al., 2004; Wu et al., 2018; Tucker et al., 2018).

The other important extension of base Policy Gradient methods is Actor-Critic (Konda
& Tsitsiklis, 2000). In this variation, in addition to updating parameters θ in order to
optimize the expected return, the baseline value of the Policy Gradient method used also
becomes dependent on a set of parameters that are updated at each step and help optimize
its value. This approach helps policy updates by reducing gradient variance. This type
of Policy Gradient method makes use of two models, the actor and the critic. The critic
updates parameters w in order to make an approximation of Qπθ;w, in the case of Q Actor-
Critic, or Aπθ;w, in the case of Advantage Actor-Critic (A2C) (Bhatnagar et al., 2009b) and
Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016). At the same time, the
actor uses this information to update policy weights, and, consequently the current policy.
This way, an Actor-Critic method could be seen as a way to bridge PG methods (i.e.
the actor) with methods based on value function approximation (i.e. the critic). The critic
approximates and updates the value function using samples, which is then used to update the
actor’s policy parameters in the direction of performance improvement, effectively allowing
a PG method indirectly exploit the MDP structure (Grondman et al., 2012).

In A3C, the implementation of which is based on parallelization, multiple instances of the
agent are initiated in multiple instances of the environment, with each agent-environment
setup being independent from the rest. The experiences gathered are sent asynchronously
as input to a global network that updates the value function. A3C has considerably faster
learning speeds than other methods, such as DQN, which the authors trained on a single
Nvidia K40 GPU for 8 days only to achieve human-normalized mean and median of 121.9%

1427

Lazaridis, Fachantidis, & Vlahavas

and 47.5%, respectively, using the human-starts evaluation scheme. A3C, on the other hand,
was trained on 16 CPU cores, and achieved significantly better results (623% mean, 112,6%
median) in half the time (4 days) (Mnih et al., 2016). A2C is the synchronous version of
A3C, where trajectories created by a single agent in multiple instances of the environment
are gathered and used as input to the global network. A2C can be more cost-effective than
A3C on single-GPU machines, and is faster than a CPU-only A3C implementation when
using larger policies (Wu et al., 2017b).

REINFORCE and its extensions (A2C, A3C, etc.), while providing a simple way of
optimizing the expected return, are prone to making disastrous moves in cases where the
objective function has low gradient (i.e. high curvature), due to the fact that it uses first-
order derivatives. In that case, using small step sizes is inefficient due to slow learning
(i.e. vanishing gradients), while large step sizes can hurt performance badly (i.e. exploding
gradients) (Hochreiter, 2001). For this reason, Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015) uses the Kullback-Leibler (KL) measure of divergence (Kullback &
Leibler, 1951; Kullback, 1959) in order to constrain policy changes below a certain threshold
at each iteration, subsequently avoiding destructive parameter updates. In essence, the KL-
divergence measures the difference between two probability distributions, and in this case,
the difference between a new policy and an old policy is measured. At the same time,
monotonic improvement is guaranteed (Schulman et al., 2015). While TRPO addresses
critical issues of Policy Gradient methods, it suffers from a crucial problem, which is the
additional computational overhead required in order to satisfy the KL constraint, and also
needs huge rollout batches to approximate the required conjugate gradient.

An improvement over TRPO that is less computationally expensive, and scales better
in larger deep networks, is Actor Critic using Kronecker-Factored Trust Region (ACKTR)
(Wu et al., 2017a). ACKTR is a Policy Gradient method that combines trust region opti-
mization and the actor-critic architecture, with an extra modification that uses Kronecker-
Factored approximation (K-FAC), which reduces computational complexity and delivers
almost first-order optimization complexity (Martens & Grosse, 2015). In addition, it is able
to reduce variance by keeping running averages of curvature statistics throughout training,
consequently requiring far fewer samples, unlike TRPO. In particular, ACKTR managed to
reach a reward of 2 million in the Atari game “Atlantis” in 1.3 hours (600 episodes), while
A2C reached the same performance level in 10 hours (6000 episodes), which is a clear indi-
cation that ACKTR can be far more sample-efficient than other state-of-the-art algorithms.
In other Atari games, A2C required 2-5 times more episodes than ACKTR to reach human
performance level, while ACKTR achieved 25-70% larger rewards than A2C (Wu et al.,
2017b).

Actor Critic with Experience Replay (ACER) (Wang et al., 2017) can be seen as the
off-policy counterpart of A3C due to the fact that it uses experience replay, with a few extra
modifications and additions that make it more stable and efficient. More specifically, they
include estimating the action-value function using the Retrace algorithm (Munos et al.,
2016), truncating importance weights with bias correction, as well as making use of trust
region optimization by keeping a running average of past policies and constraining new
policies to be near this average.

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a subcategory of Policy
Gradient methods that maximizes gradient step size, without letting it become regrettably

1428

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

big, similarly to TRPO. Unlike TRPO though, PPO algorithms incorporate first-order
methods and reduce computational expense while maintaining satisfying policy update sizes,
as well as simplify the implementation procedure.

Two main variants of PPO can be distinguished: PPO-Clip (or Clipped Surrogate Ob-
jective) and PPO-Penalty (or, Adaptive KL Penalty Coefficient) (Schulman et al., 2017). In
PPO-Clip, there is no KL-divergence constraint within the main objective to be minimized.
Rather, clipping is performed in order to constrain the new policy from going far off from
the old policy; in other words, the objective function is upper-bounded, subsequently con-
straining the new policy from deviating as well. PPO-Clip is usually performed in multiple
steps of taking minibatch Stochastic Gradient Descent (SGD).

In the PPO-Penalty variation of PPO, the hard constraint used for the KL-divergence
is replaced with a soft constraint that takes the form of a penalty when not satisfied. Even
though PPO is widely used due to its competitive results in combination with the ease of
implementation, it displays a non-exploratory behavior over the course of training because
of its tendency to exploit found rewards, since each updated policy becomes less and less
random (Wang et al., 2019), and can get stuck in local optima. Additionally, PPO is highly-
dependent on hyperparameter selection, requiring several experimentation procedures for
fine-tuning.

Policy gradients have a stochastic nature, since the sampled policy stochastically selects
an action from a particular state. On the other hand, there is a family of algorithms based
on Policy Gradient methods, called Deterministic Policy Gradient (DPG) methods (Silver
et al., 2014), where an action is selected in a deterministic way.

The most basic implementation of a DPG algorithm is Deep Deterministic Policy Gra-
dient (DDPG) (Lillicrap et al., 2016), which combines an actor-critic model with a Deter-
ministic Policy Gradient (DPG) method, in order to develop a PG method with efficient
exploration in continuous action spaces. For this purpose, DDPG embodies two distinct
functionalities that improve model performance and stability: the first is batch normaliza-
tion (Ioffe & Szegedy, 2015), for normalizing values of features with different units, so as
to maintain performance even when generalizing to environments with different state value
scales. The second functionality aims to handle exploration insufficiency in continuous ac-
tion spaces, by creating an exploration policy with added noise generated by an Ornstein-
Uhlenbeck process (Uhlenbeck & Ornstein, 1930). Performance of DDPG is competitive to
state-of-the-art approaches with increased sample-efficiency in high-dimensional continuous
action spaces, solving such problems in 20x fewer steps than what a typical DQN model
requires to solve Atari games, which are considered as environments with low-dimensional
discrete action spaces. However, DDPG requires a lot of tuning for a satisfactory setup.
Additionally, errors in the learned Q-function can easily lead to catastrophic divergence of
the policy (Duan et al., 2016; Henderson et al., 2018).

Twin Delayed DDPG (TD3) (Fujimoto et al., 2018) addresses the issues of DDPG with
three modifications, improving both learning speed and overall performance: 1) Clipped
Double Q-learning, for reducing overestimation bias, 2) Delayed policy updates for decreas-
ing variance in value estimates by updating less often policy and target networks, and 3)
Target policy smoothing regularization, which introduces noise to the target policy, aver-
aged over mini-batches, but clipped to keep the new target close to the original, so as to
further reduce variance.

1429

Lazaridis, Fachantidis, & Vlahavas

A bridge between Q-learning and DPG methods is Soft Actor-Critic (SAC) (Haarnoja
et al., 2018a), which introduces a maximum entropy term (Haarnoja et al., 2017; Jaynes,
2003; Ziebart et al., 2008) that corresponds to efficient exploration, and attempts to maxi-
mize it. Theoretical analysis behind this method guarantees convergence to optimal entropy
policy. This maximum entropy framework is implemented in an off-policy fashion, and
is combined with a stochastic actor-critic, with the end result empirically outperforming
state-of-the-art on-policy and off-policy algorithms in terms of sample efficiency, as well as
performance, in high-dimensional continuous control tasks. However, manual tuning of the
temperature hyperparameter in the maximum entropy setting can degrade performance,
a problem which is tackled by a modified version of SAC, introduced in (Haarnoja et al.,
2018b), by automating the process of selecting the optimal temperature hyperparameter.

3. Model-based Algorithms

Model-free approaches rely on the experience acquired from interaction with the environ-
ment in order to develop a policy for solving the task in hand. However, this can be seen as
a disadvantage, since complex domains usually require that the agent obtains a great deal of
experience before efficient policies are learned. Additionally, even after the agent becomes
a master at solving a task within an environment, the exploitation of existing knowledge
for solving novel tasks in the same or a different environment (generalization) is not an
implied ability. Model-based learning methods try to address these flaws by attempting to
learn the underlying environment stochastic dynamics using the experience gained, so as to
accurately predict future states, and then use planning approaches to solve the given task
(as in a purely dynamic programming approach). In contrast, a model-free agent tries to
learn and execute the best action for a given state (i.e. learn the optimal policy).

In model-based learning, the agent uses past experience to create an imagined model
of the environment (i.e. transition probabilities and rewards), and thus predict the out-
comes of performed actions (i.e. future states), subsequently avoiding negative actions and
potentially destructive pathways. This also allows for better generalization across different
tasks within the same environment, since there is a lesser need for large amounts of real
experience in order to solve them (Deisenroth et al., 2013). The main obstacles within
this category of Deep RL methods are usually model inaccuracies, accumulating errors of
multi-step predictions, failure to capture multiple possible future states, and overconfident
predictions outside of the training distribution (Hafner et al., 2019).

Two basic categories of algorithms are distinguished in this family, depending on whether
the algorithm uses techniques for finding latent states (non-directly observable) in order to
create the model of the environment, or if only manifested (directly observable) states are
used. Manifest state-based and latent state-based algorithms are described in the following
subsections.

3.1 Manifest State-Based Algorithms

Probabilistic Inference for Learning Control (PILCO) (Deisenroth & Rasmussen, 2011)
is a model-based policy search algorithm that models the required world dynamics using
non-parametric Gaussian Processes, uses approximate inference for policy evaluation, and
computes analytic derivatives with respect to optimization objective function parameters

1430

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

for policy improvement. It is highly data-efficient due to its probabilistic nature of learning
dynamics models; for example, it learned the dynamics of a real Cartpole system in less
than 10 trials that correspond to total experience of 17.5s, whereas other similar methods
required one or more orders of magnitude more time to achieve the same. However, PILCO
struggles in high-dimensional state spaces and nonlinear dynamics (Nagabandi et al., 2018),
while at the same time has high computational requirements.

Another widely used hybrid approach is Model-Based Model-Free (MBMF) (Nagabandi
et al., 2018), the design of which consolidates a model-based methodology that uses Model
Predictive Control (MPC) with Random Shooting (RS) (Richards, 2005) to initially train
a system for learning model dynamics. Once this model-based RL component has been
trained, sampled trajectories are used as “expert” trajectories for the DAGGER imitation
learning algorithm (Ross et al., 2011), in order to produce a corresponding policy. This
policy is used as the initial policy for a model-free RL agent (the authors originally use
TRPO), which is then trained in a straightforward fashion. Although the model-based
component of the algorithm is not capable of reaching high rewards, it is able to quickly
provide significant insights about the model dynamics, so that the model-free approach can
then use this information to achieve high performance, with sample-efficiency of about 3-5
times compared to pure TRPO in MuJoCo tasks. However, the MPC controller with RS
is bound to have trouble in environments with high-dimensional action spaces, in which
sample efficiency would drop significantly.

Recent research has also dealt with ensemble approaches for solving Deep RL tasks,
such as Stochastic Ensemble Value Expansion (STEVE) (Buckman et al., 2018). The main
contribution of STEVE is the extension of Model-Based Value Expansion (MVE) (Feinberg
et al., 2018) for use in an ensemble setup, in combination with a model-free method (orig-
inally DDPG). Performance experiments in continuous control tasks show that STEVE
outperforms MVE-DDPG and DDPG in terms of both sample efficiency and wall-clock
time, in fact achieving an order of magnitude increase in sample efficiency within MuJoCo
environments, compared to DDPG. Similarly, Model-Ensemble Trust-Region Policy Opti-
mization (ME-TRPO) (Kurutach et al., 2018) uses an ensemble of deep neural networks in
order to manage uncertainty, and performs policy optimization using a model-free algorithm
(originally, TRPO was used by the authors). However, ME-TRPO is a purely model-based
technique, in contrast to STEVE, which alternates between model-based and model-free
methods throughout execution. The non-trivial sample efficiency of ME-TRPO can be
clearly seen from its performance in MuJoCo tasks, where it reaches the same performance
level as model-free algorithms with 100x less data.

One particularly promising direction was pointed to by the authors of Model-Based
Meta-Policy-Optimization (MB-MPO) algorithm (Clavera et al., 2018), in which meta-
learning is used to optimize a policy for each (environment) dynamics model within an
ensemble. Each dynamics model corresponds to a different task that the agent shall be
trained on, combating model bias with adaptation to different scenarios, rather than ex-
ercising robustness. Policy parameters are optimized with Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017), while the objective of the meta-optimization problem is opti-
mized using a model-free technique (originally, the authors used TRPO). Sample efficiency
of this method in comparison to model-free approaches is evident in MuJoCo tasks, and its
increase ranges from 10-100x, depending on the task.

1431

Lazaridis, Fachantidis, & Vlahavas

Chua et al. (2018) propose using high-capacity systems robust to uncertainty generated
by the environment, and develop Probabilistic Ensembles for Trajectory Sampling (PETS),
a sample-efficient and powerful algorithm composed by uncertainty-aware deep networks.
An ensemble of probabilistic networks tune the parameters of a probability distribution
function, which is the core of the agent’s model-learning method. For the navigation pro-
cedure within the environment, the agent makes use of an MPC controller with Trajectory
Sampling. The authors’ experimental results show significant improvement of both state-
of-the-art model-based and model-free algorithms; in particular, PETS requires 8x less data
than SAC and 125x less data than PPO on the Half-Cheetah MuJoCo task, to reach equal
performance.

3.2 Latent State-Based Algorithms

Deep Planning Network (PlaNet) (Hafner et al., 2019) is a model-based reinforcement learn-
ing algorithm that identifies latent states between real states during transitions, in order
to represent accurately transition dynamics. Raw image pixels are the only input to the
model, and various components make up the whole algorithm. Sample efficiency in this case
is increased by 200x on average in continuous control tasks, compared to state-of-the-art
model-free algorithms such as A3C and D4PG, with final performance sometimes also being
higher.

More specifically, it uses the Cross-Entropy Method (CEM) (Chua et al., 2018; Rubin-
stein, 1997) for the planning component due to its performance on solving the required tasks
under the condition that the true dynamics of the model are known. Additionally, due to
the fact that a deterministic transition model design would prove to be inaccurate, while
a purely stochastic model would have difficulties remembering information over long past
time periods, the authors used a Recurrent State-Space Model (RSSM), in which a state is
split into a deterministic and a stochastic part, with the former used for remembering past
information over multiple steps, and the latter used for predicting multiple future scenarios.
The last component of the PlaNet algorithm is latent overshooting, a generalized variational
bound that provides the agent with the ability to perform multi-step predictions, instead of
only a single-step prediction. Performance results indicate that working with latent state
spaces is a promising direction for model-based RL methods.

A hybrid approach, which combines model-based elements with a model-free algorithm,
is Imagination-Augmented Agents (I2A) (Racanière et al., 2017). This particular method
incorporates an imagination core module used for producing possible future trajectories (i.e.
rollouts) from past experience and through action-conditional next-step predictors (Chiappa
et al., 2017; Leibfried et al., 2017; Oh et al., 2015). Imagined rollouts are then encoded using
LSTM encoders (Hochreiter & Schmidhuber, 1997) with the purpose of extracting valuable
information, as in making interpretations, in order to reduce model bias, that is, ignore
the assumption of a perfect learned model (Deisenroth & Rasmussen, 2011). At the same
time, a model-free agent (the authors originally use an A3C agent) is trained naturally at
each time step, only to feed both their output and the concatenated model-based encoded
rollouts into a policy network which undertakes the task of producing the final action to be
executed. The key advantage of this method is its ability to distinguish useful information
from the learned models, and subsequently noisy environments. The authors evaluated

1432

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

their model in Sokoban, a puzzle game with 40 billion procedurally generated levels, as
well as MiniPacman. I2A which solved 85% of the Sokoban puzzles, with other baseline
model-free methods solving only 60-70% of them at potentially less cost. The MiniPacman
environment was used to evaluate generalization capabilities of the model, which learned to
perform efficiently (i.e. achieve high rewards) all 5 different tasks within the environment,
but other baseline models could not learn more than 1 task at a time.

World Models (Ha & Schmidhuber, 2018) incorporates a Variational Autoencoder (VAE)
(Kingma & Welling, 2013) to produce an embedded representation of the observed input
image, which is then passed to a memory module. The memory module has the role of pre-
dicting the next latent state, by training a Mixture Density Network (MDN) combined with
a Recurrent Neural Network (MDN-RNN) (Graves, 2013) in order to model the probability
distribution of the next latent state, while introducing randomness within this process in
order to better handle model uncertainty (Ha & Eck, 2018). Finally, a controller module,
that is, a single layer linear model, is trained to output an action given a latent state and
a hidden unit of the RNN. Due to the small size of parameters of the controller, the au-
thors chose to use Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen
& Ostermeier, 2001; Hansen, 2016) as the optimization algorithm.

