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 Abstract— Recent studies have shown that due to the 

hammer effect of the governor, hydropower units are 

easily creating negative damping torque at the common 

mode frequency (below 0.1 Hz). Therefore, there is a risk 

of ultra low frequency oscillations (ULFO) in hydropower-

dominated systems. ULFO is a small-signal frequency 

oscillation problem, which is quite different from low 

frequency oscillations (LFO). A conventional power system 

stabilizer (CPSS) has less effect on suppressing ULFO. To 

solve this problem, this paper proposes a high-order 
polynomial structure to replace the CPSS, and combine it 

with a proportional resonance controller to form a novel 

PR-PSS. In order to ensure the robustness of PR-PSS, 

based on the characteristic analysis results of the PR-PSS, 

a deep reinforcement learning (DRL) algorithm 

asynchronous advantage actor-critic (A3C) is introduced 

to train an agent. After training, the proposed agent can 

provide optimal parameter settings for PR-PSS under 

various operating conditions. Simulation results verify the 

effectiveness of the proposed method. 
 

Index Terms— ultra-low-frequency oscillations, low frequency 

oscillation, CPSS, PR-PSS, deep reinforcement learning. 

I.  INTRODUCTION 

In recent years, frequency oscillations below 0.1 Hz have 

occurred several times, especially in power systems with a 

high proportion of hydropower. In 2016, when engineers 

tested asynchronous operation in Yunnan Power Grid (China 

Provincial Power Grid), the system had an oscillation with a 

frequency of 0.05 Hz and the frequency fluctuated between 

49.9 Hz and 50.1 Hz [1]. Similar phenomena were observed in 

Turkey and Colombia [2-3]. The simulation results of 

Southwest China Power Grid (SCPG) showed that over 80% 

of N-1 faults and 60% of N-2 faults in the system would 

activate ultra-low-frequency oscillations (ULFOs) [4]. 

After careful studies, several papers concluded that the 
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above ULFO events are closely related to primary frequency 

regulation (PFR) of the hydraulic turbine. More specifically, 

the setting of hydraulic governor for quick dynamic response 

easily leads to ULFO owing to the water hammer effect [5-6]. 

Ref [7] adopted a damping torque analysis method to analyze 

the damping of the hydraulic turbine-governor and found out 

that it easily creates negative damping torque.  

Various approaches have been proposed in the literature to 

suppress ULFO. Studies in [5] show that, unlike hydraulic 

turbines, steam turbines can provide positive damping in ultra-

low frequency band (ULFB). Ref. [8] suggested that the 

ULFO can be suppressed by increasing the proportion of 

thermal power. However, this approach would reduce the 

capability of hydro energy accommodation, and affect the 

peak shaving and frequency control of the power system. In 

[6], the authors proposed a method to suppress ULFO by 

optimizing the parameters of high voltage direct current 

frequency limiting controller (HVDC-FLC). However, in 

some hydro-dominant systems, electric power is transmitted 

only through alternating current (AC) transmission. Therefore, 

it is not feasible for these regions to suppress ULFO by 

adjusting FLC parameters.  

Re-tuning the governor settings is also proposed to 

suppress ULFO. In [9], the PI parameters of the governor were 

optimized to improve the damping torque. Authors in [10] 

suggested quitting the PFR with negative damping as an 

emergency strategy. In this way, ULFO can be suppressed. 

Although these strategies can suppress ULFO, they will 

reduce the dynamic response of the governor. 

A conventional power system stabilizer (CPSS) is an 

effective device to damp the low frequency oscillation (LFO). 

Authors in [7] attempted to suppress ULFO with CPSS. 

However, simulation results show that CPSS cannot eliminate 

ULFO. The reason is that CPSS provides a larger phase lead 

in ULFB, which limits the positive damping provided by 

CPSS [11].  In fact, in addition to the excitation system 

(CPSS), PSS can also be attached to the governor (GPSS). In 

[12], the authors applied GPSS to suppress ULFO and 

simulation results show that the damping of ULFO mode can 

be improved by GPSS. However, authors in [12] ignored the 

impact of GPSS on the LFO modes. The damping of the LFO 

modes may decrease in the process of suppressing ULFO. 

Moreover, the experimental results showed that the governor 

oil pumps will have serious overheating problems due to the 

long-term operation of GPSS [13]. A multi-band PSS is 

proposed by Hydro-Québec, which is named PSS4B [14]. The 

PSS4B consists of three bands, one of the bands can 
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theoretically provide damping for ULFO modes. However, 

PSS4B is rather rigid when it is applied to suppress ULFO and 

further investigations are needed [7]. 

To solve the above problems, this paper combines a high-

order polynomial structure with proportional resonance to 

form a novel PR-PSS, which overcomes the shortcomings of 

CPSS in suppressing ULFO. The characteristic analysis of PR-

PSS shows that it has less influence on other eigenvalues, and 

it does not reduce the damping of the LFO modes in the 

process of suppressing ULFO.  

For the PR-PSS, the parameter settings play an important 

role in suppressing the ULFO. To obtain the optimized 

parameter settings, various methods have been applied to 

optimize the controller in previous studies. In [15], the residue 

analysis method is applied to tune the damping controller. In 

[16], the particle swarm optimization (PSO) algorithm is used 

for PSS parameter optimization.  Moreover, the robust design 

method, e. g. fuzzy theory [17], H-∞  control [18] and 

eigenvalue sensitivity [19] are also used to design a robust 

PSS. 

