
Northumbria Research Link

Citation: Wang, Liang, Wang, Kezhi, Pan, Cunhua, Xu, Wei, Aslam, Nauman and

Nallanathan, Arumugam (2021) Deep Reinforcement Learning Based Dynamic Trajectory

Control for UAV-assisted Mobile Edge Computing. IEEE Transactions on Mobile Computing.

pp. 1-5. ISSN 1536-1233 (In Press)

Published by: IEEE

URL: https://doi.org/10.1109/tmc.2021.3059691

<https://doi.org/10.1109/tmc.2021.3059691>

This version was downloaded from Northumbria Research Link:

http://nrl.northumbria.ac.uk/id/eprint/45876/

Northumbria University has developed Northumbria Research Link (NRL) to enable users

to access the University’s research output. Copyright © and moral rights for items on

NRL are retained by the individual author(s) and/or other copyright owners. Single copies

of full items can be reproduced, displayed or performed, and given to third parties in any

format or medium for personal research or study, educational, or not-for-profit purposes

without prior permission or charge, provided the authors, title and full bibliographic

details are given, as well as a hyperlink and/or URL to the original metadata page. The

content must not be changed in any way. Full items must not be sold commercially in any

format or medium without formal permission of the copyright holder. The full policy is

available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been

made available online in accordance with publisher policies. To read and/or cite from the

published version of the research, please visit the publisher’s website (a subscription

may be required.)

http://nrl.northumbria.ac.uk/policies.html

1

Deep Reinforcement Learning Based Dynamic

Trajectory Control for UAV-assisted Mobile Edge

Computing
Liang Wang, Kezhi Wang, Cunhua Pan, Wei Xu, Nauman Aslam and Arumugam Nallanathan, Fellow, IEEE

Abstract—In this paper, we consider a platform of flying mo-
bile edge computing (F-MEC), where unmanned aerial vehicles
(UAVs) serve as equipment providing computation resource, and
they enable task offloading from user equipment (UE). We aim
to minimize energy consumption of all UEs via optimizing user
association, resource allocation and the trajectory of UAVs. To
this end, we first propose a Convex optimizAtion based Trajectory
control algorithm (CAT), which solves the problem in an iterative
way by using block coordinate descent (BCD) method. Then,
to make the real-time decision while taking into account the
dynamics of the environment (i.e., UAV may take off from
different locations), we propose a deep Reinforcement leArning
based Trajectory control algorithm (RAT). In RAT, we apply the
Prioritized Experience Replay (PER) to improve the convergence
of the training procedure. Different from the convex optimization
based algorithm which may be susceptible to the initial points
and requires iterations, RAT can be adapted to any taking off
points of the UAVs and can obtain the solution more rapidly than
CAT once training process has been completed. Simulation results
show that the proposed CAT and RAT achieve the considerable
performance and both outperform traditional algorithms.

Index Terms—Deep Reinforcement Learning, Mobile Edge
Computing, Unmanned Aerial Vehicle (UAV), Trajectory Control,
User Association

I. INTRODUCTION

W
ITH the popularity of computationally-intensive tasks,

e.g., smart navigation and augmented reality, people

are expecting to enjoy more convenient life than ever before.

However, current smart devices and user equipments (UEs),

due to small size and limited resource, e.g., computation and

battery, may not be able to provide satisfactory Quality of

Service (QoS) and Quality of Experience (QoE) in executing

those highly demanding tasks.

Mobile edge computing (MEC) has been proposed by

moving the computation resource to the network edge and it

has been proved to greatly enhance UE’s ability in executing

computation-hungry tasks [1]. Recently, flying mobile edge

(Corresponding Author: Kezhi Wang)
This work of W. Xu was supported in part by the NSFC under grants

62022026 and 61871109.
Liang, Kezhi and Nauman are with the Department of Computer and In-

formantion Science, Northumbria University, Newcastle upon Tyne, UK, NE1
8ST, emails: {liang.wang, kezhi.wang, nauman.aslam}@northumbria.ac.uk.

Cunhua and Arumugam are with School of Electronic Engineering and
Computer Science, Queen Mary University of London, E1 4NS, U.K., emails:
{c.pan, a.nallanathan}@qmul.ac.uk

W. Xu is with the National Mobile Communications Research Lab, South-
east University, Nanjing 210096, China, and also with Henan Joint Inter-
national Research Laboratory of Intelligent Networking and Data Analysis,
Zhengzhou University, Zhengzhou, 450001 China (wxu@seu.edu.cn).

computing (F-MEC) has been proposed, which goes one step

further by considering that the computing resource can be

carried by unmanned aerial vehicles (UAVs) [2]. F-MEC

inherits the merits of UAV and it is expected to provide

more flexible, easier and faster computing service than tra-

ditional fixed-location MEC infrastructures. However, the F-

MEC also brings several challenges: 1) how to minimize

the long-term energy consumption of all UEs by choosing

proper user association (i.e., whether UE should offload the

tasks and if so, which UAV to offload to, in the case of

multiple flying UAVs); 2) how much computations the UAV

should allocate to each offloaded UE by considering the

limited amount of on-board resource; 3) how to control each

UAV’s trajectory in real time (namely, flying direction and

distance), especially considering the dynamic environment

(i.e., the UAV may serve UEs from different taking off points).

Traditional approaches like exhaustive search are hardly to

tackle the above problems due to the fact that the decision

variable space of F-MEC, e.g., deciding the optimal trajectory

and resource allocation, is continuous instead of discrete. In

[3], the authors propose a quantized dynamic programming

algorithm to address the resource allocation problem of MEC.

However, the complexity of this approach is very high as the

flying choice of UAV is nearly infinite (as continues variables).

Moreover, the authors in [4] discretize the UAV trajectory

into a sequence of UAV locations and make their proposed

problem tractable. Similarly, in [5], the authors assume that the

UAV’s trajectory can be approximated by using the discrete

variables and then they deal with it by using the traditional

convex optimization approaches. However, the above treatment

may decrease the control accuracy of the UAV and also is not

flexible. Furthermore, the above contributions only considered

a single UAV case. In practice, one UAV may not have

enough resource to serve all the users. If the served area is

very large, more than one UAV are normally needed, which

will undoubtedly increase the decision space and make it

very difficult for the traditional convex optimization-based

approaches to obtain the optimal control strategies of each

UAV. In [6], Liu et al. propose a deep reinforcement learning

based DRL-EC3 algorithm, which can control the trajectory of

multiple UAVs but did not consider the user association and

resource allocation.

Inspired by the challenges mentioned above, in this paper,

we first propose a Convex optimizAtion based Trajectory

control algorithm (CAT) to minimize the energy consumption

of all the UEs, by jointly optimizing user association, resource

2

allocation and UAV trajectory. Specifically, by applying block

coordinate descent (BCD) method, CAT is divided into two

parts, i.e., subproblems for deciding UAV trajectories and

for deciding user association and resource allocation. In each

iteration, we solve each part separately while keep the other

part fixed, until the convergence is achieved.

Next, we propose a deep Reinforcement leArning based

Trajectory control algorithm (RAT) to facilitate the real-time

decision making. In RAT, two deep Q networks (DQNs),

i.e., actor and critic networks are applied, where the actor

network is responsible for deciding the direction and flying

distance of the UAV, while the critic network is in charge of

evaluating the actions generated by the actor network. Then,

we propose a low-complexity matching algorithm to decide

the user association and resource allocation with the UAVs.

We choose the overall energy consumption of all the UEs as

a reward of the RAT. In addition, we deploy a mini-batch to

collect samples from the experience replay buffer by using a

Prioritized Experience Replay (PER) scheme.

