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Challenges and Opportunities
Research and application of wireless sensor network technology

in power transmission and distribution system

Reinforcement-learning based energy-efficient IoT video
transmission

Deep reinforcement learning based computation offloading and 
resource allocation for low-latency fog radio access networks

1

G. M. Shafiqur Rahman�, Tian Dang, and Manzoor Ahmed

Abstract: Fog Radio Access Networks (F-RANs) have been considered a groundbreaking technique to support

the services of Internet of Things by leveraging edge caching and edge computing. However, the current

contributions in computation offloading and resource allocation are inefficient; moreover, they merely consider

the static communication mode, and the increasing demand for low latency services and high throughput poses

tremendous challenges in F-RANs. A joint problem of mode selection, resource allocation, and power allocation

is formulated to minimize latency under various constraints. We propose a Deep Reinforcement Learning (DRL)

based joint computation offloading and resource allocation scheme that achieves a suboptimal solution in F-RANs.

The core idea of the proposal is that the DRL controller intelligently decides whether to process the generated

computation task locally at the device level or offload the task to a fog access point or cloud server and allocates an

optimal amount of computation and power resources on the basis of the serving tier. Simulation results show that

the proposed approach significantly minimizes latency and increases throughput in the system.

Key words: fog radio access networks; computation offloading; mode selection; resource allocation; distributed

computation; low latency; deep reinforcement learning

1 Introduction

The rapid development of Internet of Things (IoT)

has enabled the emergence of various latency-

sensitive and computation-intensive applications, such as

augmented reality, virtual reality, and natural language

processing[1, 2]. To achieve the full benefits of IoT,

sufficient networking and computation infrastructure

are mandatory to support instantaneous response and

low-latency-based IoT applications. However, IoT

devices with constrained computing capability pose

a challenge in terms of meeting the computation
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demand of these applications[3]. Furthermore, the fifth-

generation cellular systems have enabled the explosive

growth of IoT devices, whose number can reach

approximately 24 billion by 2020. Such number of

devices not only causes the growth of explosive data

but also generates massive computation demand for

next-generation wireless networks. Although cloud

computing provides a flexible configuration of hardware

resources and allows computation-intensive tasks to be

uploaded to the cloud for processing in a minimum

time. It is usually deployed far away from the users;

moreover, it imposes a heavy burden on the fronthaul

and generates an intolerable transmission delay that

degrades overall system performance[4]. As a remedy to

the above limitations, Fog Radio Access Networks (F-

RANs) have emerged as a promising architecture with

embedded storage and computing capacity to support

IoT devices[5, 6].

F-RANs extend cloud computing to the network

edge and have been integrated into the IoT operating

environment to support the demands of the users



244 Intelligent and Converged Networks, 2020, 1(3): 243–257

with real-time response and high automation[7]. By

exploiting edge computing and caching, the burden

on constrained fronthaul is significantly alleviated, and

latency is shortened[8]. In terms of supporting intensive

computation demand in F-RANs, each IoT device can

select a proper mode, which includes the local, edge,

and cloud modes. In the local mode, the task is executed

locally at the device level; for edge and cloud modes,

each User Equipment (UE) offloads the task either to

a Fog Access Point (F-AP) or a remote cloud server.

In the cloud mode, UE is served by Remote Radio

Heads (RRHs) with centralized signal processing and

resource allocation strategies; in the edge mode, the task

is executed through the F-APs[9]. The F-RAN paradigm

has been improved significantly and enabled processing

of computation tasks in the vicinity of the UE; however,

latency performance is still unsatisfactory and thus must

be further optimized.

Recently, Machine Learning (ML), specifically Deep

Reinforcement Learning (DRL), has appealed to the

research community and is considered an effective

technique for solving many classification challenges

and complex problems under high-dimensional state

space[10]. By exploiting a Deep Neural Network (DNN),

DRLs can estimate precise value function and provide

accurate regression in Reinforcement Learning (RL)

problems[11, 12]. DRL has already been widely applied

in many applications, such as voice recognition, image

recognition, large-scale data mining, and transactional

behavior analysis, and has shown promising outcomes

due to its extraordinary learning capability[13].

Driven by the advancements and significant

contributions of DRL, in this work we study a joint

DRL-based mode selection, distributed computation

resource allocation, and power allocation to achieve

low latency in F-RANs. DRL learns the optimal policy

and makes an intelligent decision in selecting a proper

mode; based on the selected mode, it allocates a precise

amount of resources.

1.1 Related work

Computation offloading is a promising solution for

low-computation-capability devices running on power

batteries. With respect to fog computing, many

studies have investigated computation offloading and

resource allocation strategies. For instance, in Refs. [14,

15], the nonorthogonal multiple access technique

for optimal and suboptimal resource allocation in

F-RANs was investigated. In Ref. [15], the main

problem was decomposed into subproblems and

then solved with matching and sequential convex

programming algorithms. A hierarchical fog architecture

was considered in Ref. [16], where user devices

can offload their tasks to either a fog node or

a remote cloud. In Ref. [17], a joint problem of

computation and radio resource allocation was studied

for offloading the computation task, and an iterative

algorithm was proposed to address the problem. In

Ref. [18], the multistage stochastic programming

approach for offloading computational expensive tasks

was investigated to meet the demands of IoT-eHealth

for low latency and real-time monitoring in F-RANs.

In Refs. [19, 20], the mixed fog/cloud system was

considered to offload the computation-intensive task to

minimize latency. In Ref. [21], the distributed game

methodology in crowd sensing was studied to ensure

maximum resource utilization.