 In recent years, with the development of artificial 

intelligence (AI), deep reinforcement learning (DRL) has 

become a promising alternative with better robustness to tune 

the controller. In [20], a Q-learning algorithm is used for 

adaptive adjustment of PSS. However, Q-learning is only 

applicable for scenarios that have a low-dimensional and 

discrete action domain. When it is used to design PSS, the 

action domain needs to be discretized, which weakens the 

control effect. To solve this problem, an asynchronous 

advantage actor-critic (A3C) algorithm is proposed in [21] and 

it is suitable for scenarios with continuous action domain. In 

[22], the A3C algorithm is applied to solve the energy 

management problem.  

In this paper, to ensure the effectiveness of the PR-PSS in 

various operation conditions, an A3C algorithm is introduced 

into adaptive control of PR-PSS. The contributions of this 

paper are summarized as follows:  

1) Based on a damping torque coefficient method, the 

mechanism of ULFO is studied, and the differences between 

LFO and ULFO are discussed. Moreover, the feasibility of 

suppressing ULFO by PSS is analyzed. 

2) To overcome the shortcomings of traditional PSS, a 

novel PR-PSS is proposed to suppress ULFO, which is a novel 

approach to solve this problem. In contrast with other classical 

PSS tuned devices, it can provide better damping in the ultra-

low frequency band and suppress ULFO more effectively. 

3) The adaptive adjustment of the PR-PSS is formed as a 

Markov decision process (MDP) with finite time steps, and the 

A3C algorithm is introduced to solve the MDP to obtain the 

optimal policy. Which ensures the effectiveness of PR-PSS in 

each operating condition. 

4) Cases studies demonstrate that the proposed PR-PSS 

controller can show better performance compared with other 

ULFO suppression strategies. Moreover, the proposed agent 

can provide optimal parameters setting for the PR-PSS in each 

operating condition, and make the system has a larger stability 

margin than traditional parameter setting method. 

The remaining part of this paper is organized as follows: 

The mechanism of ULFO is presented in section II. In section 

III, the structure of PR-PSS is introduced. Section IV analyses 

the character of PR-PSS and proposes the parameters self-

tuning method for PR-PSS. Simulation results are provided in 

Section V and Section VI.  Section VII concludes the paper. 

II.  MECHANISM OF ULFO  

In this section, the Phillips-Heffron [23] model including 

turbine governing system and PSS are constructed to analyze 

the mechanism of ULFO. 

The standard linear model of Phillips-Heffron is shown in 

Fig. 1, and the motion equation of generator rotor considering 

only the small signal is as follows: 
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where ∆δ and ∆𝜔 are the increment of rotor angle and rotor 

speed, respectively; M is inertia time constant of the generator; 

∆Tm and ∆Te are the increment of mechanical torque and 

electromagnetic torque, respectively. D is the damping 

coefficient. In general, it can be neglected [7]. 
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Fig. 1. Linearized model of Phillips-Heffron [23] in a connected network. 

Based on the damping torque analysis method, the 

mechanical torque increment ∆Tm can be decomposed into: 

 
md msm

K KT                                     (2) 

where Kmd and Kms are the damping torque coefficient and the 

synchronous torque coefficient of ∆Tm, which can be 

calculated as follows: 
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                            (3) 

Ggov (s) represents the governor model. In this paper, the 

simplified governor model is discussed and the transfer 

function of governor is [5]: 
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                                (4) 

where TG is the response time of the governor. 

Gt(s) represents the turbine model and the transfer function 

is listed as follows:
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where Tw is time constant of water hammer effect. 
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Substituting s = jwd into the equation (4) and equation (5), it 

can be obtained that: 
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      (6) 

For equation (6), set TG = 5, and bring wd = 2πf into 

equation (3) to obtain the trajectory of Kmd change with 

frequency f under different Tw conditions. The results are 

shown in Fig. 2. 

 
Fig. 2. Damping characteristic curve under a variety of Tw conditions. 

It can be seen from Fig. 2 that the damping coefficient Kmd 

is negative in the ULFB (<0.1 Hz). Moreover, with an increase 

of Tw, the Kmd would decrease. 

The electromagnetic torque increment ∆Te of the generator 

can be decomposed into: 

delta psse
T T T                                   (7) 

where ∆Tpss is the torque increment contributed by the output 

signal of the PSS; ∆Tdelta is the torque increment contributed 

by excitation system. 

Based on the damping torque analysis method, ΔTdelta and 
ΔTpss are decomposed into damping torque (Δw) and 

synchronization torque (Δδ) respectively: 
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where Kdelta-d and Kpss-d are damping torque coefficients of ∆Te, 

respectively; Kdelta-s and Kpss-s are synchronous torque 

coefficients of ∆Te. Then, the following equation can be 

derived from equation (7) and (8): 
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Based on (2) and (9), neglecting D, the motion equation of 

generator (1) can be further formulated as: 
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The damping ratio ξ is as follows: 
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In fact, for the low frequency oscillation (LFO) or electro-

mechanical oscillation, it is caused by the negative damping of 
excitation system. More specially, due to the wide application 

of the high magnification excitation system, the excitation 

system easily make the damping torque coefficients Kdelta-d 

negative. Moreover, this negative Kdelta-d would make the 

system appear to have a negative damping oscillation mode in 

the range of 0.1-2 Hz (named LFO mode).  

For the ULFO problem, it is caused by the negative 

damping of the hydraulic governor. More specifically, due to 

the water hammer effect, the setting of hydraulic governor for 

quick dynamic response can easily produce negative damping 

torque Kmd in the ULFB (Fig. 2), which makes the system 

appear to have a negative damping oscillation mode in the 

range of 0.01-0.1 Hz (named ULFO mode). 