This algorithm has the benefit of requiring a relatively small sample of real observations
for generating its own perception of the environment and training in it, plus requires lower
computational resources due to the conversion of image input to embedded representations.
This is evident by its performance in the CarRacing-v0 (Klimov, 2016) and Viz-Doom
(Kempka et al., 2016) environments, where it learns to reach the solutions and achieves state-
of-the-art scores compared to model-free methods such as DQN and A3C with relatively few
real samples of data. However, it is limited by nature to learning representations that are
either relevant only to low-complexity tasks, or completely irrelevant to any of the necessary
tasks. This is because the number of useful representations that can be captured is limited
by the number of significant observations that have been received, and subsequently by the
complexity of the environment and dynamics.

Simulated Policy Learning (SimPLe) (Kaiser et al., 2019) is a hybrid algorithm that pro-
vides stochasticity-instigating techniques to handle uncertainty, such as the introduction of
discrete latent variables (Kaiser & Bengio, 2018) and scheduled sampling (Bengio et al.,
2015; Venkatraman et al., 2016). This model achieves satisfying performance on a wide
variety of Atari games (originally implemented with PPO as the model-free component),
being 10x more sample-efficient, since it requires only 100K steps to reach the same perfor-
mance that Rainbow and PPO reach at 1 million steps in Atari games. This performance
in the ALE platform can place SimPLe into an overall top position among state-of-the-art
Deep RL algorithms.

4. Modular Algorithms

This family of algorithms is composed of frameworks designed to host model-free or model-
based algorithms, such as those mentioned in the previous chapters. These frameworks aim
to improve the injected algorithms in particular aspects, as in improving the strategy used
for exploration, and/or equip them with various new features, such as the ability to work
in a distributed fashion, transfer knowledge, multitask, distinguish temporal abstractions

1433

Lazaridis, Fachantidis, & Vlahavas

(hierarchical RL), or learn without the help of a reward function (unsupervised RL). These
are the cases in which a state-of-the-art algorithm can exceed its own limitations and become
a top-ranking algorithm in otherwise challenging tasks.

An analysis of Deep RL algorithms that belong to subcategories of the modular algo-
rithms family (distributed frameworks, exploration frameworks, unsupervised frameworks,
hierarchical frameworks and generalization frameworks) are provided in the following sub-
sections.

4.1 Distributed Frameworks

Distributed frameworks aim to improve performance by scaling up existing algorithms. Ape-
X (Horgan et al., 2018) achieves this by creating a parallelized version of PER, through the
use of multiple actors, each of which interacts with its own instance of the environment.
Generated data is added to a single memory container, which is accessed by a single learner
component in order to sample from it, apply the implemented learning rule and update
sampled experience priorities. Actors’ network parameters are updated periodically (so
as to stabilize learning, as proposed by Van Hasselt et al., 2016b), while old experience
is also removed periodically, to save memory space. Originally, the authors applied the
described framework to a variant of DQN (termed Ape-X DQN), which is similar to Rainbow
(only double Q-learning, multi-step TD and dueling network architecture components are
used instead of all Rainbow components), as well as to DDPG (termed Ape-X DPG).
Results indicate that this algorithm outperforms standard state-of-the-art baselines, both in
performance and wall-clock time, with Ape-X DQN achieving a human-normalized median
of 434% (no-ops) and 358% (human starts) in the ALE platform, however this algorithm is
mainly suitable for use only on occasions where large amounts of data can be generated in
a parallel manner.

A multifaceted framework for the overall improvement in performance of a core model-
free algorithm is Distributed Distributional Deep Deterministic Policy Gradient (D4PG)
(Barth-Maron et al., 2018) (originally, the authors use DDPG as the core RL algorithm).
The main characteristic of D4PG is its distributional nature, inspired by the work of Belle-
mare et al. (2017), which, along with N-step returns, demonstrate a strong behavior. Addi-
tionally, it has a distributed architecture that is based on Ape-X, with the authors claiming
that, although PER can lead to performance improvement, it plays a less important role
than the previous two features, and can also lead to unstable results. These two points
are partially in line with the conclusions of the authors of Ape-X, since their claim is that
applying PER does not hurt their algorithm neither in terms of performance or stability.

In the same style as Ape-X and D4PG is Importance Weighted Actor-Learner Archi-
tecture (IMPALA) (Espeholt et al., 2018), which is based on the Actor-Critic method.
IMPALA, apart from the use of multiple actors and a centralized learner like Ape-X and
D4PG (although it also supports a central set of multiple learners communicating with each
other), does not obligate actors to compute gradients themselves and let the learner(s) ap-
ply updates. Instead, actors have a very specific role of sharing only observations with the
learner(s), who, in turn, compute gradients themselves and, in the case of multiple learners,
perform updates synchronously. This creates a practical independence between the two
components (learners and actors), since actors do not have to wait for the learners to ap-

1434

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

ply updates, and learners can perform updates without consuming computational resources
that are used by the actors.

However, this also develops a policy-lag, since the actor’s policy is several updates behind
the learner’s policy, a problem addressed by the authors through the use of a modified
version of the Retrace algorithm, which they term V-Trace. V-Trace corrects the state-value
function difference caused by the lag, in contrast to Retrace, which corrects the action-state
value function instead. IMPALA, as the authors’ experimental results indicate, manages to
process humongous amounts of data in relatively short times at the cost of computational
power, while also being able to cope with multitask settings and achieving satisfactory
performance on a wide variety of environments. For example, IMPALA with 1 learner, it
can reach in 10 hours the same performance that A3C reaches in 7.5 days, whilst a higher
number of actors speeds up the learning process even more. Additionally, its generalization
abilities are evident from the fact that a single model, with a single set of weights, managed
to learn all games within the ALE platform, achieving a human-normalized median of 59.7%
(no-ops) but at a cost of 11.4 billion frames in total.

A different approach to distributed RL is the General Reinforcement Learning Architec-
ture (Gorila) (Nair et al., 2015), which promotes the use of 4 different distributed elements
in its structure: multiple actors and multiple learners that work in parallel, a distributed
experience replay memory (either local, with each actor storing his experience in his own
machine, or global, where experience is inserted into a distributed database and accessed
by one or more learners), as well as a distributed neural network maintained by a central
parameter server, as in DistBelief (Dean et al., 2012). Originally, the authors supported
the implementation of DQN with this framework (termed Gorila DQN) with local replay
memory (whereas global replay memory would bring the framework one step closer to the
architecture of Ape-X). Even though ALE benchmark results show clear improvements over
DQN and other algorithms, both in overall scores and time required to achieve them (e.g.
it surpassed performance of DQN on 19 Atari in 6 hours, and on 38 games in 36 hours),
it requires a lot of computational resources, and is also prone to instability in case a single
machine fails.

4.2 Exploration Frameworks

Efficient exploration is one of the most significant challenges in RL, and any improvement
to this problem can lead to the overall increase in performance of any RL algorithm. A
well-known basis for exploration methods is curiosity-driven exploration, which arises from
the concepts of curiosity (Silvia, 2012) and intrinsic motivation (Oudeyer & Kaplan, 2009;
Schmidhuber, 2010). These notions describe one’s compulsion to explore an unknown part
of an environment, with the belief that this shall lead to higher rewards at some point in
the future.

In curiosity-driven exploration (Pathak et al., 2017), the authors propose the Intrinsic
Curiosity Module (ICM), which attempts to create an intrinsic reward signal from useful
feature encodings of the state space, that, in essence, is the prediction error of feature
encodings from consequent states (i.e. the uncertainty of the environment). This model
overcomes the problem of dealing with complex visual input (that is, pixels), and pays
attention only to useful features that can affect the agent substantially. Consequently, the

1435

Lazaridis, Fachantidis, & Vlahavas

agent uses the prediction error for these features as a measure of curiosity and motivation
for exploration (i.e. higher error indicates higher curiosity and thus more interest for explo-
ration). Originally, the authors implemented ICM with A3C as the framework’s core RL
algorithm. A good example of its exploratory abilities is that the agent can complete more
than 30% of Level-1 in the Super Mario Bros. game, with absolutely no extrinsic rewards.
However, it should be noted that a sequence of more complex actions is required to sur-
pass that point where the agent is unable to proceed further into the game, indicating that
the proposed curiosity methodology is indeed remarkable and also has interesting research
potential.

The Variational Information Maximizing Exploration (VIME) (Houthooft et al., 2016)
framework is also a curiosity-driven model, which maximizes information gain (Cover, 1999;
MacKay, 1992) using variational inference (Jordan et al., 1999; Wainwright & Jordan,
2008) to approximate the posterior distribution of a Bayesian neural network (Blundell
et al., 2015; Graves, 2011) that expresses environment dynamics and subsequently minimizes
uncertainty. This model is used as the intrinsic reward function and is combined with the
environment’s extrinsic reward function, while a single hyperparameter in the model can be
adjusted to control the exploration-exploitation trade-off. VIME can be used in conjunction
with any standard RL algorithm, as long as it supports continuous state and action spaces
(originally, VIME was implemented on top of TRPO). Authors’ experiments prove that the
model’s exploratory abilities allow it to perform better than other methods (e.g. TRPO)
in environments with sparse rewards such as Mountain Car (Moore, 1991).

Count-Based Exploration methods, on the other hand, support the idea of counting state
visits as a base for exploration. However, to count directly state visits in an environment
with a large state space is a challenge that cannot be bypassed easily, since, realistically,
most states will not be visited more than one or two times (Burda et al., 2019).

In order to overcome this problem, the measurement of a pseudo-count quantity can
be used, as in Context Tree Switching (CTS)-based pseudocounts (also known as A3C+)
(Bellemare et al., 2016, 2014) and PixelCNN-based pseudocounts (Ostrovski et al., 2017;
Van Den Oord et al., 2016), where the authors extend information gain-based algorithms
such as VIME. This pseudo-count quantity is related to (or, better, constrained by) the
improvement in prediction of a CTS and PixelCNN density model over the state space
respectively, and used within a Model-Based Interval Estimation with Exploration Bonuses
(MBIE-EB) setting (Strehl & Littman, 2008) that adjusts the exploration level in proportion
to information gain. This method helps exploration by generalizing visit count over states.
Originally, the authors implement A3C for use within CTS-based pseudocounts exploration
framework, and DQN for PixelCNN-based pseudocounts. It is noteworthy that all three
methods perform descently on the Atari game Montezuma’s Revenge, showing interesting
exploratory skills, where most state-of-the-art Deep RL methods do not achieve a score
higher than zero.

Similarly, in hash-based counts (Tang et al., 2017), the authors propose hashing the
state space into a bit-string of a predefined constant length, with hash collisions represent-
ing state revisits and/or similar states, then encouraging exploration in states indicated as
novel. While the authors use locality sensitive hashing (LSH) (Bloom, 1970), and more
specifically, SimHash (Charikar, 2002) for generating hash codes, they also suggest that us-
ing an autoencoder to learn the hash codes improves the method’s accuracy. Originally, the

1436

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

conducted experiments indicate significant performance on challenging continuous control
tasks and Atari games, using TRPO as the core algorithm.

A similar concept to count-based exploration methods that produce density models is
proposed in the EX2 algorithm (Fu et al., 2017), the core of which is based in exemplar
models (Malisiewicz et al., 2011). In EX2, a single amortized model is trained to use an
exemplar model as input (i.e. multiple classifiers trained to distinguish novel states from
old states) and produce state densities, only to perform novelty-based exploration using
the output from the exemplar models as exploration bonuses. As in most previous cases
in exploration frameworks, the authors originally use TRPO for measuring performance.
EX2 appears to be slightly better than other state-of-the-art methods, but a wider range
of experiments and comparisons should be performed in order to reach more accurate con-
clusions.

Random Network Distillation (RND) (Burda et al., 2019) approaches this matter slightly
differently, since it uses a fixed and randomly initialized target neural network that feeds on
raw pixel input and generates, to train a predictor neural network on the agent’s collected
data by minimizing the expected Mean Square Error (MSE) between them, only to use
this prediction error as an intrinsic, exploration reward, similar to an exploration bonus.
By intuition, this distillation process gives the predictor network the ability to distinguish
novel states, since in these less familiar cases the error is presumed to be higher, urging
the agent to explore them until the error decreases (i.e. these states have been explored
and are not new anymore). The efficiency of this method is backed empirically by the
results of the authors’ conducted experiments, with PPO used as the core RL algorithm
for the framework. These experiments included hard-exploration Atari games, in which the
model resulted in high performance, and the highest score that we managed to record, in
Montezuma’s Revenge.

A unique method for efficient exploration is Deep Exploration via Randomized Value
Functions (Osband et al., 2019). Deep exploration refers to the ability of an agent to know
how an action will lead to improved and more efficient information gain in the future, and
not just in the subsequent timestep. A detailed theoretical background on this method is
given, but the basic concept is that sampling is performed from a proxy of the posterior
distribution over value functions, and actions performed must be greedy under this ran-
domly drawn value function, which can be viewed as an extension of Thompson sampling.
The Randomized Least-Squares Value Iteration (RLSVI) (Wen, 2014) class of algorithms is
used for applying Deep Exploration and evaluating exploration efficiency in a set of prob-
lems, and a comparison with the exploration capabilities of DQN in a modified version
the Cartpole environment is also performed. The results indicate the superiority of Deep
Exploration via Randomized Value Functions over DQN with regard to exploration, since
DQN only managed to receive a reward of 0, while the proposed method learned to solve
the task relatively easy. This also shows the algorithm’s potential if combined with Deep
RL algorithms.

4.3 Unsupervised Frameworks

In RL problems where extrinsic rewards are nonexistent, it is up to the agent to craft an
intrinsic reward function herself in order to cope with the task at hand. Problems of this

1437

Lazaridis, Fachantidis, & Vlahavas

kind can be viewed as a subset of problems related to environments with sparse rewards,
and even though the exploration methods described previously could be tuned for zeroing
extrinsic rewards, approaches driven specifically by the lack of this information are geared
towards learning multiple high-level skills (called options) within an environment, a process
known as option discovery (Bacon et al., 2017; Precup, 2000; Sutton et al., 1999), rather
than maximizing an objective function that corresponds to a single skill.

In this context, one can note many similarities between methodologies that tackle hi-
erarchical RL as well. Against this background, notable examples of unsupervised RL
algorithms are Variational Intrinsic Control (VIC) (Gregor et al., 2017) and Diversity Is All
You Need (DIAYN) (Eysenbach et al., 2019), both of which employ information-theoretic
approaches. VIC is based on the measure of empowerment (Klyubin et al., 2005; Salge et al.,
2014) (originally used in conjunction with the Q-learning algorithm), which maximizes the
mutual information between actions and future states, while DIAYN maximizes the mutual
information between states and skills. This difference in DIAYN, as the authors state, can
be interpreted as “maximizing the empowerment of a hierarchical agent whose action space
is the set of skills”. At the same time, DIAYN (which is originally implemented with SAC
as its core RL algorithm) minimizes mutual information between actions and skills, which
guarantees that learned skills are the result of states and not actions.

A key difference between VIC and DIAYN is that the latter avoids learning the prior
distribution over skills. The authors argue that this process causes a crash in the number
of skills sampled and consequently trained, which springs from what is generally referred to
as the Matthew Effect (Merton, 1968).

Variational Autoencoding Learning of Options by Reinforcement (VALOR) (Achiam
et al., 2018) is, in essence, a generalization of the previous two methods that encodes
whole trajectories regularly instead, using an extension of VAE, namely β-VAE (Higgins
et al., 2017). This generalization of VIC and DIAYN allows VALOR to be considered as an
overall top choice among the three for unsupervised RL problems (excluding implementation
details). For VALOR, the authors originally used VPG as the core RL algorithm for the
benchmark tests.

4.4 Hierarchical Frameworks

Hierarchical RL could be described as an even more specific case of unsupervised RL, in
which the exploration process within an environment with no rewards (although sparse
rewards is also a setting suitable for hierarchical RL), is performed by generating intrinsic
sub-goals and behaviors that solve them. The purpose of the methodologies within this
category is to primarily guide the agent into learning skills that could prove to be useful for
multiple tasks in the current environment (accounting for the possible lack of supervised
rewards) as well as create a set of skills that can generalize to other environments.

h-DQN (Kulkarni et al., 2016) is a basic method with a relatively simple hierarchical
structure that develops temporal abstractions through the use of a meta-controller (orig-
inally, DQN is used for the original implementation of the algorithm). FeUdal Networks
(FuNs) (Vezhnevets et al., 2017) is a framework with a similar architecture as h-DQN but
with noteworthy differences, and is inspired by Feudal Reinforcement Learning (Dayan &
Hinton, 1992).

1438

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

This system consists of two modules: a manager, who learns to set abstract goals from
a lower temporal resolution in a latent state-space (which is also learned by the manager
herself), without holding any information on how they can be achieved, and a worker, who
learns to satisfy these goals in a higher temporal resolution. While the manager is rewarded
by the environment, the worker is rewarded by the manager instead, through the use of
an intrinsic reward function that is in essence a direction in the state-space. Originally,
the authors implemented A3C as the reinforcement learning routine. Even though both
h-DQN and FuNs try to learn particular skills within an environment and solve sub-goals,
h-DQN requires only about 4 million steps in order to get consistently high rewards (i.e.
400 points) in Montezuma’s Revenge, in contrast to FuNs, which need about 300 million
steps to reach the same performance level.

Strategic Attentive Writer (STRAW) (Vezhnevets et al., 2016), on the other hand,
generates macro-actions (McGovern et al., 1997) which are based on the agent’s generated
internal plans. STRAW also consists of two modules; one for following the current plan,
and one for setting its termination conditions and updating it once stopped, using attentive
writing technique (Gregor et al., 2015). With the implementation of A3C in its core, apart
from achieving non-trivial performance on various Atari environments (but at the expense
of hundreds of millions of frames), the authors show that STRAW can also be used for
sequence prediction in general.

Universal Value Function Approximators (UVFA) (Schaul et al., 2015a) are also a pri-
mary method for hierarchical RL, which expands the notion of value functions to being
dependent on goals as well, instead of relying solely on states. The original UVFA algo-
rithm uses Q-Learning to perform updates.

A relatively unique algorithm is Hierarchical Reinforcement Learning with Off-policy
Correction (HIRO) (Nachum et al., 2018), in that it uses raw observations instead of pro-
cessed signals in order to aid generalization issues, and, more importantly, has an off-policy
nature supported by a correction method for stabilizing communication between high-level
controllers (guided by new policies), and low-level controllers (which generate data regarded
as “old” when received by the higher-level modules). HIRO was originally implemented with
DDPG as the core reinforcement learning method, and managed to outperform baseline
models such as FuNs and VIME on MuJoCo tasks in a significantly more sample-efficient
manner, requiring only about 10 million agent-environment interactions to achieve good
performance.

