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Deep Reinforcement Learning based Charging
Pricing for Autonomous Mobility-on-Demand

System
Ying Lu, Student Member, IEEE, Yanchang Liang, Student Member, IEEE, Zhaohao Ding*, Senior Member,

IEEE, Qiuwei Wu, Senior Member, IEEE, Tao Ding, Senior Member, IEEE, Wei-Jen Lee, Fellow, IEEE

Abstract—The autonomous mobility-on-demand (AMoD)
system plays an important role in the urban transportation
system. The charging behavior of AMoD fleet becomes a critical
link between charging system and transportation system. In this
paper, we investigate a strategic charging pricing scheme for
charging station operators (CSOs) based on a non-cooperative
Stackelberg game framework. The Stackelberg equilibrium
investigates the pricing competition among multiple CSOs, and
explores the nexus between the CSOs and AMoD operator. In
the proposed framework, the responsive behavior of AMoD
operator (order-serving, repositioning, and charging) is for-
mulated as a multi-commodity network flow model to solve
an energy-aware traffic flow problem. Meanwhile, a soft actor-
critic based multi-agent deep reinforcement learning algorithm
is developed to solve the proposed equilibrium framework while
considering privacy-conservation constraints among CSOs. A
numerical case study with city-scale real-world data is used to
validate the effectiveness of the proposed framework.

Index Terms—EV charging pricing, deep reinforcement
learning, power and transportation system, autonomous
mobility-on-demand, soft actor-critic.

NOMENCLATURE

A. Sets, Index, and Tuples
D Set of days indexed by d.
T Set of horus indexed by t.
C Set of EV state-of-charge (SoC) indexed by c.
VR Set of transportation nodes indexed by i.
Vg Set of transportation nodes in an augmented graph

indexed by I, J or Q.
ER Set of transportation roads indexed by (I, J) ∈ ER :

iI ̸= iJ or (Q, I) ∈ ER : iQ ̸= iI .
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EC Set of charging process at the station in an aug-
mented graph indexed by (I, J) ∈ ER : iI = iJ = n
or (Q, I) ∈ ER : iQ = iI = n.

Eg Set of transportation roads in an augmented graph,
which is partitioned into two subsets, namely Eg =
ER + EC .

K Set of transportation requests indexed by k.
M Set of charging station operators (CSOs) indexed by

m.
N Set of electric vehicle charging stations (EVCSs)

indexed by n.
I Tuple for transportation nodes I = (iI , tI , cI) ∈ Vg

in an augmented graph. iI is a node in the road
network. tI is a discrete-time. cI is a discrete SoC.

k Tuple for transportation requests k =
(ok, dk, tk, λk), where ok, dk ∈ VR represent
the request’s origin and destination location,
respectively. tk is the requested pickup time, and
λk is the number of requests k.

B. Parameters
Ccn The vehicle capacity of EVCS n [vehicles].
Cr(i,j) The vehicle capacity of transportation road (iI , iJ)

[vehicles].
V T Value of time [$/hour].
V D Value of distance [$/km].
PC Energy equivalent to one SoC [kW/p.u.].
T(i,j) Traveling time of road (iI , iJ) [hour].
D(i,j) Distance of road (iI , iJ) [km].
αn,t Distribution Locational marginal prices (DLMPs) of

EVCS n at time t [$/MWh].
η The chargers’ efficiency.
C. Variables
xSerk,(I,J) The order-serving flow belonging to request k trav-

eling from location iI to location iJ from time tI
to time tJ , with an initial SoC of cI and SoC of cJ
[vehicles].

xRep(I,J) The repositioning flow represents the number of
empty EV traveling from location iI to location iJ
or charging at location iI = iJ from time tI to time
tJ , with an initial SoC of cI and a final SoC of cJ
[vehicles].

xCha(I,J) The charging flow represents the number of empty
EV traveling from location iI to location iJ or
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charging at location iI = iJ from time tI to time
tJ , with an initial SoC of cI and a final SoC of cJ
[vehicles].

zori
k,c The order-serving flow departing from the origin

location ok with SoC c for request k at time tk
[vehicles].

zdesk,c,t The order-serving flow reaching the destination lo-
cation dk with SoC c for request k at time t
[vehicles].

πCSn,t Charging price of EVCS n ∈ N at time t [$/MWh].
πCSOnm,t Charging price of EVCS nm ∈ Nm managed by

CSO m at time t [$/MWh].
pEVn,t Charging loads of EVCS n at time t [kW].
pEVnm,t Charging loads of EVCS nm ∈ Nm managed by

CSO m at time t [kW].
pgridn,t Energy procurement of EVCS n at time t [kW].
κ Dual variables of AMoD problem.

I. INTRODUCTION

W ITH the move of transportation electrification [1] and
sharing economy [2], the autonomous mobility-on-

demand (AMoD) fleet has become one of the most trans-
formative and promising transportation modes [3]. Through
its autonomous and shared characteristics, the deployment
of electric vehicles (EVs) based AMoD system can increase
overall vehicle utilization (one AMoD vehicle can replace
seven private-owned vehicles [4]), minimize public parking
demand, and reduce environmental pollution [5]. Further-
more, with multiple companies now heavily investing in
AMoD technology, it could become one of the dominant
urban transportation modes in the near future [6].

Generally speaking, the AMoD fleet could coordinate
its routing and charging schedules more efficiently than
conventional private electric vehicles (EVs) as it is managed
by a centralized operator. Typically, AMoD operator needs
to make three types of decisions [5], which are order-
serving (fulfilling traveling requests with the specific origin
and destination nodes and starting time), vehicle reposition
(repositioning vehicles to a certain region in advance for fu-
ture needs), and charging (determining the charging location
and time for each vehicle). Therefore, the behavior pattern
of the AMoD fleet is more predictable as it is centralized
determined by the operator, which maximizes the total op-
erating profit. In contrast with that, private EV users rely on
individually rational. They would determine their behaviors
based on personal preference, which contains much higher
randomness than a centralized profit-driven AMoD opera-
tor. Considering those unique characteristics, the optimal
operation of AMoD fleet has been explored by multiple
researchers, focusing on picking up passengers, routing to
destinations, and repositioning idle vehicles for future order-
serving or charging decisions. For example, Pavone et al. [7]
developed fluidic-based methods to ensure AMoD operators
make the optimal fleet management decisions, and they
further presented queueing network methods for maximizing
the throughput of an AMoD urban transportation system in

[8]. Rossi et al. [9] modeled the AMoD fleet routing problem
within a network flow framework without increasing traffic
congestion. Turan et al. [10] defined the dynamic system
model that captures the time-dependent and stochastic fea-
tures of the AMoD system. Iglesias et al. [11] present a data-
driven framework to control AMoD fleets where the Model
Predictive Control algorithm is adopted to leverage demand
forecasts. Cocca et al. [12] developed a discrete-event trace-
driven simulator to study the usage of an EV sharing system.
Guériau et al. [13] proposed a reinforcement learning-based
decentralized approach to vehicle relocation as well as ride
request assignment in shared AMoD systems, and Swaszek
et al. [14] proposed a parametric threshold-based control
driven by the known relative abundance of AMoD vehicles.
Those literatures above explore the optimal order serving
and repositioning decisions for AMoD operator while the
charging scheduling problem is barely considered.