ULFO is completely different from the LFO. No 

oscillations between units are observed. In the frequency 

oscillations, the speed of generators and the frequencies of 

buses vary with the same phase and amplitude [6]. Moreover, 
it is strongly related with governors and turbines of generators, 

and is deemed as a result of the small-signal instability of the 

system's primary frequency control process. The ULFO is not 

a problem of angle stability, but belongs to the category of 

frequency stability.  

The reason why CPSS can prevent LFO is that the damping 

torque coefficients Kdelta-d (which is caused by the excitation 

system) can be offset by the Kpss-d (which is caused by the 

CPSS). This makes the damping of the system positive. 

 Theoretically, the negative damping torque Kmd can also be 

offset by a positive damping torque Kpss-d produced by CPSS 

and the ULFO can be avoided in this way.  
 However, CPSS cannot provide enough damping torque in 

ULFB. Authors in [11] do various experiments to analyze the 

amplitude and phase characteristics of CPSS. The results show 

that CPSS always provides an excessive phase lead in ULFB, 

and this makes CPSS hardly to provide damping torques for 

both LFO modes and ULFO modes. Similarly, the simulation 

results in [7] also show that CPSS cannot suppress ULFO. 

Hence, it is not feasible to suppress ULFO by configuring 

CPSS. 

III.  STRUCTURE OF PR-PSS 

As mentioned in Section II, the reason why CPSS cannot 

suppress ULFO is that it can only provide a slight damping in 

ULFB. If this shortcoming can be overcome by improving its 

structure, PSS can be used to prevent ULFO. Based on the 

above considerations, a PR-PSS is introduced in this section. 

A. PSS Model 

For a PSS, previous studies have shown that the structure of 

PSS will affect the control effect. In this paper, to ensure that 

the optimal PSS structure can be obtained to suppress ULFO, 

a high-order polynomial is proposed to replace the traditional 
PSS structure and it is listed as: 
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              (12) 

In fact, equation (12) can be regarded as a uniform 

expression of the PSS transfer function. By adjusting the 

parameters of equation (12), an optimal structure of PSS can 

be obtained to suppress ULFO. 

B. PR Controller Model 

The proportional resonance controller consists of a 

proportional model and a resonant model. The main 

characteristics of a PR controller is that it can accurately 

control one certain frequency and reject the other frequencies 

effectively. The transfer function of a PR controller is as 

follows [24]: 

 PR 2 2

0

2

2

R c
p

c

K s
G s K

s s


 

 
 

                        (13) 

where KP is the proportionality coefficient; KR is the resonance 

coefficient; ω0 is the resonant frequency. ωc is the cut-off 

frequency of the resonant model. 
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C. PR-PSS Model 

To overcome the shortcoming of CPSS, this paper adds the 

PR controller to the PSS to form a novel PSS, named PR-PSS. 

The structure of the PR-PSS is shown in Fig. 3. In PR-PSS, the 

PR controller is set as a band-pass filter, which is used to retain 

the concerned mode (ULFO mode) by filtering out other 

modes in the original signal and to obtain a pure sole modal 

signal. Then, this processed signal is used as the input to the 

PSS. Compared with the PSS4B, PR-PSS has these advantages: 

PR PSS
Output 

limitation

 pss

 
Fig. 3. Structure of proportional resonance PSS. 

1) PR controller can accurately control one certain 
frequency and reject the other frequencies effectively, and the 
command signal at this frequency can be tracked without static 
error. Therefore, this paper introduces a PR mechanism to 
focus the PSS controller's effect on the target frequencies, and 
then add damping mainly to that particular frequency. 

2) The structure of PR-PSS is much simpler than PSS4B 
and it has fewer controller parameters. Therefore, it is easier to 
design the PR-PSS parameters than PSS4B. Moreover, a high-

order polynomial is proposed to replace the traditional PSS 
structure. By adjusting the parameters of high-order 
polynomial, the optimal structure can be obtained to suppress 
ULFO. 

3) For the CPSS, PSS4B and PR-PSS, the corresponding 
amplitude-frequency characteristic curves and phase-

frequency characteristic curves are shown in Fig. 4. It can be 
seen that, by adjusting the parameters of the PR-PSS 
controller, the phase lead amplitude is reduced and the gain is 
increased. Moreover, PR-PSS can provide better damping in 
the ULFB compared to both PSS4B and CPSS. 
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Fig. 4. Bode diagram of PSS, PSS4B and PR-PSS at very low frequency. 

IV.  PR-PSS CHARACTERISTICS ANALYSIS AND 

PARAMETER TUNING RULE 

The structure of the PR-PSS mentioned in Section III is 

different from the CPSS. The traditional parameter tuning 

method may not be so good. Therefore, it is necessary to 

analyze the characteristics of the PR-PSS. Based on the 

analysis results, the parameter setting rules are formulated. 

A. PR-PSS Characteristics Analysis 

The linear state space model of n-machine system is as 

follows [15]: 

1

n

j j

j

j j

x Ax Bu Ax B u

y C x



    

 

                   (14) 

where vector x  is the state variable of the system; A is the 

state matrix; vector uj and yj are the input and output of the jth 

generator of the system; Bj and Cj are the input and output 

matrices, respectively.  