However, the above research mainly considered

migrating computation tasks from user devices to either

edge nodes or cloud-computing servers and utilized

less efficient offloading optimization approaches. As

a key technique for enabling Artificial Intelligence

(AI), ML has recently been used extensively in

wireless networks to solve complex problems without

explicit programming[22]. In Ref. [11], an actor-critic

DRL-based scheme was studied in consideration of

joint computation offloading, radio resource allocation,

and content caching to minimize end-to-end latency

in F-RANs. In Ref. [23], a DRL scheme for IoT

edge computing was proposed in consideration of

joint computation offloading and multiuser scheduling

algorithm to minimize the long-term average weighted

sum of delay and power consumption under stochastic

traffic arrival. In contrast to Refs. [11, 23], Ref. [24]

studied the double Deep Q-Network (DQN) for efficient

computation offloading in ultradense Mobile Edge

Computing (MEC) networks. Similarly, in Ref. [25],

a DRL-based binary computation offloading approach
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was considered in IoT systems for processing non-

partitionable simple tasks. In Ref. [26], a vehicle-assisted

DRL-based offloading scheme was investigated under

latency constraints in MEC to find the optimal policy

and maximize system utility.

In the context of intelligent resource allocation,

power allocation problems were studied considering

DRL approaches in Refs. [27--31]. In Ref. [27], a

DRL for decision-making was used to find the optimal

power level for transmission without requiring global

information. Meanwhile, for tackling the challenges of

network dynamics, resource diversity, and the coupling

of resource management with mode selection in F-

RAN, a DRL-based joint mode selection and resource

management scheme was investigated in Ref. [28]. In

Ref. [29], the DRL framework was used to control power

in multiuser wireless communication cellular networks.

Transmission rate optimization was examined in Refs.

[30, 31] to gain a high throughput in the network where

DRL is used to allocate an optimal amount of power

resources.

1.2 Motivation and contributions

Most previous studies sought to optimize computation

resource allocation, mode selection, and power

allocation separately. Furthermore, in terms of

computation offloading, several works migrate the

computation task from the UE to either edge nodes

or cloud-computing servers without considering the

optimization of resources[15--20]. The aforementioned

works did not focus on the distributed solution at

the edge, and majority of the tasks were sent to

the cloud-computing tier for computation. Given that

fog nodes are introduced with limited resources,

distributed computation among the F-APs can be

promising in tackling computation-intensive tasks at

the edge. Therefore, designing an efficient AI-based

computation offloading and resource allocation scheme

is of considerable interest.

Based on the above observations, this study

proposes an efficient and low-complexity distributed

DRL framework for computation offloading, jointly

considering mode selection, computation resource

allocation, and power allocation. The main contributions

of this study are summarized as follows:

� An uplink F-RAN-based IoT environment is

presented to evaluate the performance in terms of latency.

In this architecture, three modes (i.e., local, fog, and

cloud modes) are considered. The system allows each

UE to select only one mode to execute the generated

computation task. Given that cloud computing is aware

of the state of the fog nodes, the DRL controller is

incorporated into the cloud zone, which is responsible

for precise mode selection and resource allocation.

� In the proposed framework, a joint problem of

mode selection, computation resource allocation, and

power allocation is formulated to minimize latency under

the constraints of computing resources and fronthaul

capacity, thereby guaranteeing the Quality of Service

(QoS), power consumption, and strict mode for each IoT

device. Then, this nonconvex problem is transformed

as a Markov Decision Process (MDP) problem. The

DRL technique is applied to solve the MDP problem and

achieve a suboptimal solution. Furthermore, the fixed

target network and replay memory are used for the stable

training process of neural networks.

� The effects of DRL-based mode selection and

resource allocation are illustrated. Numerical results

demonstrate the performance gain of the proposal

by comparing it with the Q-learning, fixed, and

random approaches. Based on the presented solution,

our proposed mechanism outperforms the benchmark

schemes, distinctly enhances the throughput of the

network, and significantly reduces the delay in

processing of tasks by approximately 35%–67%.

1.3 Paper organization

The remainder of this paper is organized as follows:

Section 2 presents the system model. Section 3 provides

the analytical formulation of the latency optimization

problem. Section 4 analyzes the DRL-based joint

computation offloading and resource allocation scheme.

Section 5 presents the simulation results to validate the

performance improvement of the proposed DRL scheme.

Section 6 concludes the study.

2 System model

Figure 1 depicts the considered system model for
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Fig. 1 F-RAN architecture with DRL for computation

offloading. Here, CP represents cloud server and BBU

represents baseband unit.

computation offloading and resource allocation in uplink

F-RANs, where the DRL approach is adopted to

accelerate the performance. The system architecture

consists of a set of F-APs L D f1; 2; : : : ; Lg, a

set of RRHs J D f1; 2; : : : ; J g, and several UEs

K D f1; 2; : : : ; Kg. In the proposed model, a set of

IoT devices, namely, smartphones and laptops, are

considered to be the UEs. UEs have processing and

cache capacities and thus can process the requested

computation tasks locally. Each UE k generates

computation task �k D fMk; Ckg, where Mk is the

size of input data for computation measured in bytes,

and Ck denotes the required computation resources

measured with Central Processing Unit (CPU)-cycle

frequency (Hz) to accomplish a computing task �k
[3].