With the potential large-scale implementation in the near
future, the charging behavior of the AMoD fleet could
become a critical link between power systems and trans-
portation systems. Consequently, strategic charging demand
management techniques, such as charging service pricing,
can not only affect the operation boundary conditions of
transportation system via altering the scheduling decision of
AMoD operator, but also change the operation efficiency
of power systems by reshaping the charging load distri-
bution in both spatial and temporal manner. The price-
based charging management technique of CSOs has been
investigated by many researchers. For example, He et al. [15]
applied a Lagrangian relaxation-based iterative scheme to
design congestion tolls and locational marginal prices for the
power-transportation system. The author further proposed a
multi-class combined distribution and assignment model to
optimize electricity prices and road tolls, minimizing power
losses and traveling times in [16], where the power system
is described by the alternating current optimal power flow.
Wei et al. [17] proposed network equilibrium of the coupled
power-transportation system to analyze the optimal traffic-
power flow and calculate the locational marginal prices.
Although those works significantly contribute to the price-
based management for charging demand, most of them do
not consider the unique operational characteristics of the
AMoD system as its order serving, vehicle repositioning,
and charging are centralized coordinated.

Furthermore, it is also essential to consider the behavior
patterns of competitive CSOs when considering the pricing-
based charging demand management as the responsive be-
havior of AMoD is also affected by the charging service
price of other CSOs. Numerous studies investigated the price
competition of CSOs. Lee et al. [18] investigated the price
competition among CSOs by using a Stackelberg game.
Yuan et al. [19] considered the competitive pricing problem
of each CSO based on the prediction of CSO selection
decisions and the other station’s pricing decisions. Ghosh
et al. [20] and Moradipari et al. [21] developed menu-based
pricing schemes for EV charging access to multiple EVCSs.
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Moghaddm et al. [22] presented a pricing model among
CSOs to reduce the overlaps between residential and charg-
ing loads by drifting EVs to less popular stations. Zhang
et al. [23] proposed a pricing model of battery switching
stations by establishing the detailed EV and battery agents
through coding their states and transitions. Those works
explore the competition characteristics among CSO, but they
hardly consider the spatial-temporal responsive behavior
pattern of AMoD in their models.

In this paper, we propose a strategic charging pricing
scheme for charging station operators (CSOs) based on a
non-cooperative Stackelberg equilibrium framework. The
equilibrium framework is established to investigate the
pricing competition among CSOs and the nexus between
charging infrastructure and AMoD system. An equilibrium
problem with equilibrium constraints (EPEC) is formulated
to model the proposed framework. Due to the computational
complexity introduced by the inherent non-convexities and
non-linearity and complete information constraints intro-
duced by the privacy concern of each CSO, it presents chal-
lenges for conventional methods, such as [18], [19], [24], to
solve the proposed EPEC problem. To overcome those chal-
lenges, a multi-agent deep reinforcement learning (MADRL)
framework based on a soft actor-critic (SAC) algorithm is
constructed. In the DRL solution framework, CSOs (agents)
learn their optimal pricing strategy in an interactive environ-
ment by trial and error using feedback from their actions
and experiences [25]. That is, as long as the objective
function can be calculated given a set of observations, the
charging pricing strategy of CSOs (agents) can be designed
and adjusted. Through trial-and-error interactions within a
dynamic environment, such learning-based approaches for
CSOs avoid the significant modeling and computational
complexity posed by EPEC models. Furthermore, no internal
information (such as computational algorithm and operating
parameters) from their competitors and the AMoD system
is required by the strategic CSO. Hence, the privacy of each
CSO is preserved. During competitive equilibrium, CSOs
only rely on their operating parameters, the trip requests,
and the non-proprietary information of distribution locational
marginal prices (DLMPs). In the proposed framework, the
responsive behavior of AMoD operator (coordinated order-
serving, repositioning, and charging decisions) is formulated
as a multi-commodity network flow model to solve an
energy-aware traffic flow problem. The proposed model is
designed to make short-term decisions with a fixed setting on
EVCS location and capacity as the siting and sizing problem
is out of the scope of this paper. The major contributions of
this paper are summarized as follows:

(1) A strategic charging pricing scheme based on a non-
cooperative Stackelberg equilibrium framework is pro-
posed to support the charging service pricing of CSO
towards AMoD system. The proposed equilibrium
framework investigates the pricing competition among
CSOs and the nexus between CSO decisions and
AMoD decisions.

(2) A MADRL framework based on a SAC algorithm is
developed to solve the proposed equilibrium framework
with privacy-conservation constraints among CSOs.
Meanwhile, a multi-commodity network flow model
is formulated to characterize the unique responsive
behavior of AMoD system.

(3) Numerical case studies with city-scale real-world data
is provided to demonstrate the effectiveness and com-
putational efficiency of the proposed framework.

The rest of the paper is organized as follows. Section
II presents the non-cooperative Stackelberg equilibrium
framework, and Section III proposes a deep reinforcement
learning-based algorithm to solve it. Section IV presents
experimental simulation results to illustrate the proposed
method, followed by the conclusions provided in Section
V.

II. EQUILIBRIUM FRAMEWORK AND MATHEMATICAL
FORMULATION

As illustrated in Fig. 1, a strategic charging pricing scheme
for CSOs based on a non-cooperative Stackelberg equi-
librium framework is proposed. Stackelberg equilibrium are
considered in this framework. The Stackelberg equilibrium
investigates the interactive characteristics between charging
network and AMoD system, while investigates the Nash
equilibrium among competitive CSOs. Under this setting,
profit-driven CSOs determine their charging pricing strategy
for each charging station based on the power procurement
cost and estimated charging demand. Meanwhile, the AMoD
operator optimally manages its fleet by coordinate the order
service, vehicle reposition, and charging schedule simulta-
neously, which effectively shapes the spatial and temporal
charging demand distribution for CSOs. Therefore, the EV
charging profiles of charging stations are flexible in time
and space, which is determined by the charging schedule of
AMoD operator. Combining those two equilibriums, it shall
be noted that the charging price is playing a critical role
in coordinating the charging network and AMoD system. In
other words, charging prices determined by CSOs affect the
AMoD operator’s decision on when and where to charge
their vehicles. Meanwhile, in response to those pricing deci-
sions, the spatial-temporal distribution of charging demand
can be altered, which affects the market share and profit of
each CSO.

Fig. 1. Equilibrium framework for coupled charging system and AMoD
system.
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A. AMoD Fleet Operator Model

To characterize the interactive characteristics between
AMoD system and charging network, it is essential to
model the price responsive behavior of AMoD operator.
As discussed earlier, multiple types of methods can be
used to model the decision-making process of AMoD, from
microscopic [26], [27] to macroscopic approaches [9], [28].
Inspired by [29], we adopt a multi-commodity network flow
model to capture the price responsive behavior of AMoD
system. In this model, the AMoD operator is assumed
to determine the order serving routes (i.e., order-serving),
reposition idle vehicles for future order-serving and charging
needs (i.e., vehicle repositioning), and schedule charging
time and location for vehicles (i.e., charging scheduling)
in a given transportation network, which is modeled in the
following.
1) Transportation Network

To characterize the operation of AMoD, we model the
road network as a directed graph G = (VR, ER). The edges
(i, j) ∈ ER designated to represent major roads connecting
nodes i and j where the nodes i, j ∈ VR represent entrances
or exits of a road, such as charging stations or trip terminals.
To track the time and state of charge (SoC) dynamics of
AMoD fleet, we expand the road network graph to an
augmented energy-time-space graph αG = (Vg, Eg) . Due
that the node set Vg is the extension of VR, a node I ∈ Vg
corresponds to a tuple I = (iI , tl, cI) , where iI ∈ VR is
a node in the road network graph G; tI ∈ {1, · · · , T} is
a discrete-time; and cI ∈ {1, · · · , C} is a discrete charge
level. The edge set Eg is partitioned into two subsets, namely
Eg = EC + ER. Edges (I, J) ∈ ER represent road links,
whereas edges (I, J) ∈ EC model the charging process
at the stations. To facilitate such formulation, the time
and SoC in the proposed model are considered as discrete
values. It should be mentioned that this assumption does
not significantly affect the results considering the number of
vehicles and the time scale of CSO pricing.