For the state matrix A, the following equation can be 

obtained: 

T

AM M

MN I

 

                                 

(15) 

where M is right feature vector; N is left feature vector.   is 

the diagonal matrix, which can be expressed as follows: 

 1 2diag , , ,
m

                          (16) 

where λ1, λ2, ⋯, λn are the eigenvalues of the state matrix A. 
Given the following transformation: 

x Mz                                         (17) 

By introducing the above equation into the linear state space 

model of the system, it can be obtained that: 
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    (18) 

Since yj passes through PR band-pass filter, it is only a 

single mode signal: j j i iy C m z . Where zi is the ith 

component of z. The output of PR-PSS configured on the jth 

generator is as follows: 

   - -j PR PSS j j PR PSS j j i i
u G s y G s C m z   

          (19) 

By introducing equation (19) into the linear state space, it 

can be obtained that: 

 -

1

n
T
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j

z z N B G s C m z A z




     =         (20) 

A


is the state matrix of the transformed system, which is 

constructed as follows: 
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The eigenvalues of A


are: 

 1 1 -
1

diag , , ,
n

T

i j PR PSS j j i m
j

n B G s C m  



    
 

  

 

(22) 

It can be seen from the above equation that PR-PSS is only 

valid for a single mode (ULFO mode) obtained by filtering and 

it has no impact on the other oscillation modes. In fact, PSS 

has the ability to enhance the damping of LFO modes, and the 
essence of PR-PSS is to concentrate this capability on 
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enhancing the damping of ULFO mode. 

B. PR-PSS Parameters Self-Tuning Method 

Assuming the ith eigenvalue λi is ULFO mode: 

   2 2

i i i

i i i i

j  

   

 

  
                      (23) 

where αi and ωi are respectively the real part and imaginary 

part of ULFO mode. ξi is the damping ratio of ULFO mode. 

Studies in [7] show that λi is strongly related to the operating 

conditions of hydraulic turbines and would change with the 

operating conditions of hydraulic turbines. This means that 

under different operating conditions, λi are different. In order to 

ensure the validity of the PR-PSS in various operating 

conditions, this paper introduces an A3C algorithm [21] to 

learn a policy for an agent to provide the optimal parameter 

settings during different operating conditions. 
1) Problem Formulation 

The adjustment of PR-PSS settings is a decision making 

problem in unknown environments, which can be formulated 

as a MDP with finite time steps. In general, the MDP can be 

described by S, A, P, R. 

•S is the state set, as mentioned above, ULFO mode is 

strongly related to the operating conditions of hydraulic 

turbines. To make the uncertainty of the system to be better 

represented, some measured electrical parameters (such as 

node voltage) in each operating condtions are taken as states. 

Therefore, the state of the system at the kth step can be defined 

as  1, , ,k k i k m ks M M M . Mi,k is the ith bus measured 

electrical parameter during the kth time step. 

•A is the action set, in this paper, where action refers to the 

adjustment of PR-PSS parameters. Therefore, the action set 

should be PR-PSS parameters set. Noted that the PR controller 

should be set as a band pass filter to ensure accurate filtering of 
UFLO mode. The resonant frequency of the PR controller can 

be set as the center frequency: 0 = i   ( i  can be identified by 

Prony algorithm under various operating conditions.).  

Considering that there may be an error between the 

identified ULFO model and its real value, a certain bandwidth 

is essential. For PR controller, the filter bandwidth of PR 

controller is determined by KP and ωc, and KR has no effect on 

it. Set KP=0 and s=jω, and bring them into equation (13): 
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According to the definition of bandwidth, two solutions of 

equation   2RG j K  are the cut-off frequencies. It 

means that the equivalent solutions of 
0 0

0

1
2 c

 
  

 
  

 
are 

the cut-off frequency. The bandwidth is cB   and the ωc of 

PR controller can be set as Bπ. For the setting of Kp and KR, 

this paper sets  PR 0  = 1G j . This means that the single mode 

signal obtained by filtering, amplification or attenuation should 

be avoided. The mathematically derivation between Kp and KR 

can be obtained in this way by: KP+KR=1.  

It can be concluded that for the settings of the PR controller, 

only two parameters B and Kp need to be adjusted, other 

parameters can be identified by Prony algorithm (ω0) or 

calculated by these two parameters (ωc, KR). Therefore, the 

action at at the kth step can be defined as 

 , 0, , 0, ,, , ,k p k k k n k k n ka K B a a b b . Where 
,p kK  and kB  

are the PR controller parameters setting at the kth time step;

0, , 0, ,,k n k k n ka a b b are the PSS controller parameters settings 

at the kth time step. In this paper, n is set to 2. 

•  P is the state transition probability function and it 

describes the probability of the environment moving from the 

state sk to the next state sk+1. It can be defined as 

 1 ,k k ks P s a .  

• R is the reward function and it can be used to evaluate the 

merits of the action. r (sk, ak) can be used to describe the 

reward obtained by the agent when taking action ak at state sk. 

In this paper, the reward is used to evaluate the effect of PR-

PSS parameter settings on the damping of oscillation modes. 

As mentioned in Section IV-A, PR-PSS has less effect on other 

oscillation modes. When adjusting the PR-PSS parameters, 

only the change of ULFO mode need to be considered. 

Therefore, the reward at time step k can be defined as follows: 

  ,

, ,

0                     if 
,

     if 

i k set

k k

set i k i k set

r s a
 

   

 
  

               (25) 

where ξset is the desired damping ratio of ULFO mode,  it can 

be set to be 5% [19]. 