Different from traditional optimization based algorithms

which normally need iterations and are susceptible to initial

points, the proposed RAT can be adapted to any taking off

points of the UAVs and can obtain the solutions very rapidly

once the training process has been completed. In other words,

if the taking off points of UAV are input to the RAT, the

trajectories of UAVs will be determined by the proposed

RAT with only some simple algebraic calculations instead of

solving the original optimization problem through traditional

high-complexity optimization algorithms. This attributes to the

fact that during the training stages, excessive randomly taking

off points of UAV are generated and used to train the networks

until they are converged. Also, with the help of prioritized ex-

perience reply (PER), the convergence speed will be increased

significantly. RAT can be applied to the practical scenarios

where the UAVs needs to act and fly swiftly such as the

battlefields. By inputting the current coordinates as the taking

off points to the networks, the trajectories of the UAVs will be

immediately obtained and then all the UAVs can take off and

fly according to the obtained trajectories. Also, the resource

allocation and user association are determined by the proposed

low-complexity matching algorithm. This is particularly useful

to some emergence scenarios (e.g., battlefields, earthquake,

large fires), as fast decision making is crucial in these areas.

In the simulation, we can see that the proposed RAT can

achieve the similar performance as the convex-based solution

CAT. They both have considerable performance gain over

other traditional algorithms. In addition, we can see that

during the learning procedure, the proposed RAT is less

sensitive to the hyperparameters, i.e., the size of mini-batch

and the experience replay buffer, when comparing to tradtional

reinforcement learning where PER is not applied.

The remainder of this paper is organized as follows. Section

II presents the related work. Section III describes the system

model. Section IV introduces the proposed CAT algorithm,

whereas Section V gives the proposed RAT algorithm in-

cluding the preliminaries of DRL. Section VI extends the

application of proposed RAT algorithm to 3-D scenario. The

simulation results are reported in Section VII. Finally, conclu-

sions are given in Section VIII.

II. RELATED WORK

There are many related works that study UAV, MEC and

DRL separately, but only a very few consider them holistically.

For UAV aided wireless communications, several scenarios

have been studied, such as in areas of relay transmissions [7],

cellular system [8], data collection [9], wireless power trans-

fer [10], caching networks [11], and D2D communication [12].

In [13], the authors presented an approach to optimize the

altitude of UAV to guarantee the maximum radio coverage

on the ground. In [14], the authors presented a fly-hover-

and-communicate protocol in a UAV-enabled multiuser com-

munication system. They partitioned the ground terminals

into disjoint clusters and deployed the UAV as a flying

base station. Then, by jointly optimizing the UAV altitude

and antenna beamwidth, they optimized the throughput in

UAV-enabled downlink multicasting, downlink broadcasting,

and uplink multiple access models. In [4], to maximize the

minimum average throughput of covered users in OFDMA

system, the authors proposed an efficient iterative algorithm

based on block coordinate descent and convex optimization

techniques to optimize the UAV trajectory and resource alloca-

tion. Furthermore, UAV trajectory optimization research were

also investigated. For instance in [15], Zeng et al. proposed

an efficient design by optimizing UAV’s flight radius and

speed for the sake of maximizing the energy efficiency of

UAV communication. In order to maximize the minimum

throughput of all mobile terminals in cellular networks, Lyu et

al. [16] developed a new hybrid network architecture by

deploying UAV as an aerial mobile base station. Different

from [13], [14], [4], [15] with the single UAV system, a multi-

UAV enabled wireless communication system was considered

to serve a group of users in [17]. Also, in [18], resource

allocation between communication and computation has been

investigated in multi-UAV systems. In [19], Mozaffari et al.

investigated the application of UAVs in Internet of Things

(IoT) network, and they optimized the mobility of UAVs,

the device-UAV association and uplink power control, for

minimizing the overall transmit power of ground IoT devices.

In addition, some recent literature made efforts to mobile

edge computing (MEC), which is considered to be a promising

technology for bringing computing resource to the edge of

wireless networks [20], where UEs can benefit from offloading

their tasks to MEC servers. In [21], partial computation

offloading was studied. The computation tasks can be divided

into two parts, where one part is executed locally and the other

part is offloaded to MEC servers. In [22], binary computation

offloading was studied, where the computation tasks can either

be executed locally or offloaded to MEC servers.

By taking advantage of the mobility of UAVs, UAV-enabled

MEC has been studied in [23], [24]. In [23], authors proposed

a heterogeneous MEC (H-MEC) architecture that consists of

fixed ground stations and UAVs. In [24], the authors studied

UAV-enabled MEC, where wireless power transfer technology

is applied to power Internet of things devices and collect data

from them. In [25], Zhou et al. investigated an UAV-enabled

3

MEC wireless-powered system, and they tackled the computa-

tion maximization problem through optimizing UAV’s speed,

partial and binary computation offloading modes. In [26],

Asheralieva et al. studied network operation problem in UAV-

enabled MEC network, and they developed a framework based

on hierarchical game-theoretic and reinforcement learning.

In [27], Zhang et al. established a communication and compu-

tation optimization model in an MEC-enabled UAV network,

where the successful transmission probability was derived

through using stochastic geometry.

For most of the above works, optimization theory are mainly

applied in order to obtain the optimal and / or suboptimal solu-

tions, e.g., trajectory design and resource allocation. However,

solving such optimization problems normally requires plenty

of computational resources and take much time. To address

this problem, DRL has been applied and attracted much atten-

tion recently. In [28], the authors proposed a RL framework

that uses DQN as the function approximator. In addition, two

important ingredients experience replay and target network

are used for improving the convergence performance. In [29],

the authors pointed out that the classical DQN algorithm may

suffer from substantial overestimations in some scenarios, and

proposed a double Q-learning algorithm. In order to solve

control problems with continuous state and action space, Lil-

licrap at al. [30] proposed a policy gradient based algorithm.

For the purpose of obtaining faster learning and state-of-art

performance, in [31], the authors proposed a more robust

and scalable approach named prioritized experience replay.

Although DRL has achieved remarkable successes in game-

playing scenarios, it is still an open research area in UAV-

enabled MEC.

III. SYSTEM MODEL

y

x

z

[xi, yi]

[Xj(t), Yj(t), Zj(t)]

Rj
max aij(t)

T

Fig. 1: Multi-UAV enabled F-MEC architecture.

As shown in Fig. 1, we consider a scenario that there are #

UEs with the set denoted as N = {1, 2, ..., #} and " UAVs

with the set denoted as M = {1, 2, ..., "}, which form an F-

MEC platform. To make it clear, the main notations used in

this paper are listed in Table. I.

TABLE I: Main Notations.

Notation Definition

8, # , N index, number, set of of UEs.

9 , " ,M index,number,set of UAVs.

C ,) , T index, number, set of time slots.

�8 (C) , �8 (C) , �8 (C) 8-th UEs’ task in C-th time slot.

08 9 (C) user association between 8-th UE and 9-th UAV.

'max
9

maximal horizontal coverage radius of 9-th UAV.

\ℎ
9
(C) , \E

9
(C) , 3 9 (C) flying action of 9-th UAV.

3max, E9 (C) maximal distance, velocity of 9-th UAV.

[- 9 (C) , .9 (C) , / 9 (C)] coordinate of 9-th UAV.

-max, .max side length of rectangle-shaped area.

) max maximal time duration.

+ max, 5 max maximal number of tasks, computation resource.

[G8 , H8] coordinate of 8-th UE.

