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ABSTRACT For densely deployed wireless local area networks (WLANs), this paper proposes a deep

reinforcement learning-based channel allocation scheme that enables the efficient use of experience. The

central idea is that an objective function is modeled relative to communication quality as a parametric

function of a pair of observed topologies and channels. This is because communication quality in WLANs

is significantly influenced by the carrier sensing relationship between access points. The features of the

proposed scheme can be summarized by two points. First, we adopt graph convolutional layers in the model

to extract the features of the channel vectors with topology information, which is the adjacency matrix of the

graph dependent on the carrier sensing relationships. Second, we filter experiences to reduce the duplication

of data for learning, which can often adversely influence the generalization performance. Because fixed

experiences tend to be repeatedly observed in WLAN channel allocation problems, the duplication of

experiences must be avoided. The simulation results demonstrate that the proposed method enables the

allocation of channels in densely deployed WLANs such that the system throughput increases. Moreover,

improved channel allocation, compared to other existing methods, is achieved in terms of the system

throughput. Furthermore, compared to the immediate reward maximization method, the proposed method

successfully achieves greater reward channel allocation or realizes the optimal channel allocation while

reducing the number of changes.

INDEX TERMS Wireless LAN, channel allocation, deep reinforcement learning, graph convolutional

networks, replay buffer.

I. INTRODUCTION

Channel allocation is an important problem in densely

deployed wireless local area networks (WLANs) owing to

the large number of access points (APs) and limited available

channels. A poor channel allocation causes substantial con-

tention among the APs and stations (STAs), and reduces the

throughput of each AP. WLAN channel allocation schemes

in centrally managed environments have been proposed [1].

IEEE 802.11 Task Group be (TGbe) focuses on a multiple

increase in real-time applications that impose strict require-

ments on packet transmission delay and packet loss ratio [2].

Tomeet the requirements, new resource allocation algorithms
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approving it for publication was Ayaz Ahmad .

are required. Coordinated AP control methods in densely

deployed WLANs have been discussed. The poor channel

allocation issue can be avoided by effective channel alloca-

tion with a limited number of channels. This is the motivation

for this study.

TABLE 1. Coordinated channel allocation approaches for WLANs. Existing
approaches do not focus on improving the cumulative throughput.

Coordinated channel allocation approaches have been pro-

posed, including the DSATUR [3] and Measurement-Based

Local-Coord (MBLC) [4] methods as indicated in Table 1.
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DSATUR is a graph coloring approach, where nodes and

edges represent APs and the contentions amongAPs (i.e., car-

rier sensing relationship), respectively, and the color of each

node represents its channel. Note that this approach indirectly

improves the throughput by reducing the number of adjacent

APs using the same channel.

To directly improve throughput, observations of the

throughput are required because it is difficult to model the

throughput as an explicit function of channels in general.

MBLC [4], an immediate throughput improving approach

based on observations, uses a weighted cost function of the

observed interference based on the physically measured inter-

ference power on all channels. This approach switches the

channel of an AP exclusively if the calculated weighted inter-

ference does not increase after the operation. The objective

of this approach is to maximize the immediate throughput

at the time of changing the channel of an AP. However,

the throughput is not necessarily maximized at the end of the

sequence because they can fall into a local optimal allocation.

Following, we introduce prior studies that addressed

channel allocation problems in WLANs. In [5], a channel

assignment scheme was proposed to maximize the signal-to-

interference ratio (SIR) at the user level. This scheme focused

on the load balancing of APs according to the number of

users of each AP. An optimal channel allocation algorithm

in dynamic channel bonding WLANs was proposed in [6].

This algorithm achieved an improvement in the throughput

by operating the bandwidth of each channel without over-

lapping. Raschellà et al. [7] evaluated a channel assignment

algorithm. The objective was to minimize the parameters that

represented the interference among the APs. As a distributed

channel allocation method, potential game-based [8] meth-

ods are summarized in [9]. In these approaches, to achieve

the Nash equilibrium, each AP stochastically selects its

channel. As a potential game-based method for WLANs,

Xu et al. [10] proposed an approach to minimize the carrier

sensing relationships among the APs. Suliman et al. [11]

indicated the potential of artificial intelligence in solving

channel allocation problems in wireless communications.

This study addressed the determination of the minimum num-

ber of channels to satisfy the demands of a network using

an artificial immune system. Ghahfarokhi [12] introduced a

distributed channel assignment algorithm using a machine

learning algorithm, learning automata [13]. The objective of

this study was to improve the quality of the experience and

user-level fairness. Jeunen et al. [14] proposed a machine

learning approach using a combination of airtime overlap

minimization and bad neighbor detection, which identified

devices interfering with each other. This method also focused

on improving the experience for users.

As far as we know, the research problem of this paper,

which is the direct maximization of the system throughput

in WLANs based on the observed throughput, has not been

studied before. This is because the prior studies aimed to

improve the throughput indirectly (e.g., by reducing the num-

ber of carrier sensing relationships or by improving the SIR).