The transportation request k is represented by a set of
tuple k = (ok, dk, tk, λk), where ok ∈ VR is the request
origin node, dk ∈ VR is the request destination node, tk ∈ T
is the request starting time, and λk ∈ R is the travel request.
Formally, for the request k, the customer flow is a function
xSerk,(I,J), which represents the rate of order-serving flows
belonging to the request k traveling from location iI to
location iJ during the time tI and tJ , with an initial SoC
cI and a final SoC cJ . Analogously, the repositioning flow
xRep(I,J) (∀(I, J) ∈ EC , iI ̸= iJ) represents the rate of idle ve-
hicles traversing a road. xCha(I,J) (∀(I, J) ∈ ER, iI = iJ = n)
represents the charging flows from time tI with an initial
SoC cI at the virtual charging node n ∈ N . Moreover, zori

k,c

represents start-service flows with a start SoC c belonging
to the request k. zdes

k,c,t represents end-service flows with a
start SoC c at tine t belonging to the request k.
2) Mathematical Formulation

Based on the augmented energy-time-space graph, the
fleet navigation problem for AMoD operator can be formu-

lated as a multi-commodity network flow model, as shown
in the following.

min
Ξ1


∑

(I,J)∈ER,k

[
xSerk,(I,J)

(
V TT(i,j) + V DD(i,j)

)]
+
∑

(I,J)∈ER

[
xRep(I,J)

(
V TT(i,j) + V DD(i,j)

)]
+
∑

(I,J)∈EC

[
xCha(I,J) (cJ − cI)P

CπCSn,t

]
 ,

(1)

Ξ1 =
{
xSerk,(I,J), x

Rep
(I,J), x

Cha
(I,J), z

des
k,c,t, z

ori
k,c

}
s.t.

∑
J

xSerk,(I,J) + zdesk,c,t1iI=dk =
∑
Q

xSerk,(Q,I)

+ zorik,c1iI=ok1tl=tk (∀k, I) : κSFk,I ,
(2)

∑
J

xRep(I,J) +
∑
J

xCha(I,J) +
∑
k

zorik,cI1iI=ok1tI=tk =∑
k

zdesk,cI ,tI1iI=dk +
∑
Q

xRep(Q,I) +
∑
Q

xCha(Q,I) (∀I) : κRFI ,

(3)∑
c

zorik,c =
∑
c

∑
t

zdesk,c,t = λk (∀k) : κSOk , κSDk , (4)∑
c

xSerk,(I,J)1cI<cij = xRep(I,J)1cI<cij = 0

(∀ (iI , iJ) ∈ ER, tI) : κSS(iI ,iJ )∈ER,tI
κRS(iI ,iJ )∈ER,tI

,

(5)

∑
(i1,ij)∈Ec

xCha(I,J) ≤ C
c
n (∀n, tI) : κCRn , (6)∑

cI ,k

xSerk,(I,J) +
∑
cI

xRep(I,J) ≤ Cri,j

(∀ (iI , iJ) ∈ ER, tI) : κRR(i1,iJ )∈ER,tI
.

(7)

The cost function (1) consists of three parts
corresponding to three types of flows in the AMoD
system: order-serving, repositioning, and charging. The
first item

∑
(I,J)∈ER,k

[
xSerk,(I,J)

(
V TT(i,j) + V DD(i,j)

)]
is the traveling time cost and traveling distance
cost of order-serving flow. The second item∑

(I,J)∈ER

[
xRep(I,J)

(
V TT(i,j) + V DD(i,j)

)]
is the traveling

time cost and traveling distance cost of repositioning flow.
The traveling cost includes both the traveling time and
distance cost for order-serving and repositioning flow.
The third term

∑
(I,J)∈EC

[
xRep(I,J) (cJ − cI)π

CS
n,t

]
is the

charging cost of charging flow. πCSn,t is the charging price
for each EVCS as issued by CSOs.

Constraint (2) and (3) indicate order-serving and repo-
sitioning flows satisfying continuity constraints. In other
words, order-serving and repositioning flows entering a node
must exit the same node at the same time. An example
is provided in the Appendix A to illustrate the continuity
condition and flow state transition among order-serving,
repositioning, and charging flow as shown in Fig. 16.
Constraints (4) represent the start-service flow and end-
service flow fulfilling the traveling requests. Constraint (5)
is the SoC constraint which indicates that when the SoC of
vehicles in node i does not meet the required SoC of road
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cij , both the serving flow and the repositioning flow are zero.
Constraints (6) and (7) represent charge limits in EVCS n
and road limits in road ij, respectively. Based on the above
settings, charging loads pEVn,t can be determined by AMoD
operator through the following function.

pEVn,t =
∑

(I,J)∈EC

[
xRep(I,J) (cJ − cI)

]
PC (∀n, tI) . (8)

B. CSO Operation Model

Without loss of generality, we assume there are multi-
ple profit-driven CSOs providing charging services for the
AMoD system. Each CSO owns multiple EVCSs at different
locations. The operation objective of a CSO is to maximize
the accumulated profit over the entire operation horizon.
The power procurement cost is assumed to be determined
by the distributed locational marginal price (DLMP) from
the distribution system and charging demand. This paper
assumes that all the charging demand comes from the AMoD
system as the target is to investigate the interactive pattern
between charging network and AMoD system.

Each strategic CSO determines its charging pricing strat-
egy to maximize the profit, as shown in the following.

max
Ξ2

ρm =
∑

nm∈Nm,t

πCSOnm,t p
EV
nm,t/η − αn,tp

grid
n,t , (9)

Ξ2 =
{
πCSOnm,t , p

grid
n,t

}
s.t. pgridn,t =

pEVnm,t

η
(∀n, t), (10)∑

nm∈Nm,t

(
πCSOnm,t p

EV
nm,t/η − αn,tp

grid
n,t

)
≥ 0 (∀m), (11)

πCSO.min
nm

≤ πCSOnm,t ≤ π
CSO.max
nm

(∀nm,m, t). (12)

The profit functions (9) of CSO m, which includes
EVCS nm consist of two parts, i.e., charging revenue and
negative power procurement cost, where αn,t is DLMP from
the distribution system, pEVnm,t is charging load in EVCS
nm ∈ Nm belonging to CSO m at time t from the AMoD
operator model, and η is the chargers’ efficiency of each
EVCS. The decision variables of CSO operator model are{
πCSOnm,t , p

grid
n,t

}
, which denote the charging price of EVCS

nm ∈ Nm managed by CSO m ∈ M at time t and power
procurement from the grid at time t. Constraint (10) indicates
power balance for each EVCS n at time t. Constraint (11)
indicates that the accumulated profit of each CSO is non-
negative. Constraints (12) limit the upper bound and the
lower bound the charging prices.

It shall be mentioned that pnm,t is affected by the price re-
sponsive behavior of AMoD system and the pricing strategy
of competitive CSOs.