'8 9 (C) horizontal distance between UE and UAV.

�, %Tr channel bandwidth, transmitting power.

60, f
2 channel power gain, noise power.

) O
8 9
(C) ,) Tr

8 9
(C) ,) C

8 9
(C) time for task completion, offloading, executing.

�Tr
8 9
(C) , �L

8 9
(C) energy for offloading, local execution.

U ,G set of UAV trajectory, UAV coordinates.

A,F set of user association, resource allocation.

B (C) , 0 (C) , I (C) state, action and reward.

c (·) , & (·) , ! (·) policy function, Q function, loss function.

 , - size of mini-batch, experience replay buffer.

q, X, � network parameter, TD-error, policy gradient.

/min, /max minimal, maximal altitude value.

38 9 (C) distance between the 9-th UAV and 8-th UE.

We assume that the 8-th UE generates one task �8 (C) in the

C-th time slot, which has to be executed within a maximal

time duration)max, due to the QoS requirement. In this paper,

we assume the entire process lasts for) time slots. Thus,)

tasks will be generated for each UE and we have C ∈ T =

{1, 2, ...,)} and

�8 (C) = {�8 (C), �8 (C)}, ∀8 ∈ N , C ∈ T , (1)

where �8 (C) denotes the size of data required to be transmitted

to a UAV if the UE chooses to offload the task, and �8 (C)

denotes the total number of CPU cycles needed to execute

this task. Assume that each UE can choose either to offload

the task to one of the UAVs or execute the task locally. Then

one can have

08 9 (C) = {0, 1},∀8 ∈ N , 9 ∈ M, C ∈ T , (2)

where 08 9 (C) = 1, 9 ≠ 0 implies that the 8-th UE decides to

offload the task to the 9-th UAV in the C-th time slot, while

08 9 (C) = 1, 9 = 0 means that the 8-th UE executes the task itself

in the C-th time slot, and otherwise, 08 9 (C) = 0. Define a new set

9 ∈ M ′ = {0, 1, 2, ..., "} to represent the possible place where

the tasks from UEs can be executed, where 9 = 0 indicates

that UE conducts its own task locally without offloading.

In addition, we assume that each UE can only be served by

at most one UAV or itself, and each task only has one place

to execute. Then, it follows

"
∑

9=0

08 9 (C) = 1,∀8 ∈ N , C ∈ T . (3)

4

Additionally, in this paper, the OFDM is applied, which

means that each UAV can only accept +max tasks in each time

slot, due to the number of limited sub-carriers. Thus, one has

#
∑

8=1

08 9 (C) ≤ +
max,∀ 9 ∈ M, C ∈ T . (4)

A. UAV Movement

Assume that the 9-th UAV flies at the altitude and it has a

maximal horizontal coverage, which depends on the azimuth

angle of antennas and the flying altitude [14]. Also, assume

that in the C-th time slot, the 9-th UAV can fly with a horizontal

direction as

0 ≤ \ℎ9 (C) ≤ 2c,∀ 9 ∈ M, C ∈ T , (5)

and distance as

0 ≤ 3 9 (C) ≤ 3
max,∀ 9 ∈ M, C ∈ T , (6)

where 3max is the maximal flying distance that the UAV can

move in each time slot, due to the limited power budget. In

our paper, we describe the UAV’s movement based on the

Cartesian Coordinate system. Thus, we denote the coordinate

of the 9-th UAV in the C-th time slot as [- 9 (C), . 9 (C), / 9],

where - 9 (C) = - 9 (0) +
∑C
;=1 3 9 (;)cos

(

\ℎ
9
(;)

)

, . 9 (C) = . 9 (0) +
∑C
;=1 3 9 (;)sin

(

\ℎ
9
(;)

)

and [- 9 (0), . 9 (0), / 9] is the initial coor-

dinate of the 9-th UAV.

Additionally, each UAV can only move within a rectangle-

shaped area, whose side length is denoted as -max, and .max.

Then, it has

0 ≤ - 9 (C) ≤ -
max, ∀ 9 ∈ M, C ∈ T , (7)

and

0 ≤ . 9 (C) ≤ .
max, ∀ 9 ∈ M, C ∈ T . (8)

We denote that the 9-th UAV can move with a constant

velocity E 9 (C), which varies with the flying distance 3 9 (C) in

each time slot. Thus, it has

E 9 (C) =
3 9 (C)

)max
, ∀ 9 ∈ M, C ∈ T . (9)

In this paper, we ignore the communication related energy,

including communication circuitry and signal processing.

B. Task Execution

If the 8-th UE decides to offload the task to the 9-th UAV

in the C-th time slot, then the horizontal distance '8 9 (C) can

be written as

'8 9 (C) =

√

(- 9 (C) − G8)2 + (. 9 (C) − H8)2, (10)

where [G8 , H8] is the coordinate of the 8-th UE. Additionally,

we assume that each UAV has a maximal azimuth angle \max

1. Thus, in each time slot, the maximal horizontal coverage of

the 9-th UAV 'max can be obtained as follows

'max
= / 9 tan(\max). (11)

1We define the azimuth angle with respect to a 3-D reference axis, such as
G axis, H axis, I axis.

Thus, it has

08 9 (C)'8 9 (C) ≤ '
max, ∀8 ∈ N , 9 ∈ M, C ∈ T . (12)

In this paper, the free space channel model is applied. Thus,

the uplink data rate is given by

A8 9 (C) = � log2

(

1 +
U%Tr

/2
9
+ '2

8 9
(C)

)

, ∀8 ∈ N , 9 ∈ M, C ∈ T ,

(13)

where � is the bandwidth for each communication channel;

%Tr is the transmitting power of the 8-th UE; U=
60�0

f2 with �0

≈ 2.2846 [18]; 60 is the channel power gain at the reference

distance 1 < and f2 is the noise power. Note that we consider

each user applies orthogonal frequency division multiplexing

(OFDM) channel and there is no interference among them.

If the 8-th UE decides to offload its task to the 9-th UAV in

the C-th time slot, the total task completion time is given by

)O
8 9 (C) =)

Tr
8 9 (C) +)

C
8 9 (C), ∀C ∈ T , (14)

where)Tr
8 9 (C) is the time to offload the data from the 8-th UE

to the 9-th UAV in the C-th time slot, given by

)Tr
8 9 (C) =

�8 (C)

A8 9 (C)
, ∀C ∈ T , (15)

and)C
8 9
(C) is the time required to execute the task at the UAV

as

)C
8 9 (C) =

�8 (C)

5 C
8 9
(C)
, ∀C ∈ T , (16)

where 5 C
8 9
(C) is the computation resource that the 9-th UAV

can provide to the 8-th UE in the C-th time slot.

Note that the time needed for returning the results back to

UE from UAV is ignored, similar to [32]. The overall energy

consumption of the 8-th UE to the 9-th UAV in the C-th time

slot is given by

�Tr
8 9 (C) = %

Tr)Tr
8 9 (C), ∀C ∈ T . (17)

If the UE decides to execute the task locally, the power

consumption can be evaluated as :8 (5
L
8 9 (C))

E8 [33], where

:8 ≥ 0 is the effective switched capacitance, E8 is typically

set to 3, and 5 L
8 9 (C) is the computation resource that the 8-

th UE applies to execute the task. The overall time for local

execution can be given by

)L
8 9 (C) =

�8 (C)

5 L
8 9
(C)
. (18)

Thus, the total energy consumption for local execution is

�L
8 9 (C) = :8 (5

L
8 9 (C))

E8)L
8 9 (C), C ∈ T . (19)

To sum up, the overall energy consumption for task execu-

tion �8 9 (C) is given by

�8 9 (C) =

{

�L
8 9 (C), local execution,

�Tr
8 9 (C), offloading,

(20)

and the time to complete the task)8 9 (C) is expressed as

)8 9 (C) =

{

)L
8 9 (C), local execution,

)O
8 9
(C), offloading.