Because the throughput of WLANs is influenced by various

factors, these prior studies did not essentially allocate chan-

nels to maximize the throughput.

Reinforcement learning is a possible solution to allocate

channels based on the feedback of the measured throughput

considering the allocation sequence. Reinforcement learning

is a decision-making process that learns what choice provides

greater reward based on the experience. In particular, deep

reinforcement learning has attracted considerable attention

and has been utilized to achieve channel allocation in wireless

networks [15] because of the effectiveness of the function

approximation. In [16], a deep reinforcement learning-based

channel allocation method was proposed. However, this

method addressed operating only one AP, i.e., this method did

not consider a centralized channel allocation problem; rather,

it addressed a distributed problem. According to [15], several

of the deep reinforcement learning-based channel allocation

studies have considered distributed channel allocation or the

dynamic spectrum access problem. There would appear to

be no previous study for the coordinated WLAN channel

allocation problem.

This paper proposes a deep reinforcement learning-based

scheme that is suitable for coordinated channel allocation

problems in densely deployed WLANs. In reinforcement

learning, states must be adequately associated to rewards

because the agent acts based on the observed states; thus,

we must carefully design the states. To improve the through-

put in WLAN channel allocation problems, it is important

to capture the carrier sensing relationships among the APs,

as in the graph coloring approach of DSATUR. Therefore,

we design the states based on the carrier sensing relationships

among APs and used channels to allow an agent to associate

a given reward relative to throughputs with the designed

states. Furthermore, we require function approximation to

manage the enormous number of observable states in densely

deployed WLANs. In this context, extracting input features

is important for the improvement of the learning perfor-

mance. For example, convolutional neural network (CNN) is

an effective method to improve the performance of a neural

network, which is commonly used to extract the features of

input images, (e.g., AlphaGo [17]). We demonstrate that the

function approximation based on a simple neural network

does not provide sufficient performance for the channel allo-

cation problem in Section VI. To extract the features of the

adjacent APs and used channels, we propose incorporating

graph convolutional layers [18]–[21] into a neural network.

Because the states based on carrier sensing relationships can

be considered as a graph signal, a graph convolutional net-

work (GCN) is suitable for our settings. Note that CNN is not

suitable for the extraction of graph input features such as the

state of our settings. GCN has been utilized to extract features

of graph-shaped input in various machine learning studies

[22], [23]. Based on GCN, a dynamic action recognition

method of human body skeletons was proposed in [22].

By considering the skeleton as a graph wherein the nodes

were the joints of the human body, this method adapted
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FIGURE 1. System model. The central controller observes the environment and selects an action.
Each observation is selectively stored in the replay buffer. GCN extracts the features of the
information provided by the environment.

GCN to the graph to extract the features of the spatial and

temporal actions of the nodes. In [23], a large-scale deep rec-

ommendation method was proposed by combining GCN and

an efficient random walk approach. The experimental results

demonstrated that this method generated higher-quality rec-

ommendations than the prior studies in a large-scale graph.

Although a GCN-based channel allocation method can

temporarily improve system throughput, the generalization

performance decreases over time because of the data duplica-

tion in the replay buffer. In WLAN channel allocation prob-

lems, once an AP is selected to change its channel, the AP

tends to be repeatedly selected to change its channel to the

same channel. The imbalanced learning data can advance

learning for only the repeatedly observed states and reduce

the performance for the other states; this phenomenon is

called over-fitting [24]. To prevent the aforementioned degra-

dation in generalization performance, we propose a selective

replay buffering that reduces the duplication of the sampling.

This idea is based on the undersampling and oversampling

approaches for imbalanced learning problems [25].

The contributions of this paper are as follows:

• This paper provides a GCN-based deep reinforcement

learning framework that can be applied to problems

with an enormous graph-shaped state. Moreover, in the

proposed framework, the setting of the optimization

objective (i.e., the reward in reinforcement learning) has

considerable flexibility as long as it depends on the

adjacency relationships of the graph-shaped state.

• This paper proposes a selective replay buffering that is

used to avoid the over-fitting caused by the duplication

of data for deep learning problems. This approach also

functions well for the problem where a certain pair of

state and action is repeatedly observed as in WLAN

channel allocation problems.

• This paper confirms that the proposed framework suc-

cessfully increases the cumulative reward. To elaborate,

the framework enables a greater reward channel allo-

cation or achieves the optimal channel allocation while

reducing the number of changes, compared to the imme-

diate reward maximization method. This is because the

immediate reward maximization method does not nec-

essarily achieve the optimal allocation or requires an

extended time to achieve the optimal allocation.

The rest of this paper is organized as follows. Section II

describes the system model. Section III defines a Markov

decision process (MDP) and Section IV introduces the rein-

forcement learning. Then, Section V introduces the proposed

WLAN channel allocation method and Section VI presents

an evaluation of the performance of the proposed method.

Section VII concludes this study.

II. SYSTEM MODEL

A. CHANNEL ALLOCATION PROBLEM IN WIRELESS LANs

In this study we acquire the control algorithm to allocate

the optimal channels in the minimum time steps for any

initial topology; this is composed of the locations and initial

channels of the APs.