In contrast to HIRO, the off-policy algorithm Hierarchical Actor-Critic (HAC) (Levy
et al., 2019) uses a parallel training between all levels within the hierarchical architecture of
the system, in a bidirectional fashion (all policies are trained concurrently), for speeding up
the learning process. HAC allows the user to define a maximum number of steps (defined
manually by the user) for achieving sub-goals, and applies Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017) in each hierarchy level for learning from missed sub-goals.
While this agent achieves decent performance on the environments tested by the authors
when attached to the DDPG algorithm, notable comparison studies against a variety of
baseline methods are not shown (apart from a comparison with HIRO, but with no explicit
information regarding sample efficiency); even the resulting performance of the model with
more than 4 levels of hierarchy is not presented either.

1439

Lazaridis, Fachantidis, & Vlahavas

In Meta Learning Shared Hierarchies (MLSH) (Frans et al., 2018), the authors apply
a meta-learning process in order to optimize several sub-policies in parallel, for various
different but sequential tasks sampled from a distribution. The results provided originally
are generally acceptable for a state-of-the-art algorithm (originally using PPO as its core
RL algorithm) and appear to have small variance over many iterations, however it requires
a decent amount of hyperparameter fine-tuning in order to achieve better performance than
other algorithms. Nevertheless, this hierarchical type of learning succeeds in tasks where
exploration over the space of actions is futile but exploring sub-policies is effective.

4.5 Generalization Frameworks

Generalization refers to the ability of an agent to function efficiently in new, unseen tasks
and environments. There are various approaches for achieving this goal, e.g. through
transfer knowledge or multitasking, which are two very similar concepts in RL. Fitting a
single agent to multiple environments that share only a few properties in terms of structure
(that is dynamics, action/state space or rewards) poses a challenge in that, even though
an agent can be trained with a standard state-of-the-art Deep RL algorithm on a set of
different environments with success, it is not able to generalize well after training on only
one environment and adapt quickly to the rest.

Various frameworks have been developed for addressing the issue of task generalization.
Hessel et al. (2019b) analyze various components that produce inductive bias within Deep
RL algorithms. PopArt (Hessel et al., 2019a; Van Hasselt et al., 2016a) opposes the problem
of one of these components (magnitudes of returns across different domains) and achieves
impressive results under the aforementioned conditions, by creating an agent that performs
scale-invariant updates, extended to the multitask setting. Only a single instance of an agent
(the original version of which is implemented with the IMPALA extension for distributional
RL), is to be trained consequently on a series of environments, and, as the authors’ results
indicate (and is also seen in Table 1 of the Appendix), it learns most Atari games, achieving
a human-normalized median of 110%. Even though it does not absolutely outperform all
other state-of-the-art algorithms, it has remarkable performance with the same amount of
training frames as if it were independent agents trained individually on the different games.

A relatively different approach is proposed by Hausman et al. (2018), where the agent
learns and executes different skills through a learned latent space, by using a variational
bound on entropy-regularized RL, originally developed with an off-policy structure similar
to DQN, but with additional tweaks such as incorporating a variant of Retrace algorithm
and applying the reparametrization trick (Kingma & Welling, 2013; Rezende et al., 2014).
The model was evaluated on a set of continuous control tasks and learned to solve them
effectively in a sequential manner, however the baseline models used for comparison purposes
do not include other similar state-of-the-art methods.

Cabi et al. (2017) propose the use of the Intentional Unintentional (IU) Agent, who
leverages information gained by automatically-generated reward functions and trains off-
policy multiple unintentional (submain) policies and a single (main) intentional policy. Even
though the authors claim that the results support their intuitions that this learning process
is effective, highly-custom environments are used for their experiments, something that does
not allow much space for confidence that this method can be used to other, more complex

1440

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

environments as well (e.g. environments with objects that do not have clear relational
properties which the agent could easily exploit “subconsciously”).

Probably one of the most eminent works for transfer learning in Deep RL, and deep
learning in general, is PathNet (Fernando et al., 2017), which is based on the work by
Fernando et al. (2011). The authors of PathNet propose using a meta-learning approach
in order to speed up learning of new tasks, after learning a single task. The process could
be described as “neural pathway evolution and optimization”, since neural pathways are
chosen as the result of an evolutionary method, while at the same time a learning process
takes place in order to train the chosen paths (originally, the A3C algorithm was used).
Moreover, after the optimal pathway has been found, its weights and biases can be held
fixed, in order to be used at a different task, meaning that the pathway is kept frozen but the
value function and policy are still being trained. This characteristic, inspired by Progressive
Neural Networks (Rusu et al., 2016), serves as a way of avoiding catastrophic forgetting
(French, 1994; Kirkpatrick et al., 2017; Ratcliff, 1990) when the new task is introduced.

Published experiments using PathNet are highly satisfactory, since they show empirically
that performance is better with the proposed transfer learning methodology, compared to
training on the different tasks de novo (even when they are fine-tuned). However, there is
still space for expansion in PathNet, e.g. analyzing the network’s memory capacity when a
longer chain of tasks is to be learned (as in the work by Rusu et al., 2016), or testing for
sample efficiency the evolutionary strategy used and exploring other variants.

5. Comparative Results

In this section, we present performance figures of the aforementioned algorithms, where
applicable, as extracted from the original experiments conducted by the corresponding au-
thors. These results are indicative of each algorithm’s abilities, due to the fact that, at that
point, they were all carefully fine-tuned so as to present considerable results. Even though
this means that these methods can behave quite differently in new scenarios (and quite
possibly worse than expected), one should also consider that the reported performances
are indeed achievable, especially in the cases where extensive experimentation has been
performed.

Unfortunately, comparing the original results under the same common framework is not
an easy task, since not all results are produced from the same testing environments or under
the same conditions. Although comparative figures for said methods are provided in this
work, it cannot be guaranteed that they are absolute for a new working environment, or
that they correspond to a highly accurate comparative analysis of the algorithms. However,
they can certainly be seen as an indication of the agents’ performance in various scenarios.

The lack of comparable experimental trajectories in Deep RL is evident in various cases,
even though several quality tools exist for this reason (e.g. ALE). Even though it is true
that computational costs can be a barrier for complete experimentation of all different
environments included within a standardized experimental framework such as ALE, it is of
utmost significance that a state-of-the-art algorithm has a strong baseline to be evaluated
against, as also pointed to in (Toromanoff et al., 2019). In any other case, an algorithm’s
theoretical guarantees are the only properties it can display as a performance indicator,
although in many cases these do not present valuable performance information.

1441

Lazaridis, Fachantidis, & Vlahavas

That being said, we present the performance figures produced from data given origi-
nally for each state-of-the-art Deep RL algorithm. We distinguish two basic frameworks
commonly used for the evaluation procedures: ALE and MuJoCo. Consequently, model-
free, model-based and modular algorithms are compared in both of these frameworks, when
applicable. It should be noted, however, that other frameworks are quite popular among the
Deep RL community as well (e.g. DeepMind Control Suite proposed by Tassa et al., 2018,
and ROBEL, proposed by Ahn et al., 2019), but the multitude of reported performance
results come from ALE and MuJoCo, allowing for a wider comparison.

In several cases, the preferred performance tables were missing, so other sources for
equivalent and accurate data were used when possible. For the purposes of this work, using
data from sources other than the original was a legitimate choice, since they do provide an
insight of an algorithm’s performance. The data source for each experiment is cited next
to its performance indication.

In the following subsections, we outline the comparison procedure and extracted insights
from Atari and MuJoCo benchmarks respectively, for each of the main three families of Deep
RL algorithms described throughout this work.

5.1 Atari Benchmarks

ALE has been widely used for benchmarking Deep RL algorithms that support discrete
action spaces, allowing for a practical comparison between them. Due to the fact that
reported results may have differences related to implementation details, such as the number
of frames that an agent was trained for, or the number of runs that produced the average
score, an effort is made in order to present these details in a visually appealing yet accurate
manner.

First, we present charts for human-normalized performance (Mnih et al., 2015) in Atari
games of model-free algorithms, model-based algorithms, and modular algorithms. Table 1
and Table 2 include raw scores of all algorithms for each Atari game. Human and Random
scores are presented in Table 4.

Model-free algorithms comparison. The family of model-free algorithms have been
widely tested in ALE environments, due to the algorithms’ compatibility with the envi-
ronments’ discrete action spaces. In Figure 1 and Figure 2 of the Appendix, performance
in each of these environments is presented in a collateral manner. Performance represents
average maximum score that an agent achieves after several million steps, and, in some
cases, for different seeds. The reported number of steps/frames for each algorithm is not
the same, though it is referenced where applicable. Although this difference could be critical
for comparison purposes in some cases, it is only indicative when an algorithm with fewer
steps has achieved higher performance than an algorithm that was run for more frames.
Figure 5 and Figure 4b of the Appendix represent treemap visualization of the number of
wins for each algorithm in the Atari games.

Additionally, in most cases, both the no-op (Mnih et al., 2015) and human starts (Nair
et al., 2015) regimes are used for the ALE experiments. Therefore, a performance figure is
provided for each experimentation methodology.

Model-based algorithms comparison. The lack of performance data of state-of-
the-art model-based algorithms on the ALE platform is evident, and this is a clear obstacle

1442

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

in comparing agent performance within this category. From the set of aforementioned
algorithms that belong to this category, to the authors’ knowledge, the only available source
of data is in the paper of Kaiser et al. (2019). In this work, we provide scores for SimPLe
in the Atari games, but comparison tables against other algorithms are not given. For this
reason, the performance of this algorithm shall be included only within the table of final
results (Table 2).

Modular algorithms comparison. Although performance data is available for many
of the algorithms presented in the corresponding category within this work, a disclaimer
is necessary for the trustworthiness level of their direct comparison based on just maximal
average scores reported in published works. Each method’s unique characteristics aim at
improving a different aspect of a core Deep RL algorithm, which is not shown on these
performance figures (e.g. wall-clock time vs. total number of frames for a distributed
module, or sample efficiency vs. total score for an exploration module). This kind of
complete and highly accurate comparison would be possible if raw performance data was
given for each algorithm, so that deeper insights about the capabilities of each algorithm
were obtained.

Additionally, these module implementations are based on different core RL algorithms,
which is another critical challenge for the purposes of this work. However, even though
a superficial comparison of scores is the only means of gaining any sort of information
regarding the power, efficiency, adequacy and aptitude of an algorithm currently, it is a
first direction towards building a concrete and precise mindset for the strong evaluation of
a Deep RL agent and its performance against state-of-the-art baselines.

The performance chart for each algorithm is given in Figure 3, while the treemap vi-
sualization representing the number of wins for each algorithm is given in Figure 5 of the
Appendix. The no-op starts regime is used for most algorithms in this category, since only
the authors of Ape-X (DQN) and Gorila (DQN) report performance scores for human-starts.
Therefore, scores of these algorithms for this case are presented only in Table 1 and Table 2.

5.2 MuJoCo Benchmarks

The MuJoCo physics simulation platform is commonly used for training and evaluating
an agent’s performance on various continuous control tasks. The platform’s support for
continuous action and state spaces is the main reason why authors use it for testing Pol-
icy Gradient methods. As in Section 5.1, we present performance charts for comparison
between model-free, model-based, and modular algorithms in various MuJoCo tasks. Raw
performance scores for all algorithms altogether are given in Table 3.

Model-free algorithms comparison. Even though the number of common testbeds
that the authors prefer to use in MuJoCo is not as large as in ALE, the current set of
comparative data (presented in Figure 6 and Figure 8a) is enough to provide non-trivial
conclusion regarding algorithm performance. However, it should be noted that available
sources of data for state-of-the-art algorithm performance in these tasks are limited, and
usually not practical for comparison purposes (e.g. visual graphs are provided instead
of raw/numerical data, or testing occurs on a modified task (environment) that prohibits
anyone from using any provided results for comparing with performance of other algorithms
trained on the original task).

1443

Lazaridis, Fachantidis, & Vlahavas

Model-free algorithms based on DQN are not present in these results, since their support
of discrete action/state spaces poses a limitation to their evaluation in MuJoCo’s continuous
control tasks. Policy Gradient methods, on the other hand, tend to achieve remarkable
results, as it can be seen in Figure 6 of the Appendix.

Model-based algorithms comparison. It is reasonable for model-based algorithms
to be evaluated on environments with different properties, in order to challenge the capa-
bilities of an algorithm that attempts to learn the underlying dynamics. Therefore, various
works introduce unique or less common environments for their experimentation purposes,
creating a comparison gap. As in ALE, performance data for MuJoCo tasks of model-based
algorithms are also hard to obtain; however, a few data sources available gave us the chance
to provide performance results for a variety of algorithms, which are given in Figure 7 and
Figure 8b of the Appendix.

Modular algorithms comparison. Evaluation of modular Deep RL algorithms in
MuJoCo tasks appear to be relatively uncommon, in contrast to the environments of Atari
Games. What makes things worse is the difficulty of obtaining reported performance data,
as in previous cases, proving a comparison study to be highly difficult. For these reasons,
no data for the MuJoCo simulation platform for modular Deep RL algorithms is provided
in this work.

6. Discussion

Having presented the technical part of the algorithms, it is necessary to provide in a con-
servative, yet concrete manner a few indications regarding the future directions of Deep
RL, simultaneously addressing the most important roadblocks of the area. This can be
thought of an opinion-based projection of Deep RL into the future, by the authors, which
can allow the readers of this review to further comprehend the limitations and potential of
the different kinds of the aforementioned methods.

6.1 Methodologies Comparison, Limitations and Potential

Model-free algorithms grasp the essence of Deep RL by optimizing policy directly based
on gained experience, either with DQN-based methods or PG methods. PG methods have
the important advantage of supporting continuous action/state spaces, in contrast to DQN
methods, which are limited to discrete action/state spaces. In general, as it can be seen in
Figure 6 or Figure 8a, algorithms such as SAC, TD3 and DDPG have a clear advantage over
their simpler predecessors such as PPO and TRPO, constituting the best algorithm choices
for a continuous control problem. As for environments with discrete action spaces, it can be
observed in Figure 4 that DQN and variants have more wins in total than PG methods (in
both no-op and human-start regimes). However, the PG methods achieve slightly fewer wins
in the human-start regimes using only a fifth of the frames that DQN methods required.
Empirically, this can be roughly interpreted that PG methods are more sample-efficient than
DQN-based methods. Therefore, one could say that the most important asset of DQN-based
methods is their easier comprehension of architectures and functionalities, making them
suitable for early research stages or effective adaptation to different designs. PG methods,
even though are overall more sample-efficient and have support for more environments,
require a more advanced theoretical background in Deep RL in order for someone to be

1444

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

able to implement novel architectures based on existing ones. A subsequent effect of the
support for continuous spaces of PG algorithms is that they are also more suitable for
environments with large action and state spaces.

A different perspective is shown by the authors of model-based algorithms, in which the
algorithms use experience to learn environment dynamics first, and then using this infor-
mation, reach the solution of the given task. There are more differences between model-free
and model-based algorithms than similarities, with the increased complexity being on the
model-based category. This is mainly due to the lack of a core architecture for these algo-
rithms that an early-stage researcher could learn, use and expand. The different kinds of
characteristics and functionalities found in such methods make it difficult for researchers
to get involved with model-based algorithms in general, and instead focus on specific kinds
of methodologies. With that said, model-based algorithms have a very significant advan-
tage over model-free algorithms, which is their sample efficiency. With only a fraction of
experience of a model-free agent, a model-based agent can perform equally or better on the
same task. Sample efficiency is one of the main challenges in Deep RL, since an algorithm
with good performance but low sample efficiency is essentially forbidden for use in environ-
ments with high error costs, and also impractical in cases where training time overshadows
performance results. A quick comparison between model-free and model-based algorithms
in MuJoCo tasks (Figure 6 and Figure 7) shows the superiority of model-based algorithms
in terms of sample-efficiency, while maintaining descent performance which is comparable
to that of model-free methods. Subsequently, the category of model-based algorithms ap-
pears to be the most promising among the rest, indicating that a focus on this area, albeit
perplexing, is the most rewarding.

The unique architectures of each model-based method also poses a problem in using
modular algorithms that incorporates such methods, something that can set a direction for
further research. For this reason, model-free algorithms are more suitable for use with these
frameworks, which, in the end, may not always perform better in terms of performance,
but can acquire different abilities that are required for a specific problem (e.g. better
generalization). Developing a framework that targets specific weaknesses in a set algorithms
is one way to establish long-lasting practices in the future of Deep RL. Combinations of these
frameworks (e.g. a core algorithm with a distributed framework along with an exploration
module) are also possible and, to the authors’ knowledge, have not been tested yet, which
can also lead to novel research outcomes or application successes. It should be mentioned
that sample inefficiency is very clear when using these frameworks (Figure 3), making them
unsuitable for typical/standard use cases. Therefore, one has to be extremely thoughtful
before deciding to carry on with the use of such a framework.

Apart from key technical challenges mentioned in the previous sections (e.g. convergence
issues), this high-level comparison of the main methodologies highlighted some important
challenges regarding Deep RL, such as the support of continuous spaces, effective opti-
mization within large spaces, sample efficiency, effective exploration strategies, and even
consistency between promising methodologies that can be used to advance and generalize
algorithms in a more efficient way. Off-policy learning is also a topic of highly active re-
search interest in (Deep) RL, since it introduces the non-trivial issue of having two different
distributions during learning; one produced by the policy which generates data from the
interaction with the environment (also called behavior policy), and one which corresponds

1445

Lazaridis, Fachantidis, & Vlahavas

to the policy that we aim to improve (also called target policy). The difference between
these two distributions can have a significant impact on model performance, since the tar-
get policy is updated using past experience gathered by the behavior policy (e.g. gradient
computation in Policy Gradient methods), instead of fresh, observed data that are available
in the behavior policy. This gap can lead to biased estimates, therefore correction measures
emerged to tackle these issues (Chen et al., 2019).

The aforementioned challenges are key to introducing new concepts and breakthroughs
in Deep RL that can further push the current standards to higher levels. However, there
are also topics of interest which are not covered explicitly throughout this review due to its
current structure, which prohibits their in-depth analysis. For the sake of completeness, we
will briefly introduce some important notions in Deep RL.