The generated computation task �k is delay sensitive

and can be processed either locally, at the edge tier

or on the cloud-computing servers to achieve minimal

latency in the system. In terms of task execution, the

DRL controller in the cloud makes a precise execution

decision based on available execution modes, resource

capacity, channel capacity, and transmission rate. Mode

selection can be represented as vm
k

2 f0; 1g, where

m D flocal; edge; cloudg is the offloading mode for each

UE k. Subsequently, based on the selected mode, DRL

allocates an optimal amount of resources. If the edge is

selected as the execution mode, the primary F-AP, which

is scheduled with the UE, splits the task into subtasks

and sends them to the nearest available assistive F-APs

to execute the task in a distributed manner. We assume

that each F-AP, RRH as well as the UE, are equipped

with a single antenna. In this model, we use the partial

frequency multiplexing scheme, and interference is only

considered among the UEs.

2.1 Communication model

In this subsection, we present the communication

model considered in the study. When the generated

computation task �k cannot be served locally, the UE k

offloads the task either to the edge or the cloud server

via the wireless interface of the user. We assume the

UE offloads the task to the primary F-AP l with the

decision of v
edge

k
D 1 for processing at the edge, where

v
edge

k
D 1 represents that the UE k selects the edge as a

suitable mode to offload the task. The obtained signal at

the primary F-AP l from user k is expressed as follows:

yk;l D hH
k;lpk;luk C

X

i¤k;i2K

hH
k;lpi;lui Cnl ; 8k; l (1)

where hH
k;l is the Channel State Information (CSI) matrix,

pk;l and pi;l are the uplink transmission power of users

k and i , respectively; nl denotes the additive Gaussian

noise received at F-AP l , which is distributed as .0; �2
l
/,

and uk is the message of user k.

The Signal-to-Interference-plus-Noise Ratio (SINR)

at F-AP l from user k is represented as follows:

SINRk;l D
jhH

k;l j
2pk;l

X

i¤k

jhH
i;l j

2
pi;l C �2

l

; 8k; l (2)

Moreover, the optimal transmission rate propels the

system to ensure the QoS and minimize the transmission

delay. Then the data rate, which is achieved at the F-AP

l , can be expressed as follows:

Rk;l D B log2.1 C SINRk;l/ (3)

where Rk;l represents the uplink data rate from UE k to

F-AP l , and B denotes the bandwidth for the channel

in the network. Given the constrained computation

resources of fog nodes, executing all the generated tasks

at the edge is impossible. Consequently, the network

controller selects the cloud as suitable mode .vcloud
k

D 1/

to offload the computation tasks to the cloud server

through the RRH. The received signal at RRH j from

user k can be stated as follows:

yk;j D hH
k;j pk;j uk C

X

i¤k;i2K

hH
k;j pi;j ui C nj ; 8k; j

(4)
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where pk;j is the transmitted power from user k to RRH

j , hH
k;j is the CSI matrix for RRH, and nj is the Gaussian

noise at RRH j .

Similarly, the SINR and achievable transmission rate

from user k to RRH j can be represented as follows:

SINRk;j D
jhH

k;j j2pk;j
X

i¤k

jhH
i;j j

2
pi;j C �2

j

; 8k; j (5)

Rk;j D B log2.1 C SINRk;j / (6)

where Rk;j denotes the uplink data rate from the UE k

to RRH j .

The target SINR is defined as the min for achieving

high QoS in the system. Therefore, Eqs. (2) and (5)

suggest that for the selection of the communication mode

regardless of edge or cloud, the threshold min must be

satisfied.

2.2 Delay model

The generated delay in the proposed model is classified

as computing and transmission delays. Computation

delay is generated because tasks are executed in different

tiers, namely, local computation delay, computation

delay at the edge, and computation delay at the cloud-

computing zone. By contrast, transmission delay is

generated for uploading the tasks either from UE to edge

or UE to the cloud-computing tier. To download the

processed data, the system also generates transmission

delay. We present the details of the delay model in the

following subsections.

2.2.1 Local computation delay

When the DRL controller is satisfied with the processing

capacity of the IoT device, it makes the decision to

process the computation task �k locally .vlocal
k

D 1/. The

CPU of an IoT device is the primary engine for

local computation, and the performance of the CPU is

characterized by the CPU-cycle frequency[32]. Therefore,

local computation delay can be represented as follows:

Dlocal
k D

Ck

f local
k

(7)

where f local
k

is the maximum processing capacity of UE

k that can be used to execute the computation task �k .

2.2.2 Offloading delay at the edge

IoT devices have limited computation resources; thus,

when the computation resource requirement Ck cannot

be satisfied locally with the decision of the DRL

controller .v
edge

k
D 1/, the UE k, k 2 K, offloads the

tasks to the edge through a wireless link. The generated

delay at the edge can be divided into transmission delay

and computation delay. The transmission delay from UE

k to primary F-AP l can be characterized as follows:

D
upload

k;l
D

Mk

Rk;l

(8)

where Mk is the size of offloaded data to the F-AP l .