Assume that N APs are placed in a square-shaped region

and M orthogonal channels with the same bandwidth are

available. Let the index set of APs be denoted by N =

{1, 2, . . . ,N }, and the index set of available channels by

M = {1, 2, . . . ,M}. In this system model, we do not set

specific values for the bandwidths of the channels; rather,

we assume that all channels have the same bandwidth without

overlapping the frequency bands. The details of the simula-

tion settings are described in Section VI. We regard ci ∈M

as a one-hot vector ofM dimensions, (e.g., if AP i ∈ N uses

Channel 2 ∈M, then ci = [0, 1, 0, . . . , 0]T).

Fig. 1 displays the systemmodel of the deep reinforcement

learning-based coordinatedWLAN channel allocation. In the

proposed system model, a central controller is considered

and is responsible for information gathering and channel

allocation from/to each AP, as in [1]. More specifically,

the central controller observes the communication quality

(e.g., the throughput), carrier sensing relationships among

the APs, and channels used by the APs at every time step.
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Moreover, assume that the central controller can change the

channel of an AP at a given time step. The central controller

decides what AP changes to what channel based on the deep

reinforcement learning from the observation. As indicated

in Fig. 1, we propose a new approach to replace the obser-

vation buffering part with selective data buffering, and the

learning part with the GCN-based approach.

B. GRAPH STRUCTURE OF STATE

Wemodel the carrier sensing relationships using a contention

graph G = (N , E). The edges eij = {i, j} ∈ E of the graph

are connected if and only if the APs i and j are within the

carrier sensing range, regardless of their channels. An adja-

cency matrix is defined as a matrix representation of the

graph G, and expressed as an N × N matrix A = (Aij) as

follows:

Aij =

{

1 if i 6= j ∧ eij ∈ E,

0 otherwise.
(1)

By focusing on the characteristics of the graph, we analyze

the features of the carrier sensing relationships and utilize

the relationships to allocate channels based mainly on GCN,

which is detailed in Section V-B.

III. MARKOV DECISION PROCESS

We define an MDP prior to presenting the formulation of

the reinforcement learning problem. An MDP is defined as

a quadruplet (S,A,P,R): S is a state space (which denotes

a set of states in the environment); A is an action space

(which denotes a set of available actions by the agent); P is a

transition probability to the next state given the current state

and action; and R is a function mapping from a tuple of the

current state, action, and following state to a real value (this is

called a reward function). The agent is designed to determine

the best rule for taking an action for a given state (i.e., policy)

using the observed history to date. Then, the agent should

transfer to a state that provides a greater reward to itself.

Therefore, the state should be adequately associated to the

reward, and the method by which the states of an MDP are

designed is a critical topic.

In general, the input parameter of the reinforcement learn-

ing model is the state. Using the input parameter, the agent

selects an action based on the output value (e.g., expected

reward) of the learning model and receives a reward with a

transition to the next state. This series of events (state input,

action selection, state transferring, and reward reception) is

performed every time step.

A. DEFINITION OF MDP FOR WIRELESS LAN

CHANNEL ALLOCATION

To design effective states for the WLAN channel alloca-

tion problem, the important insight is that the throughput

is, in general, significantly influenced by the carrier sensing

relationships among the APs. Therefore, we define a state

to be a pair of the adjacency matrix and channel vectors for

each circumstance, where we define the channel vectors as

M ×N matrix C = [c1 c2 . . . cN ]. Note that this state can be

considered as a graph signal; thus, we can capture the essen-

tial features of the state using GCN. To reduce the number of

observable states, we determine an isomorphism between the

graphs by comparing their canonical labels, which is detailed

in Section III-B.

In a WLAN channel allocation problem, if we define the

reward as the total throughput, unfairness could occur, (e.g.,

the central controller could allocate channels such that certain

APs could not transmit. In this study, to improve the overall

throughput without such unfairness, we define the reward

as the average throughput of the lower 40% APs. Although

we define the reward in this manner, this is not an essential

constraint. Note that in the proposed system model, because

the state is designed based on the carrier sensing relationships

among the APs, the reward can be arbitrary as long as it is

based on the carrier sensing relationships (e.g., a function of

throughputs).

We define the action space A as the Cartesian product

of the indices of the AP and channel N ×M, where each

action a = (n,m) ∈ A signifies what AP changes to what

channel.

B. STATE MAPPING METHOD

In WLAN channel allocation problems, if multiple APs are

in the same situation, any AP can be selected to change

its channel. In such a case, by grouping topologies that are

regarded as the same, we can reduce the number of observable

states and improve the learning performance.

In this section, we introduce amethod to reduce the number

of observable states based on canonical labeling [26], [27].

The canonical labels are identical if the graphs exhibit an

identical topological structure and identical labeling of the

nodes and edges. Thus, by comparing the canonical labels,

we sort the graphs in a unique and deterministic manner

and consider two graphs as isomorphic if their canonical

labels are identical. For the computation of automorphism

and canonical labeling of the graphs, we use an open source

tool, bliss [28], [29]. Specifically, bliss computes the canoni-

cal representative map function ρ, wherein the following two

conditions are applicable:

• the representative of a graph ρ(G) is isomorphic to

graph G.

