
1

Deep Reinforcement Learning Aided Packet-Routing For Aeronautical Ad-Hoc
Networks Formed by Passenger Planes

Dong Liu, Jingjing Cui, Jiankang Zhang, Chenyang Yang, and Lajos Hanzo

Abstract—Data packet routing in aeronautical ad-hoc net-
works (AANETs) is challenging due to their high-dynamic
topology. In this paper, we invoke deep reinforcement learning for
routing in AANETs aiming at minimizing the end-to-end (E2E)
delay. Specifically, a deep Q-network (DQN) is conceived for
capturing the relationship between the optimal routing decision
and the local geographic information observed by the forwarding
node. The DQN is trained in an offline manner based on historical
flight data and then stored by each airplane for assisting their
routing decisions during flight. To boost the learning efficiency
and the online adaptability of the proposed DQN-routing, we
further exploit the knowledge concerning the system’s dynamics
by using a deep value network (DVN) conceived with a feedback
mechanism. Our simulation results show that both DQN-routing
and DVN-routing achieve lower E2E delay than the benchmark
protocol, and DVN-routing performs similarly to the optimal
routing that relies on perfect global information.

Index Terms—AANET, routing, deep reinforcement learning

I. INTRODUCTION

Next-generation wireless systems are expected to support
global communications, anywhere and anytime [1]. Current in-
flight Internet access supported by geostationary satellites or
direct air-to-ground (A2G) communications typically exhibit
either high latency or limited coverage. Aeronautical ad-
hoc networks (AANETs) are potentially capable of extending
the coverage of A2G networks by relying on commercial
passenger airplanes to act as relays for forming a self-
configured wireless network via multihop air-to-air (A2A)
communication links [2].

Due to the high velocity of aircraft and the distributed nature
of ad-hoc networking, one of the fundamental challenges in
AANETs is to design an efficient routing protocol for con-
structing an appropriate path for data transmission at any given
time. Traditional topology-based ad-hoc routing protocols [3]
usually require each node to locally store a routing table
specifying the next hop. The routing table, however, has to
be refreshed whenever the network topology changes during a
communication session, hence imposing substantial signaling
overhead and latency in AANETs. Although research efforts
have been invested for improving the stability of routing in
AANETs [4, 5], they have a limited ability to update the
routing tables for prompt adaption in high-dynamic scenarios.

D. Liu, J. Cui, and L. Hanzo are with the School of Electronics and
Computer Science, the University of Southampton, Southampton SO17 1BJ,
U.K. (e-mail: d.liu@soton.ac.uk; jingj.cui@soton.ac.uk; lh@ecs.soton.ac.uk).

J. Zhang is with the Department of Computing and Informat-
ics, Bournemouth University, Bournemouth BH12 5BB, U.K. (e-mail:
jzhang3@bournemouth.ac.uk).

C. Yang is with the School of Electronics and Information Engineering,
Beihang University, Beijing 100191, China (e-mail: cyyang@buaa.edu.cn).

This work was supported in part by the Engineering and Physical Sciences
Research Council Projects under Grant EP/N004558/1, Grant EP/P034284/1,
Grant EP/P034284/1, and Grant EP/P003990/1 (COALESCE), in part by the
Royal Society’s Global Challenges Research Fund Grant, and in part by the
European Research Council’s Advanced Fellow Grant QuantCom (Grant No.
789028).

The code for reproducing the results of this paper is available at
https://github.com/Fluidy/tvtl2020.

By contrast, another family of ad-hoc routing protocols,
namely position-based (or geographic) routing [6], only re-
quires the position information of the single-hop neighbors
and of the destination for determining the next hop. Since it
does not have to maintain routing tables, geographic routing
finds new routes almost instantly, when the topology changes.
Because the position information required can be readily
obtained by each airplane using the automatic dependent
surveillance-broadcast system on board, geographic routing is
more appealing in AANETs. Greedy perimeter stateless rout-
ing (GPSR) [7] was one of the most popular geographic rout-
ing protocols, which has also inspired various extensions [8, 9]
in AANETs. The core idea of greedy routing is to forward the
packet to the specific neighbor that is geographically closest
to the destination. In [8], greedy routing was improved for
avoiding congestion by considering the queue status of next
hop. In [9], the mobility information was further taken into
consideration for choosing a more stable next hop. However,
the performance of greedy routing [7–9] suffers when no
neighbor is closer to the destination than the forwarding node
(such a situation is term as the communication void).