(21)

5

Without loss of generality, we assume that each task has

to be completed within maximal time duration)max, which is

consistent with the maximal flying time in each time slot as

)8 9 (C) ≤)
max, ∀8 ∈ N , 9 ∈ M ′, C ∈ T . (22)

In each time slot, since the computation resource that each

UAV can provide is limited, we have

#
∑

8=1

08 9 (C) 5
C
8 9 (C) ≤ 5 max, ∀ 9 ∈ M, C ∈ T , (23)

where 5 max is the maximal computation resource that the

9-th UAV can provide in each time slot. Next, we show our

proposed problem formulation.

C. Problem Formulation

Denote U = {\ℎ
9
(C), 3 9 (C),∀ 9 ∈ M, C ∈ T }, A =

{08 9 (C),∀8 ∈ N , 9 ∈ M
′, C ∈ T }, F = { 58 9 (C),∀8 ∈ N , 9 ∈

M ′, C ∈ T }. Then, the energy minimization for all UEs is

formulated as

P1 : min
U ,A,F

#
∑

8=1

"
∑

9=0

)
∑

C=1

08 9 (C)�8 9 (C) (24a)

subject to:

08 9 (C) = {0, 1},∀8 ∈ N , 9 ∈ M
′, C ∈ T , (24b)

"
∑

9=0

08 9 (C) = 1,∀8 ∈ N , C ∈ T , (24c)

#
∑

8=1

08 9 (C) ≤ +
max,∀ 9 ∈ M, C ∈ T , (24d)

0 ≤ \ℎ9 (C) ≤ 2c,∀ 9 ∈ M, C ∈ T , (24e)

0 ≤ 3 9 (C) ≤ 3
max,∀ 9 ∈ M, C ∈ T , (24f)

0 ≤ - 9 (C) ≤ -
max,∀ 9 ∈ M, C ∈ T , (24g)

0 ≤ . 9 (C) ≤ .
max,∀ 9 ∈ M, C ∈ T , (24h)

08 9 (C)'8 9 (C) ≤ '
max,∀8 ∈ N , 9 ∈ M, C ∈ T , (24i)

)8 9 (C) ≤)
max, ∀8 ∈ N , 9 ∈ M ′, C ∈ T , (24j)

#
∑

8=1

08 9 (C) 5
C
8 9 (C) ≤ 5 max, ∀ 9 ∈ M, C ∈ T . (24k)

One can see that the above problem P1 is a mixed integer

nonlinear programming (MINLP), as it includes both integer

variable, A and continuous variables, F and U , which is

very difficult to solve in general. We first propose a convex

optimization based algorithm CAT to address it iteratively.

Then, we propose a Deep Reinforcement Learning (DRL)

based RAT to facilitate fast decision-making, which can be

applied in dynamic environment. Note that in practice, if the

8-th UE does not generate the tasks in the C-th time slot and

then the corresponding �8 (C) and �8 (C) can be set to zero.

IV. PROPOSED CAT ALGORITHM

In this section, a convex optimization based CAT is pro-

posed to solve the above problem P1. We first define a

set of new variables to denote the trajectories of UAVs as

G = {� 9 (C),∀ 9 ∈ M, C ∈ T }, where the coordinate is

� 9 (C) = [- 9 (C), . 9 (C)], - 9 (C) = - 9 (0) +
∑C
;=1 3 9 (;)cos

(

\ℎ
9
(;)

)

and . 9 (C) = . 9 (0) +
∑C
;=1 3 9 (;)sin

(

\ℎ
9
(;)

)

. Thus, the optimiza-

tion problem P1 can be reformulated as

P2 : min
G,A,F

#
∑

8=1

"
∑

9=0

)
∑

C=1

08 9 (C)�8 9 (C) (25a)

subject to: (24b), (24c), (24d), (24g), (24h), (24j), (24k),

08 9 (C) | |� 9 (C) − @8 | |
2 ≤ ('max)2,∀8 ∈ N , 9 ∈ M, C ∈ T , (25b)

| |� 9 (C + 1) − � 9 (C) | |
2 ≤ (3max)2,∀C ∈ {0, 1, ...,) − 1}, (25c)

where @8 = [G8 , H8]. In order to solve P2, we divide it

into two subproblems and apply the block coordinate descent

(BCD) method to address it. To this end, we first optimize the

user association A and resource allocation F given the UAV

trajectory G. Then, we optimize the UAV trajectory G given

the user association A and resource allocation F . We solve the

two optimization problems iteratively, until the convergence is

achieved.

A. User Association and Resource Allocation

Given the UAV trajectory G, the subproblem to decide user

association A and resource allocation F can be formulated as

min
A,F

#
∑

8=1

"
∑

9=0

)
∑

C=1

08 9 (C)�8 9 (C) (26a)

subject to: (24b), (24c), (24d), (24j), (24k), (25b).

One can see that (24j) can be written as

5 C
8 9 (C) ≥

�8 (C)

)max −
�8 (C)
A8 9 (C)

, ∀ 9 ∈ M, C ∈ T , (27)

if the 8-th UE chooses to offload the task, and

5 L
8 9 (C) ≥

�8 (C)

)max
, 9 = 0,∀C ∈ T , (28)

if the 8-th UE decides to execute the task locally. It is readily

to see that equality holds for both (27) and (28).

Then, (26) can be re-written as

min
A,F

#
∑

8=1

"
∑

9=0

)
∑

C=1

(

08 9 (C)�
Tr
8 9 (C) + (1 − 08 9 (C))�

L
8 9 (C)

)

(29a)

subject to: (24b), (24c), (24d), (25b),

5 L
8 9 (C) =

�8 (C)

)max
, 9 = 0,∀C ∈ T , (29b)

#
∑

8=1

08 9 (C)
�8 (C)

)max −
�8 (C)
A8 9 (C)

≤ 5 max, ∀ 9 ∈ M, C ∈ T . (29c)

It is ready to find (29) is similar to a Multiple-Choice

Multi-Dimensional 0-1 Knapsack Problem (MMKP), which is

difficult to solve in general. Fortunately, it may be addressed

by applying Branch and Bound method via a standard Python

package PULP [34].