6.2 Multi-agent Deep RL

Multi-Agent Deep RL is the extension of Multi-Agent RL (MARL) to use Deep RL methods.
In a MARL setup, multiple agents exist within the same environment and either collaborate
to solve the required task (cooperative agents) (OroojlooyJadid & Hajinezhad, 2019) or
compete against each other in order for the best agent to reach the solution (competitive
agents) (Zhang et al., 2019). The aforementioned algorithms throughout this review can be
adjusted to work in such setup with slight modifications. In particular, in a collaborative
environment the agents would have to learn to work together in order to optimize a joint
policy and not their own independent policies, while in a cooperative environment the
agents work against each other, improving their own policies in the process, until the best
agent is found. Additionally, there is the case where the MARL setup is a mixture of the
collaborative and competitive cases.

The foundations of MARL in an RL setting was first proposed in (Littman, 1994),
formulated as a Markov games framework. Many works appeared afterwards (for example,
the works by Littman, 2001 and Hu and Wellman, 2003, as well as by Lauer and Riedmiller,
2000), while advances in Deep RL allowed MARL to expand as well (Foerster et al., 2016;
Gupta et al., 2017; Lowe et al., 2017; Foerster et al., 2017). However, key challenges in this
field, such as information sharing between agents and the exponential increase of the joint
action space between agents, still remain, but ongoing research attempts to understand and
tackle these problems in interesting ways. For example, Jaques et al. (2019) propose a model
closely related to the Theory of Mind (Rabinowitz et al., 2018; Premack & Woodruff, 1978),
in which the agents are rewarded more when performing actions which strongly influence
other agents’ decisions, for the purposes of increasing their collaborative skills. However,
the most prominent difficulty lying in dealing with the non-stationarity of the environment
created by the participating agents due to their concurrent interactions between each other
and the environment.

6.3 Adversarial Deep RL

An interesting concept in Deep RL is Adversarial RL, which emerges from the field of
Multi-Agent RL. In Adversarial RL, the purpose is to train an agent to become robust
to adversarial attacks, i.e. changes in environment dynamics caused by an adversary (i.e.
opponent) that specifically aim to suppress the success of the primary agent (Goodfellow

1446

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

et al., 2017; Uther & Veloso, 1997; Szegedy et al., 2014). Adversarial attacks have received
elevated popularity recently, due to their ability to identify vulnerabilities and invalidate
Deep Learning systems (Su et al., 2019), as well as for the purpose of increasing model
performance and generalization abilities (Pinto et al., 2017).

Typically, adversarial problems in Machine Learning are closely related to minimax
optimization problems (Myerson, 2013), where the objective is to find a Nash equilibrium
in two-player zero-sum games (Von Neumann & Morgenstern, 2007). Such problems were
also adapted for use under the MARL framework (Littman, 1994; Omidshafiei et al., 2017).
The necessity for robustness in RL agents allowed various works to highlight the strength
of Adversarial RL, since there have been various examples where state-of-the-art Deep RL
systems such as DQN, TRPO, A3C performed poorly when adversaries where present in
the environment (Huang et al., 2017; Behzadan & Munir, 2017). It is noteworthy that the
opponents in such adversarial settings do not need to be better than the primary agent;
an adversary can even have a seemingly random and uncoordinated behavior but still win
against a state-of-the-art agent (Gleave et al., 2020).

7. Conclusions and Future Work

In this work, we presented a spherical overview of Deep RL and state-of-the-art algorithms
that set the record in various platforms and environments, such as the Atari Learning
Environment and MuJoCo simulation platform. We performed a clear and novel dissection
of these models, giving insights and proposing new Deep RL implementations (e.g. core
Deep RL algorithms combined with different host algorithms). Then, we proceeded with
an ample analysis of functionalities and properties of included algorithms, exposing their
common, as well as unique elements, subsequently giving insights regarding their suitability
for both research and development purposes. Finally, we concentrated reported results
from respective published works, in order to provide a general and comparative view of
their performance in the aforementioned platforms.

Since the field of Deep Reinforcement Learning is not a relatively small area and contin-
ues to grow rapidly, there is space in this state-of-the-art walkthrough for several additions
that are left for future work, such as the inclusion of more state-of-the-art algorithms (e.g.
from other subcategories, such as evolutionary strategies, as proposed by Salimans et al.,
2017), a more complete performance comparison, possibly with the authors’ involvement
in producing missing results, as well as more kinds of comparison tables (more benchmark
environments or wall-clock times, for example).

Given the super-human performance on the aforementioned environments, and more
specifically, video games, one cannot overlook the onset of an era where competitiveness in
gaming shifts from being human-controlled to bot-controlled, a direct consequence of which,
for example, is Go champion Lee Se-dol quitting the game (BBC News, 2019). What follows,
reasonably of course, is the rise of new challenges in Deep RL and AI in general, which aim at
building new foundations and protocols for AI, taking the corresponding countermeasures,
and/or fusing the realm of AI with our own reality (Gaina et al., 2019).

1447

Lazaridis, Fachantidis, & Vlahavas

Appendix A. ALE Performance

DQ
N

DD
QN

Du
elin
g D
QN

Pri
ori
tize
d

Du
elin
g D
QN

No
isy
-DQ
N

Dis
trib
uti
on
al

DQ
N (

C51
)

Rain
bo

w
ACKT

R
TR

PO A2C

Pitfall
Montezuma's Revenge

Private Eye
Gravitar
Bowling
Solaris

Asteroids
Centipede

Ms. Pacman
Ice Hockey

Freeway
Pong

Surround
Venture
Berzerk

Skiing
Alien

Battle Zone
Beam Rider

H.E.R.O.
Tutankham
Bank Heist

Frostbite
Name This Game

Kung-Fu Master
Yar's Revenge

Chopper Command
Zaxxon
Q*Bert

Fishering Derby
Amidar
Tennis

Defender
River Raid
Enduro

Wizard of Wor
Kangaroo
Seaquest
Robotank

Crazy Climber
James Bond

Boxing
Road Runner
Double Dunk

Krull
Time Pilot

Space Invaders
Star Gunner

Phoenix
Breakout
Assault

Up and Down
Gopher
Asterix

Demon Attack
Atlantis

Video Pinball

*=40M †=50M ‡=200M (frames)
DQN† (Mnih et al. 2015)
DDQN‡ (Van Hasselt et al. 2016b)
Dueling DQN‡ (Wang et al. 2016b)
Pr. Dueling DQN‡ (Wang et al. 2016b)

Noisy-DQN (Fortunato et al. 2017)
C51† (Bellemare et al. 2017)
Rainbow‡ (Hessel et al. 2018)

ACKTR‡ (Wu et al. 2017)
TRPO‡ (Wu et al. 2017)
A2C‡ (Wu et al. 2017)

0
(Random)

100
(Human)

500

≥1000

Hu
m

a5
-r-

la
t1v

-
p-

rfo
rm

a5
c-

 (%
)

Human-normalized scores (no-op)

Figure 1: Heatmap visualization of performance comparison between state-of-the-art model-
free algorithms in Atari games trained using the no-op regime, with respect to human
performance taken from the work of Mnih et al. (2015). Scores are extracted from their
original sources, where applicable. The number of frames each algorithm was run for is
referenced as well, where applicable.

1448

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

DQ
N

DD
QN

Du
elin

g D
QN

Pri
ori
tize

d

Du
elin

g D
QN

No
isy

-DQN

Distr
ibu

tio
na

l

DQN (C
51

)
Rain

bo
w

A2
C

A3
C

PP
O

AC
ER

Montezuma's Revenge
Pitfall

Private Eye
Solaris

Asteroids
Ms. Pacman

Gravitar
Bowling
Venture
Amidar

Centipede
Seaquest

Alien
Berzerk
Frostbite

Ice Hockey
Surround

Pong
River Raid

Chopper Command
Freeway
Skiing

Fishering Derby
Battle Zone

Q*Bert
Kung-Fu Master

Yar's Revenge
H.E.R.O.

Bank Heist
Tutankham

Name This Game
James Bond
Beam Rider

Enduro
Zaxxon
Tennis

Kangaroo
Wizard of Wor
Crazy Climber

Krull
Boxing

Robotank
Double Dunk

Time Pilot
Road Runner
Up and Down

Space Invaders
Star Gunner

Phoenix
Breakout
Assault

Demon Attack
Defender
Gopher
Asterix

Video Pinball
Atlantis

* =40M ‡=200M (frames)
DQN‡ (Nair et al. 2015)
DDQN‡ (Van Hasselt et al. 2016b)
Dueling DQN‡ (Wang et al. 2016b)
Pr. Dueling DQN‡ (Wang et al. 2016b)

Noisy-DQN‡ (Hessel et al. 2018)
C51‡ (Hessel et al. 2018)
Rainbow‡ (Hessel et al. 2018)
A2C * (Schulman et al. 2017)

A3C‡ (Mnih et al. 2016)
PPO * (Schulman et al. 2017)
ACER * (Schulman et al. 2017)

0
(Random)

100
(Human)

500

≥1000

Hu
5

an
-re

la
tiv

e
pe

rfo
r5

an
ce

 (%
)

Hu5an-nor5alize- scores (1u5an-starts)

Figure 2: Heatmap visualization of performance comparison between state-of-the-art model-
free algorithms in Atari games trained using the human-starts regime, with respect to human
performance taken from the work of Van Hasselt et al. (2016b). Scores are extracted from
their original sources, where applicable. The number of frames each algorithm was run for
is referenced as well, where applicable.

1449

Lazaridis, Fachantidis, & Vlahavas

Ap
e-X

(DQ
N)

IMP
AL
A
Go
rila

(DQ
N) A3

C+

(A3
C)

CT
S-P
ixe
lCN
N

(DQ
N)CT

S-D
QN

(DQ
N)

Ha
sh-
ba
sed

Co
un
ts

(TR
PO
) E
X2

(TR
PO
) RN

D
(PP
O)
ST
RA
W

(A3
C)
ST
RA
We

(A3
C) Po

pA
rt

(DD
QN
)

Pitfall
Private Eye

Solaris
Bowling

Surround
Freeway
Gravitar

Pong
H.E.R.O.

Skiing
Venture

Kangaroo
Ms. Pacman

Montezuma's Revenge
Tutankham

Frostbite
Bank Heist

Enduro
Fishering Derby

Battle Zone
Yar's Revenge

Tennis
Asteroids

Ice Hockey
Beam Rider
River Raid

Name This Game
Kung-Fu Master

Zaxxon
Centipede

Amidar
Alien

Robotank
Boxing

Seaquest
Krull

Wizard of Wor
Crazy Climber
Double Dunk

Berzerk
Defender

Q*Bert
Breakout

Road Runner
Phoenix

Space Invaders
Up and Down

Asterix
Star Gunner

Assault
Time Pilot

Gopher
Demon Attack

James Bond
Chopper Command

Atlantis
Video Pinball

♣=150M †=200M ‡=800M ×=1B ⊗=~1.6B ★=~2B (2=a81s)
Ap1-X (DQN)× (Horgan et al. 2018)
IMPALAI (Esp1holt 1t al. 2018)
Gorila (DQ)⊗ (air 1t al. 2015)
A3C+ (A3C)† (Bellemare et al. 2016)
CTS-PixelCNN (DQ)♣ (Ostrovski et al. 2017)
CTS-DQN (DQ)♣ (Ostrovski et al. 2017)

Hash-based Counts (TRPO)† (Tang et al. 2017)
EX2 (TRPO)† (Fu 1t a7. 2017)
R D (PPO)★ (Bur0a 1t a7. 2019)
STRA) (A3C)★ ((1Eh91A1ts 1t a7. 2016)
STRA)1 (A3C)★ ((1Eh91A1ts 1t a7. 2016)
PopArt (DDQ)† ((a9 Hasselt et al. 2016a)

0
(Ran0om)

100
(Human)

500

≥1000

Hu
m
an

-re
la

tiv
e

pe
rfo

rm
an

ce
 (%

)

Human-normalized scores (no-op)

Figure 3: Heatmap visualization of performance comparison between state-of-the-art deep
RL algorithms equipped with module frameworks with no-op starts, with respect to human
performance taken from the work of Mnih et al. (2015). Scores are extracted from their
original sources, where applicable. The number of frames each algorithm was run for is
referenced as well, where applicable.

1450

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

DQN
(2/57)

DDQN
(1/57)

Dueling DQN
(7/57)

Prioritized
Dueling DQN

(4/57)

Distributional DQN (C51)
(13/57)

Rainbow
(21/57)

ACKTR
(9/57)

(a)

DQN
(2/57)

DDQN
(1/57)

Dueling DQN
(4/57)

Prioritized
Dueling DQN

(6/57)

Noisy-DQN
(2/57)

Distributional DQN (C51)
(4/57)

Rainbow
(11/57)

A2C
(1/57)

A3C
(14/57)

PPO
(5/57)

ACER
(7/57)

(b)

Figure 4: TreeMap visualization representing the number of wins for each model-free algo-
rithm on the ALE platform for the no-op (a) and human-start (b) regimes.

Ape-X
(DQN)
(39/57)

IMPALA
(5/57)

Gorila
(DQN)
(2/57)

A3C+
(A3C)
(2/57)

CTS-PixelCNN
(DQN)
(2/57)

RND
(PPO)
(3/57)

STRAWe
(A3C)
(1/57)

PopArt
(DDQN)
(3/57)

Figure 5: TreeMap visualization representing the number of wins for each modular algorithm
on the ALE platform for the no-op regime.

1451

Lazaridis, Fachantidis, & Vlahavas

Appendix B. MuJoCo Performance

DD
PG

*
DD

PG
(T
un
ed
)*

TD
3
*

PP
O

*
TR

PO
*

AC
KT
R

*
SA

C
*

SA
C

(*
od
ifi
ed
)

−100

−50

0

Sc
or
e

Reacher

DD
PG

*
DD

PG
(T
un

ed
)*

TD
3

*

PP
O

*
TR

PO
*

AC
KT

R
*

SA
C

*
SA

C
(m

od
ifi
ed
)

0

500

1000

Sc
or
e

InvPendulum

DD
PG

*
DD

PG
(T
un
ed
)*

TD
3
*

PP
O

*
TR

PO
*

AC
KT
R

*
SA

C
*

SA
C

(m
od
ifi
ed
)†

0

1000

2000

3000

Sc
or
e

Hopper
DD

PG
*

DD
PG

(T
un

ed
)*

TD
3
*

PP
O

*
TR

PO
*

AC
KT

R
*

SA
C

*
SA

C
(m

od
ifi
ed
)‡

0

2000

4000

Sc
or
e

An0
DD

PG
*

DD
PG

(T
un
ed
)*

TD
3
*

PP
O

*
TR
PO

*
AC

KT
R

*
SA

C
*

SA
C

(*
od
ifi
ed
)4

0

2000

4000

Sc
or
e

Wa)(er2d

DD
PG

*
DD

PG
(T
un
ed
)*

TD
3
*

PP
O

*
TR
PO

*
AC

KT
R

*
SA

C
*

SA
C

(*
od
ifi
ed
)

0

5000

Sc
or
e

In2Doub)ePendu)u*

DD
PG

*
DD

PG
(T
un
ed
)*

TD
3
*

PP
O

*
TR
PO

*
AC

KT
R

*
SA

C
*

SA
C

(*
od
ifi
ed
)⊙

0

5000

10000

Sc
or

e

HalfCheetah

Steps: †=120k ‡=300k ⊙ =400k * =1M
(Janner et al. 2019)
(Fujimoto et al. 2018)
Data not available

Figure 6: Performance of model-free (Policy Gradient) algorithms on various MuJoCo tasks.
Data source and number of steps for each algorithm and task is referenced.

1452

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

MB
MF

†

ΜB
-M
PO

‡

ME
-T
RP
O
‡

MB
PO

⊙

ST
EV
E
⊙

PE
TS

⊙

0

50

100

Sc
or
e

Swimmer

MB
MF

†

ΜB
-M
PO

‡

ME
-T
RP
O
‡

MB
PO

⊙

ST
EV

E
⊙

PE
TS

⊙

0

1000

2000

3000

Sc
or
e

Ho--er

MB
MF

†

ΜB
-M
PO

‡

ME
-T
RP

O
‡

MB
PO

⊙

ST
EV

E
⊙

PE
TS

⊙
0

2000

4000

Sc
or
e

Walker2d

MB
MF

4

ΜB
-M
PO

‡

ME
-T
RP

O
‡

MB
PO

⊙

ST
EV

E
⊙

PE
TS

⊙

0

2000

4000

Sc
or
e

An0

MB
MF

4

ΜB
-M
PO

‡

ME
-T
RP
O
‡

MB
PO

⊙

ST
EV
E
⊙

PE
TS

⊙

0

5000

10000

Sc
or
e

Half-Cheetah

Steps: †=1.2k ‡=2k ⊙ =236k
(Clavera et al. 2018)
(Janner et al. 2019)
Data not available

Figure 7: Performance of model-based algorithms on various MuJoCo tasks. Data source
and number of steps for each algorithm and task is referenced.

DDPG
(2/7)

TD3
(4/7)

SAC
(modified)

(1/7)

(a)

ME-TRPO
(1/5)

MBPO
(4/5)

(b)

Figure 8: Treemap visualization representing number of wins for each algorithm of model-
free (a) and model-based (b) algorithms in MuJoCo tasks, against the other algorithms.

1453

Lazaridis, Fachantidis, & Vlahavas

Appendix C. Tables

C.1 Raw ALE Scores (Human Starts)

T
es
tb

ed
D
Q
N

D
D
Q
N

D
u

el
in

g
D

Q
N

P
ri

or
it

iz
ed

D
u

el
in

g
D

Q
N

N
oi
sy

-D
Q
N

D
is

tr
ib

u
ti

on
al

D
Q

N
(C

51
)

R
ai
nb

ow
A
2C

A
3C

P
P
O

A
C
E
R

S
im

P
L
e

A
p

e-
X

(D
Q

N
)

G
or

il
a

(D
Q

N
)

A
li
en

57
0.

2
10

33
.4

14
86

.5
82

3.
7

53
3.

3
19

97
.5

60
22

.9
11

41
.7

94
5.

3
18

50
.3

16
55

.4
61

6.
9

17
73

1.
5

81
3.

54

A
m
id
ar

13
3.