• the representatives of two graphs, ρ(G1) and ρ(G2),

are identical if and only if the graphs, G1 and G2, are

isomorphic.

In [28], it is demonstrated that bliss performs canonical

labeling.

We also determine the channel indices in a unified man-

ner because the indices of the channels do not influence

the system throughput. For example, in Fig. 2, the system

throughputs of both graphs are the same regardless of the

channel indices. We assign the channel indices in the order

of the AP indices after the canonical labeling method.
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FIGURE 2. Two graphs that differ only in indices of channels.

IV. REINFORCEMENT LEARNING

In this section, we provide an outline of reinforcement learn-

ing [30]. Reinforcement learning is a learning problem to

acquire the optimal policy. It determines the action for a given

state that provides the greatest cumulative reward.

In a reinforcement learning problem, a state value function

V π (s) of a policy π is defined as an expectation of cumulative

reward as follows:

V π (s) = Eπ,P

[

∞
∑

t=0

γ trt+1

∣

∣

∣

∣

∣

s0 = s

]

, (2)

where γ ∈ [0, 1] denotes a discount rate, which is the

parameter that denotes the value of the future rewards at the

current state. Note that the order � between two policies π1

and π2 is defined as follows:

π1 � π2
def
⇐⇒ ∀s ∈ S, V π1 (s) ≥ V π2 (s). (3)

Although the order � is not a total order on policy space 5,

it is known that there is at least one optimal (deterministic)

policy π∗, which satisfies ∀π ∈ 5, π∗ � π , if the rein-

forcement learning problem is based on an MDP. An optimal

policy is commonly learned through the estimation of optimal

action-value function, which is written as follows:

Q∗(s, a) = E

[

R(s, a, s′)+ γV π∗ (s′)
]

. (4)

The goal of reinforcement learning is to obtain an optimal

policy π∗ that maximizes Qπ (s, a) as follows:

π∗(a | s) = argmaxa∈A Q∗(s, a). (5)

There are some approaches to obtain the optimal policy

π∗(a | s). Specifically, Q-learning is a method to obtain an

optimal policy through the estimation of the optimal action-

value function.

V. PROPOSED SCHEME

In this section, we present the details of the proposed deep

reinforcement learning-based method, especially the key

ideas, GCN [18]–[21] and selective replay buffering. Because

the number of observable AP topologies is extremely high in

densely deployed WLANs, we adopt the function approxi-

mation of Q∗(s, a). In particular, we use GCN to capture the

essential features of the graph signals, which corresponds to

the channel information with topologies (A,C) in our prob-

lem. Furthermore, when an AP selects a channel according to

a utility function in common WLANs, a fixed action tends to

be selected in certain states, and the duplication of data can

cause over-fitting [24]. To prevent the duplication and over-

fitting, we introduce the selective replay buffering.

A. ALGORITHM

In this section, we solve the problem defined in Section II

based on deep reinforcement learning. The baseline method

is deep Q-network (DQN) [31].

The main features of DQN are experience replay and

fixed target Q-network. In general, Q-learning with function

approximation could possibly not converge [32]. Fixed tar-

get Q-network is a method that promotes convergence by

fixing the parameters of the Q-function for a certain period

to avoid fluctuations in the target value, which depends on

the Q-function itself, when learning the parameters. DQN

uses two networks, namely a main network Qθ (which is the

target of the optimization with a weight parameter θ ) and a

target network Q
θ−

(which is used to calculate the temporal

difference errors (TD errors) with a weight parameter θ−).

The parameter of the target network θ− is updated to θ

every I time steps and then maintained as fixed between

updates. As I increases, the learning becomes more stable

while the parameter update frequency decreases. Experience

replay is a technique that breaks temporal correlation in the

training data. The training data (s, a, r, s′) is first stored in a

buffer called replay bufferD. Then, DQN updates the param-

eters using a mini-batch that is constructed using randomly

sampled data from the replay buffer. Consequently, there is

virtually no time dependence among the data in the mini

batch.

In DQN, the parameter θ is updated in each time step t as

follows:

θ ← θ + α
(

Y
Q
t − Qθ (st , at )

)

∇θQθ (st , at ), (6)

Y
Q
t := rt+1 + γ maxa Qθ (st+1, a). (7)

In addition to the original DQN, we employ the following

well-known techniques: double DQN (DDQN) [33], dueling

network [34], and prioritized experience replay [35], which

are known to contribute to the general performance improve-

ment of DQN. DDQN [33] is a DQN-based method to

avoid overestimations by employing two different networks.

Dueling network [34] is a method that can learn the values of

the states without the effect of actions. Prioritized experience

replay is an effective data sampling method from the replay

buffer D. Details on these methods are presented in the

Appendix.