6

B. UAV Trajectory Optimization

Given the user association and resource allocation from (29)

and removing the constant, P2 can be simplified as

min
G

#
∑

8=1

"
∑

9=1

)
∑

C=1

08 9 (C)
%Tr�8 (C)

�log2 (1 +
U%Tr

/ 2
9
+| |� 9 (C)−@8 | |2

)
(30a)

subject to: (24g), (24h), (25b), (25c),

�8 (C)

�log2 (1 +
U%Tr

/ 2
9
+| |� 9 (C)−@8 | |2

)
+
�8 (C)

5 C
8 9
(C)
≤)max,

∀8 ∈ N , 9 ∈ M, C ∈ T . (30b)

It is easy to see that the above optimization problem is

non-convex with respect to � 9 (C). Next, we introduce a set

η = {[8 9 (C),∀8 ∈ N , 9 ∈ M, C ∈ T }, where [8 9 (C) =

08 9 (C)
%Tr�8 (C)

�log2 (1+
U%Tr

/2
9
+||�9 (C)−@8 | |

2
)
, then, problem (30) can be trans-

formed into

min
G,η

#
∑

8=1

"
∑

9=1

)
∑

C=1

[8 9 (C) (31a)

subject to: (24g), (24h), (25b), (25c),

�log2

(

1 +
U%Tr

/2
9
+ ||� 9 (C) − @8 | |2

)

≥
08 9 (C)%

Tr�8 (C)

[8 9 (C)
,

∀8 ∈ N , 9 ∈ M, C ∈ T , (31b)

�log2

(

1 +
U%Tr

/2
9
+ ||� 9 (C) − @8 | |2

)

≥
�8 (C)

)max −
�8 (C)

5 C
8 9
(C)

,

∀8 ∈ N , 9 ∈ M, C ∈ T . (31c)

One observes that (31b) and (31c) are convex with respect

to | |� 9 (C) − @8 | |, respectively. Thus, (31b) and (31c) are

non-convex constraints. Then, similar to [4], [5], we apply

the successive convex approximation (SCA) to solve this

problem. Specifically, for any given local point �A9 (C) in

GA
= {�A9 (C),∀ 9 ∈ M, C ∈ T }, one can have the following

inequality as

F8 9 (C) = �log2

(

1 +
U%Tr

/2
9
+ ||� 9 (C) − @8 | |2

)

≥ A8 9 (C) (| |� 9 (C) − @8 | |
2 − ||�A9 (C) − 68 | |

2) + �A8 9 (C)

, F
;1,A
8 9
(C),

(32)

where A8 9 (C) = −
�U%Trlog2 (4)

(/ 2
9
+| |�A

9
(C)−@8 | |2) (/

2
9
+| |�A

9
(C)−@8 | |2+U%Tr)

, and

�A8 9 (C) = �log2

(

1 + U%Tr

/ 2
9
+| |�A

9
(C)−@8 | |2

)

.

Then, problem (31) can be written as

min
G,η

#
∑

8=1

"
∑

9=1

)
∑

C=1

[8 9 (C) (33a)

subject to: (24g), (24h), (25b), (25c),

F
;1,A
8 9
(C) ≥

08 9 (C)%
Tr�8 (C)

[8 9 (C)
,∀8 ∈ N , 9 ∈ M, C ∈ T , (33b)

F
;1,A
8 9
(C) ≥

�8 (C)

)max −
�8 (C)

5 C
8 9
(C)

,∀8 ∈ N , 9 ∈ M, C ∈ T . (33c)

The above problem is a convex quadratically constrained

quadratic program (QCQP) and it can be solved by a standard

Python package CVXPY [35].

C. Overall Algorithm Design

In this section, a convex optimization-based CAT is pro-

posed to solve Problem P2, where we optimize user associ-

ation and resource allocation subproblem iteratively with the

UAV trajectory subproblem until the convergence is achieved.

We describe the pseudo code of proposed CAT in Algorithm

1.

Algorithm 1 CAT Algorithm

1: Set A = 0, and initialize GA ;

2: repeat

3: Solve Problem (29) by Branch and Bound method for

given GA , and denote the optimal solution as AA+1 and

F A+1;

4: Solve Problem (33) for given AA+1 and F A+1, and denote

the solution as GA+1;

5: A = A + 1;

6: until the convergence is achieved.

Discussions: Algorithm 1 needs to run once the initial

taking off locations of the UAVs change. However, the com-

plexity of Algorithm 1 is high as the solutions are iteratively

obtained and each subproblem involves a huge number of

optimization variables especially when the total number of

time slots is high. Precisely, as shown in Algorithm 1, assume

that the overall iteration number is A . In each iteration,

Problem (29) has # ("+1)) variables, and it can be solved by

Branch and Bound method, in which the Simplex technique

for solving linear programs is used. Thus, the computational

complexity is O
(

2# ("+1))
)

in the worst case. Furthermore,

according to the analysis in [4], [36], in Problem (33),

G has 2") variables, η has #") variables. Hence, the

total number of variables is (# + 2)") . As a result, the

number of iterations required is O
(
√

(# + 2)") log2(
1
n1
)
)

,

where n1 is the accuracy of SCA for solving Problem (33).

Similarly, the overall number of constraints in Problem (33)

is ") (3# + 2) +) . Then, the computational complexity is

O

(

(

(# + 2)")
)2√

(# + 2)") log2 (
1
n1
)
(

") (3# + 2) +)
)

)

,

which is equivalent to O
(

3(#"))3.5log2 (
1
n1
)
)

. Overall, the

total complexity of CAT algorithm is O
(

 A
(

2# ("+1)) +

3(#"))3.5log2 (
1
n1
)
))

. Hence, Algorithm 1 is not suitable

for some emergence scenarios (e.g., battlefields, earthquake,

large fires), where fast decision making is highly demanded.

This motivates the algorithm developed based on DRL in the

following section.

V. PROPOSED RAT ALGORITHM

To facilitate the fast decision making, the DRL-based RAT

algorithm is proposed in this section. We first give some

preliminaries as follows.

7

A. Preliminaries

1) DQN: In a standard reinforcement learning, an agent

is assumed to interact with the environment and select the

optimal actions that can maximize the accumulated reward.

In [28], a Deep Q Network (DQN) structure developed by

Google Deepmind, integrates the deep neural networks with

traditional reinforcement learning. The DQN is used to esti-

mate the well-known Q-value defined as

&(B(C), 2(C)) = E[/ (C) |B(C), 2(C)], (34)

where B(C) and 2(C) denote the state and action respectively,

E[·] denotes the expectation, whereas / (C) =
∑)
C′=C WI(C

′) is

a reward and W ∈ [0, 1] is the discount factor and I(C ′) is a

reward function in the C ′-th time step (or time slot). As the

objective is to maximize the reward, a widely used policy is

c(B(C) |q&) = argmax2 (C)&(B(C), 2(C) |q
&), where q& is the

parameter of the deep neural network. Then, the DQN can be

trained by minimizing the loss function [28]. Also, since the

deep networks are known to be unstable and very difficult to

converge, two effective approaches, i.e., target network and

experience replay, have been introduced in [28]. The target

network has the same structure as the original DQN but the

parameters are updated more slowly. The experience replay

stores the state transition samples which can help the DQN

converge. However, the DQN was originally designed to solve

the problem with discrete variables. Although we can adapt

the DQN to continuous problems by discretizing the action

space, it may unfortunately result in a huge searching space

and therefore intractable to deal with.

2) DDPG: To deal with the problem with continuous vari-

ables, e.g., the trajectory control of UAV, one may apply the

actor-critic approach, which was developed in [37]. DeepMind

has proposed a deep deterministic policy gradient (DDPG)

approach [30] by integrating the actor-critic approach into

DRL. DDPG includes two DQNs, one of the DQNs, named

actor network with function c(B(C) |qc) is applied to generate

action 2(C) for a given state B(C). The other DQN named critic

network with function &(B(C), 2(C) |q&), is used to generate

the Q-value, which evaluates the action produced by the

actor network. In order to improve the learning stability, two

adjacent target networks corresponding to the actor and critic

networks, c′(·), & ′(·) with respective parameters qc
′
, q&

′
, are

also applied.

Then, the critic network can be updated with the loss

function, ! (q&), as

! (q&) =
1

∑

:=1

X2
: , (35)

where in each time step, the mini-batch randomly samples

constituting experiences from experience replay buffer, and X:
is temporal difference (TD)-error [38] which is given by

X: =I(:) + W&
′(B(: + 1), c′(B(: + 1) |qc

′

) |q&
′

)

−&(B(:), c(B(:) |qc) |q&).
(36)

On the other hand, the actor network can be updated by

applying the policy gradient, which is described as [30].