C. Non-cooperative Stackelberg Game

A non-cooperative Stackelberg game formally studies the
sequential decision-making processes between CSOs and

AMoD operator follower and the non-cooperative interde-
pendence among CSOs [30]. Here, we formulate a non-
cooperative Stackelberg game, where the CSOs are the
leaders and the AMoD operator is the follower, to capture
the interaction between the CSOs and the AMoD operator.
In this non-cooperative Stackelberg game, the CSOs play a
Nash game with each other to set charging prices. Multiple
comparative examples in Section IV are applied to verify the
two equilibriums of the non-cooperative Stackelberg game
(the Nash equilibrium between CSOs and the Stackelberg
equilibrium among CSOs and AMoD fleet operator). The
non-cooperative Stackelberg game is formally defined by its
strategic form as

Γ =

{
(M ∪ {AMoD}) ,

{
πCSOm

}
|m∈M ,

pEV , {ρm} |m∈M , C

}
(13)

which consists of the following components.
(1) Players: CSOs (leaders) in set M and AMoD operator

(follower);
(2) Strategy sets of players: The union of feasible strategy

sets
{
πCSOm

}
|m∈M of all CSOs and pEV of AMoD

operator;
(3) Payoff functions of players: The profit function
{ρm} |m∈M of each CSO is explained in (9). C is
the cost function of AMoD operator, as explained in
(1), that captures its total cost including order-serving,
repositioning and charging cost.

The solution of the proposed game includes a Stackelberg
equilibrium at which the CSOs determine their pricing
strategies considering the response of AMoD operator and
a Nash equilibrium among CSOs. At this equilibrium point,
neither CSO nor AMoD operator can benefit by unilaterally
changing their strategy.

Defination 1: Consider the game Γ defined in (13), where
{ρm} |m∈M and C are determined by (9) and (1), respec-
tively. A set of strategies

{
πCSO∗
m

}
|m∈M , pEV ∗ constitutes

an equilibrium of this game, if and only if it satisfies the
following set of inequalities [31] [32]:

ρm
(
πCSO∗
m , πCSO∗

−m , pEV ∗)
≥ ρm

(
πCSOm , πCSO∗

−m , pEV ∗) (∀m),
(14)

C
(
πCSO∗
m , pEV ∗) ≤ C (

πCSO∗
m , pEV

)
, (15)

where πCSO∗
m is the charging prices of CSO m, and πCSO∗

−m
denotes the charging prices of other CSOs. Inequality (14)
indicates that no CSO can improve its cost by choosing
other strategies rather than πCSO∗

m . Inequality (15) shows
that AMoD operator cannot decrease its cost by unilater-
ally deviating from the optimal charging strategy pEV ∗ if
responding to the pricing strategies by CSOs.

D. EPEC Formulation

In this paper, each CSO is assumed to have full knowledge
of AMoD operator’s price responsive patterns. Considering
the information asymmetries between CSO and AMoDs
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operator, the interactive behavior between charging network
and AMoD system is formulated as a bi-level optimization
problem, as shown in the following.

ρm = max
Ξ2

∑
nm∈Nm,t

πCSOnm,t p
EV
nm,t/η − αn,tp

grid
n,t (∀m), (16)

s.t. constraints (10)-(12), (17)

min
Ξ1


∑

(I,J)∈ER,k

[
xSerk,(I,J)

(
V TT(i,j) + V DD(i,j)

)]
+
∑

(I,J)∈ER

[
xRep(I,J)

(
V TT(i,j) + V DD(i,j)

)]
+
∑

(I,J)∈EC

[
xCha(I,J) (cJ − cI)P

CπCSn,t

]
 ,

(18)
s.t. constraints (2)-(7). (19)

In the above formulation, (16)-(17) represent the upper-
level model for each CSO, and (18)-(19) are the lower-
level model for AMoD operator. Meanwhile, the competitive
pricing behaviors of CSOs are modeled as a Nash game.
Combining those two types of interactive features, we can
model the proposed non-cooperative Stackelberg game as
following EPEC model:

maxxm ρm (Xm)
Hm

(
Xm,X

∗
−m

)
= 0

Gm
(
Xm,X

∗
−m

)
≥ 0

 (∀m ∈M) . (20)

Here, function ρm (Xm) is the profit of CSO
m, which is similar to function (9). The decision
variables Xm of CSO m are {Ξ1 ∪ Ξ2 ∪ κ}, which is
a union set of the decision variable in AMoD system
operation model, CSO operation model, and the dual
variables κ for AMoD system operation model as{
κSFk,I , κ

RF
I , κSOk , κSDk , κSS(iI ,iJ ),tI , κ

RS
(iI ,iJ ),tI

κCRn , κRR(iI ,iJ ),tI

}
.

Furthermore, vectors Hm
(
Xm,X

∗
−m

)
and Gm

(
Xm,X

∗
−m

)
are equality and inequality constraints of models for CSO
m, respectively. Vector X∗

−m is the optimal strategies of all
other CSOs. Considering that the AMoD operation model
has a unique maximum with given prices from CSOs, the
non-cooperative Stackelberg game possesses an equilibrium
solution if the game among the CSOs admits a Nash
equilibrium [30]. To verify Nash equilibrium condition that
no individual CSO has a profitable unilateral deviation
based on digonalization method [33], {ρ∗m} |m∈M is defined
as the objective function value of each CSO operation
model solved by the EPEC model. ρ̃m is also defined as
the objective function value obtained by solving the bi-level
model of CSO m while fixing the pricing decisions of other
CSOs. For all CSOs, if the following condition is satisfied

ρ̃m ≤ ρ∗m(∀m), (21)

no incremental profit is obtained for any CSO. With this
verification process, we can check if the achieved solution
is a Nash equilibrium point.

It shall be noted that the EPEC formulation of the pro-
posed non-cooperative Stackelberg equilibrium framework

introduces modeling and computational challenges. One
of the challenges is due to the non-convexities and non-
linearity induced by the Karush-Kuhn-Tucker conditions of
the AMoD system operation model. Therefore, it presents
computational challenges to solve the proposed equilibrium
problem analytically. The other challenge is that solving an
equilibrium by analytical approaches requires the informa-
tion of states and decisions from all CSOs. Such an approach
requires each CSO have full knowledge of competitors’
strategies, which could be a problematic assumption in real-
world applications.

III. SOLUTION APPROACH: DEEP REINFORCEMENT
LEARNING

To address the challenges of solving the proposed non-
cooperative Stackelberg equilibrium model, a multi-agent
DRL framework based on the SAC algorithm is developed,
as illustrated in Fig. 2.

Fig. 2. DRL-based solution framework.

A. DRL-based Solution Framework

We consider a pricing scheme in a day-ahead manner so
the AMoD operator can get those price signals in advance. It
should be mentioned that the pricing scheme can be adjusted
to real-time pricing, but in that case, the responsive model of
AMoD operator also needs to be reformulated as receding
horizon one [29]. In the proposed framework, each CSO
makes pricing decisions in consecutive days d = 1, 2, · · · , D
(called an episode). For each day d, each CSO sets 24-hour
prices for the EVCSs. It requires the predetermined DLMP,
and the predicted traffic demand, and the history of other
CSOs’ pricing decisions. The objective of a CSO’s pricing
decision is to maximize its total profit in an episode. When
executing a pricing decision, each CSO can only observe its
state without the other CSOs’ states and decisions at that
moment [34]. Therefore, we consider each CSO as an agent
and model the pricing problem as a partially observable
Markov decision process in a fully competitive setting. The
significant components are defined as:
(1) Agent: Each strategic CSO m constitutes the agent.
(2) Environment: the environment is represented by the

vehicle dispatch and charging management problem
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carried out by the AMoD operator, formulated in the
optimization problem (1)-(8). Note that the settings
of the multi-agent DRL environment, such as AMoD
system in the current problem, are set as the same as
that in EPEC model.