To elaborate, the limitation of greedy-based routing arises
from the fact that the nodes are unaware of the entire net-
work topology. Therefore, our ambitious goal is to enable
the forwarding node to infer the global topology from its
local observation for bypassing the communication void more
efficiently. Although the topology of AANETs revolves dy-
namically, it exhibits certain patterns, since the flight path
and takeoff time are preplanned and remain fairly similar
on the same day of different weeks. This suggests that the
local geographic information may be strongly correlated with
the whole topology, and such correlation may be learned
from historical flight data. In this context, recent advances in
deep reinforcement learning (DRL) [10] have demonstrated
the powerful capability of deep neural networks (DNNs) for
learning a direct mapping from the observation gleaned to the
desired action to be taken.

Against this background, we invoke DRL for routing in
AANETs aiming at minimizing the end-to-end (E2E) delay.
Our major contributions can be summarized as follows:

1) We propose a DRL-based routing algorithm using deep
Q-network (DQN) [10], for directly mapping local geo-
graphic information to optimal routing decisions. Distin-
guished from routing algorithms based on tabular-based
reinforcement learning (RL), such as Q-routing [11] and
its variants [12], which requires frequent information
exchange for updating the Q-table online whenever the
topology changes, our proposed DQN can be trained
offline based on historical flight data to “embed” the
global network topology. During its flight, the forwarding
node can infer the information required for deciding the
next-hop by inputting its local observation into the DQN,
without requiring any online update.

2

2) To boost the learning efficiency, we further design an-
other routing algorithm based on deep value-network
(DVN) by exploiting the knowledge concerning the sys-
tem’s dynamics. Moreover, we introduce a feedback
mechanism so that the forwarding node is able to plan
one step ahead for enhancing the online adaptability.

3) Our simulation results show that both DQN-routing and
DVN-routing achieve lower E2E delay than GPSR. Fur-
thermore, the performance gap between DVN-routing and
the optimal routing relying on perfect global information
is marginal.

II. SYSTEM MODEL

Consider an AANET formed by passenger airplanes. Two
nodes can establish direct communication link when they are
above the radio horizon. The delay of the direct link from
node i to node j can be expressed as

Dlink(i, j) =
d(i, j)

c
+

S

R(i, j)
, (1)

where the first and second terms are the propagation delay and
transmission delay, respectively, d(i, j) denotes the distance
between nodes i and j, c is the speed of light, S is the packet
size, and R(i, j) denotes the data rate of the link i → j.
We consider the decode-and-forward relaying protocol and let
Dque(i) denote the queuing delay at node i.

Our goal is to find the optimal route P = (i1, · · · , iT)
minimizing the E2E packet delay between an source node is
and destination id, which can be formulated as

min
P

∑T−1

t=1
[Dque(it) +Dlink(it, it+1)] (2a)

s.t. I(it, it+1) = 1, ∀t = 1, · · · , T − 1, (2b)

where I(it, it+1) = 1 if nodes it and it+1 are above the radio
horizon and I(it, it+1) = 0 otherwise, i1 = is and iT = id.

Problem (2) can be solved by classic shortest path search
algorithms, which requires the global information regarding
the queuing delay of each node and the link delay between
every two nodes. However, the node positions change rapidly
due to the high velocity of airplanes. Consequently, this may
impose substantial signaling overhead by keeping the required
information up-to-date for implementing the algorithm.

In the following, we assume that each node is only aware
of its own position, the positions of the nodes within its
direct communication range (i.e., its neighbors) as well as
the destination, and invoke DRL for finding the optimal route
in an distributed manner.

III. DRL FOR GEOGRAPHIC ROUTING

In this section, we first recast the routing problem (2) into
the RL framework by designing the key elements of RL, and
propose our DRL-based routing policies.