At each time step k, the agent perceives the state of the 

environment sk and takes an action ak based on a policy 

 k k
a s  (π is the policy which maps states to actions). Then 

the environment transfers to the next state st+1 with probability 

 ,k kP s a , and this agent obtains a immediate reward rk. The 

key to solve the problem of adaptive adjustment of PR-PSS 

parameters is to obtain the optimal policy π which can make 
the agent to obtain the maximize discounted reward from the 

start state. In general, the action-value function is used to map 

state-action pairs (sk, ak) to the expected cumulative discounted 

reward following the policy π, which can be defined as: 

 , ,
k k k k k

Q s a R s a


                           (26) 

where 

     1 1 1, , ,i k

k k k k k i i ik k

i k

s a s aR sr r ar 






        (27) 

where Rk is the cumulative discounted reward from the time 

step k; γ is a discount factor.  

Since equation (26) satisfies the recursive relationship, it can 

be transformed into the Bellman expectation equation [25]: 

   
1 1 1, ,

kk k k a k k
Q s a R Q s a

 
 

  
      

       (28) 

In order to obtain the optimal policy π for the agent, a start 
of the art DRL algorithms A3C is introduced in this paper. 

2) A3C Algorithm for PR-PSS Adaptive Control 

The A3C algorithm is an actor-critic structured based 

method of the DRL. Both the actor network and the critic 

network are introduced to approximate the policy function and 

action-value function, respectively. During the training, these 

two networks are trained against each other to make the critic 

network evaluate policy function π more accurate, and the actor 

network provide better parameter settings for PR-PSS.  
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Fig. 5. A3C-based agent training diagram to be applied. 

Moreover, asynchronous multi-threaded mechanism is 

adopted in the A3C algorithm. Multiple threads-specific 

parallel actor-learners execute different exploration policies, 
and the overall changes are accumulated to update the 

networks. The training process is as follows: 

For the critic network, it is parameterized by w, takes as 

input state st and action at, outputs an estimate of the action-

value function  ,
k k

V s a w . The training of critic networks is 

the process of minimizing the loss function between the output 

of critic network and the action-value function: 

 

Algorithm 1 Policy learning based on A3C Algorithm 

Input: Measured electrical parameters 

Output: PR-PSS parameter settings 

1:   Initialize: 

2:     Assume global shared parameter vectors w’, u’ and 

global shared counter T = 0 

3:      Assume thread-specific parameter vectors w, u 

4:      Initialize thread step counter 1t   

5:   repeat 

6:       Reset gradients:   0w

w
L  
   and   0u

u
J  
   

7:       Synchronize thread-specific parameters w’=w and 

u’=u.  

8:       tstart = t 

9:       Get state st 

10:     repeat 

11:         Perform at based on the policy  , u

t t
a s   

12:         Receive reward rt and new state st+1 

13:         1t t  , 1T T   

14:     until terminal st or t – tstart = = tmax 

15:     
0                   for terminal 

,  for non-terminal 

t

w
t t t

s

R
V s a s

 


 

16:    for  1, , starti t t   do 

17:        iR r R   

18:        Accumulate gradients with respect to w’: 
     w w w

L w L w L w      

19:        Accumulate gradients with respect to u’:  
     u u u

J u J u J u      

20:     end for 

21:     Perform asynchronous update based on (30) and (34) 

22:  Until T > Tmax 

     
   

2

2

1 1

, , =

, ,

w k k k k

w k k k k k

L w Q s a V s a w

r V s a w V s a w



  

   

   

              (29) 

In the A3C algorithm, n-steps return method is adopted to 

improve the training speed of neural networks and the loss 

function can be rewritten as [21]: 

       

 

2
1

1 1
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= , ,
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i n

w k i k k k k

i

k k w w

L w r V s a w V s a w

w w n L w

 


  




 
  

 
  

         (30)   

where nw is the learning rate of the critic networks. 

For the actor network, it is parameterized by u, takes as input 

state st and outputs the action at. The actor networks performs 

the policy  ,
k k

a s u improvement task, and it updates the 

policy based on the action-value function estimated by critic 

networks. To obtain the optimal policy, during the training, the 

actor networks can be optimized by the policy gradient [22]: 

       log , ,
u u u k k k k k
J u a s u R V s a w         (31) 

Similar to the critic network, n-steps return method is also 

adopted to the training of the actor network and the policy 

gradient can be rewritten as: 

     
1

log , ,
T

u u u k k k k

t

J u a s u A s a


    
 
          (32) 

where 

     
1

0

, , ,
n

i n

k k k i k n k n k k

i

A s a r V s a u V s a w 


  


         (33) 

In A3C, to explore the environment more effectively, the 

entropy of the policy function   ,
u k k

H a s u  is added to 

the policy function and the policy function can be rewritten as: 

        
 

1

1

log , , ,
T

u u u k k k k u k k

t

u

k k u u

J u a s u A s a H a s u

u u n J

  






 
     

 

  

    

(34) 

where u
n  is the learning rate of the actor networks; H is the 

entropy; β is the core parameter, which is used to control the 

strength of the entropy regularization term.  

The procedure of the A3C algorithm is outlined in 

Algorithm1 , and the computational process of the A3C-based 

agent is shown in Fig. 5. 

V.  SIMULATION AND DISCUSIONS 
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A. Layout of Testing Case 

In this paper, simulations are carried out on a hydropower 

system in SCPG. The simplified system topology is shown in 

Fig. 6. The system is representative of the 2016 summer grid, 

which with 53 busses, 26 lines, and 17 hydropower units. The 

total installed capacity of the system is 1100 MW. All the 
units adopt a fifth-order model and they are equipped with the 

excitation system and turbine governing system. The Prony 

algorithm is applied to system identification, and the results 

show that the test system has ULFO mode. Hence, PR-PSS is 

configured on the CTHC-2#, CPQ-3#, CJB-1# and CJB-2#, 

which are strongly related with this ULFO mode. 
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Fig. 6. Transmission network used for case study. 