(3) State: For each CSO m, its state variable sm,d can be
specified using a set of exogenous attributes and a set
of endogeneous attributes [35]. The current timestamp
d and DLMP from DSO [λnm,t]t∈Td

are included in the
exogenous attributes, which is the set of external fea-
tures of the problem. The charging loads from AMoD
system [pnm,t]t∈Td

and historical charging prices of all
CSOs in the previous day [πm,t]m∈M,t∈Td−1

, where Td
denotes all time intervals in day d, are included in
the endogeneous attributes, which serves as a feedback
signal regarding the influence of its strategic prices on
the state of the environment.

(4) Action: The action variable of CSO m is the charging
prices of EVCSs it manages, i.e., am,d =

[
πCSOnm,t

]
t∈Td

.
(5) Reward and return : The reward of CSO m is

rm,d =
∑

nm∈Nm,t∈Td

πCSOnm,td
pnm,td/η − αn,tdp

grid
n,td

. (22)

Then, return Rm,d is defined as the cumulative discounted
reward of CSO m from time step t until the end of the
episode, Rm,d) = rm,d + γrm,d+1 + · · · + γD−1−drm,D−1

where discount factor γ ∈ [0, 1] reflects the time value of
money (the closer γ is to 1, the more important are future
rewards), D denotes all the day in one training episode. The
state variables and rewards interacting with the multi-agent
DRL agents usually need to be normalized (e.g., normalized
to the 0 ∼ 1 range), which is helpful for training the neural
network [36].

B. Soft Actor-Critic (SAC) Algorithm

Fig. 3. Learning process of the SAC agent

The traditional on-policy DRL algorithms such as Proxi-
mal Policy Optimization (PPO) are sample inefficient since
new samples must be generated at each gradient step.
Although off-policy policy gradient algorithms, such as
Deep Deterministic Policy Gradient (DDPG) [37], were
developed to improve sample efficiency, they are often
brittle concerning their hyperparameters resulting in poor

convergence performance. To address these challenges, the
off-policy maximum-entropy deep RL algorithm, SAC [28],
is adopted to provide robust and sample-efficient learning,
which achieves a better performance. The training process
of the SAC agent is as follows. For simplicity, we omit the
subscript m for all variables in this section. As shown in
Fig. 3, the SAC architecture consists of the actor part and
critic part:

JV (ψ) = Esd [
1

2
(Vψ (sd)− Eat [Qθ (sd, ad)

− logωϕ (ad | sd)])2].
(23)

Critic: The critic part contains two value functions V (Sd)
parameterized by ψ, ψ̄, and two Q-value functions Q (sd, ad)
parameterized by θ1, θ2. Note that similar to the DDPG [38],
a target value function Vψ̄ (sd) is not trainable but softly
updated to Vψ (sd) gradually, ψ̄ ← τψ + (1 − τ)ψ̄, while
Vψ (sd) is trained to minimize the square error:

∇ψJV (ψ) = ∇ψVψ(sd)(Vψ(sd)−Qθ(sd, ad)
+ logωϕ(ad | sd))2.

(24)

where − logωϕ (ad | sd) indicates the policy entropy. The
gradient of JV (ψ) can be calculated as

Similar to the double DQN [39], two Q-value functions
are adopted here. When updating action ad, the minimum
one would be picked up to prevent overestimation. The same
loss function JQ(θ) for θ1 and θ2 is shown as follows:

JQ(θ) = Esd,ad [
1

2
(Qθ(sd, ad)− (r(sd, ad)

+ γEsd+1
[Vψ̄(sd+1)]))

2].
(25)

Then we get the gradient of JQ(θ):

∇θJQ = ∇θQθ (sd, ad) (Qθ (sd, ad)− r (sd, ad)
− γVψ̄(sd+1t)).

(26)

Actor: The actor part is the policy network ω (ad | sd)
parameterized with ϕ. To update the parameters ϕ, the
minimization of KL divergence between the policy and the
exponential of the Q-function is adopted. The objective
function is

Jω(ϕ) = Est
[
DKL

(
ωϕ (· | sd) ∥

exp (Qθ (sd, ·))
zθ (sd)

)]
.

(27)

To make it differentiable, a reparameterization trick is
adopted, i.e., using the randomness of random noise ϵd
following Gaussian distribution to substitute the randomness
sampling. Then, the action ad including mean and variance
is ad = fϕ (ϵd; sd). In this way, the reconstructed objective
function is differentiable:

Jω(ϕ) =Esd [logωϕ (fϕ (ϵd; sd) | sd)
−Qθ(sd, fϕ (ϵd; sd))].

(28)

We can get the gradient of Jω(ϕ) as

∇̂ϕJω(ϕ) = ∇ϕ logωϕ (ad | sd)
+ (∇at logωϕ (ad | sd)
−∇adQ (sd, ad))∇ϕfϕ (ϵd; sd) .

(29)
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C. Workflow for Multi-CSO SAC Algorithm

We assume that multiple CSOs make charging pricing
strategies simultaneously. For each day d, each CSO m
observes the state sm,d from the DSO and AMoD systems
and select the action am,d with mean and variance according
to its policy ωϕm

. Next, the CSO receives the reward rm,d
and observes a new state sm,d+1. Based on these experiences
stored in the replay buffer, we can calculate the gradients
of all objective functions (i.e., Eqs. (24), (26), and (29)) to
update the neural network parameters. Then, the interaction
process is looped until the rewards of the agents converge.
After converge, to guarantee non-negative profit of each
CSO, we verify the result using constraint (11). Finally, the
proposed multi-CSO SAC algorithm will achieve the Nash
equilibrium point. Algorithm 1 shows the training process
of the multi-CSO SAC algorithm.

Algorithm 1 Multi-CSO SAC Algorithm
1: for each CSO m do
2: Initialize replay buffer Dm

3: Initial parameter vectors ψm, ψ̄m, θm,1, θm,2, ϕm
4: end for
5: repeat
6: for each environment step do
7: am,d ∼ ωϕm

(am,d | sm,d) for each CSO m;
8: pn,t ← Eqs. (1)− (8)
9: for each CSO m do in parallel

10: rm,d ← Eq. (22)
11: Observe sm,d+1

12: Dm ← Dm ∪ {sm,d, am,d, rm,d, Sm,d+1}
13: end for
14: end for
15: for each gradient step do
16: for each CSO m do in parallel
17: ψm ← ψm − ηV ∇̂ψmJV (ψm)

18: θm,i ← θm,i − ηQ∇⃗θm,i
JQ (θm,i)

19: for i ∈ {1, 2}
20: ϕm ← ϕm − ηπ∇̂ϕmJπ (ϕm)
21: ψ̄m ← τψm + (1− τ)ψ̄m
22: end for
23: end for
24: until convergence
25: non-negative reward verification using (11)

IV. NUMERICAL EXPERIMENTS

In this section, the simulation results for the non-
cooperative Stackelberg equilibrium model based on the
Dallas-Fort Worth metroplex data are presented and ana-
lyzed. All the experimental simulations are run on a com-
puter with 4 cores Intel Core i7 and 8 GB memory. The
DRL-based framework is constructed by the PyTorch in
Python.

Fig. 4. Charging and transportation systems in Dallas-Fort Worth metro-
plex. (a) 180-grid transportation system of Dallas-Fort Worth. (b) Coupled
charging system and transportation network.