▽qc � ≈
1

∑

:=1

▽2&(B, 2 |q
&) |B=B (:) ,2=c (B (:) |qc) =

1

∑

:=1

[

▽2&(B, 2 |q
&) |B=B (:) ,2=c (B (:)) · ▽qcc(B |qc) |B=B (:)

]

.

(37)

B. The RAT Algorithm

In this section, we introduce the DRL based RAT algorithm,

which includes deep neural networks (i.e., actor and critic

networks) and the matching algorithms. In order to apply the

DRL, we first define the state, action and reward as follows:

1) State B(C): B(C) = {[- 9 (C), . 9 (C), / 9], ∀ 9 ∈ M}, B(C) is

the set of the coordinates of all UAVs.

2) Action 2(C): 2(C) is the set of the actions of all UAVs,

including the horizontal direction \ℎ
9
(C) and distance

3 9 (C). Then, the action set can be defined as 2(C) =

{[\ℎ
9
(C), 3 9 (C)], ∀ 9 ∈ M}.

3) Reward I(C): I(C) is defined as the minus of the overall

energy consumption of all the UEs in each time slot as

I(C) = −

#
∑

8=1

"
∑

9=0

08 9 (C)�8 9 (C) − ?, (38)

where ? is the penalty if any of UAV flies out of the

target area, which means (24g) or (24h) is not satisfied.

Fig. 2: The structure of RAT algorithm.

The algorithm framework used in this paper is depicted

in Fig. 2, where an agent, which could be deployed in the

control center of the base station, is assumed to interact with

the environment. An actor network c(B(C) |qc) is applied to

generate the action, which includes the flying direction and

distance for each UAV. The critic network &(B(C), 2(C) |q&)

is used to obtain the Q-value of the action (i.e., to evaluate

the action generated by actor network). In each time slot,

the agent sends the action generated by actor network to

each UAV. Then, each UE tries to associate with one UAV

8

in its coverage, i.e., (12) by using a matching algorithm in

Algorithm 3. More specifically, each UE tries to connect the

UAV which can save more offloading energy. If the minimum

offloading energy is larger than the energy of local execution,

the UE will decide to conduct the task locally. Note that RAT

has the same optimization strategy for resource allocation as

CAT.

Also, each UAV selects the UEs based on the following

criteria: 1) UE should be within its coverage area; 2) UE

could save more energy, i.e., the more of �L
8 9 (C) − �

C
8 9
(C) will

be given higher priority in offloading to this UAV. We will

introduce the details of the proposed matching algorithm in

Algorithm 3. After the matching algorithm, the reward in (38)

can be obtained.

We assume that there is an experience replay buffer for the

agent to store the experience [B(C), 2(C), I(C), B(C + 1)]. Once

the experience replay buffer is full, the learning procedure

starts. A mini-batch with experiences can be obtained from

the experience replay buffer to train the networks.

In the classical DRL algorithms, such as Q-learning [39],

SARSA [40] and DDPG [30], the mini-batch uniformly sam-

ples experiences from the experience replay buffer. However,

since TD-error in (36) is used to update the Q-value network,

experience with high TD-error often indicates the successful

attempts. Therefore, a better way to select the experience

is to assign different weights to samples. Schaul et al. [31]

developed a prioritized experience replay scheme, in which

the absolute TD-error |X: | is used to evaluate the probability

of the sampled :-th experience from the mini-batch. Then, the

probability of sampling the :-th experience can be given by

%(:) =
?
V

:
∑

<∈ ?
V
<

, (39)

where ?: = |X: | + n , n = 0.001 is a positive constant to avoid

the edge-case of transitions not being revisited if |X: | is 0, V =

0.6 is denoted as a factor to determine the prioritization [31].

However, frequently sampling experiences with high |X: |

can cause divergence and oscillation. To tackle this issue, the

importance-sampling weight [41] is introduced to represent the

importance of sampled experience, which can be given by

l: =
1

(- · %(:))`
, (40)

where - is size of experience replay buffer, ` is given as

0.4 [31]. Thus, the loss function ! (q&) in (35) is updated as

! (q&) =
1

∑

:=1

l:X
2
: , (41)

which is used in our proposed RAT to train the networks. Next,

we describe the pseudo code of the overall RAT framework

in Algorithm 2.

We first initialize the actor, critic, two target networks, and

experience replay buffer in Line 1 - 3. In the beginning of

each epoch, all UAVs start to serve UEs from different taking

off points. Note that for better exploration, we add a random

noise # ′ to the action, where # ′ follows a normal distribution

with 0 mean and variance 1, d is set to 2 and decays with a

Algorithm 2 RAT Algorithm

1: Initialize actor network c(B(C) |qc) with parameters qc

and critic network &(B(C), B(C) |q&) with parameters q&;

2: Initialize target networks & ′(·) with parameters q&
′
= q&

and c′(·) with parameters qc
′
= qc ;

3: Initialize experience replay buffer X;

4: for epoch =1,..., :max do

5: Initialize B(C);

6: for time slot C =1,...,) do

7: c(B(C) |qc) + d# ′ where # ′ is the random noise and

d decays with C;

8: for UAV 9=1,..., " do

9: Execute 2(C);

10: Obtain B(C + 1);

11: end for

12: Obtain the user association with UAVs using match-

ing algorithm proposed in Algorithm 3;

13: Obtain the reward I(C) from (38);

14: Store experience [B(C), 2(C), I(C), B(C + 1)] into the

replay buffer;

15: if the replay buffer is full then

16: for : = 1,..., do

17: Sample :-th experience with probability %(:)

from (39);

18: Calculate |X: | and l: from (36) and (40) re-

spectively;

19: end for

20: Update parameters of the critic network q& by

minimizing its loss function according to (41);

21: Update parameters of the actor network qc by

using policy gradient approach according to (37);

22: Update two target networks with the updating rate

g:

23: end if

24: end for

25: end for

rate of 0.9995 in each time step. From Line 8-11, each UAV

flies according to the generated action 2(C) and enters the next

state B(C + 1). Then, we obtain the user association by using

Algorithm 3. Next, the reward I(C) is obtained according to

(38) (i.e., Line 13). The experience is also stored in the replay

buffer. When the buffer is full, the mini-batch samples

experiences by applying the prioritized experience replay (i.e.,

Line 16-19). Then, we update the actor and critic networks

by using loss function in (41) and policy gradient in (37)

respectively. Finally, we update the target networks by using

the following equations as (i.e., Line 22)

q&
′

← gq& + (1 − g)q&
′

, (42)

and

qc
′

← gqc + (1 − g)qc
′

, (43)

where g is the updating rate.

Next, we introduce the low-complexity matching algorithm

which can decide the user association and resource allocation

given UAVs’ trajectories, as shown in Algorithm 3. First, we

9

Algorithm 3 Matching Algorithm

1: Initialize A and F 9 , ∀ 9 ∈ M, ∀8 ∈ N ;

2: for UAV 9 = 1,..., " do

3: for UE 8 = 1,..., # do

4: if (12) is met then

5: Calculate �L
8 9 (C), �

Tr
8 9 (C) and 5 C

8 9
(C);

6: if �L
8 9 (C) > �

Tr
8 9 (C) then

7: Store 8 into E 9 ;

8: end if

9: end if

10: end for

11: Sort the element in E 9 in descending order with respect

to �L
8 9 (C) − �

Tr
8 9 (C);

12: end for

13: repeat

14: for UAV 9 = 1,..., " do

15: 8 = �4C)>?�C4<(E 9);

16: if (4), (23) are met then

17: if �Tr
8 9 (C) < �

Tr
8A(8)
(C) or A(8) = 0 then

18: A(8) = 9 ;

19: end if

20: '4<>E4)>?�C4<(E 9);

21: end if

22: end for

23: until Each UE in E 9 is checked.