4
16

9.
1

17
2.

7
23

8.
4

14
8

23
7.

7
20

2.
8

38
0.

8
17

3
67

4.
6

82
7.

6
74

.3
10

47
.3

18
9.

15

A
ss
au

lt
33

32
.3

60
60

.8
39

94
.8

10
95

0.
6

51
24

.3
51

01
.3

14
49

1.
7

15
62

.9
14

49
7.

9
49

71
.9

46
53

.8
52

7.
2

24
40

4.
6

11
95

.8
5

A
st
er

ix
12

4.
5

16
83

7
15

84
0

36
42

00
82

77
.3

39
55

99
.5

28
01

14
31

76
.3

17
24

4.
5

45
32

.5
68

01
.2

11
28

.3
28

31
79

.5
33

24
.7

A
st
er

oi
d
s

69
7.

1
11

93
.2

20
35

.4
10

21
.9

40
78

.1
20

71
.7

22
49

.4
16

53
.3

50
93

.1
20

97
.5

23
89

.3
79

3.
6

11
73

03
.4

93
3.

63

A
tl
an

ti
s

76
10

8
31

96
88

44
53

60
42

32
52

30
36

66
.5

28
98

03
81

46
84

72
92

65
.3

87
58

22
23

11
81

5
18

41
37

6
20

99
2.

5
91

87
14

.5
62

91
66

.5

B
an

k
H
ei
st

17
6.

3
88

6
11

29
.3

10
04

.6
95

5
83

5.
6

82
6

10
95

.3
93

2.
8

12
80

.6
11

77
.5

34
.2

12
00

.8
39

9.
42

B
at

tl
e
Z
on

e
17

56
0

24
74

0
31

32
0

30
65

0
26

98
5

32
25

0
52

04
0

30
80

20
76

0
17

36
6.

7
89

83
.3

40
31

.2
92

27
5

19
93

8

B
ea

m
R
id
er

86
72

.4
17

41
7.

2
14

59
1.

3
37

41
2.

2
15

24
1.

5
15

00
2.

4
21

76
8.

5
30

31
.7

24
62

2
15

90
38

63
.3

62
1.

6
72

23
3.
7

38
22

.0
7

B
er

ze
rk

-
10

11
.1

91
0.

6
21

78
.6

67
0.

8
10

00
17

93
.4

-
86

2.
2

-
-

-
55

59
8.
9

-

B
ow

li
n
g

41
.2

69
.6

65
.7

50
.4

79
.3

76
.8

39
.4

30
.1

41
.8

40
.1

33
.3

30
30

.2
53

.9
5

B
ox

in
g

25
.8

73
.5

77
.3

79
.2

66
.3

62
.1

54
.9

17
.7

37
.3

94
.6

98
.9

7.
8

80
.9

74
.2

B
re

ak
ou

t
30

3.
9

36
8.

9
41

1.
6

35
4.

6
42

3.
3

54
8.

7
37

9.
5

30
3

76
6.
8

27
4.

8
45

6.
4

16
.4

75
6.

5
31

3.
03

C
en

ti
p
ed

e
37

73
.1

38
53

.5
48

81
55

70
.2

42
14

.4
74

76
.9

71
60

.9
34

96
.5

19
97

43
86

.4
89

04
.8

-
57

11
.6

62
96

.8
7

C
h
op

p
er

C
om

m
an

d
30

46
34

95
37

84
80

58
87

78
.5

96
00

.5
10

91
6

11
71

.7
10

15
0

35
16

.3
52

87
.7

97
9.

4
57

66
01

.5
31

91
.7

5

C
ra

zy
C
li
m
b
er

50
99

2
11

37
82

12
45

66
12

78
53

98
57

6.
5

15
44

16
.5

14
39

62
10

77
70

13
85

18
11

02
02

13
24

61
62

58
3.

6
26

39
53

.5
65

45
1

D
ef
en

d
er

-
27

51
0

33
99

6
34

41
5

18
03

7.
5

32
24

6
47

67
1.

3
-

23
30

21
.5

-
-

-
39

98
65

.3
-

D
em

on
A
tt
ac

k
12

83
5.

2
69

80
3.

4
56

32
2.

8
73

37
1.

3
25

20
7.

8
10

98
56

.6
10

96
70

.7
66

39
.1

11
52

01
.9

11
37

8.
4

38
80

8.
3

20
8.

1
13

30
02

.1
14

88
0.

13

D
ou

b
le

D
u
n
k

-2
1.

6
-0

.3
-0

.8
-1

0.
7

-1
-3

.7
-0

.6
-1

6.
2

0.
1

-1
4.

9
-1

3.
2

-
22

.3
-1

1.
35

E
n
d
u
ro

47
5.

6
12

16
.6

20
77

.4
22

23
.9

10
24

.5
21

33
.4

20
61

.1
0

-8
2.

5
75

8.
3

0
-

20
42

.4
71

.0
4

F
is
h
er

in
g
D
er

by
-2

.3
3.

2
-4

.1
17

-3
.7

-4
.9

22
.6

20
.6

22
.6

17
.8

34
.7

-9
0.

7
22

.4
4.

64

F
re

ew
ay

25
.8

28
.8

0.
2

28
.8

27
.1

28
.8

29
.1

0
0.

1
32

.5
0

16
.7

29
10

.1
6

F
ro

st
b
it
e

15
7.

4
14

48
.1

23
32

.4
40

38
.4

41
8.

8
28

13
.9

41
41

.1
26

1.
8

19
7.

6
31

4.
2

28
5.

6
23

6.
9

65
11

.5
42

6.
6

G
op

h
er

27
31

.8
15

25
3

20
05

1.
4

10
51

48
.4

13
13

1
27

77
8.

3
72

59
5.

7
15

00
.9

17
10

6.
8

29
32

.9
37

80
2.

3
59

6.
8

12
11

68
.2

43
73

.0
4

G
ra

vi
ta

r
21

6.
5

20
0.

5
29

7
16

7
25

0.
5

42
2

56
7.

5
19

4
32

0
73

7.
2

22
5.

3
17

3.
4

66
2

53
8.

37

H
.E

.R
.O

.
12

95
2.

5
14

89
2.

5
15

20
7.

9
15

45
9.

2
24

54
.2

28
55

4.
2

50
49

6.
8

-
28

88
9.

5
-

-
26

56
.6

26
34

5.
3

89
63

.3
6

Ic
e
H
oc

ke
y

-3
.8

-2
.5

-1
.3

0.
5

-2
.4

-0
.1

-0
.7

-6
.4

-1
.7

-4
.2

-5
.9

-1
1.

6
24

-1
.7

2

Ja
m
es

B
on

d
34

8.
5

57
3

83
5.

5
58

5
-

-
-

52
.3

61
3

56
0.

7
26

1.
8

10
0.

5
18

99
2.
3

44
4

K
an

ga
ro

o
26

96
11

20
4

10
33

4
86

1
74

65
95

55
.5

10
84

1
45

.3
12

5
99

28
.7

50
51

.2
57

7.
5

14
31

K
ru

ll
38

64
67

96
.1

80
51

.6
76

58
.6

68
33

.5
67

57
.8

67
15

.5
83

67
.4

59
11

.4
79

42
.3

72
68

.4
22

04
.8

85
92

63
63

.0
9

K
u
n
g-
F
u

M
as

te
r

11
87

5
30

20
7

24
28

8
37

48
4

27
92

1
33

89
0

28
99

9.
8

24
90

0.
3

40
83

5
23

31
0.

3
27

59
9.

3
14

86
2.

5
72

06
8

20
62

0

M
on

te
zu

m
a’
s
R
ev

en
ge

50
42

22
24

55
13

0
15

4
0

41
42

0.
3

-
10

79
84

M
s.

P
ac

m
an

76
3.

5
12

41
.3

22
50

.6
10

07
.8

10
12

.1
20

64
.1

25
70

.2
16

26
.9

85
0.

7
20

96
.5

27
18

.5
14

80
61

35
.4

12
63

.0
5

N
am

e
T
h
is

G
am

e
54

39
.9

89
60

.3
11

18
5.

1
13

63
7.

9
71

86
.4

11
38

2.
3

11
68

6.
5

59
61

.2
12

09
3.

7
62

54
.9

84
88

24
20

.7
23

82
9.
9

92
38

.5

P
h
oe

n
ix

-
12

36
6.

5
20

41
0.

5
63

59
7

15
50

5
31

35
8.

3
13

00
61

.6
-

74
78

6.
7

-
-

-
18

87
88

.5
-

P
it
fa
ll

-
-1

86
.7

-4
6.

9
-2

43
.6

-1
54

.4
-3

42
.8

-3
7.

6
-5

5
-1

35
.7

-3
2.

9
-1
6.
9

-
-2

73
.3

-

P
on

g
16

.2
19

.1
18

.8
18

.4
18

18
.9

19
19

.7
10

.7
20

.7
20

.7
12

.8
18

.7
16

.7
1

P
ri
va

te
E
ye

29
8.

2
-5

75
.5

29
2.

6
12

77
.6

59
55

.4
57

17
.5

17
04

.4
91

.3
42

1.
1

69
.5

18
2

35
86

4.
7

25
98

.5
5

Q
*B

er
t

45
89

.8
11

02
0.

8
14

17
5.

8
14

06
3

91
76

.6
15

03
5.

9
18

39
7.

6
10

06
5.

7
21

30
7.

5
14

29
3.

3
15

31
6.

6
12

88
.8

38
01

52
.1

70
89

.8
3

R
iv
er

R
ai
d

40
65

.3
10

83
8.

4
16

56
9.

4
16

49
6.

8
-

-
-

76
53

.5
65

91
.9

83
93

.6
91

25
.1

19
57

.8
49

98
2.
8

53
10

.2
7

R
oa

d
R
u
n
n
er

92
64

43
15

6
58

54
9

54
63

0
35

37
6.

5
56

08
6

54
26

1
32

81
0

73
94

9
25

07
6

35
46

6
56

40
.6

12
71

11
.5

43
07

9.
8

R
ob

ot
an

k
58

.5
59

.1
62

24
.7

50
.9

49
.8

55
.2

2.
2

2.
6

5.
5

2.
5

-
68

.5
61

.7
8

S
ea

qu
es
t

27
93

.9
14

49
8

37
36

1.
6

14
31

.2
23

53
.1

32
75

.4
19

17
6

17
14

.3
13

26
.1

12
04

.5
17

39
.5

68
3.

3
37

71
79

.8
10

14
5.

85

S
ki
in
g

-
-1

14
90

.4
-1

19
28

-1
89

55
.8

-1
39

05
.9

-1
32

47
.7

-1
16

85
.8

-
-1

48
63

.8
-

-
-

-1
13

59
.3

-

S
ol
ar

is
-

81
0

17
68

.4
28

0.
6

26
08

.2
25

30
.2

28
60

.7
-

19
36

.4
-

-
-

31
15

.9
-

S
p
ac

e
In

va
d
er

s
14

49
.7

26
28

.7
59

93
.1

89
78

16
97

.2
63

68
.6

12
62

9
74

4.
5

23
84

6
94

2.
5

12
13

.9
-

50
69

9.
3

11
83

.2
9

S
ta

r
G
u
n
n
er

34
08

1
58

36
5

90
80

4
12

70
73

31
86

4.
5

67
05

4.
5

12
38

53
26

20
4

16
47

66
32

68
9

49
81

7.
7

-
43

29
58

14
91

9.
25

S
u
rr
ou

n
d

-
1.

9
4

-0
.2

-3
.1

4.
5

7
-

-8
.3

-
-

-
5.

5
-

T
en

n
is

-2
.3

-7
.8

4.
4

-1
3.

2
-2

.1
22

.6
-2

.2
-2

2.
2

-6
.4

-1
4.

8
-1

7.
6

-
23

-0
.6

9

T
im

e
P
il
ot

56
40

66
08

66
01

48
71

53
11

76
84

.5
11

19
0.

5
28

98
27

20
2

43
42

41
75

.7
-

71
54

3
82

67
.8

T
u
ta

n
kh

am
32

.4
92

.2
48

10
8.

6
12

3.
3

12
4.

3
12

6.
9

20
6.

8
14

4.
2

25
4.

4
28

0.
8

-
12

7.
7

11
8.

45

U
p

an
d

D
ow

n
33

11
.3

19
08

6.
9

24
75

9.
2

22
68

1.
3

-
-

-
17

36
9.

8
10

57
28

.7
95

44
5

14
50

51
.4

33
50

.3
34

79
12

.2
87

47
.6

7

V
en

tu
re

54
21

20
0

29
10

.5
46

2
45

0
25

0
0

-
93

5.
5

52
3.

4

V
id
eo

P
in
b
al
l

20
22

8.
1

36
78

23
.7

11
09

76
.2

44
74

08
.6

24
18

51
.7

45
50

52
.7

50
68

17
.2

19
73

5.
9

47
03

10
.5

37
38

9
15

62
25

.6
-

87
39

88
.5

11
20

93
.3

7

W
iz
ar

d
of

W
or

24
6

62
01

70
54

10
47

1
47

96
.5

11
82

4.
5

14
63

1.
5

85
9

18
08

2
41

85
.3

23
08

.3
-

46
89

7
10

43
1

Y
ar

’s
R
ev

en
ge

-
62

70
.6

25
97

6.
5

58
14

5.
9

54
87

.3
82

67
.7

93
00

7.
9

-
56

15
.5

-
-

56
64

.3
13

17
01

.1
-

Z
ax

xo
n

83
1

85
93

10
16

4
11

32
0

76
50

.5
15

13
0

19
65

8
16

.3
23

51
9

50
08

.7
29

-
37

67
2

61
59

.4

T
ot

al
w
in
s

0
1

0
1

2
1

2
0

1
5

6
0

38
0

Table 1: Raw performance scores of model-free, model-based and modular algorithms in
Atari games following the human-starts methodology. Different colors indicate different
algorithm subcategories (DQN, PG, Manifest state-based, Distributed frameworks).

1454

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

C.2 Raw ALE Scores (No-Op)
Te

st
be

d
D
Q
N

D
D
Q
N

D
ue

lin
g

D
Q

N
P

ri
or

it
iz

ed
D

ue
lin

g
D

Q
N

N
oi
sy

-D
Q
N

D
is

tr
ib

ut
io

na
l

D
Q

N
(C

51
)

R
ai
nb

ow
A
C
K
T
R

T
R
P
O

A
2C

A
pe

-X
(D

Q
N

)
IM

PA
LA

G
or

ila
(D

Q
N

)
A

3C
+

(A
3C

)
C

T
S-

P
ix

el
C

N
N

(D
Q

N
)

C
T

S-
D

Q
N

(D
Q

N
)

H
as

h-
ba

se
d

C
ou

nt
s

(T
R

P
O

)
E

X
2

(T
R

P
O

)
R

N
D

(P
P

O
)

ST
R

A
W

(A
3C

)
ST

R
A

W
e

(A
3C

)
P

op
A

rt
(D

D
Q

N
)

A
lie

n
30

69
29

07
.3

44
61

.4
39

41
24

03
31

66
94

91
.7

31
97

.1
-

-
40

80
4.
9

15
96

2.
1

26
20

.5
3

19
45

.6
6

-
-

-
-

-
26

26
32

30
32

13
.5

A
m
id
ar

73
9.

5
70

2.
1

23
54

.5
22

96
.8

16
10

17
35

51
31

.2
10

59
.4

-
-

86
59

.2
15

54
.7

9
11

89
.7

86
1.

14
-

-
-

-
-

22
23

20
22

78
2.

5

A
ss
au

lt
33

59
50

22
.9

46
21

11
47

7
55

10
72

03
14

19
8.

5
10

77
7.

7
-

-
24

55
9.
4

19
14

8.
47

14
50

.4
1

25
84

.4
-

-
-

-
-

-
-

90
11

.6

A
st
er

ix
60

12
15

15
0

28
18

8
37

50
80

14
32

8
40

62
11

42
82

00
.3

31
58

3
-

-
31

33
05

30
07

32
64

33
.3

3
79

22
.7

-
-

-
-

-
-

-
18

91
9.

5

A
st
er

oi
ds

16
29

93
0.

6
28

37
.7

11
92

.7
34

55
15

16
27

12
.8

34
17

1.
6

-
-

15
54

95
.1

10
85

90
.0

5
10

47
.6

6
24

06
.5

7
-

-
-

-
-

-
-

28
69

.3

A
tl
an

ti
s

85
64

1
64

75
8

38
25

72
39

57
62

92
37

33
84

10
75

82
66

59
.5

34
33

18
2

-
-

94
44

97
.5

84
99

67
.5

10
00

69
.1

6
18

01
39

2.
35

-
-

-
-

-
-

-
34

00
76

B
an

k
H
ei
st

42
9.

7
72

8
16

11
.9

15
03

.1
10

68
97

6
13

58
12

89
.7

-
-

17
16

.4
12

23
.1

5
60

9
11

82
.8

9
-

-
-

-
-

-
-

11
03

.3

B
at

tl
e
Zo

ne
26

30
0

25
73

0
37

15
0

35
52

0
36

78
6

28
74

2
62

01
0

89
10

-
-

98
89

5
20

88
5

25
26

6.
66

79
69

.0
6

-
-

-
-

-
-

-
82

20

B
ea

m
R
id
er

68
46

76
54

12
16

4
30

27
6.

5
20

79
3

14
07

4
16

85
0.

2
13

58
1.

4
67

0
81

48
.1

63
30

5.
2

32
46

3.
47

33
02

.9
1

67
23

.8
9

-
-

-
-

-
-

-
82

99
.4

B
er

ze
rk

-
-

14
72

.6
34

09
90

5
16

45
25

45
.6

92
7.

2
-

-
57

19
6.
7

18
52

.7
-

18
63

.6
-

-
-

-
-

-
-

11
99

.6

B
ow

lin
g

42
.4

70
.5

65
.5

46
.7

71
81

.8
30

24
.3

-
-

17
.6

59
.9

2
54

.0
1

75
.9

7
-

-
-

-
-

-
-

10
2.
1

B
ox

in
g

71
.8

3
81

.7
99

.4
98

.9
89

97
.8

99
.6

1.
45

-
-

10
0

99
.9

6
94

.8
8

15
.7

5
-

-
-

-
-

-
-

99
.3

B
re

ak
ou

t
40

1.
2

37
5

34
5.

3
36

6
51

6
74

8
41

7.
5

73
5.