Fig. 5. Daily traveling requests profile.

A. Parameter Settings

The topology of the transportation system in the Dallas-
Fort Worth metroplex is shown in Fig. 4, which is modified
based on [29]. The targeting area is divided into 180 grids
with 5 times 5 kilometer resolution, and the corresponding
road network contains 30 nodes and 116 roads as simplified
from OpenStreetMap [40]. The charging infrastructures in
each node are aggregated, resulting in 8 EVCSs located at
Node 5, 7, 8, 11, 17, 19, 24, and 27 in the transportation
network. The charging efficiency η of each charging station
is set as 92%, based on [41]. Four competitive CSOs are
operating those 8 EVCSs, as shown in Fig. 4(b). The EVCS
parameters are listed in Table I. The daily traveling requests
for AMoD are assumed as 390,000 based on [29]. The
commuters’ value of time and distance is set equal to $4.40/h
and $0.1/km, respectively [29]. The BAIC EV 200 is used
as an exemplary EV model in the revised manuscript. The
EV battery capacity is 3.3 kW/30.4 kWh that can support
roughly 200 km driving distance. Fig. 5 shows the daily
traveling requests profiles. The AMoD fleet consists of
150,000 vehicles, i.e., 1 AMoD fleet for every 2.6 customers,
similar to [11]. To represent the possibility that vehicles
might not begin the day fully charged, each EV starts the
time episode with a 50% battery charge and must have the
same level of charge at the end of each day. The time interval
for pricing is 1 hour which is consistent with the wholesale
power market settlement interval. In the SAC algorithm, the
pricing time interval is set to 24 hours (one day), while
each episode is considered 7 days to address the day-to-day
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coupling. The other parameters in the training process are set
as follows: the number of episodes is 4000, the capacity of
replay buffer D = 5× 105, and the discount factor γ = 0.9.

TABLE I
EVCS PARAMETERS.

Name Symbol Value
The vehicle capacity [29] Cc

n 6000 vehicles
The chargers’ efficiency [41] η 0.92

Upper bound of charging prices πCS.max
n 150 $/MWh

Lower bound of charging prices πCS.min
n 0 $/MWh

B. Result Analysis

1) Base Case Result
As stated in section III, the charging pricing strategies of

CSO agents result from the learning process in an interactive
environment by trials and errors. Here, a set of convergent
charging prices during one day are selected as the result
analysis, as shown in Fig. 6. From the results, one can
see that charging prices and charging loads are negatively
correlated. For instance, the charging loads in CSO II are
high from 13:00 to 19:00, while the following prices are
lower than other time intervals. Besides, it is also significant
for charging management of charging prices on a spatial
scale. For instance, compared with Fig. 6(b), more vehicles
are navigated to EVCS IV than EVCS II due to the lower
prices in EVCS IV from 6:00 to 7:00. Fig. 7 shows the
distribution of transportation flows in the Dallas-Fort Worth
metroplex from 6:00 to 7:00. It can be observed that the
flow distribution is affected by the charging pricing strategy.
For example, AMoD operator prefer to choose "Node 22 -
Node 9" rather than "Node 22 - Node 17" due to the lower
prices in Node 21.

In the transportation system, AMoD operator reposition
the vehicles to fulfill future traveling requests so that there
is an opposite trend between order-serving flow and reposi-
tioning flow, especially when there are not enough vehicles
for requests. Fig. 8 shows the number of repositioning fleets
for Destination Nodes 4, 7, and 17. Destination Nodes 4 and
7 for repositioning fleets have more flows during the early
time, following Origin Nodes 4, 7 for requests. To reach a
50% level of charge for fleets and the minimum number for
each bus at the end of the day, the repositioning flow for each
node looks high from 20:00 to 23:00. To further present the
network flow, Fig. 9 depicts the number of the order-serving
flow and repositioning flow of Node 17 (EVCS II) from 6:00
to 7:00, which are mainly constrained by constraints (2) and
(3). In Fig. 9(b) and (c), one can track the flow in Node 17.
To ensure that the SOC can cover the travel, the vehicles that
flow into the node at the end of the service generally reduce
SOC, and the vehicles that begin to flow out of the node
generally increase SOC. For instance, there are 207 vehicles
in Node 17 when SOC equals 1, while 497 vehicles out of
Node 17 when SOC equals 9.

Fig. 6. Charging load and charge prices of (a) CSO I (EVCS I-II), (b)
CSO II (EVCS III-IV), (c) CSO III (EVCS V-VI) and (d) CSO IV (EVCS
VII-VIII). Load-N price-N in legend represent charging loads and charging
prices of EVCS N.

Fig. 7. Distribution of transportation flows in Dallas-Fort Worth metroplex
from 6:00 to 7:00.

To illustrate the traceability of the order-serving flows for
each travel demand k, Fig. 10 represents the three sets of
order-serving flows for node 17 departing at 6 o’clock. Fig.
10(a) and (b) represent three travel demands from node 17
with a departure time of 6:00 in time and SOC, respectively.
10 (c) is a projection of Fig. 10(a) and (b), clearly showing
the trajectory of the traffic flow in a geographical map.
2) Comparison with EPEC

We compare and analyze the results from the EPEC
method and proposed SAC algorithm. The experiments for
the SAC approach are repeated with ten random seeds to
prevent contingency. The final convergence result of the
reward of each CSO is shown in Fig. 11. The error ranges
of the results of the four CSOs relative to the EPEC results
are (-1.68%, 1.49%), (-1.49%, 1.97%), (-1.59%, 2.06%) and
(-1.48%, 2.27%), respectively. According to reference [25]
and [42], the results prove the accuracy and stability of the
SAC algorithm with the acceptable error range. In order to
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Fig. 8. The number of repositioning AMoD fleets for Destination Node 4,
7 and 17.

Fig. 9. The network flow of Node 17 (EVCS II) from 6:00 to 7:00.

verify the Nash equilibrium, we adopted the diagonalization
method in [30]. Table II verifies that the solution obtained
in Fig. 6 is a Nash equilibrium point. It can be seen that
The objective function values ρ∗1 of each CSO solved by
the EPEC model are both larger than the objective function
value ρ̃m obtained by solving the MPEC model with fixed
charging pricing strategies of other CSOs obtained by the
EPEC model. It shows that the solution conforms to the
Nash equilibrium condition that no individual CSO has a
profitable unilateral deviation, and the solution of the EPEC
model is Nash equilibrium.

TABLE II
VERIFICATION OF NASH EQUILIBRIUM.

CSO I (k$) CSO II (k$) CSO III (k$) CSO IV (k$)
ρ∗1 ρ̃1 ρ∗2 ρ̃2 ρ∗3 ρ̃3 ρ∗4 ρ̃4

11.76 10.21 8.67 8.21 10.61 9.54 11.39 10.99

3) Comparison with Centralized Approach
Compared to centralized approach, there is a loss of

efficiency in decentralized approach. We add a benchmark
for centralized approach and solve it with two methods,
i.e., centralized approach based mathematical programming
with equilibrium constraints (C-MPEC) and SAC (C-SAC).
To illustrate the difference in performance, we establish an
efficiency loss index [43] to quantify the impact of adopting

Fig. 10. Illustration of traceability. (a) Time trajectory. (b) SoC trajectory.
(c) Geographical trajectory.

Fig. 11. The final convergence value of rewards (the lines represent the
solutions of EPEC and the dots represent the solution of ten experiments
with different random seeds for SAC algorithm).

decentralized approaches, i.e., decentralized approach based
EPEC (D-EPEC) and SAC (D-SAC). The results in Table
III demonstrate that there is a slight performance difference
between the centralized and decentralized approaches, e.g.
0.28% for D-EPEC in contrast to C-MPEC and 0.24% for
D-SAC in contrast to C-SAC.