In the context of accomplishing the computation task

at the edge, we consider the distributed computation

phenomenon, where the available assistive F-APs

participate in the computation process with the primary

F-AP in a distributed manner. Once the DQN selects the

edge as the suitable offloading mode, the primary l-th

F-AP splits the task of UE k into f1; 2; : : : ; N g subtasks,

which are equal to the number of participating assistive

F-APs N . The set of F-APs, which serves the UE k

to process the computation subtasks, can be expressed

as Ll D fl; lk;1; lk;2; : : : ; lk;N g � L, in which lk;n

represents that l-th primary F-AP incorporated the n-

th assistive F-AP to accomplish the subtask n. At

this time, the computation resource requirement Ck

is divided into N C 1 parts which can be denoted as

fCk;0; Ck;1; : : : ; Ck;N g. Each part of the computation

demand is distributedly executed at the edge by the

participating F-APs. Thus, the processing delay should

be the largest one, i.e.,

D
edge

k
D max

(

Ck;0

fl;k

;
Ck;1

f1;k

; : : : ;
Ck;n

fn;k

; : : : ;
Ck;N

fN;k

)

C

max.M
input

l;n
C M

output

n;l
/� (9)

where fl;k and fn;k represent the computation resources

of primary F-AP l and assistive F-AP n, which are

allocated to the UE k, respectively; and M
input

l;n
and

M
output

n;l
are the small chunks of input and output data

for assistive F-AP n, respectively. � represents the

transmission delay between the primary F-AP l and

assistive F-AP n, (l; n 2 L), where the longest delay

is considered the acceptable transmission delay.

We consider that the primary F-AP l and assistive F-

AP n communicate over the wireless interface. In terms

of selecting the assistive F-AP, the transmission delay �



248 Intelligent and Converged Networks, 2020, 1(3): 243–257

between the primary F-AP l and assistive F-AP n must

be less than the threshold delay ıl;n .� 6 ıl;n/.

Moreover, to make the system model more realistic,

we consider the downloading transmission latency for

processed data at UE k. Therefore, the downloading

delay from the primary F-AP l to UE k can be designated

as follows:

Ddownload
l;k D

M
processed

k

Rl;k

(10)

where M
processed

k
is the processed data at the edge, and

Rl;k is the downlink data rate.

2.2.3 Offloading delay at the cloud

The fog node is introduced with limited computing

resources; hence, in some conditions, even the

distributed computation scheme is not enough to tackle

the computing demand of UE. In this context, the

controller selects the cloud mode .vcloud
k

D 1/ to offload

the task �k . Similarly, in the edge mode, latency is

generated to process the task and transmit the input

data. Furthermore, the uploading latency for the cloud

is generated in two forms, the latency from UE k to

the RRH j and RRH j to the cloud server[17]. The

transmission latency from UE k to the CP tier through

RRH can be expressed as follows:

D
upload

k;CP
D

Mk

Rk;j

C
Mk

Rj;CP

(11)

where Rk;j is the uplink data rate from user k to RRH

j and Rj;CP denotes the transmission rate from RRH to

cloud-computing tier.

The processing latency at the cloud computing zone

for user k can be expressed as follows:

Dcloud
k D

Ck

f cloud
CP;k

(12)

where f cloud
CP;k

is the maximum processing capacity of

cloud servers, which are allocated to UE k to accomplish

the computational task.

We consider that the amount of uploaded data is larger

than that of processed data. Given that the cloud servers

are located thousands of miles away and connected via

fiber and core networks, the downloading latency for

sending back the result of processed data from the cloud

server to UE is also non-negligible[3]. The downloading

latency from CP to UE through RRH is represented as

follows:

Ddownload
CP;k D

M
processed

k

RCP;j

C
M

processed

k

Rj;k

(13)

where RCP;j and Rj;k represent the downlink rate from

CP to RRH j and RRH j to UE k, respectively. The

uplink and downlink data rates vary.

Hereafter, we summarize the overall generated latency

in the proposed architecture. The total latency for each

layer is calculated as follows:

Dlocal
Total D

Ck

f local
k

(14)

D
edge

Total D
Mk

Rk;l

Cmax

(

Ck;0

fl;k

;
Ck;1

f1;k

; :::;
Ck;n

fn;k

; :::;
Ck;N

fN;k

)

C

max.M
input

l;n
C M

output

n;l
/� C

M
processed

k

Rl;k

(15)

Dcloud
Total D

Mk

Rk;j

C
Mk

Rj;CP

C
Ck

f cloud
CP;k

C
M

processed

k

RCP;j

C
M

processed

k

Rj;k

(16)

where Dlocal
Total, D

edge

Total, and Dcloud
Total represent the generated

total delay at the local, edge, and cloud-computing tiers,

respectively. Therefore, the overall system delay can be

represented as follows:

Dsystem D

K
X

kD1

vlocal
k

Ck

f local
k

C

K
X

kD1

v
edge

k

�

max

�

Ck;0

fl;k

;

Ck;1

f1;k

; : : : ;
Ck;n

fn;k

; : : : ;
Ck;N

fN;k

�

C

max.M
input

l;n
C M

output

n;l
/� C

M
processed

k

Rl;k

#

C

K
X

kD1

vcloud
k

"

Mk

Rk;j

C
Mk

Rj;CP

C
Ck

f cloud
CP;k

C

M
processed

k

RCP;j

C
M

processed

k

Rj;k

#

(17)

The computation demand of each UE k can be served

by only one mode at a time.

3 Problem formulation

In this section, the optimization problem of computation

offloading is formulated for the uplink F-RAN

scenario. The objective of this problem is to minimize

the overall system latency by jointly optimizing mode

selection, computation resource allocation, and power

allocation under the constrains of computing resources,
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fronthaul capacity, limited transmitting power, and QoS

demand of per IoT device. The problem statement can

be represented as follows:

minimize
fvm

k
;fl;k ;pkg

Dsystem

s:t: C1 W vlocal
k C v

edge

k
C vcloud

k D 1; vm
k 2 f0; 1g; 8k;

C2 W

K
X

kD1

v
edge

k
fl;k 6 fl ; 8l;

C3 W

K
X

kD1

vcloud
k Rk;j 6 Sj ; 8j;

C4 W v
edge

k
SINRk;l C vcloud

k SINRk;j > min; 8k;

C5 W v
edge

k
pk;l C vcloud

k pk;j 6 Pmax; 8k (18)

where the constraint C1 implies that each user k can

select only one mode at a time to process their generated

computation task. The constraint C2 limits the number

of user scheduling to each F-AP l due to its bounded

computation resources. The constraint C3 represents

that a limited number of UEs can be supported by each

RRH j with its constrained fronthaul link capacity Sj .