7
14

.7
58

1.
6

80
0.
9

78
7.

34
40

2.
2

47
3.

93
-

-
-

-
-

34
4

38
6

34
4.

1

C
en

ti
pe

de
83

09
41

39
.4

75
61

.4
76

87
.5

42
69

96
46

81
67

.3
71

25
.2

8
-

-
12

97
4

11
04

9.
75

84
32

.3
54

42
.9

4
-

-
-

-
-

-
-

49
06

5.
8

C
ho

pp
er

C
om

m
an

d
66

87
46

53
11

21
5

13
18

5
88

93
15

60
0

16
65

4
-

-
-

72
18

51
28

25
5

41
67

.5
50

88
.1

7
-

-
-

-
-

-
-

77
5

C
ra

zy
C
lim

be
r

11
41

03
10

18
74

14
35

70
16

22
24

11
83

05
17

98
77

16
87

88
.5

15
04

44
-

-
32

04
26

13
69

50
85

91
9.

16
11

28
85

.0
3

-
-

-
-

-
14

38
03

15
33

27
11

96
79

D
ef
en

de
r

-
-

42
21

4
41

32
4.

5
20

52
5

47
09

2
55

10
5

-
-

-
41

19
43

.5
18

52
03

-
38

97
6.

66
-

-
-

-
-

-
-

11
09

9

D
em

on
A
tt
ac

k
97

11
97

11
.9

60
21

3.
3

72
87

8.
6

36
15

0
13

09
55

11
11

85
.2

27
41

76
.7

-
-

13
30

86
.4

13
28

26
13

69
3.

12
30

93
0.

33
-

-
-

-
-

-
-

63
64

4.
9

D
ou

bl
e
D
un

k
-1

8.
1

-6
.3

0.
1

-1
2.

5
1

1.
5

-0
.3

-0
.5

4
-

-
23

.5
-0

.3
3

-1
0.

62
-7

.8
4

-
-

-
-

-
-

-
-1

1.
5

E
nd

ur
o

30
1.

8
31

9.
5

22
58

.2
23

06
.4

12
40

34
54

21
25

.9
0

-
-

21
77

.4
0

11
4.

9
69

4.
83

-
-

-
-

-
-

-
20

02
.1

Fi
sh

er
in
g
D
er

by
-0

.8
20

.3
46

.4
41

.3
11

8.
9

31
.3

33
.7

3
-

-
44

.4
44

.8
5

20
.1

9
31

.1
1

-
-

-
-

-
-

-
45

.1

Fr
ee

w
ay

30
.3

31
.8

0
33

32
33

.9
34

0
-

-
33

.7
0

11
.6

9
30

.4
8

31
.7

31
.7

33
.5

33
.3

-
-

-
33

.4

Fr
os

tb
it
e

32
8.

3
24

1.
5

46
72

.8
74

13
75

3
39

65
95

90
.5

-
-

-
93

28
.6

31
7.

75
60

5.
16

32
5.

42
-

-
52

14
49

01
-

43
94

81
08

34
69

.6

G
op

he
r

85
20

82
15

.4
15

71
8.

4
10

43
68

.2
14

57
4

33
64

1
70

35
4.

6
47

73
0.

8
-

-
12

05
00

.9
66

78
2.

3
52

79
66

11
.2

8
-

-
-

-
-

-
-

56
21

8.
2

G
ra

vi
ta

r
30

6.
7

17
0.

5
58

8
23

8
44

7
44

0
14

19
.3

-
-

-
15

98
.5

35
9.

5
10

54
.5

8
23

8.
68

85
9.

1
49

8.
3

48
2

-
39

06
-

-
48

3.
5

H
.E

.R
.O

.
19

95
0

20
35

7
20

81
8.

2
21

03
6.

5
62

46
38

87
4

55
88

7.
4

-
-

-
31

65
5.

9
33

73
0.

55
14

91
3.

87
15

21
0.

62
-

-
-

-
-

36
73

4
36

93
1

14
22

5.
2

Ic
e
H
oc

ke
y

-1
.6

-2
.4

0.
5

-0
.4

-3
-3

.5
1.

1
-4

.2
-

-
33

3.
48

-0
.6

1
-6

.4
5

-
-

-
-

-
-

-
-4

.1

Ja
m
es

B
on

d
57

6.
7

43
8

13
12

.5
81

2
12

35
19

09
-

49
0

-
-

21
32

2.
5

60
1.

5
60

5
10

01
.1

9
-

-
-

-
-

-
-

50
7.

5

K
an

ga
ro

o
67

40
13

65
1

14
85

4
17

92
10

94
4

12
85

3
14

63
7.

5
31

50
-

-
14

16
16

32
25

49
.1

6
48

83
.5

3
-

-
-

-
-

-
-

13
15

K
ru

ll
38

05
43

96
11

45
1.

9
10

37
4.

4
88

05
97

35
87

41
.5

96
86

.9
-

-
11

74
1.
4

81
47

.4
78

82
86

05
.2

7
-

-
-

-
-

-
-

97
45

.1

K
un

g-
Fu

M
as

te
r

23
27

0
29

48
6

34
29

4
48

37
5

36
31

0
48

19
2

52
18

1
34

95
4

-
-

97
82

9.
5

43
37

5.
5

27
54

3.
33

28
61

5.
43

-
-

-
-

-
-

-
34

39
3

M
on

te
zu

m
a’
s
R
ev

en
ge

0
0

0
0

3
0

38
4

-
-

-
25

00
0

4.
16

27
3.

7
25

14
.3

37
05

.5
75

-
81

52
-

-
0

M
s.

P
ac

m
an

23
11

32
10

62
83

.5
33

27
.3

27
22

34
15

53
80

.4
-

-
-

11
25

5.
2

73
42

.3
2

32
33

.5
24

01
.0

4
-

-
-

-
-

67
30

69
02

49
63

.8

N
am

e
T
hi
s
G
am

e
72

57
69

97
11

97
1.

1
15

57
2.

5
81

81
12

54
2

13
13

6
-

-
-

25
78

3.
3

21
53

7.
2

61
82

.1
6

70
21

.3
-

-
-

-
-

-
-

15
85

1.
2

P
ho

en
ix

-
-

23
09

2.
2

70
32

4.
3

16
02

8
17

49
0

10
85

28
.6

13
34

33
.7

-
-

22
44

91
.1

21
09

96
.4

5
-

23
81

8.
47

-
-

-
-

-
-

-
62

02
.5

P
it
fa
ll

-
-

0
0

0
0

-
-1

.1
-

-
-0

.6
-1

.6
6

0
-2

59
.0

9
0

0
-

-
-3

-
-

-2
.6

P
on

g
18

.9
21

21
20

.9
21

20
.9

20
.9

20
.9

-1
.2

19
.9

20
.9

20
.9

8
18

.3
20

.7
5

-
-

-
-

-
-

-
20

.6

P
ri
va

te
E
ye

17
88

67
0.

1
10

3
20

6
37

12
15

09
5

42
34

-
-

-
49

.8
98

.5
74

8.
6

99
.3

2
15

80
6.
5

83
58

.7
-

-
86

66
-

-
28

6.
7

Q
*B

er
t

10
59

6
14

87
5

19
22

0.
3

18
76

0.
3

15
54

5
23

78
4

33
81

7.
5

23
15

1.
5

97
1.

8
15

96
7.

4
30

23
91

.3
35

12
00

.1
2

10
81

5.
55

19
25

7.
55

-
-

-
-

-
20

93
3

23
89

2
52

36
.8

R
iv
er

R
ai
d

83
16

12
01

5.
3

21
16

2.
6

20
60

7.
6

94
25

17
32

2
-

17
76

2.
8

-
-

63
86

4.
4

29
60

8.
08

83
44

.8
3

10
71

2.
54

-
-

-
-

-
-

-
12

53
0.

8

R
oa

d
R
un

ne
r

18
25

7
48

37
7

69
52

4
62

15
1

45
99

3
55

83
9

62
04

1
53

44
6

-
-

22
22

34
.5

57
12

1
51

00
7.

99
50

64
5.

74
-

-
-

-
-

-
-

47
77

0

R
ob

ot
an

k
51

.6
46

.7
65

.3
27

.5
51

52
.3

61
.4

16
.5

-
-

73
.8

12
.9

6
36

.4
3

7.
68

-
-

-
-

-
-

-
64

.3

Se
aq

ue
st

52
86

79
95

50
25

4.
2

93
1.

6
22

82
26

64
34

15
89

8.
9

17
76

81
0.

4
17

54
39

29
52

.3
17

53
.2

13
16

9.
06

20
15

.5
5

-
-

-
-

-
-

-
10

93
2.

3

Sk
iin

g
-

-
-8
85

7.
4

-1
99

49
.9

-1
47

63
-1

39
01

-1
29

57
.8

-
-

-
-1

07
89

.9
-1

01
80

.3
8

-
-2

21
77

.5
-

-
-

-
-

-
-

-1
35

85
.1

So
la
ri
s

-
-

22
50

.8
13

3.
4

60
88

83
42

35
60

.3
23

68
-

-
28

92
.9

23
65

-
22

70
.1

5
55

01
.5

28
63

.6
44

67
-

32
82

-
-

45
44

.8

Sp
ac

e
In

va
de

rs
19

76
31

54
.6

64
27

.3
15

31
1.

5
21

86
57

47
18

78
9

19
72

3
46

5.
1

17
57

.2
54

68
1

43
59

5.
78

18
83

.4
1

15
31

.6
4

-
-

-
-

-
-

-
25

89
.7

St
ar

G
un

ne
r

57
99

7
65

18
8

89
23

8
12

51
17

47
13

3
49

09
5

12
70

29
82

92
0

-
-

43
43

42
.5

20
06

25
19

14
4.

99
55

23
3.

43
-

-
-

-
-

-
-

58
9

Su
rr
ou

nd
-

-
4.

4
1.

2
-1

6.
8

9.
7

-
-

-
7.

1
7.

56
-

-7
.2

1
-

-
-

-
-

-
-

-2
.5

Te
nn

is
-2

.5
1.

7
5.

1
0

0
23

.1
0

-
-

-
23

.9
0.

55
10

.8
7

-2
3.

06
-

-
-

-
-

-
-

12
.1

T
im

e
P
ilo

t
59

47
79

64
11

66
6

75
53

70
35

83
29

12
92

6
22

28
6

-
-

87
08

5
48

48
1.

5
10

65
9.

33
41

03
-

-
-

-
-

-
-

48
70

Tu
ta

nk
ha

m
18

6.
7

19
0.

6
21

1.
4

24
5.

9
23

2
28

0
24

1
31

4.
3

-
-

27
2.

6
29

2.
11

24
4.

97
11

2.
14

-
-

-
-

-
-

-
18

3.
9

U
p

an
d

D
ow

n
84

56
16

76
9.

9
44

93
9.

6
33

87
9.

1
14

25
5

15
61

2
-

43
66

65
.8

-
-

40
18

84
.3

33
25

46
.7

5
12

56
1.

58
23

10
6.

24
-

-
-

-
-

-
-

22
47

4.
4

V
en

tu
re

38
0

93
49

7
48

97
15

20
5.

5
-

-
-

18
13

0
12

45
.3

3
0

13
56

.2
5

82
.2

44
5

90
0

18
59

-
-

11
72

V
id
eo

P
in
ba

ll
42

68
4

70
00

9
98

20
9.

5
47

91
97

32
25

07
94

96
04

53
39

36
.5

10
04

96
.6

-
-

56
51

63
.2

57
28

98
.2

7
15

75
50

.2
1

97
37

2.
8

-
-

-
-

-
-

-
56

28
7

W
iz
ar

d
of

W
or

33
93

52
04

78
55

12
35

2
91

98
93

00
17

86
2.

5
70

2
-

-
46

20
4

91
57

.5
13

73
1.

33
33

55
.0

9
-

-
-

-
-

-
-

48
3

Y
ar

’s
R
ev

en
ge

-
-

49
62

2.
1

69
61

8.
1

23
91

5
35

05
0

10
25

57
12

51
69

-
-

14
85

94
.8

84
23

1.
14

-
13

39
8.

73
-

-
-

-
-

-
-

21
40

9.
5

Za
xx

on
49

77
10

18
2

12
94

4
13

88
6

69
20

10
51

3
22

20
9.

5
17

44
8

-
-

42
28

5.
5

32
93

5.
5

71
29

.3
3

74
51

.2
5

-
-

-
-

-
-

-
14

40
2

To
ta

lw
in
s

0
0.
33

3
3.
47

61
0.
01

42
8

0.
47

61
3.
14

28
5

4
0

0
33

1
0.
14

28
0

1.
14

28
0.
14

28
0

0
3

0
0

2

Table 2: Raw performance scores of model-free, model-based and modular algorithms in
Atari games using no-op starts. Different colors indicate different algorithm subcategories
(DQN, PG, Distributed Frameworks, Exploration frameworks, Hierarchical frameworks,
Generalization frameworks).

1455

Lazaridis, Fachantidis, & Vlahavas

C.3 Raw MuJoCo Scores

T
es
tb

ed
D
D
P
G

D
D

P
G

(T
un

ed
)

T
D
3

P
P
O

T
R
P
O

A
C
K
T
R

SA
C

SA
C

(m
od

ifi
ed

)
P
P
O

M
B
M

F
M

B
-M

P
O

M
E
-T

R
P
O

M
B
P
O

ST
E
V
E

P
E
T
S

H
al
fC

he
et
ah

33
05

.6
85

77
.2

9
96

36
.9

5
17

95
.4

3
-1

5.
57

14
50

.4
6

23
47

.1
9

69
83

.1
60

31
15

43
.1

96
90

.1
39

27
64

8.
61

96
57

8.
14

19
13

47
7.
5

12
40

6.
29

12
08

5.
09

H
op

pe
r

20
20

.4
6

18
60

.0
2

35
64

.0
7

21
64

.7
24

71
.3

24
28

.3
9

29
96

.6
6

99
6.

73
87

32
63

5.
39

67
46

.1
10

76
72

5.
91

99
73

6.
05

21
34

03
.3

04
11

31
.6

13
46

2.
84

08

W
al
ke

r2
d

18
43

.8
5

30
98

.1
1

46
82

.8
2

33
17

.6
9

23
21

.4
7

12
16

.7
12

83
.6

7
19

38
.8

30
28

11
62

.9
96

22
9.

67
16

65
1.

04
38

40
9.

43
06

49
30

.3
12

11
09

.2
27

-

A
nt

10
05

.3
88

8.
77

43
72

.4
4

10
83

.2
-7

5.
85

18
21

.9
4

65
5.

35
17

31
.4

24
45

-2
9.

87
15

33
3.

12
64

10
49

.4
37

80
1.

75
24

55
41

.3
69

77
9.

72
18

10
3.

26
98

Sw
im

m
er

-
-

-
-

-
-

-
-

-
10

4.
04

66
11

8.
39

32
11

9.
30

33
-

-
-

R
ea

ch
er

-6
.5

1
-4

.0
1

-3
.6

-6
.1

8
-1

11
.4

3
-4

.2
6

-4
.4

4
-

-
-

-
-

-
-

-

In
vP

en
du

lu
m

10
00

10
00

10
00

10
00

98
5.

4
10

00
10

00
-

-
-

-
-

-
-

-

In
vD

ou
bl
eP

en
du

lu
m

93
55

.5
2

83
69

.9
5

93
37

.4
7

89
77

.9
4

20
5.

85
90

81
.9

2
84

87
.1

5
-

-
-

-
-

-
-

-

T
ot

al
w
in
s

1.
16

67
0.
16

67
1.
16

67
0.
16

67
0

0.
16

67
0.
16

67
0

0
0

0
1

3
0

0

Table 3: Raw performance scores of model-free, model-based and modular algorithms in
MuJoCo tasks. Different colors indicate different algorithm subcategories (DQN, PG, Man-
ifest state-based).

1456

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

C.4 Human/Random Score Tables for Atari Games

Testbed
No-op Human starts

Random Human Random Human

Alien 227.8 7127.7 128.3 6371.3

Amidar 5.8 1719 11.8 1540.4

Assault 222.4 742 166.9 628.9

Asterix 210 8503.3 164.5 7536

Asteroids 719.1 47388.7 877.1 36517.3

Atlantis 12850 29028.1 13463 26575

Bank Heist 14.2 753.1 21.7 644.5

Battle Zone 2360 37187.5 3560 33030

Beam Rider 363.9 16926.5 254.6 14961

Berzerk 123.7 2630.4 196.1 2237.5

Bowling 23.1 160.7 35.2 146.5

Boxing 0.1 12.1 -1.5 9.6

Breakout 1.7 30.5 1.6 27.9

Centipede 2090.9 12017 1925.5 10321.9

Chopper Command 811 7387.8 644 8930

Crazy Climber 10780.5 35829.4 9337 32667

Defender 2874.5 18688.9 1965.5 14296

Demon Attack 152.1 1971 208.3 3442.8

Double Dunk -18.6 -16.4 -16 -14.4

Enduro 0 860.5 -81.8 740.2

Fishering Derby -91.7 -38.7 -77.1 5.1

Freeway 0 29.6 0.2 25.6

Frostbite 65.2 4334.7 66.4 4202.8

Gopher 257.6 2412.5 250 2311

Gravitar 173 3351.4 245.5 3116

H.E.R.O. 1027 30826.4 1580.3 25839.4

Ice Hockey -11.2 0.9 -9.7 0.5

James Bond 29 302.8 33.5 368.5

Kangaroo 52 3035 100 2739

Krull 1598 2665.5 1151.9 2109.1

Kung-Fu Master 258.5 22736.3 304 20786.8

Montezuma’s Revenge 0 4753.3 25 4182

Ms. Pacman 307.3 6951.6 197.8 15375

Name This Game 2292.3 8049 1747.8 6796

Phoenix 761.4 7242.6 1134.4 6686.2

Pitfall -229.4 6463.7 -348.8 5998.9

Pong -20.7 14.6 -18 15.5

Private Eye 24.9 69571.3 662.8 64169.1

Q*Bert 163.9 13455 271.8 12085

River Raid 1338.5 17118 588.3 14382.2

Road Runner 11.5 7845 200 6878

Robotank 2.2 11.9 2.4 8.9

Seaquest 68.4 42054.7 215.5 40425.8

Skiing -17098.1 -4336.9 -15287.4 -3686.6

Solaris 1236.3 12326.7 2047.2 11032.6

Space Invaders 148 1668.7 182.6 1464.9

Star Gunner 664 10250 697 9528

Surround -10 6.5 -9.7 5.4

Tennis -23.8 -8.3 -21.4 -6.7

Time Pilot 3568 5229.2 3273 5650

Tutankham 11.4 167.6 12.7 138.3

Up and Down 533.4 11693.2 707.2 9896.1

Venture 0 1187.5 18 1039

Video Pinball 16256.9 17667.9 20452 15641.1

Wizard of Wor 563.5 4756.5 804 4556

Yar’s Revenge 3092.9 54576.9 1476.9 47135.2

Zaxxon 32.5 9173.3 475 8443

Table 4: Random and Human player scores in Atari games, used for the normalization of
raw scores.