TABLE III
COMPARATIVE RESULT OF EFFICIENCY LOSSES.

Name C-MPEC C-SAC D-EPEC D-SAC
Total/Joint profit (k$) 42.51 42.50 42.39 42.40
Efficiency loss index - - 0.28% 0.24%
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C. Sensitivity Analyses

1) The Impact on the Operation Efficiency of the Coupled
Charging System and AMoD System

To demonstrate the impact of the proposed pricing scheme
on the operation efficiency of the coupled charging system
and AMoD system, we compare the proposed pricing strat-
egy as a base case with three intuitive benchmark cases, and
the results are reported as follows.

Case A: no spatial difference for all charging prices.
Case B: no temporal difference for all charging prices.
Case C: no spatial-temporal difference for all charging

prices.

TABLE IV
ECONOMIC PERFORMANCE OF AMOD SYSTEM AND CSO SYSTEM.

Cost of AMoD system Profit of CSO system
Charging (k$) Traveling (k$) Total (k$) Cost (k$) Profit (k$)

Base case 334.77 32.15 366.92 292.34 42.43
Case A 357.95 28.28 386.23 329.51 28.44
Case B 367.19 30.52 397.71 339.77 27.42
Case C 377.17 27.16 404.33 372.05 5.12

Table IV shows the economic performance of AMoD
system’s weekly charging revenue in different benchmarks.
It can be observed that adopting the proposed pricing
strategy in the base case leads to lower charging costs and
higher traveling costs for the AMoD system. This is because
the prices in other benchmarks cannot include the spatial-
temporal coordination for AMoD operator’s order-serving,
repositioning, and charging. In other words, AMoD system
might make less-distance order-serving or repositioning de-
cisions without considering the spatial-temporal distribution
of charging prices. One can also see that adopting other
benchmark pricing strategies leads to more energy procure-
ment costs and fewer profits for the CSOs. The results
demonstrate that the proposed spatial-temporal charging
pricing strategy improves the operation efficiency of the
coupled charging system and AMoD system.
2) The Impact on the Competitive Performance among CSOs

To illustrate the competitive performance of the pro-
posed charging pricing-based equilibrium strategy, two more
benchmarks are investigated.

Case D: CSO I, CSO II, and CSO III adopt the proposed
scheme, while CSO IV utilizes a fixed time-varying price
policy as the base case.

Case E: CSO I, CSO II, and CSO III adopt the proposed
time-varying scheme while CSO IV utilizes the proposed
pricing scheme but with the additional time-invariant con-
straint.

TABLE V
WEEKLY PROFITS OF CSO SYSTEM.

CSO I (k$) CSO II (k$) CSO III (k$) CSO IV (k$) Total (k$)
Base case 11.76 8.67 10.61 11.39 42.43
Case D 12.52 10.32 11.31 6.59 40.74
Case E 12.05 9.05 10.98 8.73 40.81

It can be observed in Table V that the revenues of CSO
I, CSO II, and CSO III in Case D and Case E are higher

Fig. 12. Charging load and charge prices in Case D. (a) CSO I (EVCS
I-II), (b) CSO II (EVCS III-IV), (c) CSO III (EVCS V-VI) and (d) CSO
IV (EVCS VII-VIII). Load-N price-N in legend represent charging loads
and charging prices of EVCS N.

than the result of the base case, while the revenue of CSO
IV in Case D and Case E is lower than the result of the
base case. Fig. 12 shows the charging demand management
results in Case D. It can be observed that CSO I, CSO II,
and CSO III adopting the strategic pricing method attract
more charging demand from CSO IV (compared to Fig. 6),
resulting in higher revenues for those strategic players.
3) The Impact of Forecasts Quality on the Rewards of CSOs

To explore the effect of the quality of forecasts of travel re-
quests and DLMP parameters on the rewards of each CSOs,
four sensitivity analysis cases are provided. In each case, the
Normalized Standard Deviation of Day-ahead Forecasting
Error of DLMP and travel requests are 0.1, 0.2, 0.3 and
0.4, respectively. The agents sample the DLMP and travel
requests for each case based on the Monte Carlo sampling
method [44]. Ten repeated experiments are executed, and
the error range and variance results with the EPEC results
are shown in Table VI. It can be observed that the variance
of results increases as the Normalized Standard Deviation
of Day-ahead Forecasting Error increases. However, the
variance is acceptable even when the Normalized Standard
Deviation of Day-ahead Forecasting Error of DLMP and
travel requests is 0.4, according to the literature [38][45]. It
shows that the neural network is adaptive to environmental
states with different error ranges.

D. Computation Performance

To validate the computation performance of the SAC
based learning strategy, Fig. 13 depicts the convergence
process of the proposed multi-agent SAC algorithm. It
shows that the convergence can be obtained after observing
and training for about 4000 episodes, which embodies the
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TABLE VI
SENSITIVITY RESULT IN TEN REPEATED EXPERIMENTAL RESULTS

BASED ON DIFFERENT FORECAST QUALITIES.

Normalized Standard Deviation of Day-ahead Forecasting
Error of DLMP and travel requests

0.1 0.2 0.3 0.4

CSO I Error range(%) (-1.68, 1.49) (-2.95, 2.51) (-3.63, 3.40) (-19.40, 5.00)
Variance(k$2) 0.021 0.074 0.818 9.793

CSO II Error range(%) (-1.49, 1.97) (-2.07, 3.35) (-2.10, 4.35) (-16.63, 20.03)
Variance(k$2) 0.011 0.018 0.165 2.34

CSO III Error range(%) (-1.59, 2.06) (-1.96, 2.99) (-4.48, 4.83) (-19.65, 18.68)
Variance(k$2) 0.017 0.032 0.174 0.412

CSO IV Error range(%) (-1.48, 2.27) (-2.62, 3.52) (-4.25, 4.73) (-20.65, 12.03)
Variance(k$2) 0.022 0.109 2.14 10.385

desirable convergence properties. Besides, Fig. 14 shows
the total weekly return of agents during the training for
SAC, PPO, and DDPG. The results show that the proposed
model outperforms other state-of-art model-free deep RL
algorithms, including the on-policy PPO algorithm and off-
policy DDPG algorithm [28]. One can see that the PPO
algorithm needs more episodes (about 4000 episodes) than
the SAC algorithm due to the lower sampling efficiency.
Besides, the DDPG algorithm fails to make any progress
without convergence due to its extreme brittleness and hyper-
parameter sensitivity [28].

Fig. 13. Episodic return of CSOs (a) CSO I; (b) CSO II; (c) CSO III; (d)
CSO IV.

TABLE VII
COMPUTATIONAL PERFORMANCE COMPARISON BETWEEN EPEC AND

DRL METHODS.

EPEC DRL
Time 156 minutes < 1 second

It can be observed that the proposed SAC algorithm can
obtain converged results within 4000 episodes. With the
help of well-trained neutral networks, CSO can determine
its optimal charging prices based on non-proprietary infor-
mation such as DLMP and trip request distribution. In this

Fig. 14. Training results on model-free deep RL algorithms. The solid
curves are the performances of 5 random experiments, and the shaded
regions represent the error bounds.

way, a minimal computational burden is required by the
proposed DRL based pricing scheme when determining the
charging price. This is illustrated in Table VII by compared
the computational performance of the proposed DRL method
with the conventional EPEC solution method based on [46].
It can be observed that the proposed DRL method is much
faster than the EPEC method. This is expected as the
analytical solution method for EPEC needs to deal with the
inherent non-convexities and non-linearity. In contrast, the
machine learning based solution method can immediately
find the optimal mapping between the input parameter and
optimal pricing strategy after finishing the offline training of
the algorithm. It worth mentioning that this could be an even
more important feature if we extend the charging pricing to
an online manner in the future.