A. RL framework

In a RL problem, an agent learns from its interactions with
the environment for achieving a desired goal [13]. At each time
step t, the agent observes the state st of the environment and
on that basis executes an action at. Then, the agent receives

a reward rt+1 from the environment and transits into a new
state st+1. The goal of the agent is to learn a mapping from
st to at (i.e., a policy π) for minimizing1 an expected return
E
[∑T−1

t=1 γt−1rt+1

]
, which reflects the accumulated reward

received by the agent during an episode with T time steps.
In the routing problem (2), we specify that a time step starts

when a node has received a packet and ends when the packet
has been transmitted to the next node. Then, the whole episode
begins when the packet is generated by the source and ends
when the packet has been received by the destination or fail to
reach the destination within tmax hops. Different from existing
RL-based routing algorithms that train a distinct agent for each
individual node, the agent in our framework moves along with
the packet, and all the nodes share the agent’s parameters,
which improves the learning efficiency and the scalability.

Let it denote the node where the packet is located
at the beginning of time step t, and let x(i) =
(longitudei [E

◦], latitudei [N◦], altitudei [km]) denote the po-
sition of node i. Then, the current position of the packet and of
the destination can be denoted as x(it) and x(id), respectively.
Let Nit , {j|I(it, j) = 1} denote the neighbors of node it.
To limit the dimension of action exploration, the neighbors
are ranked by their distances to the destination in ascending
order, and the next hop is selected only from neighbors ranked
among the top K. They are termed as the candidates and
denoted by Cit , {i1t , · · · , iKt }, where ikt represents the kth-
ranking neighbor (candidate) of node it.

Action: In time step t, the forwarding node it should
determine which candidate is selected as the next hop. There-
fore, the action at can be represented by the ranking of the
candidate to be selected. Then, the next hop is node iat

t .
State: Since our goal is to learn a routing policy that

only depends on local geographical information. The state
is designed to include the positions of the source and the
destination, as well as on the positions of the candidates, i.e.,

st =
[
x(it),x(i

1
t), · · · ,x(iKt),x(id)

]
, s(it), (3)

where we introduce the notation s(it) to emphasize that st is
the local geographic information observed by node it and we
will use st and s(it) interchangeably in the following.

Reward: The reward function can be naturally designed as
the delay experienced within time step t,

rt+1 = Dque(it) +Dlink(it, it+1). (4)

In this way, minimizing the return is equivalent to minimizing
the average E2E delay.

The action-value function is defined as [13]

Qπ(st, at) , E
[∑T−1

l=t
γl−trl+1

∣∣∣ st, at, π]. (5)

For the routing problem considered, we set γ = 1 and
hence Qπ(st, at) represents the delay between the forwarding
node and the destination by selecting node iat

t as the next
hop and thereafter forwarding the packet according to pol-
icy π. Then, the optimal action-value function is defined as
Q∗(st, a) , minπ Qπ(st, at), from which the optimal policy

1In contrast to a standard RL problem defined to maximize the return, we
consider minimizing the return because we aim at minimizing the E2E delay.

3

can be readily obtained as π∗(st) = argmina Q∗(st, a). In
this sense, Q∗(·) contains all the information required for
determining the optimal next hop, or in other words, it embeds
the global network topology. Therefore, the agent’s goal can
be accomplished by learning Q∗(·).

The Bellman equation for Q∗(·) can be expressed as [13]

Q∗(st, at) = E
[
rt +min

a
Q∗(st+1, a)

∣∣ st, at, π∗
]
, (6)

based on which various RL algorithms, such as Q-
learning [13], have been developed to learn the optimal action
value function. However, Q-learning is faced with the curse
of dimensionality due to the continuous nature of the state st.
Thus, we resort to DRL, specifically DQN, for learning the
optimal action value function.

B. DQN-Routing

We employ a DNN Q(st, at;θQ) shared by all the nodes
to learn the optimal action-value function Q∗(st, at). The
DQN parameter θQ is trained offline using the historical flight
trajectories. Specifically, we create a large set of snapshots
containing the position of each flight at each timestamp.