1457

Lazaridis, Fachantidis, & Vlahavas

References

Achiam, J., Edwards, H., Amodei, D., & Abbeel, P. (2018). Variational Option Discovery
Algorithms. arXiv preprint arXiv:1807.10299.

Ahn, M., Zhu, H., Hartikainen, K., Ponte, H., Gupta, A., Levine, S., & Kumar, V. (2019).
ROBEL: RObotics BEnchmarks for Learning with Low-Cost Robots. In Conference
on Robot Learning.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B.,
Tobin, J., Pieter Abbeel, O., & Zaremba, W. (2017). Hindsight Experience Replay.
Advances in Neural Information Processing Systems, 30, 5048–5058.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep Rein-
forcement Learning: A Brief Survey. IEEE Signal Processing Magazine, 34 (6), 26–38.

Bacon, P.-L., Harb, J., & Precup, D. (2017). The Option-Critic Architecture. In AAAI
Conference on Artificial Intelligence.

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., Dhruva, T.,
Muldal, A., Heess, N., & Lillicrap, T. (2018). Distributed Distributional Deterministic
Policy Gradients. In International Conference on Learning Representations.

BBC News (2019). Go Master Quits Because AI ’Cannot Be Defeated’. https://www.bbc.
com/news/technology-50573071/.

Behzadan, V., & Munir, A. (2017). Vulnerability of Deep Reinforcement Learning to Pol-
icy Induction Attacks. In International Conference on Machine Learning and Data
Mining in Pattern Recognition, pp. 262–275.

Bellemare, M. G., Dabney, W., & Munos, R. (2017). A Distributional Perspective on
Reinforcement Learning. In International Conference on Machine Learning, pp. 449–
458.

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of Artificial In-
telligence Research, 47, 253–279.

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., & Munos, R. (2016).
Unifying Count-Based Exploration and Intrinsic Motivation. In Advances in Neural
Information Processing Systems.

Bellemare, M. G., Veness, J., & Talvitie, E. (2014). Skip Context Tree Switching. In
International Conference on Machine Learning, pp. 1458–1466.

Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015). Scheduled Sampling for Sequence
Prediction with Recurrent Neural Networks. In Advances in Neural Information Pro-
cessing Systems, pp. 1171–1179.

Bhatnagar, S., Precup, D., Silver, D., Sutton, R. S., Maei, H. R., & Szepesvári, C. (2009a).
Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approxi-
mation. In Advances in Neural Information Processing Systems, pp. 1204–1212.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., & Lee, M. (2009b). Natural Actor-Critic
Algorithms. Automatica, 45 (11), 2471–2482.

1458

https://www.bbc.com/news/technology-50573071/
https://www.bbc.com/news/technology-50573071/

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

Bloom, B. H. (1970). Space/Time Trade-Offs in Hash Coding with Allowable Errors. Com-
munications of the ACM, 13 (7), 422–426.

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight Uncertainty in
Neural Networks. In International Conference on Machine Learning, pp. 1613–1622.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., & Lee, H. (2018). Sample-Efficient Re-
inforcement Learning with Stochastic Ensemble Value Expansion. In Advances in
Neural Information Processing Systems, pp. 8224–8234.

Burda, Y., Edwards, H., Storkey, A., & Klimov, O. (2019). Exploration by Random Network
Distillation. In International Conference on Learning Representations.

Cabi, S., Colmenarejo, S. G., Hoffman, M. W., Denil, M., Wang, Z., & Freitas, N. (2017).
The Intentional Unintentional Agent: Learning to Solve Many Continuous Control
Tasks Simultaneously. In Conference on Robot Learning, pp. 207–216.

Chalapathy, R., & Chawla, S. (2019). Deep Learning for Anomaly Detection: A Survey.
arXiv preprint arXiv:1901.03407.

Charikar, M. S. (2002). Similarity Estimation Techniques from Rounding Algorithms. In
ACM symposium on Theory of computing, pp. 380–388.

Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F., & Chi, E. H. (2019). Top-K Off-
Policy Correction for a REINFORCE Recommender System. In ACM International
Conference on Web Search and Data Mining, pp. 456–464.

Chiappa, S., Racaniere, S., Wierstra, D., & Mohamed, S. (2017). Recurrent Environment
Simulators. In International Conference on Learning Representations.

Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep Reinforcement Learning
in a Handful of Trials Using Probabilistic Dynamics Models. In Advances in Neural
Information Processing Systems, pp. 4754–4765.

Clavera, I., Rothfuss, J., Schulman, J., Fujita, Y., Asfour, T., & Abbeel, P. (2018). Model-
Based Reinforcement Learning via Meta-Policy Optimization. In Conference on Robot
Learning, pp. 617–629.

Cover, T. M. (1999). Elements of Information Theory. John Wiley & Sons.

Da Silva, F. L., & Costa, A. H. R. (2019). A Survey on Transfer Learning for Multiagent
Reinforcement Learning Systems. Journal of Artificial Intelligence Research, 64, 645–
703.

Dargan, S., Kumar, M., Ayyagari, M. R., & Kumar, G. (2019). A Survey of Deep Learning
and Its Applications: A New Paradigm to Machine Learning. Archives of Computa-
tional Methods in Engineering, 1–22.

Dayan, P., & Hinton, G. E. (1992). Feudal Reinforcement Learning. In Neural Information
Processing Systems, pp. 271–278.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior,
A., Tucker, P., Yang, K., et al. (2012). Large Scale Distributed Deep Networks. In
Advances in Neural Information Processing Systems, pp. 1223–1231.

1459

Lazaridis, Fachantidis, & Vlahavas

Deisenroth, M. P., Neumann, G., & Peters, J. (2013). A Survey on Policy Search for
Robotics. Foundations and Trends in Robotics, 2 (1–2), 1–142.

Deisenroth, M. P., & Rasmussen, C. E. (2011). PILCO: A Model-Based and Data-Efficient
Approach to Policy Search. In International Conference on Machine Learning, pp.
465–472.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmarking
Deep Reinforcement Learning for Continuous Control. In International Conference
on Machine Learning, pp. 1329–1338.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu,
V., Harley, T., Dunning, I., et al. (2018). IMPALA: Scalable Distributed Deep-RL
with Importance Weighted Actor-Learner Architectures. In International Conference
on Machine Learning, pp. 1407–1416.

Eysenbach, B., Gupta, A., Ibarz, J., & Levine, S. (2019). Diversity is All You Need: Learning
Skills without a Reward Function. In International Conference on Learning Repre-
sentations.

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez, J. E., & Levine, S. (2018). Model-
Based Value Estimation for Efficient Model-Free Reinforcement Learning. arXiv
preprint arXiv:1803.00101.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., Pritzel, A., &
Wierstra, D. (2017). Pathnet: Evolution Channels Gradient Descent in Super Neural
Networks. arXiv preprint arXiv:1701.08734.

Fernando, C., Vasas, V., Szathmáry, E., & Husbands, P. (2011). Evolvable Neuronal Paths:
A Novel Basis for Information and Search in the Brain. PloS one, 6 (8), e23534.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-Agnostic Meta-Learning for Fast Adap-
tation of Deep Networks. In International Conference on Machine Learning, pp.
1126–1135.

Foerster, J., Assael, I. A., De Freitas, N., & Whiteson, S. (2016). Learning to Communicate
with Deep Multi-Agent Reinforcement Learning. In Advances in Neural Information
Processing Systems, pp. 2137–2145.

Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P. H., Kohli, P., & Whiteson, S.
(2017). Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning.
In International Conference on Machine Learning, pp. 1146–1155.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M., Osband, I., Graves, A., Mnih,
V., Munos, R., Hassabis, D., et al. (2018). Noisy Networks For Exploration. In
International Conference on Learning Representations.

Francois-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., Pineau, J., et al. (2018). An
Introduction to Deep Reinforcement Learning. Foundations and Trends® in Machine
Learning, 11 (3-4), 219–354.

Frans, K., Ho, J., Chen, X., Abbeel, P., & Schulman, J. (2018). Meta Learning Shared
Hierarchies. In International Conference on Learning Representations.

1460

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

French, R. M. (1994). Catastrophic Interference in Connectionist Networks: Can It Be
Predicted, Can It Be Prevented?. In Advances in Neural Information Processing
Systems, pp. 1176–1177.

Fu, J., Co-Reyes, J., & Levine, S. (2017). EX2: Exploration with Exemplar Models for Deep
Reinforcement Learning. In Advances in Neural Information Processing Systems, pp.
2577–2587.

Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing Function Approximation Error in
Actor-Critic Methods. In International Conference on Machine Learning, pp. 1587–
1596.

Gaina, R. D., Lucas, S. M., & Perez-Liebana, D. (2019). Project Thyia: A Forever Game-
player. In 2019 IEEE Conference on Games (CoG), pp. 1–8.

Geffner, H. (2018). Model-Free, Model-Based, and General Intelligence. In International
Joint Conference on Artificial Intelligence, pp. 10–17.

Gleave, A., Dennis, M., Wild, C., Kant, N., Levine, S., & Russell, S. (2020). Adversarial
Policies: Attacking Deep Reinforcement Learning. In International Conference on
Learning Representations.

Goodfellow, I., Papernot, N., Huang, S., Duan, R., Abbeel, P., & Clark, J. (2017). At-
tacking Machine Learning with Adversarial Examples. https://openai.com/blog/

adversarial-example-research/.

Graves, A. (2011). Practical Variational Inference for Neural Networks. In Advances in
Neural Information Processing Systems, pp. 2348–2356.

Graves, A. (2013). Generating Sequences with Recurrent Neural Networks. arXiv preprint
arXiv:1308.0850.

Greensmith, E., Bartlett, P. L., & Baxter, J. (2004). Variance Reduction Techniques for Gra-
dient Estimates in Reinforcement Learning. Journal of Machine Learning Research,
5, 1471–1530.

Gregor, K., Danihelka, I., Graves, A., Rezende, D., & Wierstra, D. (2015). DRAW: A
Recurrent Neural Network For Image Generation. In International Conference on
Machine Learning, pp. 1462–1471.

Gregor, K., Rezende, D. J., & Wierstra, D. (2017). Variational Intrinsic Control. In Inter-
national Conference on Learning Representations.

Grondman, I., Busoniu, L., Lopes, G. A., & Babuska, R. (2012). A Survey of Actor-Critic
Reinforcement Learning: Standard and Natural Policy Gradients. IEEE Transactions
on Systems, Man, and Cybernetics, 42 (6), 1291–1307.

Gupta, J. K., Egorov, M., & Kochenderfer, M. (2017). Cooperative Multi-Agent Control
Using Deep Reinforcement Learning. In International Conference on Autonomous
Agents and Multiagent Systems, pp. 66–83.

Ha, D., & Eck, D. (2018). A Neural Representation of Sketch Drawings. In International
Conference on Learning Representations.

Ha, D., & Schmidhuber, J. (2018). Recurrent World Models Facilitate Policy Evolution. In
Advances in Neural Information Processing Systems, pp. 2450–2462.

1461

https://openai.com/blog/adversarial-example-research/
https://openai.com/blog/adversarial-example-research/

Lazaridis, Fachantidis, & Vlahavas

Haarnoja, T., Tang, H., Abbeel, P., & Levine, S. (2017). Reinforcement Learning with
Deep Energy-Based Policies. In International Conference on Machine Learning, pp.
1352–1361.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018a). Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Inter-
national Conference on Machine Learning, pp. 1861–1870.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H.,
Gupta, A., Abbeel, P., & Others (2018b). Soft Actor-Critic Algorithms and Applica-
tions. arXiv preprint arXiv:1812.05905.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., & Davidson, J. (2019).
Learning Latent Dynamics for Planning from Pixels. In International Conference on
Machine Learning, pp. 2555–2565.

Hansen, N. (2016). The CMA Evolution Strategy: A Tutorial. arXiv preprint
arXiv:1604.00772.

Hansen, N., & Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in Evo-
lution Strategies. Evolutionary computation, 9 (2), 159–195.

Hasselt, H. V. (2010). Double Q-Learning. In Advances in Neural Information Processing
Systems, pp. 2613–2621.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N., & Riedmiller, M. (2018). Learning
an Embedding Space for Transferable Robot Skills. In International Conference on
Learning Representations.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger, D. (2018). Deep
Reinforcement Learning that Matters. In AAAI Conference on Artificial Intelligence.

Hernandez-Garcia, J. F., & Sutton, R. S. (2019). Understanding Multi-Step Deep Re-
inforcement Learning: A Systematic Study of the DQN Target. arXiv preprint
arXiv:1901.07510.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,
D., Piot, B., Azar, M., & Silver, D. (2018). Rainbow: Combining improvements in
deep reinforcement learning. In AAAI Conference on Artificial Intelligence.

Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt, S., & van Hasselt, H. (2019a).
Multi-Task Deep Reinforcement Learning with PopArt. In AAAI Conference on Ar-
tificial Intelligence, Vol. 33, pp. 3796–3803.

Hessel, M., van Hasselt, H., Modayil, J., & Silver, D. (2019b). On Inductive Biases in Deep
Reinforcement Learning. arXiv preprint arXiv:1907.02908.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., &
Lerchner, A. (2017). beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework. In International Conference on Learning Representations.

Hinton, G. E. (2007). To Recognize Shapes, First Learn to Generate Images. Progress in
Brain Research, 165, 535–547.

Hochreiter, S. (2001). Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-term
Dependencies. A Field Guide to Dynamical Recurrent Neural Networks, 237–244.

1462

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,
9 (8), 1735–1780.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., van Hasselt, H., & Silver,
D. (2018). Distributed Prioritized Experience Replay. In International Conference on
Learning Representations.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., & Abbeel, P. (2016). VIME:
Variational Information Maximizing Exploration. In Advances in Neural Information
Processing Systems, pp. 1109–1117.

Hu, J., & Wellman, M. P. (2003). Nash Q-Learning for General-Sum Stochastic Games.
Journal of Machine Learning Research, 4, 1039–1069.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., & Abbeel, P. (2017). Adversarial Attacks
on Neural Network Policies. In International Conference on Learning Representations.

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In International Conference on Machine Learning,
pp. 448–456.

Jaakkola, T., Jordan, M. I., & Singh, S. P. (1994). Convergence of Stochastic Iterative
Dynamic Programming Algorithms. In Advances in Neural Information Processing
Systems, pp. 703–710.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever, G., Castaneda, A. G.,
Beattie, C., Rabinowitz, N. C., Morcos, A. S., Ruderman, A., et al. (2019). Human-
Level Performance in 3D Multiplayer Games with Population-Based Reinforcement
Learning. Science, 364 (6443), 859–865.

Jaques, N., Lazaridou, A., Hughes, E., Gulcehre, C., Ortega, P., Strouse, D., Leibo, J. Z.,
& De Freitas, N. (2019). Social Influence as Intrinsic Motivation for Multi-Agent
Deep Reinforcement Learning. In International Conference on Machine Learning, pp.
3040–3049.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge university press.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An Introduction to
Variational Methods for Graphical Models. Machine learning, 37 (2), 183–233.

Justesen, N., Bontrager, P., Togelius, J., & Risi, S. (2019). Deep Learning for Video Game
Playing. IEEE Transactions on Games, 12 (1), 1–20.

Kaiser, L., Babaeizadeh, M., Mi los, P., Osiński, B., Campbell, R. H., Czechowski, K., Erhan,
D., Finn, C., Kozakowski, P., Levine, S., et al. (2019). Model-Based Reinforcement
Learning for Atari. In International Conference on Learning Representations.

Kaiser, L., & Bengio, S. (2018). Discrete Autoencoders for Sequence Models. arXiv preprint
arXiv:1801.09797.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., & Jaśkowski, W. (2016). Vizdoom:
A Doom-Based AI Research Platform for Visual Reinforcement Learning. In IEEE
Conference on Computational Intelligence and Games, pp. 1–8.

Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv preprint
arXiv:1312.6114.

1463

Lazaridis, Fachantidis, & Vlahavas

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Mi-
lan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming
Catastrophic Forgetting in Neural Networks. Proceedings of the National Academy of
Sciences, 114 (13), 3521–3526.

Klimov, O. (2016). CarRacing-v0. https://gym.openai.com/envs/CarRacing-v0/.

Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2005). Empowerment: A Universal Agent-
Centric Measure of Control. In IEEE Congress on Evolutionary Computation, Vol. 1,
pp. 128–135.

Konda, V. R., & Tsitsiklis, J. N. (2000). Actor-Critic Algorithms. In Advances in Neural
Information Processing Systems, pp. 1008–1014.

Kulkarni, T. D., Narasimhan, K. R., Saeedi, A., & Tenenbaum, J. B. (2016). Hierarchical
Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Moti-
vation. In Advances in Neural Information Processing Systems, pp. 3675–3683.

Kullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. The Annals of
Mathematical Statistics, 22 (1), 79–86.

Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., & Abbeel, P. (2018). Model-Ensemble
Trust-Region Policy Optimization. In International Conference on Learning Repre-
sentations.

Lauer, M., & Riedmiller, M. A. (2000). An Algorithm for Distributed Reinforcement Learn-
ing in Cooperative Multi-Agent Systems. In International Conference on Machine
Learning, pp. 535–542.

Legg, S., & Hutter, M. (2007). Universal Intelligence: A Definition of Machine Intelligence.
Minds and machines, 17 (4), 391–444.

Leibfried, F., Kushman, N., & Hofmann, K. (2017). A Deep Learning Approach for Joint
Video Frame and Reward Prediction in Atari Games. In International Conference on
Learning Representations, pp. 1–17.