Fig. 15. Episodic return of CSOs with different discount factor of CSO I.
(a) CSO I; (b) CSO II; (c) CSO III; (d) CSO IV. (γ is the discount factor)

The key settings of MADRL itself are mainly hyperparam-
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eters, such as learning rate and discount factor. However, the
setting of hyperparameters usually lacks theoretical support
and depends mainly on empirical and experimental results.
Some empirical conclusions are 0.01 ∼ 0.0001 for the
learning rate and 0.8 ∼ 0.99 for the discount factor, but still
some experiments are needed to tune the hyperparameters for
specific problems. We conduct experiments to investigate the
effect of the discount factor on the returns of the CSOs. The
discount factor for CSO I is set to vary, while the discount
factor for CSO II-IV is a constant 0.9. The returns during
training can be seen in Fig. 15. A low discount factor can
lead agents to over-prioritize immediate returns and become
myopic about future returns [47]; however, targeting a high
discount factor may lead to instability or divergence in the
estimation of the Q-value function, yielding a poor quality
policy [45]. Both γ = 0.99 and γ = 0 reduce the returns
of CSO I, while γ = 0.9 implies convergence of the more
profitable policy. When CSO I uses a less profitable policy,
the other CSOs’ policies are more competitive thus yielding
greater returns. It can be seen that, too large or too small
discount factors will significantly reduce the performance
of the algorithm. When discount factors equal to 0.9, the
proposed method achieves a useful trade-off.

Note that DRL usually requires a lot of data from different
scenarios. The scarcity of data for certain scenarios, such
as extreme weather, may hinder the performance of DRL
model in such scenarios. One solution is to generate data
for rare scenarios, e.g., combine other information to predict
traffic, grid data in these scenarios and extend existing data
using data augmentation techniques. In addition, our model
can be easily combined with some techniques to improve
training efficiency, such as using Graph convolutional neural
networks (GCNs) [48] to improve feature extraction effi-
ciency for traffic network and power grid data, and using
transfer learning methods to improve learning adaptability
and efficiency for multiple scenarios.

V. CONCLUSION

In this paper, we investigate a strategic charging pricing
scheme for CSOs based on a non-cooperative Stackelberg
equilibrium framework while the unique operational charac-
teristics of AMoD system are considered. In the proposed
non-cooperative Stackelberg equilibrium framework, the
equilibrium studies the pricing competition among multiple
CSOs, and explores the nexus between the CSOs and AMoD
operator. A MADRL framework based on a SAC algorithm
is established to solve the proposed equilibrium framework
while privacy-conservation constraints among CSOs are
considered. Simulation results of the city-scale real-world
Dallas-Fort Worth metroplex verify the effectiveness of the
proposed framework. The results demonstrate that the pro-
posed spatial-temporal charging pricing strategy improves
the operation efficiency of the integrated charging system
and transportation. Also, it verifies the proposed competitive
pricing strategies for commercial CSOs outperform other
benchmark pricing methods.

APPENDIX A

A small example is given to illustrate the proposed multi-
commodity network flow model. As shown in Fig. 16(a),
The topology of the transportation network includes 4 nodes
(N1, N2, N3, and N4), 10 roads, 1 origin-destination (O-
D) pair (k = (N1, N4, T2, λ8) meaning that 8 vehicles are
required from N1 to N4 starting at T2), and 1 EVCS located
in N1. The augmented energy-time-space graph is given in
Fig. 16(b), in which the network can be expanded to one with
36 virtual nodes (I = (N1, C1, T1), · · · , (N4, C3, T3)), 60
road links (ER) and 6 charging process (EC). It is assumed
that the required SoC of one vehicle to pass through each
road is 1 p.u., and the required time to pass through each
road is 1 p.u. The number of available vehicles in the initial
time is 3 vehicles at node (N1, C2, T1), 3 vehicles at node
(N2, C3, T1) and 3 vehicles at node (N3, C3, T1). The
distance of (N2, N1), (N3, N1), and (N4, N1) are 20km,
23km, 25km.

TABLE VIII
RESULTS OF THE ILLUSTRATIVE EXAMPLE.

Related symbol AMoD fleet

Serving flow xSer
k1,((N1,C3,T2),(N2,C2,T3))

3 vehicles
xSer
k1,((N1,C2,T2),(N2,C1,T3))

5 vehicles

Repositioning flow xRep
k1,((N2,C3,T1),(N1,C2,T2))

3 vehicles

xRep
k1,((N3,C3,T1),(N1,C2,T2))

2 vehicles

Charging flow xRep
k1,((N1,C2,T1),(N1,C3,T2))

3 vehicles

Start-service flow zorik1,C2,T3 3 vehicles
zorik1,C2 5 vehicles

End-service flow zdesk1,C1,T3 3 vehicles
zdesk1,C2 5 vehicles

Without vehicle repositioning, only 3 available vehicles
exist (charge) in N1, which cannot fulfill the travel requests.
Therefore, repositioned vehicles from the neighboring nodes
(N2, N3, and/or N4) are needed. Table IV shows the results
of each network flows, including serving flow, repositioning
flow, and charging flow.

(a) Serving flows (green arrows in Fig. 16) visually
explain constraints (2). For nodes (N1, T2, C3)
and (N1, T2, C2) which are the origin nodes
of OD, the constraints can be presented
as zorik1,C3 = xSerk1,((N1,C3,T2),(N2,C2,T3)) and
zorik1,C2 = xSerk1,((N1,C2,T2),(N2,C1,T3)). For nodes
(N4, T3, C2) and (N4, T3, C1) which are the
destination nodes of OD, the equations are
established as zdesk1,C2,T3 = xSerk1,((N1,C3,T2),(N2,C2,T3))

and zdesk1,C1,T3 = xSerk1,((N1,C2,T2),(N2,C1,T3)).
Constraints (4) are defined to fulfill the travel
request at the origin node and destination node
at the same time. For k = [(N1, N4, T2, λ8)],
both N1 and N4 need to satisfy the equation
zorik1,C3 + zorik1,C2 = zdesk1,C2,T3 + zdesk1,C1,T3 = 8.

(b) Repositioning flows (blue arrows in Fig. 16) visu-
ally explain constraints (3). For node (N1, T2, C2),
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Fig. 16. Diagram of an illustrative example including (a) The topology of the transportation network, and (b) Augmented energy-time-space graph.

which is the starting nodes of k, so the equa-
tions can be presented as xRep((N2,C3,T1),(N1,C2,T2)) +

xRep((N3,C3,T1),(N1,C2,T2)) = zorik1,C2 which means that
the vehicle that ends the dispatch is equal to the vehicle
that starts the dispatch. As the low distance cost and
shorter time cost, AMoD fleets are repositioned by
(N2, N1) first.

(c) Charging flows (Red arrows in Fig. 16) also explain
constraints (3). For node (N1, T2, C3), which is the
starting nodes of OD, so the equations can be presented
as xRep((N1,C2,T1),(N1,C3,T2)) = zorik1,C3 which means that
the number of end-charge vehicles is equal to the
vehicle that starts the service.
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