During the offline training phase, the transmission delay
and propagation delay can be calculated based on the flight
positions. As for the queuing delay, since we aim to train
the DQN for embedding the historical topology information,
which is independent from the packet traffic, we assume that
the queuing delay is identical and constant among all the nodes
during training. In this way, the total queuing delay is actually
determined by the number of hops in the route.

Let each node forward its received packet in a ε-greedy
manner, i.e., with probability ε randomly selecting an action
for exploration and with probability 1 − ε selecting action
at = argmina Q(st, a;θQ) for exploitation. Everytime a
packet is forwarded to the next hop, the experience vector et =
[st, at, rt+1, st+1] is recorded in a replay memory D and we
randomly sample a batch of experiences B from D for updat-
ing the parameter θQ (i.e., the experience replay [10]). Based
on the Bellman equation (6), θQ is updated by minimizing the
loss function E[(yt−Q(st, at; θQ))

2] using stochastic gradient
descent θQ ← θQ − δ

|B|∇θQ

∑
el∈B [yl −Q(sl, al;θQ)]

2,
where δ is the learning rate, yl = rl+1 if the episode
ends on state sl+1, and yl = rl+1 + Q′(sl+1, argmina
Q(sl+1, a;θQ);θ

′
Q) otherwise. Furthermore, Q′(·;θ′

Q) repre-
sents the target network, which has the same structure as the
DQN Q(·;θQ) and is updated by θ′

Q ← τθQ + (1 − τ)θ′
Q

with very small value of τ to reduce the correlations between
the action value Q(sl, al;θQ) and the target values yl [10].

After the training converges, the DQN can be copied to
each airplane in support of online routing decisions. During
its flight, each airplane forwards its received packet according
to the DQN based on the state it observes. Specifically, node
it observe its state s(it) and then evaluates

a∗t = arg min
a∈At

[Q(s(it), a;θQ)] , (7)

where At , {k|1 ≤ k ≤ K, ikt ̸= i1, · · · , it−1} specifics that
the next hop cannot be chosen from the previously selected

nodes to avoid loops in the routes. Then, node it forwards its
received packet to node ia

∗
t .

The above implementation of DQN represents a generic
approach to solving completely model-free RL problems.
However, in the considered routing problem, the system’s
dynamics can be partially known, which can be exploited
for faster learning and better online adaptability. Moreover,
the training of DQN treats the queuing delay as an identical
constant, while in reality the queuing delay varies due to
different packet arrival rate. In the following, we develop a
specialized DRL algorithm for learning the optimal routing
policy more efficiently and introduce a feedback mechanism
for taking the real-time queuing delay into consideration.

C. DVN-Routing With Feedback

In this subsection, we first specify the knowledge con-
cerning the system’s dynamics, which is then exploited for
boosting the learning efficiency. Then, based on the feedback
received from the next-hop candidates, the forwarding node
is capable of planning one step ahead before forwarding the
packet, which improves the online adaptability of the policy.

1) Exploiting the System’s Dynamics: For the routing prob-
lem of AANETs, given the current state st and an arbitrary
action at, the next state can be predicted before the forwarding
node sends the packet, because the movement of nodes can
be neglected within a single time step.2 Specifically, the next
state st+1 is actually the state observed by node iat

t in time
step t, which yields

st+1 = s(iat
t) =

[
x(iat

t),x(iat,1
t), · · · ,x(iat,K

t),x(id)
]
, (8)

where iat,k
t denotes the kth candidate of node iat

t .
As for the reward, before it forwards a packet, the link delay

Dlink(it, i
at
t) can actually be computed in advance according

to (1) at the next hop iat
t and the queuing delay Dque(i

a
t) can

also be measured by iat based on its queuing status [8].
To exploit the above knowledge regarding the state transi-

tion and the reward, we introduce the intermediate-state-value
function of a routing policy π, defined by

Vπ(st) , E
[
Dlink(it, i

at
t) +

∑T

l=t+1
rl+1

∣∣∣ st, π], (9)

which captures the expected delay commencing from the
instant when the packet has experienced its queuing delay
at node it until it reaches its final destination, by forwarding
according to π. Correspondingly, the optimal intermediate-
state-value function is defined as V∗(st) , minπ Vπ(st).