For the test system, the eigenvalues of the test system is 

calculated, and the results show that there are 16 electro-

mechanical oscillation modes in the system. For these modes, 

the damping of four modes is small and can be regarded as the 

dominant modes (three LFO modes and one ULFO mode), 

which are listed in Table I. 
Table I  

Dominant modes of the test system 

 Modes Eigenvalues 
Damping 

(%) 

Frequency 

(Hz) 

ULFO mode  -0.012+j0.57 2.10 0.09 

LFO mode 1 -0.686+j11.77 5.81 1.87 

LFO mode 2 -0.615+j10.28 5.97 1.64 

LFO mode 3 -0.454+j9.49 4.78 1.51 

B. Training Process of A3C-Based Agent 

Before the training, the structure of the actor networks and 
critic networks is predetermined. In this study, they both adopt 
three hidden layers, consisting of 128 neurons, 64 neurons and 
64 neurons (see Fig. 5), respectively. Besides, the hyper 
parameters in the A3C algorithm are shown in Table II: 

TABLE II 

Hyper Parameters in A3C Algorithm 

Parameter Value 

Maximum time step (tmax) 10 

Reward discount factor ( ) 0.9 

Entropy regularization term (β) 0.01 

Learning rate for actor network ( w
 ) 0.0001 

Learning rate for critic network ( u
 ) 0.00001 

Maximum training episode (Tmax) 10000 

During the training process, the history state data is 
introduced to train the agent. In each episode, the agent would 
interact with the system to randomly sample a 10 consecutive 

state set from history data. Then the agent would provide the 
action based on the state. After that, the states and actions are 
transferred to the test system, and the time domain simulation 
and Prony identification are carried out to obtain the ULFO 
mode. Finally, the reward can be calculated according to the 
equation (25). Based on the equation (30)-(34), the parameters 
of networks can be updated. With the increasing of the 
episodes, the training process of network converges. 

Fig. 7 shows that the average reward (The average reward of 
each episode is the average value over these 100 evaluation 
episodes). The mean and the standard deviation of the average 
reward are indicated by the solid lines and the shaded areas, 
respectively. It can be seen from Fig. 7 that, during the initial 
stage of training process, the reward is lower. However, with 
the increase of training episodes, more experiences are 
accumulated and the reward increases rapidly. After about 
4500 episodes, it converges to 0, which means that the agent 
has successfully learned the control policy to make the ULFO 
mode with satisfied damping during various operating 
conditions. 

 
Fig. 7. Cumulative reward change with episode during the training process. 

C.  On-line application of the proposed agent 

After off-line training, the well-trained agent can be applied 
for PR-PSS parameter settings self-tuning. The following 
online application strategy is proposed for the agent and the 
details are shown in Fig. 8.  
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Fig. 8. Actual implementation architecture of proposed agent. 

Step 1: Based on the dynamic trajectory of the system (e.g. 
the power angle the generator), the eigenvalues of the system 
can be identified by Prony algorithm. 

Step 2: Analysis of the identified eigenvalues to judge 
whether the system has the risk of ULFO. If not, the above 
steps are repeated; if yes, the strategy proceeds to the next step. 

Step 3: Upload the hydraulic turbine operating conditions 
information. The agent provides the optimal parameter 
settings for the hydraulic turbine equipped with PR-PSS based 
on the feedback information. 
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D.  Performance Evaluation of PR-PSS 

In order to illustrate the effectiveness of the proposed 
method, the range of Tw is discretized to form several typical 
operating conditions, which is shown in Table III. 

TABLE III 
Values of Tw in different cases 

Cases Case 1 Case 2 Case 3 Case 4 Case 5 

Tw 0.5 1 1.5 2 2.5 

Taking Case 1 as an example, a two-phase short circuit fault, 
which starts at 2 s and lasts 100 ms (Fault 1 in Fig. 6) is 
applied to the external line of the CJL-220KV substation in 
the test system. The frequency deviations of partial generators 
are shown in Fig. 9. It can be seen that the original system (the 
system is not equipped with PSS and PR-PSS) is unstable and 
the frequencies of the units are constantly oscillating for a 
long period. However, by applying the PR-PSS in the 
corresponding units, the frequency fluctuation of each unit is 
obviously reduced and quickly restored to the steady state. 
Therefore, it can be concluded that the proposed PR-PSS can 
suppress ULFO. 
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Fig. 9. Frequency deviation subject to fault without and with PR-PSS. 
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Fig. 10. Eigenvalue distribution of systems without and with PR-PSS. 

To further illustrate the changes in the system stability after 
applying the PR-PSS, a distribution of eigenvalues of the test 
system (Case 1) is shown in Fig. 10. It can be seen that only 
the ULFO mode moves left, and the other eigenvalues have 
hardly changed. That is to say, the PR-PSS only enhances the 
damping of the ULFO mode and has less effect on the other 
modes, which is consistent with the conclusions of Section IV-
A. 

To compare PR-PSS with other ULFO suppression 
strategies, two common strategies are also used as the cases: 

Optimizing PID parameters: suppression of ULFO by 
optimizing governor PID parameters of hydro-turbine units, 
where the more details can be found in [7]. 