B. GRAPH CONVOLUTIONAL NETWORKS

In this section, we describe a function approximation method

that is suitable for a state designed based on an adjacency

matrix. Because the number of observable states is extremely

high in the proposed system model, we adopt function

approximation to address this large-scale problem.

Feature extraction layers such as a convolution layer [36]

play a crucial role in boosting the performance of rein-

forcement learning, (e.g., AlphaGo [17]). CNN extracts the

features of the signals on an input images; however, the input

of the proposed system model is not an image; rather, it is

a graph. The designed state of the proposed system can

be considered as a graph signal; thus, GCN [18]–[21] is
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a suitable algorithm to capture the essential features of the

state. By applying the GCN layer in the neural network

model, we can analyze the graph structure of the APs as a

CNN [36] for an input image.

In general, the convolution calculation in the time domain

is expressed as the Hadamard product in the frequency

domain. Therefore, GCN is expressed by applying an inverse

Fourier transformation to the result that corresponds to the

Hadamard product after the Fourier transformation. If the

input dimension corresponds to d ∈ R, the following process

is adapted to each dimension.

An input vector x ∈ R
N is a signal on a graph G with

N nodes. Let D be a degree matrix of the graph, and let

L = D − A be its graph Laplacian with the adjacency

matrix A of the graph G. Let the graph Laplacian L be

orthogonally transformed as L = UT
xU with eigenvectors

U = (u1, u2, . . . , uN ). Subsequently, a graph convolution of

input signal x is defined as x 7→ U (θ ⊙ (UT
x)), where θ =

(θ1, . . . , θN ) are the parameters to be learnt, and⊙ represents

the Hadamard product.

C. SELECTIVE REPLAY BUFFERING

This section describes the proposed selective data buffering

applied to the replay bufferD. When the agent selects actions

based on a policy that typically has the optimal response,

(e.g., ǫ-greedy with tiny ǫ), a fixed action tends to be selected

in certain states. As mentioned previously, the imbalanced

data can advance learning for only the experienced states and

reduce the performance for the inexperienced states, which is

called over-fitting [24]. To prevent over-fitting, we propose

selective replay buffering, which aims to reduce buffering

the same data in the replay buffer. This idea is based on the

undersampling and oversampling approaches for imbalanced

learning problems [25].

Algorithm 1 Selective Replay Buffering

1: Initialize X (s, a)← 0, ∀s, a

2: for t ← 1 to W do

3: Observe transition (st , at , rt+1, st+1)

4: if X (st , at ) ≡ 0 (mod α) then

5: for j← 1 to β do

6: if replay buffer D is not full then

7: Store (st , at , rt+1, st+1) in D

8: else

9: Replace the oldest data in D by

(st , at , rt+1, st+1)

10: end if

11: end for

12: end if

13: X (st , at )← X (st , at )+ 1

14: end for

Algorithm 1 displays the flow of the buffering to the replay

buffer for each episode. The main part of this algorithm is that

the observed transition (st , at , rt+1, st+1) is stored in replay

buffer D if the transition has never been observed or every α

times that the same state transition is observed. Furthermore,

to prevent observations remaining in the replay buffer D for

an extended time, we store an observation β times repeatedly.

Note that X (s, a) is the number of experiences performing an

action a from a state s, which is initialized at the beginning

of each episode. This method reduces the duplication of data

stored in replay buffer.

VI. SIMULATION EVALUATION

In this section, we validate the efficiency of the proposed

scheme using proof-of-concept simulations. Assume that the

step number of one episode is fixed in these simulations.

FIGURE 3. Simulation environment. Position and channel of each AP is
randomly initialized at the beginning of each episode. The environment
can be expressed by the graph signal.

Fig. 3 displays the simulation environment. APs are placed

on a 1000m × 1000m square region. The positions and

channels of the APs are randomly initialized at the beginning

of each episode. We set the carrier sensing range as 550m

as in [37], [38]; the APs within the carrier sensing range

have a carrier sensing relationship. The relationship can be

expressed through a graph as in Fig. 3, where the APs and

carrier sensing relationships are denoted by nodes and edges,

respectively.

Fig. 4 indicates the overall architectures used in the simu-

lations where Figs. 4(a) and 4(b) represent the GCN-based

and simple neural network models, which comprise only

fully connected layers, respectively. In detail, the ‘‘Dense’’

layer represents the fully connected dense layer; the ‘‘Batch

Normalization’’ layer is the function layer which increases

the learning speed and restrains the over-fitting [39]; the

‘‘ReLU’’ layer is a well-known activation function [40]; and

the ‘‘Graph Convolution’’ layer represents the graph convo-

lutional layer detailed in Section V-B. Note that each graph

convolution layer requires that the adjacency matrix consider

an input signal as a graph signal. The outputs are the estimated

action values Q(s, a) ∀a ∈ A.

The simulation parameters are summarized in Table 2.