Bearing in mind the definitions of V∗(·) and Q∗(·) as well
as rt+1, we can write V∗(·) in terms of Q∗(·) as

V∗(st) + E [Dque(it)] = min
a

Q∗(st, a), (10)

and write Q∗(·) in terms of V∗(·) as

Q∗(st, a) = E [rt+1 +Dque(i
a
t)] + V∗(st+1). (11)

Observe from (11) that the value of Q∗(·) can be obtained
by learning V∗(·) instead. Then, by substituting (11) into (10)

2For a flight cruise speed of 900 km/h, the position shift within a typical
time step of 10 ms is only 2.5 m, which is much smaller than the minimum
distance allowed between airplanes and hence can be safely neglected.

4

and considering st+1 = s(iat), we can obtain the Bellman
equation for V∗(·) as

V∗(st) = min
a

{
E [r(it, i

a
t)] + V∗

(
s(iat)

)}
, (12)

where r(it, i
a
t) , Dlink(it, i

a
t) +Dque(i

a
t).

2) Offline Training: Similarly to DQN-routing, we invoke
a DNN V (st;θV) to learn V∗(st), termed as the DVN. In
contrast to DQN, the scale of DVN can be much smaller,
because it does not depend on the action, and hence has less
parameters to train.

During the offline training phase, again, we use the his-
torical flight data and assume constant and identical queuing
delay. Let each node forward its received packet in a ε-
greedy manner. According to (12), the action for exploitation
is determined by

at = argmin
a

[
r(it, i

a
t) + V

(
s(iat);θV

)]
. (13)

Then, the experience vector composed by

ẽt = [st, s(i
1
t), · · · , s(iKt), r(it, i

1
t), · · · , r(it, iKt)] (14)

is recorded in the replay memory D and we randomly sample
a batch of experiences B from D. Based on the Bellman
equation (12), θV is updated by minimizing the loss function
E[yt − V (st;θV)] via stochastic gradient descent as

θV ← θV +
δ

|B|
∑

ẽl∈B
[yl+1 − V (sl;θV)]

2
, (15)

where yl = r(il, i
a∗
l) if ia∗

l = id, yl = r(il, i
a∗
l) +

V ′(s(ia∗
l);θ′

V

)
otherwise, a∗ = argmina

[
r(il, i

a
t) +

V
(
s(ial);θV

)]
, and finally V ′(·;θ′

V) is the target network
updated by θ′

V ← τθV + (1− τ)θ′
V .

3) Online Decision: Once sufficiently well trained, the
DVN is copied to each airplane for online routing decision.
Since the information required for determining the action in
(13), i.e., r(it, iat) and V

(
s(iat);θV

)
for a = 1, · · · ,K, are

only available at the next-hop candidates, we introduce a feed-
back mechanism for enabling the forwarding node it to obtain
these information. Specifically, each candidate iat estimates
Dlink(it, i

a
t) and Dque(i

a
t), observes its state s(iat) and com-

putes V
(
s(iat);θV

)
, and then sends r(it, i

a
t) + V

(
s(iat);θV

)
to the forwarding node it, as shown in Fig. 1. Finally, the
forwarding node it selects the action

a∗t = arg min
a∈At

[
r(it, i

a
t) + V

(
s(iat);θV

)]
, (16)

where At is used for avoiding loops in the routes.

Forwarding Node

Candidates

...
... Destination

Optimal Routing PolicyPossible Routing Decision Feedback

Fig. 1. Illustration of the feedback mechanism in DVN-routing.

Compared with directly determining the action based on the
DQN by (7), the information used for deciding the action is
observed by every next-hop candidate instead of that observed
by the forwarding node alone. In this way, the forwarding
node is able to plan one step ahead for more prompt adaption
to the dynamic environment. For example, when the next-
hop candidate iat has a higher traffic load, the queuing delay
Dque(i

a
t) will increase, which increases the value of r(it, iat)

and hence iat is less likely to be chosen as the next hop
according to (16).

The whole learning and decision procedure is shown in
Algorithm 1.

Algorithm 1 DVN-Routing for AANETs

1: Initialize θV and θ′
V ← θV .