Applying GPSS: GPSS are configured in CTHC-2#, CPQ-
3#, CJB-1#,  CJB-2# and CJB-3#, and the parameters of GPSS 
are tuned based on [12]. 

So far, three methods of ULFO suppression have been 
proposed, and applied to test system (Case 1). Frequency 

deviations of CTK-1# are shown in Fig. 11 and the change of 
ULFO mode is listed in Table IV.  

TABLE IV 
Comparison of ULFO modes by using different strategies 

Strategies 
Real part 

(α) 
Imag part 

(𝜎) 
Damping 

(ξ) 
Original settings -0.012 0.570  2.10% 

Applying GPSS -0.034 0.535  6.34% 

Optimizing PID 
parameters 

-0.053 0.603 8.78% 

Applying PR-PSS -0.054 0.562 9.56% 
It can be seen from Fig. 11 and Table IV that all three 

strategies can effectively suppress ULFO. Moreover, by 
comparing the damping change of UFLO modes under three 
methods, it can be concluded that PR-PSS has a better 
enhancement effect on the ULFO mode damping than the 
optimizing governor parameters and applying GPSS. 
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Fig. 11. Frequency deviation of CTK-1# with different damping strategies. 

E. Robustness Test of the Proposed A3C-Based Agent  
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Fig. 12. Frequency deviation of CTK-1# during Fault 1: (a) Case 2; (b) Case 3; 

(c) Case 4; (d) Case 5. (see Table II) 

In this paper, an A3C-based agent is proposed for adaptive 
adjustment of PR-PSS parameters settings. To evaluate the 
adaptability and robustness of the proposed agent, the four 
cases in Table II are taken as comparison scenarios. In each 
case, the trained agent provides the corresponding parameter 
settings for PR-PSS. The PR-PSS tuning based on the 
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traditional method is also performed for comparison. (more 
details can be found in [15]). Time domain simulations are 
carried out in these four cases and the dynamic response of the 
CTK-1# is shown in Fig. 12. 

According to Fig. 12, during four cases, the system with the 
proposed A3C-based agent reaches steady state in the shortest 
time. Compared with the traditional method, it shows better 
performance in suppressing ULFO. Therefore, it can be 
concluded that the robustness of the proposed method is much 
better than the traditional methods. 

To further verify the robustness of the proposed method, the 
time constant Tw of all turbines are selected randomly in range 
[0.5, 2.5]. Each set of parameters forms a separate case. For all 
cases (2187 cases in total), the ULFO modes and its 
probability density function (PDF) are calculated and plotted 
in the complex plane, which are shown in Fig. 13. 

It can be seen from the Fig. 13 (a) that the ULFO mode are 
located in the right plane of real axis in some cases, which 
means that the system has a risk of ULFO. Fig. 13 (b) and (c) 
shows the results of ULFO mode with the traditional method 
and the proposed method, respectively. In all cases, the ULFO 
modes are located in the left plane of the real axis. Moreover, 
compared with the traditional method, the proposed method 
makes the ULFO mode to move more to the left, and the 
system has a larger stability margin. 
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Fig. 13. ULFO modes in different conditions: (a) No PR-PSS; (b) PR-PSS 

tuned with traditional method; (c) PR-PSS tuned with proposed method. 
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Fig. 14. Transmission network for 10-machine 39-bus system. 

VI.  FURTHER DISCUSSION IN IEEE BENCHMARK 

MODEL  

A. IEEE 10-machine 39-bus system 

According to [26], the IEEE 10-machine 39-bus system can 
be used as an benchmark model for the analysis and control of 
small-signal stability. Therefore, this paper also adopts this 
model as a test system to further verify the effectiveness of the 
proposed method. The structure of this benchmark model is 
shown in Fig. 14. 

TABLE V 

 Values of Tw in different cases 

Cases Case 1 Case 2 Case 3 

Tw 1 2 2.5 

B. Comparison of different reward function 

For the test system, Fault 1 (Three-phase short circuit fault 
occurring in the bus 5, starting at 2.0 s and lasting for 0.2 s.) is 
used to excite the dynamic characteristics of the system, and 
the Prony method [27] is used to identify the eigenvalues of 
the system. The results show that there is an ULFO mode 
0.002+j0.56 in the test system, and it would make the test 
system to have high risk of ULFO. To solve this problem, PR-
PSS are configured on the G1, G5 and G8, and the A3C 
algorithm is used to train the agent for the PR-PSS parameters 
self-tuning.  

For the DRL, the selection of reward is very important. 
Since the reward is used to evaluate the merits of the action. If 
the design of reward function is unreasonable, it also affects 
the convergence speed of the algorithm.  

For the PR-PSS parameters self-tuning problem, four 
methods can be used to form reward function: mean absolute 
error (MAE), mean square error (MSE), root mean square 
error (RMSE) and mean absolute percentage error (MAPE). 
These indicators are computed as follows: 
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Fig. 15. Cumulative reward change with episode during the training process. 

Fig. 15 shows that the average reward (The average reward 
of each episode is the average value over these 100 evaluation 
episodes). The mean and the standard deviation of the average 
reward are indicated by the solid lines and the shaded areas, 
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respectively. It can be seen from Fig. 15 that using the reward 
function constructed by MAE to train the agent can get the 
best training effect, and it makes the algorithm to converge 
fastest. 