Assume that the step number of one episode is 500 and the

episode number is 10000. The central controller can change

the channel of anAP at a given time step. In these simulations,

we define the reward, the objective of the optimization, as the

average throughput of the lower 40% APs. Note that the

setting of the reward has considerable flexibility as long as it
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FIGURE 4. Structures of GCN-based and simple neural network models.
The input is the pair of adjacency matrix A and channel vectors C , and the
outputs are the estimated action values Q(s, a) ∀a ∈ A.

TABLE 2. Simulation parameters.

depends on the adjacency relationships of the graph-shaped

state as already discussed in Section I. Let the nth lowest

throughput (n ∈ N ) among 10 APs in the kth topology

(k ∈ {1, 2, . . . , 10000}) be denoted by ξ
(n)
k . The reward,

the average throughput of the lower 40% APs, i.e. 4 APs,

is expressed by 1
4

∑4
n=1 ξ

(n)
k in the kth topology.

To evaluate the generalization performance of the

Q-function during learning, we prepared 100 test topologies,

where the APs were randomly located and the channel of

all the APs were set to Channel 1. When we evaluated the

generalization performance, we used the snapshot of the

Q-function of that time to select the AP channel to be changed

in each time step. For each test topology, the central controller

repeated the changing of the channel of an AP according to

the output of the Q-function 20 times. We used the reward

corresponding to the state after 20 time steps from the initial

state as the final reward of the test topology.

For reproducibility of results, we used the back-of-the-

envelope (BoE) throughput evaluation technique [37] to

model the throughput of the APs according to the carrier

sensing relationships among the APs in each channel con-

figuration. The BoE technique allows the adoption of short-

cuts in performance evaluation and bypasses complicated

stochastic analysis. The BoE throughput was derived under

the assumption that each AP had a link with an STA at a

given time, and all the links were saturated, i.e., all links

always had frames to send. All simulations in this paper

followed this assumption. Moreover, the simulations used

a normalized throughput of the bandwidth as an observed

throughput according to the BoE technique, i.e., the observed

throughput had a value between 0 and 1. As a data collecting

policy, we used ǫ-greedy [30], which randomly selects an

action with probability ǫ and selects a greedy action with

probability 1−ǫ. If ǫ was small, the agent tended to repeatedly

select a fixed action in certain states, and the imbalanced

stored data caused over-fitting.

A. EVALUATION OF GENERALIZATION PERFORMANCE

FOR RANDOM TOPOLOGY

We compared the following five methods:

• a deep reinforcement learning-based method with the

simple neural network model in Fig. 4(b), referred to as

‘‘DRL without GCN’’.

• a deep reinforcement learning-based method with the

GCN model in Fig. 4(a), termed as ‘‘DRL with GCN’’.

• a deep reinforcement learning-based method with the

GCN model in Fig. 4(a) and selective data buffering

explained in Section V-C, denoted as ‘‘DRL with GCN

and buffer method’’.

• a random action selection method, referred to as

‘‘Random’’.

• a distributed method based on potential game [10],

referred to as ‘‘Distributed method’’.

As mentioned in Section I, as far as we know, none of prior

studies addressed to exactly the same problem as this paper.

Therefore, as a comparison method, we employed a potential

game-based method [10], which allocates channels based

on the adjacency relationships of APs to improve system

throughput indirectly. In the potential game-based method,

the action with the greater payoff function was stochastically

selected with higher probability among other choices. This

method is guaranteed to achieve the Nash equilibrium [8].

In this paper, we defined the payoff function such that the

number of carrier sensing relationships (i.e., network col-

lisions) was minimized according to [10]. In [10], it was

proven that minimizing the network collisions provides a

near-optimal throughput. Let the channel used by AP i ∈ N

at time step t be denoted by ci[t] ∈M. At each time step t ,

the probability that AP i selects the next channel ci[t + 1] is

expressed as follows:

P(ci[t], c−i[t]) =
exp[ζui(ci[t], c−i[t])]

∑

c′i∈M
exp[ζui(c

′
i[t], c−i[t])]

, (8)
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ui(c) := −
∑

j 6=i

✶(cj = ci)✶(eij ∈ E), (9)

c−i[t] := (c1[t], . . . , ci−1[t], ci+1[t], . . . , cN [t]),

(10)

where ui(c) denotes a payoff function; ✶(x) denotes an indica-

tor function that is one if event x is true and is zero otherwise;

and ζ ≥ 0 denotes the parameter that determines the degree

of selecting the state with a high payoff function. In this

simulation, the parameter ζ was set to 0.1.

FIGURE 5. Transitions of mean reward of 100 test topologies after
performing 20-step greedy actions.

Fig. 5 displays the learning curves representing the tran-

sitions of the generalization performance evaluated every

20 episodes. We evaluated the generalization performance

by allocating channels for 100 inexperienced test topologies

according to the learning models and observed the rewards

after 20-step greedy actions. Each value in Fig. 5 indicates the

mean reward of 100 test topologies after performing 20-step

greedy actions. The generalization performances of the meth-

ods using GCN-based model increased when the learning

progressed, whereas that of the simple neural networkmodels

exhibited virtually no increase. However, the generalization

performance of the method without selective data buffering

using the GCN-based model decreased after a certain amount

of time. This is because the model learned for experienced

states and reduced the performance for inexperienced states,

which is called over-fitting. By employing selective data

buffering, we could maintain the generalization performance

at a high level.