Levy, A., Platt, R., & Saenko, K. (2019). Learning Multi-Level Hierarchies with Hindsight.
In International Conference on Learning Representations.

Li, Y. (2018). Deep Reinforcement Learning. arXiv preprint arXiv:1810.06339.

Li, Y. (2019). Reinforcement Learning Applications. arXiv preprint arXiv:1908.06973.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra,
D. (2016). Continuous Control with Deep Reinforcement Learning. In International
Conference on Learning Representations.

Lin, L.-J. (1992). Reinforcement Learning for Robots Using Neural Networks. Ph.D. thesis,
Carnegie Mellon University.

Littman, M. L. (1994). Markov Games as a Framework for Multi-Agent Reinforcement
Learning. In International Conference on Machine Learning, pp. 157–163.

Littman, M. L. (2001). Value-Function Reinforcement Learning in Markov Games. Cognitive
Systems Research, 2 (1), 55–66.

1464

https://gym.openai.com/envs/CarRacing-v0/

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Abbeel, O. P., & Mordatch, I. (2017). Multi-
Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In Advances
in Neural Information Processing Systems, pp. 6379–6390.

Luong, N. C., Hoang, D. T., Gong, S., Niyato, D., Wang, P., Liang, Y.-C., & Kim, D. I.
(2019). Applications of Deep Reinforcement Learning in Communications and Net-
working: A Survey. IEEE Communications Surveys & Tutorials, 21 (4), 3133–3174.

MacKay, D. J. C. (1992). Information-Based Objective Functions for Active Data Selection.
Neural Computation, 21 (4), 3133–3174.

Mahmood, A. R., Van Hasselt, H., & Sutton, R. S. (2014). Weighted Importance Sampling
for Off-Policy Learning with Linear Function Approximation. In Advances in Neural
Information Processing Systems, pp. 3014–3022.

Mahmud, M., Kaiser, M. S., Hussain, A., & Vassanelli, S. (2018). Applications of Deep
Learning and Reinforcement Learning to Biological Data. IEEE Transactions on
Neural Networks and Learning Systems, 29 (6), 2063–2079.

Malisiewicz, T., Gupta, A., & Efros, A. A. (2011). Ensemble of Exemplar-SVMs for Object
Detection and Beyond. In IEEE International Conference on Computer Vision, pp.
89–96.

Marbach, P., & Tsitsiklis, J. N. (2003). Approximate Gradient Methods in Policy-Space
Optimization of Markov Reward Processes. Discrete Event Dynamic Systems: Theory
and Applications, 13 (1-2), 111–148.

Martens, J., & Grosse, R. (2015). Optimizing Neural Networks with Kronecker-Factored
Approximate Curvature. In International Conference on Machine Learning, pp. 2408–
2417.

McGovern, A., Sutton, R. S., & Fagg, A. H. (1997). Roles of Macro-Actions in Accelerating
Reinforcement Learning. In Grace Hopper Celebration of Women in Computing, Vol.
1317.

Merton, R. K. (1968). The Matthew Effect in Science: The Reward and Communication
Systems of Science are Considered. Science, 159 (3810), 56–63.

Minsky, M. (1961). Steps Toward Artificial Intelligence. Proceedings of the IRE, 49 (1),
8–30.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., &
Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learning.
In International Conference on Machine Learning, pp. 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015).
Human-Level Control Through Deep Reinforcement Learning. Nature, 518 (7540),
529–533.

Moore, A. (1991). Efficient Memory-Based Learning for Robot Control. Ph.D. thesis, Uni-
versity of Cambridge.

1465

Lazaridis, Fachantidis, & Vlahavas

Munos, R., Stepleton, T., Harutyunyan, A., & Bellemare, M. (2016). Safe and Efficient
Off-Policy Reinforcement Learning. In Advances in Neural Information Processing
Systems, pp. 1054–1062.

Myerson, R. B. (2013). Game theory. Harvard University Press.

Nachum, O., Lee, H., Gu, S., & Levine, S. (2018). Data-Efficient Hierarchical Reinforcement
Learning. In Advances in Neural Information Processing Systems, pp. 3303–3313.

Nagabandi, A., Kahn, G., Fearing, R. S., & Levine, S. (2018). Neural Network Dynamics for
Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. In IEEE
International Conference on Robotics and Automation, pp. 7559–7566.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A., Panneershel-
vam, V., Suleyman, M., Beattie, C., Petersen, S., & Others (2015). Massively Parallel
Methods for Deep Reinforcement Learning. arXiv preprint arXiv:1507.04296.

Nguyen, T. T., Nguyen, N. D., & Nahavandi, S. (2020). Deep Reinforcement Learning for
Multi-Agent Systems: A Review of Challenges, Solutions, and Applications. IEEE
Transactions on Cybernetics.

Nguyen, T. T., & Reddi, V. J. (2019). Deep Reinforcement Learning for Cyber Security.
arXiv preprint arXiv:1906.05799.

Nosratabadi, S., Mosavi, A., Keivani, R., Ardabili, S., & Aram, F. (2020). State of the Art
Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban
Sustainability. In Engineering for Sustainable Future, pp. 228–238.

Oh, J., Guo, X., Lee, H., Lewis, R., & Singh, S. (2015). Action-Conditional Video Prediction
Using Deep Networks in Atari Games. In Advances in Neural Information Processing
Systems, pp. 2863–2871.

Omidshafiei, S., Pazis, J., Amato, C., How, J. P., & Vian, J. (2017). Deep Decentral-
ized Multi-task Multi-Agent Reinforcement Learning under Partial Observability. In
International Conference on Machine Learning, pp. 2681–2690.

OpenAI (2018). OpenAI Five. https://blog.openai.com/openai-five/.

OroojlooyJadid, A., & Hajinezhad, D. (2019). A Review of Cooperative Multi-Agent Deep
Reinforcement Learning. arXiv preprint arXiv:1908.03963.

Osband, I., Van Roy, B., Russo, D., & Wen, Z. (2019). Deep Exploration via Randomized
Value Functions. Journal of Machine Learning Research, 20 (124), 1–62.

Osband, I., Van Roy, B., & Wen, Z. (2016). Generalization and Exploration via Randomized
Value Functions. In International Conference on Machine Learning, Vol. 48, pp. 2377–
2386.

Ostrovski, G., Bellemare, M. G., Van Den Oord, A., & Munos, R. (2017). Count-Based
Exploration with Neural Density models. In International Conference on Machine
Learning, pp. 2721–2730.

Oudeyer, P. Y., & Kaplan, F. (2009). What Is Intrinsic Motivation? A Typology of Com-
putational Approaches. Frontiers in Neurorobotics, 1, 6.

1466

https://blog.openai.com/openai-five/

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

Pathak, D., Agrawal, P., Efros, A. A., & Darrell, T. (2017). Curiosity-Driven Exploration
by Self-Supervised Prediction. In International Conference on Machine Learning,
Vol. 70, pp. 2778–2787.

Peters, J., & Schaal, S. (2006). Policy Gradient Methods for Robotics. In IEEE International
Conference on Intelligent Robots and Systems, pp. 2219–2225.

Pinto, L., Davidson, J., Sukthankar, R., & Gupta, A. (2017). Robust Adversarial Reinforce-
ment Learning. In International Conference on Machine Learning, pp. 2817–2826.

Precup, D. (2000). Temporal Abstraction in Reinforcement Learning. Ph.D. thesis, Univer-
sity of Massachusetts Amherst.

Premack, D., & Woodruff, G. (1978). Does the Chimpanzee Have a Theory of Mind?.
Behavioral and Brain Sciences, 1 (4), 515–526.

Rabinowitz, N. C., Perbet, F., Song, H. F., Zhang, C., Eslami, S., & Botvinick, M. (2018).
Machine Theory of Mind. In International Conference on Machine Learning, pp.
4218–4227.

Racanière, S., Weber, T., Reichert, D. P., Buesing, L., Guez, A., Rezende, D., Badia, A. P.,
Vinyals, O., Heess, N., Li, Y., Pascanu, R., Battaglia, P., Hassabis, D., Silver, D., &
Wierstra, D. (2017). Imagination-Augmented Agents for Deep Reinforcement Learn-
ing. In Advances in Neural Information Processing Systems, Vol. 30, pp. 5690–5701.

Ratcliff, R. (1990). Connectionist Models of Recognition Memory: Constraints Imposed by
Learning and Forgetting Functions. Psychological Review, 97 (2), 285.

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic Backpropagation and
Approximate Inference in Deep Generative Models. In International Conference on
Machine Learning, pp. 1278–1286.

Richards, A. G. (2005). Robust Constrained Model Predictive Control. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Rocha, F. M., Costa, V. S., & Reis, L. P. (2020). From Reinforcement Learning Towards
Artificial General Intelligence. In World Conference on Information Systems and
Technologies, pp. 401–413.

Ross, S., Gordon, G. J., & Bagnell, J. A. (2011). A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning. In International Conference on
Artificial Intelligence and Statistics, pp. 627–635.

Rubinstein, R. Y. (1997). Optimization of Computer Simulation Models with Rare Events.
European Journal of Operational Research, 99 (1), 89–112.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu,
K., Pascanu, R., & Hadsell, R. (2016). Progressive Neural Networks. arXiv preprint
arXiv:1606.04671.

Salge, C., Glackin, C., & Polani, D. (2014). Empowerment – An Introduction. In Guided
Self-Organization: Inception, pp. 89–112. Springer Berlin Heidelberg.

Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolution Strategies as a
Scalable Alternative to Reinforcement Learning. arXiv preprint arXiv:1703.03864.

1467

Lazaridis, Fachantidis, & Vlahavas

Schaul, T., Horgan, D., Gregor, K., & Silver, D. (2015a). Universal Value Function Ap-
proximators. In International Conference on Machine Learning, pp. 1312–1320.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015b). Prioritized Experience Replay.
arXiv preprint arXiv:1511.05952.

Schmidhuber, J. (2010). Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990-
2010). IEEE Transactions on Autonomous Mental Development, 2 (3), 230–247.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A.,
Lockhart, E., Hassabis, D., Graepel, T., et al. (2019). Mastering Atari, Go, Chess and
Shogi by Planning with a Learned Model. arXiv preprint arXiv:1911.08265.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust Region Policy
Optimization. In International Conference on Machine Learning, pp. 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy
Optimization Algorithms. arXiv preprint arXiv:1707.06347.

Sehnke, F., Osendorfer, C., Rückstiess, T., Graves, A., Peters, J., & Schmidhuber, J. (2010).
Parameter-Exploring Policy Gradients. Neural Networks, 23 (4), 551–559.

Shao, K., Tang, Z., Zhu, Y., Li, N., & Zhao, D. (2019). A Survey of Deep Reinforcement
Learning in Video Games. arXiv preprint arXiv:1912.10944.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Determin-
istic Policy Gradient Algorithms. In International Conference on Machine Learning,
pp. 387–395.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., Van Den
Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the Game of Go Without
Human Knowledge. Nature, 550 (7676), 354–359.

Silvia, P. J. (2012). Curiosity and Motivation. The Oxford Handbook of Human Motivation,
550 (7676), 354–359.

Skinner, G., & Walmsley, T. (2019). Artificial Intelligence and Deep Learning in Video
Games - A Brief Review. In IEEE International Conference on Computer and Com-
munication Systems, pp. 404–408.

Strehl, A. L., & Littman, M. L. (2008). An Analysis of Model-Based Interval Estimation
for Markov Decision Processes. Journal of Computer and System Sciences, 74 (8),
1309–1331.

Stylianou, N., & Vlahavas, I. (2019). A Neural Entity Coreference Resolution Review. arXiv
preprint arXiv:1910.09329.

Su, J., Vargas, D. V., & Sakurai, K. (2019). One Pixel Attack for Fooling Deep Neural
Networks. IEEE Transactions on Evolutionary Computation, 23 (5), 828–841.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine
Learning, 3 (1), 9–44.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT press.

1468

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and Semi-MDPs: A Frame-
work for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence,
112 (1-2), 181–211.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus,
R. (2014). Intriguing Properties of Neural Networks. In International Conference on
Learning Representations.

Tai, L., Zhang, J., Liu, M., Boedecker, J., & Burgard, W. (2016). A Survey of Deep Network
Solutions for Learning Control in Robotics: From Reinforcement to Imitation. arXiv
preprint arXiv:1612.07139.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J., De Turck,
F., & Abbeel, P. (2017). Exploration: A Study of Count-Based Exploration for Deep
Reinforcement Learning. In Advances in Neural Information Processing Systems, pp.
2753–2762.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L., Budden, D., Abdolmaleki,
A., Merel, J., Lefrancq, A., et al. (2018). Deepmind Control Suite. arXiv preprint
arXiv:1801.00690.

Todorov, E., Erez, T., & Tassa, Y. (2012). MuJoCo: A Physics Engine for Model-Based
Control. In IEEE International Conference on Intelligent Robots and Systems, pp.
5026–5033.

Toromanoff, M., Wirbel, E., & Moutarde, F. (2019). Is Deep Reinforcement Learning Really
Superhuman on Atari?. arXiv preprint arXiv:1908.04683.

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahramani, Z., & Levine, S. (2018). The
Mirage of Action-Dependent Baselines in Reinforcement Learning. In International
Conference on Machine Learning, pp. 5015–5024.

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the Theory of the Brownian Motion. Physical
review, 36 (5), 823.

Uther, W., & Veloso, M. (1997). Adversarial Reinforcement Learning. Tech. rep., Carnegie
Mellon University. Unpublished.

Van Den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel Recurrent Neural
Networks. In International Conference on Machine Learning, Vol. 48, pp. 1747–1756.

Van Hasselt, H., Guez, A., Hessel, M., Mnih, V., & Silver, D. (2016a). Learning Values
Across Many Orders of Magnitude. In Advances in Neural Information Processing
Systems, pp. 4287–4295.

Van Hasselt, H., Guez, A., & Silver, D. (2016b). Deep Reinforcement Learning with Double
Q-Learning. In AAAI Conference on Artificial Intelligence, pp. 2094–2100.

Venkatraman, A., Capobianco, R., Pinto, L., Hebert, M., Nardi, D., & Bagnell, J. A. (2016).
Improved Learning of Dynamics Models for Control. In International Symposium on
Experimental Robotics, pp. 703–713.

Vezhnevets, A., Mnih, V., Agapiou, J., Osindero, S., Graves, A., Vinyals, O., &
Kavukcuoglu, K. (2016). Strategic Attentive Writer for Learning Macro-Actions. In
Advances in Neural Information Processing Systems, Vol. 29, pp. 3486–3494.

1469

Lazaridis, Fachantidis, & Vlahavas

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., &
Kavukcuoglu, K. (2017). Feudal networks for hierarchical reinforcement learning.
In International Conference on Machine Learning, pp. 3540–3549.

Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M., Jaderberg, M., Czarnecki, W., Dudzik,
A., Huang, A., Georgiev, P., Powell, R., Ewalds, T., Horgan, D., Kroiss, M., Dani-
helka, I., Agapiou, J., Oh, J., Dalibard, V., Choi, D., Sifre, L., Sulsky, Y., Vezhnevets,
S., Molloy, J., Cai, T., Budden, D., Paine, T., Gulcehre, C., Wang, Z., Pfaff, T.,
Pohlen, T., Yogatama, D., Cohen, J., McKinney, K., Smith, O., Schaul, T., Lillicrap,
T., Apps, C., Kavukcuoglu, K., Hassabis, D., & Silver, D. (2019). AlphaStar: Mas-
tering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/

alphastar-mastering-real-time-strategy-game-starcraft-ii/.

Von Neumann, J., & Morgenstern, O. (2007). Theory of Games and Economic Behavior.
Princeton University Press.

Wainwright, M. J., & Jordan, M. I. (2008). Graphical Models, Exponential Families, and
Variational Inference. Foundations and Trends in Machine Learning.

Wang, Y., He, H., Tan, X., & Gan, Y. (2019). Trust Region-Guided Proximal Policy
Optimization. In Advances in Neural Information Processing Systems, pp. 626–636.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., & de Freitas,
N. (2017). Sample Efficient Actor-Critic with Experience Replay. In International
Conference on Learning Representations.

Wang, Z., Schaul, T., Hessel, M., & Lanctot, M. (2016). Dueling Network Architectures for
Deep Reinforcement Learning. In International Conference on Machine Learning, pp.
1995–2003.

Watkins, C. (1989). Learning from Delayed Rewards. Ph.D. thesis, University of Cambridge.

Wen, Z. (2014). Efficient Reinforcement Learning with Value Function Generalization.
Ph.D. thesis, Stanford University.

Whiteson, S. (2019). A Survey of Reinforcement Learning Informed by Natural Language.
In International Joint Conference on Artificial Intelligence, pp. 6309–6317.

Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning. Machine Learning, 8 (3-4), 229–256.

Wu, C., Rajeswaran, A., Duan, Y., Kumar, V., Bayen, A. M., Kakade, S., Mordatch, I., &
Abbeel, P. (2018). Variance Reduction for Policy Gradient with Action-Dependent
Factorized Baselines. In International Conference on Learning Representations.

Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., & Ba, J. (2017a). Scalable Trust-Region
Method for Deep Reinforcement Learning Using Kronecker-Factored Approximation.
In Advances in Neural Information Processing Systems, pp. 5279–5288.

Wu, Y., Mansimov, E., Liao, S., Radford, A., & Schulman, J. (2017b). OpenAI Baselines:
ACKTR & A2C. https://openai.com/blog/baselines-acktr-a2c/.

Yang, X., & Sun, M. (2019). A Survey on Deep Learning in Crop Planting. IOP Conference
Series: Materials Science and Engineering, 490 (6), 062053.

1470

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://openai.com/blog/baselines-acktr-a2c/

Deep Reinforcement Learning: A State-of-the-Art Walkthrough

Yu, C., Liu, J., & Nemati, S. (2019). Reinforcement Learning in Healthcare: A Survey.
arXiv preprint arXiv:1908.08796.

Zhang, K., Yang, Z., & Başar, T. (2019). Multi-Agent Reinforcement Learning: A Selective
Overview of Theories and Algorithms. arXiv preprint arXiv:1911.10635.

Ziebart, B. D., Maas, A., Bagnell, J. A., & Dey, A. K. (2008). Maximum Entropy Inverse
Reinforcement Learning. In National Conference on Artificial Intelligence, Vol. 3, pp.
1433–1438.

1471