24: Return A

denote A with size # to record the user association between

UEs and UAVs. If A(8) = 9 , the 8-th UE matches with the

9-th UAV, while if A(8) = 0, the 8-th UE is not matched yet

and has to execute its task locally. In addition, we denote a

preference list E 9 for the 9-th UAV to record UEs that can

benefit from offloading. Then, from Line 2 to 10, we generate

the preference list E 9 for the 9-th UAV. Precisely, if constraint

(12) is met, we obtain �L
8 9 (C), �

Tr
8 9 (C), and 5 C

8 9
(C) according

to (19), (17), and (27), respectively. UEs that benefit from

offloading will be stored in E 9 . Since UAVs need to save

as much energy of UEs as possible, we sort the preference

list E 9 with descending order with respect to �L
8 9 (C) − �

Tr
8 9 (C),

as shown in Line 11. The UE that can save more energy

via offloading will be matched with a higher priority. Next,

from Line 13 to 23, we conduct the matching process. Each

UAV keeps selecting UEs according to its preference list, and

constantly checking the constraints (4) and (23) based on A.

In the meantime, the selected UE will determine whether to

match with the UAV or not. Precisely, from Line 17 to 19, if

the selected UE is not matched before, or matching with the

9-th UAV could save more energy than previous match, the

corresponding A(8) will be updated. We do this process until

all the UEs in each preference list are checked. Then, the final

user association can be obtained from A.

According to [30], our RAT algorithm is an offline learning

and off-policy DRL-based algorithm as the experience replay

mechanism is applied, and the mini-batch will sample several

uncorrelated experiences for training networks in each time

step. Additionally, the training procedure can be deployed in

a simulator, and the RAT model can be easily deployed in

reality when the convergence is achieved, which will inevitably

reduce the payoff of implementation. Furthermore, once the

whole networks are converged, the solutions can be generated

very fast with only some simple algebraic calculations instead

of solving the original MINLP. This is due to the fact that

during the training stages, random taking off points of all the

UAVs are generated and the networks are trained to converge.

Discussions: after adequate training process, the RAT

model, including the networks is saved for testing. In each

time slot, the action of all UAVs is generated together by actor

network. In our paper, as the fully-connected hidden layers are

applied, the computational complexity for generating action of

UAVs is O
(
∑!
;=1 =; · =;−1

)

, where ! is the number of network

layers, =; is the number of neurons in the ;-th layer. Then, the

computational complexity of matching algorithm is O(#").

The overall complexity of RAT algorithm in testing process is

O
(

(
∑!
;=1 =; · =;−1 + #"))

)

.

VI. EXTENSION TO 3-D CHANNEL MODEL

In this section, in order to consider the more practical

environment and the impacts of blockage and shadowing,

we extend the previous free-space to 3-D channel model

proposed in [13]. In each time slot, we assume the UAV

can fly with a vertical direction \E
9
(C) ∈ [0, c], a hor-

izontal direction \ℎ
9
(C) ∈ [0, 2c], and a flying distance

3 9 (C) ∈ [0, 3
max]. We define the coordinate of the 9-th

UAV in the C-th time slot as [- 9 (C), . 9 (C), / 9 (C)], where

- 9 (C) = - 9 (0) +
∑C
;=1 3 9 (;)sin

(

\E
9
(;)

)

cos
(

\ℎ
9
(;)

)

, . 9 (C) =

- 9 (0) +
∑C
;=1 3 9 (;)sin

(

\E
9
(;)

)

sin
(

\ℎ
9
(;)

)

, / 9 (C) = / 9 (0) +
∑C
;=1 cos

(

\E
9
(;)

)

, and [- 9 (0), . 9 (0), / 9 (0)] is the initial co-

ordinate of the UAV. For collision avoidance, we consider

/min ≤ / 9 (C) ≤ /
max,∀C ∈ T , (44)

where /min and /max are the minimal and maximal flying

altitude of the UAV.

Thus, the distance between the 9-th UAV and the 8-th UE

in C-th time slot is given by

38 9 (C) =

√

(

- 9 (C) − G8
)2
+

(

. 9 (C) − G8
)2
+ / 9 (C),

∀ 9 ∈ M, 8 ∈ N , C ∈ T .
(45)

The coverage radius of the 9-th UAV in the C-th time slot

can be given by

'max
9 (C) = / 9 (C)tan(\max). (46)

The mean path loss between the 9-th UAV and the 8-th UE

in the C-th time slot can be expressed as [13]

!8 9 (C) =
[LoS − [NLoS

1 + 0exp(−1(\8 9 (C) − 0))
+ 20log10

(

38 9 (C)
)

+ 20log10

(4c 52

2

)

+ [NLoS,

(47)

where [LoS, [NLoS are the path loss of achieving LoS and

NLoS links, 0 and 1 are constant values that can be obtained

10

in [13], \8 9 (C) = arctan

(

/ 9 (C)

'8 9 (C)

)

is the elevation angle between

the UAV and the UE, 52 is the carrier frequency, and 2 is the

light speed. Then, we can show the data rate as follows:

A8 9 (C) = �log2

(

1 +
%Tr

f2
10−

!8 9 (C)

10

)

. (48)

Additionally, we consider to maximize the energy efficiency

of UAVs and motivated by [42], we show the power consumed

by the 9-th UAV in the C-th time slot as follows

% 9 (C) =%>

(

1 + 3
(E 9 (C)

*1

)2

)

+ %B

(

√

1 +
1

4

(E 9 (C)

+ℎ

)4
−

1

2

(E 9 (C)

+ℎ

)2

)
1
2

+
c

2
30d0AB'

2
A E 9 (C)

3 + F6E 9 (C)cos
(

\E9 (C)
)

,

(49)

where %> and %B are fixed constants that can be obtained

in [43], *1 is the tip speed of the rotor blade, +ℎ denotes

the mean rotor induced velocity when hovering, 30 is the drag

ratio of main body, d0 is the air density, AB is the rotor solidity,

'A means the rotor radius, F is the weight of UAV, and 6 is

the gravity acceleration.

Thus, the remaining energy of the 9-th UAV in the C-th time

slot is defined as

4 9 (C) = 4
max −

C
∑

;=1

% 9 (;))
max, (50)

where 4max is the maximal energy of each UAV.

Thus, the optimization problem can be written as follows:

P1 : min
U ,A,F

)
∑

C=1

("
∑

9=0

#
∑

8=1

08 9 (C)�8 9 (C) + :I

"
∑

9=1

% 9 (C))
max

)

(51a)

subject to: (24b), (24c), (24d), (24e), (24f),

(24g), (24h), (24j), (24k),

0 ≤ \E9 (C) ≤ c, ∀ 9 ∈ M, C ∈ T , (51b)

/min ≤ / 9 (C) ≤ /
max, ∀ 9 ∈ M, C ∈ T , (51c)

08 9 (C)'8 9 (C) ≤ '
max
9 (C), ∀8 ∈ N , 9 ∈ M, C ∈ T . (51d)

where U = {\E
9
(C), \ℎ

9
(C), 3 9 (C), ∀ 9 ∈ M, C ∈ T }, :I is the

weight factor.