Fig. 6 displays the cumulative distribution functions

(CDFs) of the rewards of 100 test topologies at the best and

final performance points in Fig. 5. As indicated in the figure,

the proportions of the high reward state of the results of the

deep reinforcement learning-based methods with GCN-based

model exceeded those of the other methods. Therefore, using

the GCN-based model, the learning performance exceeded

that of the simple neural network model. Moreover, the effect

of the over-fitting can be seen in this figure by comparing

the ‘‘DRL with GCN (best)’’ and ‘‘DRL with GCN (final)’’

lines. We can observe that the over-fitting was avoided by

employing the proposed selective data buffering.

FIGURE 6. CDFs of rewards of 100 test topologies.

FIGURE 7. Averages of the nth lowest throughput.

FIGURE 8. Channel allocation sequence towards equivalent allocation.
The upper sequence is more desirable because the time steps required
for achieving the optimal channel allocation is shorter, and thus the
cumulative reward is greater.

Let the nth lowest throughput (n ∈ N ) among 10 APs

in the lth test topology (l ∈ {1, 2, . . . , 100}) be denoted by

ξ
′(n)
l . The averages of the nth lowest throughputs in 100 test

topologies ξ ′(n) := 1
100

∑100
l=1 ξ

′(n)
l are displayed in Fig. 7.

This figure indicates that the averages of the nth lowest
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FIGURE 9. Channel allocation sequence based on proposed method. The reward is
the average throughput of the lower two APs of the five APs. The cumulative
reward is maximized in the least number of time steps.

throughput ξ ′(n) of the deep reinforcement learning-based

method with selective data buffering using the GCN-based

model was greater than those of the other methods. In par-

ticular, the first to fourth lowest throughputs ξ ′(n)(n =

{1, 2, 3, 4}) increased by using the proposed method. This is

because we defined the reward of the learning as the aver-

age of the lowest four throughputs 1
4

∑4
n=1 ξ ′(n). Moreover,

by comparing the deep reinforcement learning-based meth-

ods with and without GCN, we confirmed that GCN makes it

possible to increase the performance through training.

The performances of the potential game-based method

displayed in Figs. 6 and 7 are inferior to those of the proposed

method. This can be attributed, possibly, to the fact that the

main target of the potential game-based method was not

to improve the system throughput directly; rather it was to

reduce the number of carrier sensing relationships, which

could influence the system throughput.

B. EVALUATION OF CHANNEL ALLOCATION SEQUENCE

In this section, we evaluated the efficiency of the pro-

posed method to maximize the cumulative reward. Specif-

ically, we evaluated the channel allocation sequence from

two perspectives: 1) how fast the proposed method achieved

a destination (convergence speed perspective), where a

method converging faster is superior, and 2) how proac-

tively the proposedmethod selected channels (delayed reward

perspective), where a method converging to a channel con-

figuration with a greater reward is superior. The convergence

speed perspective is evaluated in Section VI-B1; the delayed

reward perspective is evaluated in Section VI-B2.

1) CONVERGENCE SPEED PERSPECTIVE

The channel allocation sequence influences the system

throughput during the control, even if the destinations are

the same. Fig. 8 is a hypothetical example that can be used

for explanation. We consider a case where the numbers of

APs and channels are five and two, respectively. The posi-

tions of the APs are indicated in Fig. 8, where each AP has

relationships only with its adjacent APs. The optimal channel

allocation is to allocate Channel 1 (or Channel 2) to APs

1, 3, and 5, and Channel 2 (or Channel 1) to APs 2 and 4,

respectively, i.e., we should allocate channels so as to not

allocate the same channel to adjacent APs. In this case,

we can use two channel allocation sequences for the optimal

allocation as indicated in Fig. 8. One sequence is to change

the channels of APs 2 and 4, and another is to change the

channels of APs 1, 3, and 5. The former sequence requires

two time steps, whereas the latter requires three time steps.

For improving the system throughput even during the channel

allocation process, the former sequence is more desirable.

Therefore, we aim to achieve the optimal channel allocation

in fewer time steps.

Fig. 9 displays the channel allocation sequence of a test

topology where the numbers of APs and channels are five

and two, respectively. In these figures, the nodes represent

the APs and the edges represent the adjacency relationships.

The solid line indicates the contention among the APs using

the same channel within the carrier sensing range; the dashed

line connects the APs using different channels within the

carrier sensing range. The colors of the nodes indicate the

channels used by the APs, and blue and orange denote Chan-

nels 1 and 2, respectively. The topology of this figure is as that

of Fig. 8. From this figure, we can observe that the proposed

method can allocate channels in the desirable sequence with

themaximum cumulative reward. Similarly, Fig. 10 displayed

the channel allocation sequence of a test topology where the

numbers of APs and channels are nine and three, respectively.