Offline DVN Training

2: for episode = 1, 2, · · · , N do
3: Randomly sample a topology snapshot from historical flight

data.
4: Set the source is and destination id.
5: for t = 1, 2, · · · do
6: if iat

t = id, t > tmax then
7: break
8: Observe state st = s(is).
9: Randomly select action at ∈ {1, · · · ,K} (with probabil-

ity ε), or set at = argmina

[
r(it, i

a
t) + V

(
s(iat);θV

)]
otherwise.

10: Store the experience ẽt composed by (14) into D.
11: Randomly sample a batch of experiences from D as B.
12: Update θV and θ′

V according to (15).

Online Routing Decision

Input: is, id, θV .
13: for t = 1, 2, · · · do
14: if it = id then
15: break
16: The forwarding node it observes s(it).
17: for a = 1, · · · ,K do
18: Node iat observes s(iat), estimates r(it, i

a
t), computes

V (s(iat);θV) + r(it, i
a
t) and sends the result to node it.

19: Node it computes a∗
t by (16) and forwards the packet to i

a∗
t

t .

IV. SIMULATION RESULTS

In this section, we introduce the simulation environment
and compare the performance of the routing policies learned
by DRL to benchmark policies via simulations.

A. Simulation Environment

Since there is insufficient real flight data available for
training and testing, we generate synthetic flight data in our
simulation for mimicking the airplane mobility. Specifically,
we consider a 3D-airspace within longitude −40◦ ∼ −5◦ East,
latitude 25◦ ∼ 55◦ North, and altitude 0 ∼ 13 km, whose
2D-projection is shown in Fig. 2. To reflect the typical non-
uniform flight density distribution and to evaluate the perfor-
mance of routing algorithms when communication void exists,
we earmark a pair of no-fly zones located at (−17.25◦, 40◦, 0)
and (−27.75◦, 44.5◦, 0) each having a radius of 500 km and
a height of 13 km, where no flight path passes through.

5

−40 −35 −30 −25 −20 −15 −10 −5

Longitude (◦E)

25

30

35

40

45

50

55

L
at
it
u
d
e
(◦
N
) Preplanned Flight Path

Scheduled Flight Position

Synthetic Flight Position (Train)

Synthetic Flight Position (Test)

(a) Flight positions at time t1

−40 −35 −30 −25 −20 −15 −10 −5

Longitude (◦E)

25

30

35

40

45

50

55

L
at
it
u
d
e
(◦
N
) Preplanned Flight Path

Scheduled Flight Position

Synthetic Flight Position (Train)

Synthetic Flight Position (Test)

(b) Flight positions at time t50

Fig. 2. Illustration of two example snapshots in training and testing set at
different time. The shaded area represents the specific zone, where a particular
flight may be found with probability 80%.

There are 40 preplanned great-circle flight paths randomly
drawn through the available area and then fixed throughout
the simulation to represent the seasonal flight corridors. A
total of 100 airplanes are uniformly placed along the 40 flight
paths, where the airplanes on the same path are flying in the
same direction with constant speed to maintain the safety flight
separation distance. The altitude of each airplane is randomly
chosen within the normal cruise altitude of 9 ∼ 13 km.

In reality, each airplane may not takeoff on time and may
not fly strictly according its preplanned path due to varies
reasons, which results in the mismatch between the historical
flight positions (i.e., training data) and current flight positions
(i.e., testing data). To reflect this issue, we add a random
deviation to the scheduled flight position (i.e., the position
of airplane when it fly strictly according to the plan) to
generate the synthetic flight position for training and testing
the routing algorithm, as shown in Fig. 2. Specifically, the
random deviations along the latitude and longitude follow
Gaussian distribution with a standard deviation of 100 km.

We generate 2000 snapshots of the network, half of which
are used for training and the other half are used for testing
outside the training set. In Fig. 2, we demonstrate a pair of
example snapshots at different time. We can see that the flight
positions change over time, and the positions of the same flight
in training and testing set are different.