The QoS requirement is guaranteed by the constraint C4

regardless of edge or cloud mode. The constraint C5

illustrates that the uplink transmission rate is bounded

by the allocated power of Pmax. The mode selection vm
k

,

computing resource allocation fl;k , and power allocation

pk are considered to be the objective variables to solve

the formulated optimization problem. pk is the set of

Pk;i where f1; 2; : : : ; ig is the receiving node of either

F-AP l or RRH j , which is determined on the basis of

the selected mode.

The stated optimization problem becomes nontrivial

and difficult to solve with traditional approaches

because of the strict requirement for low latency.

Furthermore, time-varying user demand makes Formula

(18) more challenging. Generally, traditional exhaustion

optimization methods can be applied to solve the

formulated problem. However, its computational

complexity is considerably high. Moreover, the

orchestration of precise mode selection, computing

resource allocation, and power allocation provide

another level of difficulty to the system. Thus, DRL

with low computational complexity is presented to tackle

the computational offloading problem with joint mode

selection and multitier resource allocation in this uplink

F-RAN scenario.

4 DRL-based computation offloading and

resource allocation

Formula (18) is a nonconvex multivariate problem,

which is challenging to solve with conventional

approaches. However, this offloading problem can be

modeled under the MDP and can be efficiently solved

with the DQN. In this reinforcement learning based

problem, Q-learning in the cloud-computing tier acts

as a learning agent to achieve the optimal offloading

policy after extensively training the system with

numerous offloading interactions[2]. We first evaluate the

performance with the traditional Q-learning approach

and then realize the solution with DRL.

The MDP model can be defined as the tuple of

fS;A;P.stC1jst ; at /;R.st ; at /g, where S is the set

of states, A represents a set of possible actions,

P.stC1jst ; at / depicts the state transition probability,

and R.st ; at / is the received reward after performing

the action at on state st . However, state transition

probability is hardly obtained in many practical

problems. To overcome this hurdle, Q-function

Q.st ; at / is utilized as the key parameter. The Q-

function is responsible for returning the maximum

expected reward by following a policy � that is

expressed as follows[11]:

Q�.s; a/ D E

"

T
X

tD0

� trt js0 D s; a0 D a; �

#

(19)

where � is a discount factor, rt represents the obtained

reward at time t , s0 is the initial state, a0 is an action,

and EtC1 is the expected return of a trajectory at time

t C 1. The optimal Q-function ensures the maximum

cumulative reward, which can be stated as follows:

Q
�

.s; a/ D max
�

Q�.s; a/ (20)

By following the Bellman criterion, the optimal Q-

function can be estimated as follows:

Q�.st ; at /DEtC1

�

rt C� max
atC1

Q�.stC1; atC1/

�

(21)

Generally, the Q-function is achieved recursively by

exploiting the information of .s; a; r; s0/ current state,

action, immediate reward, and the transition state at the
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next time span (t C 1). Subsequently, the Q-function

can be updated as follows:

QtC1.s; a/ D ˛

�

rt C � max
a02A

Q
�

stC1; a0
�

�

C

.1 � ˛/Q.st ; at / (22)

where ˛ is the learning rate. By utilizing the proper

learning rate, the iteration algorithm guarantees that

Qt .s; a/ will be converged to optimal Q�.s; a/[31].

4.1 MDP-based computation offloading model

In this subsection, we model the MDP-based

computation offloading and resource allocation problem

in the following manner.

4.1.1 State space

The system state is designed with the currently available

offloading mode for UE k, the distributed computing

resources at the edge, the CSI, and the discretized power

resources of each IoT device. The system state for time

cycle t is stated as sss t D fm; fl ; hhh
H
k;i ; pn

k
g. The meaning

of each element of the system state is elaborated in the

following manner:

� m D flocal; edge; cloudg denotes the available

modes for UE k to execute the computation task.

� fl .l D 1; 2; : : : ; L/ represents the available

computation resources of F-APs at the edge that can

be allocated to the UE k. The serving F-APs have been

categorized into primary and assistive F-APs.

� hhh
H
k;i .i D 1; 2; : : : / is the CSI vector where i

denotes the i -th receiver of either F-AP l or RRH j .

� pn
k

.n D 1; 2; : : : / depicts the discretized unit of

available transmitting power (in dBm) of UE k. The

range of power is represented as Œpmin
k;i

; pmax
k;i

�.

4.1.2 Action space

Theoretically, the agent can perform numerous actions.

However, to take numerous actions, the system requires

massive computation, which produces a huge amount

of delay and degrades the system performance. Thus,

to avoid computation complexity, the agent considers

only one IoT device at each decision epoch t . The action

at time slot t is denoted as at 2 A, where A is a finite

value space Œ1; 2; : : : ; A�. The action space for solving

the offloading problem can be designed as A D fvm
k

;

v
edge

k
pk;l C vcloud

k
pk;j ; fl;kg. Each action of the action

space is described as follows:

� Based on the given state sss t , the agent performs

action vm
k

for selecting a mode to execute the generated

computation task of UE k.