In addition to Channel 1 and 2, the purple nodes denote APs

using Channel 3. In this topology, in the optimal channel

allocation, orthogonal channels are allocated to adjacent APs.

The proposed method can allocate channels in the desirable

sequence with the maximum cumulative reward.

It is remarkable that in each figure, the channel of the AP

centered in the topology is not changed at the first step t = 1.

Note that this change does occur in the case of the immediate

reward maximization. The immediate reward maximization

method is a method that maximizes the immediate reward

received at each time step, whereas the proposed method

maximizes the cumulative reward in the channel allocation

sequence.

2) DELAYED REWARD PERSPECTIVE

Moreover, we can demonstrate that the proposed method is

superior to the immediate reward maximization in perfor-

mance at the end of the sequence.

Figs. 11 and 12 display the channel allocation sequences

of one test topology based on the immediate reward

maximization and the proposed methods, respectively.
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FIGURE 10. Channel allocation sequence based on proposed method. The reward is the average throughput of the lower four APs of
the nine APs. The cumulative reward is maximized in the least number of time steps.

FIGURE 11. Channel allocation sequence based on immediate reward maximization. The reward is the average throughput of the
lower four APs of 10 APs.

FIGURE 12. Channel allocation sequence based on proposed method. The proposed method can achieve superior channel allocation compared to
immediate reward maximization. The reward is the average throughput of the lower four APs of 10 APs.

FIGURE 13. Reward transitions based on proposed method and
immediate reward maximization method. The final reward of the
proposed method is greater than that of the immediate reward
maximization method.

The numbers of APs and channels are 10 and three, respec-

tively. Furthermore, Fig. 13 displays the time series of the

reward transitions of each method in this example. The final

reward of the proposed method is 0.5, whereas that of the

immediate reward maximization method is 0.375. In the

immediate reward maximization method, the agent takes an

action thatmaximizes the immediate reward at each time step;

thus, this method can fall into the local optimal allocation.

To achieve the global optimal allocation using this method,

plural APs must change their channels simultaneously.

Because we can select only one AP to change at each time

step in this simulation, this method cannot achieve the global

optimal allocation.

Conversely, the proposed method achieves the global opti-

mal allocation with maximum reward. The rewards are zero

until t = 3 for the proposed method. This result indicates

that the proposed method selects the action that maximizes

the cumulative reward, which includes the delayed rewards

received after channel allocation at each time step, even if

the immediate reward is small. This can be attributed to

the fact that the reinforcement learning updates the learning

parameters for maximizing the cumulative reward.

VII. CONCLUSION

A deep reinforcement learning-based channel allocation

scheme was proposed for densely deployed WLANs. First,

to capture the essential features of the carrier sensing relation-

ships among the APs, we applied GCN to a graph where the

APswere connectedwithin their carrier sensing ranges. Then,

we proposed a selective data buffering to prevent over-fitting

by reducing the duplication of the sampling data specific

to WLAN channel allocation problems. The main learning

algorithm of this method was DDQN employing dueling net-

work and prioritized experience replay. Furthermore, because

the number of observable states was extremely high in this

problem, we used canonical labeling to reduce the number

and improve the learning performance. The simulation results

indicated that the proposed scheme achieved greater rewards

after 20-step greedy actions from a given initial state than the

compared methods. Using GCN, we improved the learning

performance compared with that of the simple neural network
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model, which comprised only fully connected layers. Finally,

we demonstrated that the proposed method could allocate

channels in a short number of time steps and with a large

cumulative reward.

APPENDIX

A. DDQN

DDQN [33] is a DQN-based method to avoid over-fitting.

DDQN uses two networks in the same manner as DQN as

discussed in Section IV, i.e., Qθ and Qθ− . The error value of

DDQN is expressed as follows:

Y
DDQN
t := rt+1 + γQ

θ−
(st+1, argmaxa Qθ (st+1, a)).

The parameters are updated to minimize this error value.

B. DUELING NETWORK

Dueling network [34] is a method that can learn what states

are (or are not) valuable without having to learn the effect

of each action for each state. Dueling network includes two

streams to separately estimate the state-value and advantages

for each action in a neural network architecture. The output

value corresponds to the total value of the two streams.

C. PRIORITIZED EXPERIENCE REPLAY

In this paper, we sample the training data from the replay

buffer D according to the prioritized experience replay [35],

which allocates priority to all samples based on the TD errors.

The TD error δt in DDQN is expressed as follows:

δt = rt+1

+γQ
θ−

(st+1, argmaxaQθ (st+1, a))− Qθ−
(st , at ).

The probability of selecting sample i is expressed as follows:

P(i) =
pλ
i

∑

k p
λ
k

, (11)

pi = |δi| + µ0, (12)

where µ0 is a small positive number that prevents the sam-

pling probabilities from being zero when the TD error is zero.

λ is a parameter that determines the degree of prioritizing for

sampling (in particular, when λ = 0, the sampling is uni-

formly randomly implemented). If the absolute value of the

TD error |δt | is relatively large in the replay buffer, the prob-

ability of selecting the corresponding sample increases.
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