In each snapshot, the source node is randomly selected,
while the destination is set as the ground station is located at

500 1000 1500 2000 2500

Episode

60

70

80

90

100

200

300

400

E
2E

D
el
ay

(m
s)

GPSR

DQN

DVN

Optimal

Fig. 3. Learning curve in training phase. All experiments are run for 100
different random seeds each. The curves are smoothed by averaging over a
window of 40 episodes. The lines reflect the average value and the shaded
bands reflect the standard deviation.

(−10◦, 52◦, 0.05). The queuing delay is set as Dque = 5 ms
throughout the training. The packet size is S = 15 KB and the
transmission data rate is configured according to the distance-
based adaptive coding and modulation scheme of [14, Table I]
using matched filter based beamforming relying on 32 transmit
antennas and four receive antennas.

B. Fine-Tuned Parameters of DQN- and DVN-Routing

The DNNs are tuned as follows to achieve their best
performance. The candidate set size is K = 10. Both the DQN
and DVN have two hidden layers, where each layer has 100
and 50 nodes for DQN and DVN, respectively. In this setting,
the total number of unknown parameters to be learned in DVN
is roughly reduced roughly by a factor of three compared
to DQN. The hidden layers employ the rectified linear units
(ReLU) as the activation function while the output layer has
no activation function. In the training phase, the exploration
probability is set as ε = 1 for the first 100 episodes, decreases
to 0.1 within the next 400 episodes, and remains 0.1 for the
rest of the episodes. The learning rate δ is 10−4 for both the
DQN and DVN, while the update rate is τ = 10−3 for both
the target networks. The batch size is |B| = 32. During the
testing phase, we set ε = 0 for both DQN and DVN, and the
parameters θV , θQ are frozen.

C. Performance Comparison

The following benchmarks are considered for comparison:
• Optimal: The optimal route found by solving problem (2)

via the Floyd-Warshall algorithm, which relies on the
global information regarding the link delay between every
two nodes and the queuing delay of every single node.

• GPSR: The routing protocol proposed in [7], which is
solely based on local geographic information. Specif-
ically, each node forwards its received packet to the
specific neighbor that is geographically closest to the des-
tination. When a packet reaches a node where greedy for-
warding fails, the algorithm recovers by routing around
the perimeter of the region.

In Fig. 3, we compare the learning curves of the proposed
DQN-routing and DVN-routing algorithms during training.
We can see that both the algorithms achieve lower average E2E
delay than GPSR after 500 episodes of training and finally

6

0 100 200 300 400 500

E2E Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

GPSR

DQN

DVN

Optimal

With Queuing Delay

Without Queuing Delay

Fig. 4. The CDF of E2E delay with or without considering the queuing delay.

−40 −35 −30 −25 −20 −15 −10 −5

Longitude (◦E)

25

30

35

40

45

50

55

L
at
it
u
d
e
(◦
N
) GPSR

DQN

DVN

Optimal

Source

Destination

Fig. 5. The routes found by each routing algorithms in a example snapshot,
where “F” denotes the congested nodes.

approach the delay of optimal routing. Furthermore, since
DVN-routing exploits the knowledge concerning the system’s
dynamics, it achieves lower E2E delay than DQN-routing after
its convergence.

In the online testing phase, the snapshots are generated
outside the training set as previously mentioned to reflect
the uncertainty in flight positions. Furthermore, to reflect the
fluctuation of traffic load, 20% of the nodes are randomly
chosen to set with a higher queuing delay of 50 ms. In
Fig. 4, we compare the cumulative distribution function (CDF)
curves of the E2E delay during the testing phase. We can
see that upon neglecting the queuing delay in the E2E delay
calculation, DQN achieves near-optimal performance. How-
ever, when taking the queuing delay into consideration, the
gap between the optimal routing policy and DQN-routing
increases. Nevertheless, DQN-routing still outperforms GPSR.
By contrast, DVN-routing can still achieve near-optimal per-
formance, even though it is trained offline assuming constant
and identical queuing delay, because the feedback mechanism
allows each next-hop candidate to report its real-time queuing
delay to the forwarding node during the online decision phase.