� After selecting the mode, the agent performs action

pk;i for allocating the optimal amount of transmitting

power to upload data Mk either to the edge or the cloud.

If the agent selects the local mode .vlocal
k

D 1/, then

the uploading transiting power pk;l D 0 and pk;j D 0.

However, if the agent selects either the edge or the cloud

tier to offload the task, the action can be represented on

the basis of the selected mode as v
edge

k
pk;l C vcloud

k
pk;j ;

where vm
k

2 f0; 1g and m 2 fedge; cloudg. If the agent

selects the edge as a suitable mode .v
edge

kD1
/, then it

allocates power pk;l to offload the task from the user

k to F-AP l , v
edge

k
D 1. Otherwise, when vcloud

k
D 1,

the agent selects the cloud as an offloading mode and

allocates power pk;j for offloading the task from the

user k to RRH j . The possible actions for allocating

power can be the discrete amount of total power as

fp1
k;i

; p2
k;i

; : : : ; pn
k;i

g. For power allocation in the cloud

mode, we only consider allocating power between the

UE k and RRH j .

� The action fl;k represents that the computing

resources of F-AP l is allocated to the UE k if the

controller selects the edge .v
edge

k
D 1/ as a suitable mode

for offloading the computation task �k . The action vector

can be represented as ff1;k; f2;k; : : : ; fL;kg, where

f1; 2; : : : ; Lg is the combination of primary F-AP l and

assistive F-APs n, .l; n/ 2 L.

In the actions of mode selection, power allocation,

and computation resource allocation, all the constraints

C1–C5 have been rigorously considered.

4.1.3 Reward function

The precise reward function helps to find the optimal

action policy[33]. Hence, the reward must be defined

appropriately for an efficient learning process. After

performing a series of actions, mode selection vm
k

, power

allocation v
edge

k
pk;l C vcloud

k
pk;j , and computation

resource allocation fl;k , we calculate the overall system

delay from Eq. (23). Based on the performed action, if

the system minimizes delay, the agent receives a positive

reward; otherwise, the agent is
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penalized with a negative reward. The reward function

can be defined as follows:

rt D �

(

K
X

kD1

vlocal
k

Ck

f local
k

C

K
X

kD1

v
edge

k

�

max

�

Ck;0

fl;k

;

Ck;1

f1;k

; : : : ;
Ck;n

fn;k

; : : : ;
Ck;N

fN;k

�

C
M

processed

k

Rl;k

C

max.M
input

l;n
C M

output

n;l
/�

i

C

K
X

kD1

vcloud
k

�

Mk

Rk;j

C

Mk

Rj;CP

C
Ck

f cloud
CP;k

C
M

processed

k

RCP;j

C
M

processed

k

Rj;k

# )

(23)

where rt is the immediate reward. The long-term

accumulative reward is considered the minimizing delay

at a longer period T . The controller performs the best

action by exploring and exploiting each possibility to

maximize future accumulative rewards. The long-term

cumulative reward is defined as Rt D

T
X

tD0

� trt with

a discount factor � 2 Œ0; 1�. � determines the effect

of future reward based on current mode selection,

power allocation, and computation resource allocation

decision. The lower the value of �, the more emphasis

on immediate rewards. We are attempting to minimize

latency; thus, the overall rewards are always negative of

latency.

The Q-learning method has been increasingly

exploited for solving the RL problem but shows

infeasibility for numerous state-action scenarios because

in practice, when the state-action pair is sufficiently large,

traversing each step with all the samples stored in a Q-

table is challenging[33]. This behavior inherently limits

the traditional RL with fully observed low-dimensional

state space. To overcome the drawbacks of Q-learning,

DRL is proposed in this work.

4.2 DRL-based computation offloading and

resource allocation

Herein, we propose the DRL-based computation

offloading scheme to improve computation performance

by accelerating the learning process. DRL can find

the optimal policy without explicit prior knowledge

of the network. In DRL, the Neural Network (NN)

can be trained directly without exploiting the

handcrafted features, thus considerably reducing system

complexity[3, 34]. Moreover, the replay memory leverages

the system performance by finding the optimal policy

with few interactions. To avoid the drawbacks of Q-

learning in large state and action space problems, the

DNN is used as a function approximator to approximate

the actionvalue function Q.s; aI !/ � Q�.s; a/, which

immensely enhances the learning capability[34]. The

entire training process and computation offloading

strategy are illustrated in Fig. 2 and Algorithm 1.

Figure 2 and Algorithm 1 represent that the DNN

takes the current state s0 as an input, which consists

of available offloading modes, computation resources

at the edge, CSI, and maximum power resource of

IoT device st D fm; fl ; hH
k;i ; pn

k
g. By corresponding

with all the possible actions, the Q-value Q.s; aI !/ is

derived as the output by adjusting the weight of NN

parameter !. For trade-off between exploitation and

exploration, the IoT device selects the offloading policy

based on the output of DNN according to the "-greedy

policy[32]. The first and foremost action of the agent is

to select the precise computation mode vm
k

. Based on

the selected mode, the agent performs further actions

to allocate the resources. In Algorithm 1, Lines 15–21

show that if the agent selects edge mode .v
edge

k
D 1/,

then the agent takes the actions for power allocation and

computation resource allocation consecutively. However,

if the agent goes with cloud mode .vcloud
k

D 1/, then it

only performs the power allocation action. By contrast,

if the agent selects local computation mode .vlocal
k

D 1/,

then the agent does not perform any further action, and

the computation process is accomplished by the local

resources. Subsequently, the agent moves to a new state

.stC1/ and calculates the rewards rt from Eq. (23) as

the negative of total system delay. In the replay memory

g, the transition .st ; at ; rt ; stC1/ of each time slot t is

stored as the experience. The DQN trains the network

by randomly sampling this transition as a minibatch

M D 32 and updates the parameter ! of the Q-network

by minimizing the loss function as follows:

L.!/ D Es;a;r;s0

�

.rt C � max
a02A

OQ.stC1; a0I O!/�

Q.st ; at I !//2

�

(24)
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Fig. 2 DRL-based learning process and computation offloading for IoT devices.

where .rt C � max
a02A

OQ.stC1; a0I O!/ is the optimal target

Q-function.