C. Stability guarantees of the proposed agent 

To ensure the stability of the proposed agent, this paper 
propose an strategy for the agent: Firstly, a set of conservative 
PR-PSS parameter setting can be pre-calculated by the robust 
method, and it can still guarantee the system stability in 
extreme scenarios. Then, during each state, the parameter 
setting provided by the well-trained agent can be compared 
with the pre-calculated conservative parameter setting in the 
estimation system. Finally, the better one (which obtains the 
bigger reward) can be sent to the actual system. The detailed 
process is shown in Fig. 16. 

Estimation system: It can be seen as the dynamic equivalent 
model of the actual system, and it would update the 
parameters of the system based on the deviation of state 
estimation to approximate the actual system [17]. 

Comparison device: Based on the estimation system, the 
action provided by the agent is compared with the pre-
calculated conservative action, and the better one (which 
obtains the bigger reward) is sent to the actual system. 

Step1: In each state, based on the feedback information, the 
well-trained agent will provide an action (PR-PSS parameter 
settings) to the comparison device.  

Step2: The comparison device will send the action provided 
by the agent and pre-calculated action to the estimation system, 
respectively. Then, the estimation system would feedback the 
corresponding rewards.  

Step3: The comparison device will judge the two actions 
based on the rewards, and send the better one to the actual 
system. 

Actual system

state

Estimation system



agent
action

update

The better action

Comparison device

Reward

Actions

ref

e




 
Fig. 16. A3C-based agent training diagram to be applied online. 

In this way, we can indirectly limit the behavior of the 
controller, thus avoiding the controller could have unusual, 
unexpected behavior in particular scenarios. 

D. Comparison of the proposed agent with other methods 

In order to compare PR-PSS with other ULFO suppression 
strategies, two other very well classical PSS tuned devices are 
also used as the test cases: 

Configure GPSS: GPSSs are equipped in G1, G5 and G8, 
and the parameters of GPSSs are tuned based on pole-
placement method. More details can be found in [12]; 

Configure PSS4B: PSS4Bs are equipped in G1, G5 and G8, 
and the parameters of PSS4Bs are tuned based on [14]; 

It can be seen from Fig. 17 that PR-PSS shows better 
performance in suppressing ULFO in Case 1 when compared 
with GPSS and PSS4B. Therefore, it can be concluded that the 
effeteness of the proposed method is much better than the 

other classical PSS tuned devices. 
TABLE VI 

Comparison of ULFO modes during Case1 

Case Strategies 
Real 
part 
(α) 

Imag 
part 
(𝜎) 

Damping 
(ξ) 

Case 1 

Original settings 0.002 0.57  -0.35% 

PSS4B -0.022 0.56 3.89% 

GPSS -0.038 0.57 6.61% 
PR-PSS -0.063 0.58 10.80% 

Moreover, to further compare the proposed method with 
PSS4B and GPSS, a distribution of ULFO modes of the test 
system is shown in Table VI. It can concluded that the 
proposed method can make the ULFO mode to move more to 
the left, and the system has a larger stability margin. 

   

 
Fig.17. Frequency deviation of G1 during Case 1. 

It can be observed from Figs. 18-19 that for Case 2 and 
Case 3, the system with the proposed A3C-based tuning 

strategy reaches steady state in the shortest time compared 

with the PSS4B and GPSS. It means that the proposed method 

has a better robustness than the other two methods in the cases 

with uncertainties. 

 
Fig.18. Frequency deviation of G1 during Case 2. 

 
Fig.19. Frequency deviation of G1 during Case 3. 

VII.  CONCLUTION  
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In this paper, a PR-PSS is proposed and designed to prevent 
ULFO in the power system, and an A3C-based agent is 
proposed for adaptive adjustment of PR-PSS parameters 
settings. Simulation results show that the PR-PSS can 
effectively suppress ULFO and has less negative effect on 
other oscillation modes. Compared with other damping 
strategies, applying PR-PSS shows better performance in 
suppressing ULFO. Both time domain simulations and 
eigenvalue analysis results demonstrate that the PR-PSS 
parameter settings tuned by the proposed agent work well and 
show much better performance compared to the traditional 
method. 
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APPENDIX 

For the hydropower system in SCPG, the parameters of GPSS, PSS4B and 

PR-PSS are shown in the following tables. 

Table A. Parameters of the PID 

PID 

Units Kp KI  KD 

CJB-1# 1.21 0.34 2.47 

CJB-2# 2.90 0.57 2.03 

CPQ-3# 3.72 0.69 4.10 

CTCH-3# 3.58 0.33 3.76 

Table B. Parameters of the GPSS 

GPSS 

Units KSTAB  T1  K3 

CJB-1# 48.56 0.46 0.59 

CJB-2# 22.35 0.32 0.70 

CPQ-3# 30.48 0.05 0.55 

CTCH-3# 29.12 0.18 0.61 

Table C. Parameters of the PR-PSS (only for Case1) 

PR-

PSS 

Units Parameters  

CJB-1# 

Kp KR wc w0 a0 

0.21 0.79 0.09 0.57 5.59 

a1 a2 b0 b1 b2 

7.89 6.41 3.81 4.25 5.04 

CJB-2# 

Kp KR wc w0 a0 

0.21 0.79 0.09 0.57 5.36 

a1 a2 b0 b1 b2 

4.17 7.12 6.82 6.27 3.75 

CPQ-3# Kp KR wc w0 a0 
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0.21 0.79 0.09 0.57 4.23 

a1 a2 b0 b1 b2 

6.14 3.77 8.49 5.44 2.17 

CTCH-

3# 

Kp KR wc w0 a0 

0.21 0.79 0.09 0.57 3.28 

a1 a2 b0 b1 b2 

4.79 3.90 6.11 5.38 8.55 
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