In Fig. 5, we show an example snapshot during the testing
phase for comparing the routes found by different routing
algorithms. We can see that GPSR is rather “shortsighted” and
struggles to get round the no-fly zone. By contrast, both DQN-
routing and DVN-routing can find routes having a similar
number of hops as the optimal routing policy, because they
implicitly exploit the network topology information that has
been embedded in the DQN/DVN trained using historical

flight trajectories. Since DQN-routing is unaware of the real-
time queuing delay, it may encounter some congested nodes
(marked by “F”) along the route. By arranging for each next-
hop candidate to feed back its queuing delay to the forwarding
node, DVN-routing can find a route bypassing the congested
relaying nodes.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed DRL-based routing policies for
minimizing the E2E delay in AANETs. We first used DQN
for learning a direct mapping from the local geographic infor-
mation to the optimal routing decision. To boost the learning
efficiency and the online adaptability of the proposed DQN-
routing, we additionally proposed DVN-routing by exploiting
the knowledge concerning the system’s dynamics and by
introducing a feedback mechanism. Simulation results show
that both DQN-routing and DVN-routing achieve lower E2E
delay than GPSR, while DVN-routing performs very closely
to the optimal routing based on global information.

It is worth noting that although AANETs can be formed
in many regions where the flight-density is high enough, it
may fail in certain regions where the flight-density is low.
Future research may integrate low earth orbit satellites into
the AANET for supporting truly global coverage.

REFERENCES

[1] X. Huang, J. A. Zhang, R. P. Liu, Y. J. Guo, and L. Hanzo, “Airplane-
aided integrated networking for 6G wireless: Will it work?” IEEE Veh.
Technol. Mag., vol. 14, no. 3, pp. 84–91, Sept. 2019.

[2] J. Zhang, T. Chen, S. Zhong, J. Wang, W. Zhang, X. Zuo, R. G.
Maunder, and L. Hanzo, “Aeronautical ad hoc networking for the
Internet-above-the-clouds,” Proc. IEEE, vol. 107, no. 5, pp. 868–911,
May 2019.

[3] F. Li and Y. Wang, “Routing in vehicular ad hoc networks: A survey,”
IEEE Veh. Technol. Mag., vol. 2, no. 2, pp. 12–22, Jun. 2007.

[4] E. Sakhaee and A. Jamalipour, “The global in-flight Internet,” IEEE J.
Sel. Areas Commun., vol. 24, no. 9, pp. 1748–1757, Sept. 2006.

[5] Q. Luo and J. Wang, “Multiple QoS parameters-based routing for civil
aeronautical ad hoc networks,” IEEE Internet Things J., vol. 4, no. 3,
pp. 804–814, Jun. 2017.

[6] M. Mauve, J. Widmer, and H. Hartenstein, “A survey on position-based
routing in mobile ad hoc networks,” IEEE Netw., vol. 15, no. 6, pp.
30–39, Nov.–Dec. 2001.

[7] B. Karp and H.-T. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. ACM MobiCom, 2000, pp. 243–254.

[8] D. Medina, F. Hoffmann, F. Rossetto, and C.-H. Rokitansky, “A geo-
graphic routing strategy for north Atlantic in-flight Internet access via
airborne mesh networking,” IEEE/ACM Trans. Netw., vol. 20, no. 4, pp.
1231–1244, Aug. 2011.

[9] S. Wang, C. Fan, C. Deng, W. Gu, Q. Sun, and F. Yang, “A-GR: A
novel geographical routing protocol for AANETs,” Journal of Systems
Architecture, vol. 59, no. 10, pp. 931–937, Nov. 2013.

[10] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, Feb.
2015.

[11] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach,” in Proc. NIPS, 1994, pp.
671–678.

[12] Z. Mammeri, “Reinforcement learning based routing in networks: Re-
view and classification of approaches,” IEEE Access, vol. 7, pp. 55 916–
55 950, 2019.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[14] J. Zhang, S. Chen, R. G. Maunder, R. Zhang, and L. Hanzo, “Adaptive
coding and modulation for large-scale antenna array-based aeronautical
communications in the presence of co-channel interference,” IEEE
Trans. Wireless Commun., vol. 17, no. 2, pp. 1343–1357, Feb. 2017.