After a specific time, the agent sets the weights of the

DQN to the target DQN to update the network.

5 Simulation result

In this section, we develop the simulations to evaluate the

performance of the proposed DRL-based computation

offloading and resource allocation approach. We

compare the proposed scheme with three approaches

and provide the detailed breakdown of obtained results.

5.1 Simulation settings

The simulation platform is developed with TensorFlow

1.11.0, Python 3.6, Core i5 @ 1.6 GHz 8 CPU, and

Intel UHD graphics 620. The deployment area is 400 �

400 m2, where 10 F-APs, 5 RRHs, and 30 IoT devices

are incorporated to evaluate the system performance.

The maximum transmission power for each IoT device

is considered to be 18 dBm. We assume that the path loss

model is 128 C 37 � log10 d , where d denotes distance,

the noise power spectral density is 40 dBm/Hz, and

the system bandwidth is determined as 10 MHz. To

ensure the QoS of the system, the lower bound of the

SINR is considered min. We consider a fully connected

DNN. The NN consists of two hidden layers, one input

layer and an output layer. A total of 64 and 32 neurons

are incorporated for the first and second hidden layers,

respectively. The Rectified Linear unit (ReLu) is used as

the activation function. The simulation parameters are

summarized in Table 1.

5.2 Convergence performance

In this subsection, we present the convergence

performance of learning parameters under the DRL

approach and compare the convergence performance

of the proposed DRL-based computation offloading

and resource allocation scheme with other well-studied

algorithms.

As shown in Fig. 3, with the batch size M D 32, DRL

achieves better convergence performance and incurs

lower cost compared with batch sizes 8 and 64. The

reason is that when DRL chooses batch M D 8, the

system needs a long time to achieve good policy and

incurs a high cost. On the contrary, with a large batch

size M D 64, the system calculates the gradient more

accurately, but the learning process may be trapped in the

local optimum and incur higher cost than the batch size

M D 32. Similarly, Fig. 4 exhibits that with the learning

rate of ˛ D 0:01, the system shows early convergence

and incurs the lowest cost. When the learning rate is

too low .˛ D 0:001/, the system undergoes a prolonged

learning process, whereas when the learning rate is too

large .˛ D 0:09/, the result may be trapped in the local

optimum and incur higher cost[9].

Figure 5 depicts the overall loss and convergence

behavior of the DRL algorithm. After approximately

2800 epochs, the DRL scheme achieves minimum
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Algorithm 1 DRL-based algorithm for computation

offloading and resource allocation in F-RANs

1: Initialization:

2: Initialize Q-network Q.s; a/ with random weights !.

3: Construct a target Q-network OQ.s; a/ with weights O!.

4: Initialize the replay memory g with capacity ND .

5: Size of minibatch M .

6: Maximum training episodes Emax.

7: Iteration:

8: for episode1; Emax do

9: Reset simulation parameters for the computation

offloading environment.

10: Set the initial state sss0 D Œm; fl ; hhh
H
k;i ; pn

k
�.

11: for decision step t D 1 W T � 1 do

12: Generate a random number x between 0 and 1.

13: if x 6 " then

14: Perform a random action at for selecting mode as

vm
k

.

15: if vm
k

DD edge then

16: Take the action pk;l and fl;k based on " for

allocating the power resources and computation resource

consecutively.

17: else if vm
k

DD cloud then

18: Take the action pk;j based on " for allocating

transmitting the power resources

19: else

20: Execute the task with local resources

21: end if

22: else:

23: Perform an optimal action at as at D

arg max
at 2A

Q.st ; at I !/

24: Apply the steps from 15 to 21 with optimal

action for mode selection, power allocation and computation

resource allocation [vm
k

; pk ; fl;k]

25: end if

26: Execute action at and evaluate the delay of the system

27: Calculate the reward rt from Eq. (23).

28: Store the reward rt together st , stC1, and at as an

interaction sample .st ; at ; rt ; stC1/ into the replay memory g

29: Randomly sample the minibatch with the size M of

transitions .st ; at ; rt ; stC1/ from the replay memory g

30: Train the Q-network by minibatch gradient descent

on .rt C � max
a02A

OQ.stC1; a0I O!/ � Q.st ; at I !//2 with !

31: Periodically update target Q-network with parameter

! to O!

32: end for

33: end for

loss and shows stability. Figure 6 shows that the

proposed approach outperforms the other schemes in

convergence performance, thus ensuring a reduced

complexity of the DRL algorithm. The reason is that

Table 1 Summary of simulation parameters.

Parameter Value

Number of fog access points L 10

Number of remote radio heads J 5

Number of UEs K 30

Noise power (dBm/Hz) �140

Channel bandwidth B (MHz) 10

Pathloss model 128 C 37 � log10d

Size of replay memory ND 2000

Learning rate ˛ 0.01

Size of minibatch M 32

Discount factor � 0.9

Fig. 3 Evaluation of cost function with the number of

epochs under different batch sizes.

Fig. 4 Evaluation of cost function with the number of

epochs under different learning rates.

the DRL continuously learns with a DNN and achieves

higher learning efficiency than the other schemes. DRL

can be considered to achieve minimal latency, which is

24% lower than the random scheme and 11% lower than

the Q-learning approach. The random scheme achieves

the least efficiency in convergence performance.
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Fig. 5 Total loss during the training process.

Fig. 6 Evaluation of convergence performance of the

algorithms with number of episodes.

5.3 Performance analysis of QoS, mode selection,

and resource allocation

Figure 7 exposes the effect of different QoS in

minimizing latency. To establish the communication

link between either the UE and F-AP or UE and

RRH, the system must satisfy the threshold min. The

horizontal axis shows the maximum transmitting power

for each UE. The highest QoS requirement achieves

the lowest latency because for a high QoS, the system

assigns additional power resources in the communication

mode, thus, increasing the throughput of the network

and immensely minimizing latency. Figure 7 depicts

that with the highest QoS demand of 300 kbps, the

system achieves the lowest delay of approximately 4 ms,

whereas the maximum transmitting power is considered

to be 18 dBm.

In Fig. 8, we evaluate the offloading performance

of 100 computational tasks under different modes. As

shown in Fig. 8, the joint computation offloading scheme

Fig. 7 Evaluation of generated latency under different QoS

requirements.

Fig. 8 Offloading delay versus number of computation tasks

under different execution modes.

achieves the lowest latency because with the extensive

training of the NN, the DQN has learned the optimal

offloading actions and precisely assigned the task to

the respective modes. When the IoT devices execute

all the tasks by themselves, the system generates the

highest delay by comparison. The cloud and edge modes

produce relatively lower delay compared with the local

mode under the same number of computational tasks.

Figure 9 assesses the efficiency of power allocation

under different schemes of minimizing latency. With the

increase in transmitting power from 2 to 18 dBm, the

latency is significantly reduced by the proposed scheme,

which outperforms other approaches. The reason is that

the DRL efficiently learns the policy on the basis of

available resources, channel capacity, and location of the

fog nodes and performs a precise action. Q-learning and

random strategies achieve low efficiency in minimizing

latency, and they generate approximately 31% and 51%
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Fig. 9 Performance evaluation of power allocation under

different schemes.

higher latency compared with the proposed scheme,

respectively.

Figure 10 illustrates the relationship between the

number of computation resources and the offloading

delay. As shown in Fig. 10, the offloading delay keeps

dropping with the increase in the number of computation

resources. The DRL-based distributed computation

of resource allocation scheme obtains high efficiency

in minimizing latency under the same amount of

computation resources. The reason is that the proposed

scheme incorporates the F-APs wisely on the basis of

their location and resource availability. The random

approach causes the highest delay. The Q-learning and

fixed approach nearly achieve similar efficiency.

5.4 Performance evaluation of the proposed

scheme with different benchmarks

We compare the performance of the proposed scheme

Fig. 10 Performance evaluation of the distributed

computation of resource allocation for minimizing latency

under different approache.

with three prominent approaches. The evaluation is

performed under the same number of computation

tasks. Figure 11 shows that the overall offloading

delay of the system increases with the growing number

of computation tasks from 0 to 100. As shown in

Fig. 11, the proposed joint DRL-based computation

offloading and resource allocation scheme outperforms

the other three schemes. The proposed approach gains

approximately 35%–67% lower latency than the other

baselines because of the dynamic learning capacity of

the DQN. Given the revisiting nature of Q-learning[33], it

causes 35% higher latency compared with the proposed

scheme. The fixed and random approach shows low

efficiency in minimizing latency.

Table 2 shows the training time and required epochs

for evaluating the efficiency of the adopted schemes. The

DRL scheme consumes a minimum time of 109.1269 s

and takes the least number of epochs (27 000) to

accomplish the tasks. Q-learning spends more time than

the DRL and takes approximately 29 453 epochs. The

random approach consumes the longest time frame,

which is almost three times larger than the proposed

scheme, whereas the time consumption of the fixed

scheme is nearly double than that of the DRL (i.e.,

231.6821 s).

Fig. 11 Comparison of performance of the proposed scheme

with different baselines.

Table 2 Comparison of performance among different

schemes.

Scheme Number of epochs Time (s)

DRL 27 000 109.1269

Q-learning 29 453 153.1838

Fixed 39 000 231.6821

Random 44 301 286.8108
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6 Conclusion

Efficient computation offloading is a promising approach

to improve the computational capabilities of IoT devices

in F-RANs. In this study, we investigated DRL-based

joint computation offloading and resource allocation

strategies for IoT devices to achieve low latency in F-

RANs. A joint mode selection and resource allocation

problem is formulated as a nonconvex optimization

problem. To solve the problem, a low-complexity

DRL scheme, which utilizes the DNN to accelerate

the learning speed in the system, is proposed. The

DRL can determine the offloading policy efficiently

without any explicit assumption about the operating

environment and wisely allocate the resources in the

network. Furthermore, the distributed computation

resource allocation strategy is applied to enhance the

computational capacity at the edge. Extensive simulation

results demonstrate that the proposed method generates

the best policy and outperforms other methods by

achieving approximately 35%–67% lower latency.
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