To solve the above problem, we define the state and action

as follows:

1) State B(C): B(C) = {[- 9 (C), . 9 (C), / 9 (C), 4 9 (C)], ∀ 9 ∈ M}.

2) Action 2(C): the action set can be defined as 2(C) =

{[\E
9
(C), \ℎ

9
(C), 3 9 (C)], ∀ 9 ∈ M}.

3) Reward I(C): we define the reward as follows

I(C) = −

"
∑

9=0

#
∑

8=1

08 9 (C)�8 9 (C) − :I

"
∑

9=1

%8 (C))
max − ?,

(52)

where ? is the penalty if any of UAV flies out of the

target area, i.e., if (24g), (24h) or (51c) is not satisfied.

Thus, having defined the state, action and reward, the above

problem can be solved by the proposed RAT algorithm as

introduced before.

VII. SIMULATION RESULTS

In this section, both convex optimization-based CAT and

DRL-based RAT are evaluated with simulations implemented

on Intel i5-3450t, NVIDIA GTX 1050Ti, Python 3.6, PULP

1.6.10, CVXPY 1.1.7, and Tensorflow 1.15.0. We deploy

three fully-connected hidden layers with 1024, 800 and 600

neurons in both actor and critic networks in RAT. The actor

network is trained by applying RMSPropOptimizer with the

learning rate 0.001, whereas the critic network is trained by

using AdamOptimzer with the learning rate 0.001. In the

simulation, we assume there are 60 time slots in each training

epoch. There are 100 UEs randomly distributed in a rectangle-

shaped area with the side length of -max
= 400 m and

.max
= 400 m. Additionally, there are 2 UAVs deployed to

serve UEs within the target area. Note that for RAT, each

UAV has 20 different taking off points during the training

procedure. Besides, in each time slot, UE generates a task

with communication requirement �8 (C) ∈ [10, 50] KB and

computation requirement �8 (C) ∈ [2 × 109, 2 × 1010] cycles.

Other parameters are summarized in Table II. We assume

in each time slot, UAVs will send a signal to activate the

corresponding UEs, which will either offload the task or

execute locally, within the delay requirement.

TABLE II: Simulation Parameters

Parameters Settings Parameters Settings

) 60 # 100

" 2 + max 30

3max 30 m) max 1 s

-max 400 m .max 400 m

\max c
4 / 9 (0) 75 m

E8 3 60 1.42 ×10−4

%Tr 0.1 W � 10 MHz

f2 -90 dbm 4max 106 J

:8 10−28 5 max 100 GHz

W 0.999 ? 100

:max 3000 d 2

F 2 kg 6 10 m/s2

g 0.001 /min 50 m

/max 120 m [LoS 1.6

[NLoS 23 0 12.08

1 0.11 52 2.5 GHz

2 3×108 m/s :I 0.0025

%> 79.86 *1 120 m/s

%B 88.63 +ℎ 4.03

30 0.6 d0 1.25 kg/m3

AB 0.05 'A 0.4 m

In order to evaluate the performance of the proposed CAT

and RAT, we present the following three algorithms for

comparison purpose.

• Local Execution (LE): All tasks are executed locally

without offloading.

• Random moving (RM): In this setting, each UAV ran-

domly selects the horizontal direction and flying distance

to take.

• Cluster moving (CM): We group all the UEs into 10

clusters and each UAV flies in the trajectory connecting

all the cluster center one by one. Note that it takes)
10

time slots for each UAV to move from one cluster center

to another one.

11

• Deep Deterministic Policy Gradient (DDPG) [30]: We

set the parameter of DDPG the same as actor and critic

networks of RAT, but do not apply the prioritized expe-

rience replay. In other words, DDPG uniformly samples

the experiences from the experience replay buffer in the

training procedure.

Note that both RM, CM, DDPG apply the matching algorithm

proposed in Algorithm 3 to decide the user association and

resource allocation.

A. Convergence Evaluation of CAT and RAT

In this subsection, we show the convergence of proposed

CAT and RAT. In Fig. 3, we depict the convergence perfor-

mance of CAT with three different pairs of initial trajectories.

Specifically, we group all UEs into one cluster and the UAVs

fly in a circle around the cluster center with radius 80 m, 100

m, and 120 m respectively. We denote these three pairs of UAV

trajectories as the initial trajectories. As shown in Fig. 3, we

can conclude that for any initial trajectory, the overall energy

consumption of UEs achieved by CAT always decreases and

finally remains stable after several iteration times. However,

one can also observe that the convergent solution achieved by

CAT will be influenced by the initial trajectory.

0 20 40 60 80 100
Iteration Times

460

470

480

490

500

510

520

530

Ov
er

al
l E

ne
rg

y
Co

ns
um

pt
io

n
(J)

CAT with Radius 80m
CAT with Radius 100m
CAT with Radius 120m

Fig. 3: The convergence performance of proposed CAT.

0 200 400 600 800 1000 1200 1400
Training Epoch

450

500

550

600

650

Ov
er

al
l E

ne
rg

y
Co

ns
um

pt
io

n
(J)

RAT with Batch Size 128
RAT with Batch Size 256
RAT with Batch Size 512

(a) The overall energy consumption
of RAT with different batch size.

0 200 400 600 800 1000 1200 1400
Training Epoch

450

500

550

600

650

Ov
er
al
l E

ne
rg

y
Co

ns
um

pt
io
n
(J)

DDPG with Batch Size 128
DDPG with Batch Size 256
DDPG with Batch Size 512

(b) The overall energy consumption
of DDPG with different batch size.

Fig. 4: The convergence performance of RAT and DDPG

with different size of mini-batch.

Then, we show the convergence performance of RAT in

training process. From Fig. 4 to Fig. 5, we compare the influ-

ence of hyperparameters to both DDPG and RAT. Prioritized

0 200 400 600 800 1000 1200 1400
Training Epoch

450

500

550

600

650

Ov
er

al
l E

ne
rg

y
Co

ns
um

pt
io

n
(J)

RAT with Buffer Size 10000
RAT with Buffer Size 30000

RAT with Buffer Size 50000

(a) The overall energy consumption
of RAT with different buffer size.

0 200 400 600 800 1000 1200 1400
Training Epoch

450

500

550

600

650

700

Ov
er
al
l E

ne
rg
y
Co

ns
um

pt
io
n
(J)

DDPG with Buffer Size 10000
DDPG with Buffer Size 30000
DDPG with Buffer Size 50000

(b) The overall energy consumption
of DDPG with different buffer size.

Fig. 5: The convergence performance of RAT and DDPG

with different experience replay buffer.

experience replay is applied in RAT. Both RAT and DDPG

start the learning procedure once the experience replay buffer

is full. In Fig. 4, we depict the overall energy consumption

of RAT and DDPG for different size of mini-batches, where

the size of experience replay buffer is 50000. To be more

specific, from Fig. 4(a), we can see that RAT has the similar

convergence performance for different size of mini-batches

and it becomes more stable during the learning procedure. In

Fig. 4(b), when the batch size is 128, DDPG has an obvious

fluctuation during the learning procedure. When the batch

size is 256, the convergence performance of DDPG becomes

worse after the 1400-th epoch. While DDPG can only have

a promising convergence performance when the batch size is

512. Overall, from Fig. 4, it is clear to see that the RAT is

less sensitive to the change of mini-batch than DDPG.

In Fig. 5, we depict the overall energy consumption of RAT

and DDPG for different sizes of experience replay buffer,

where the size of mini-batch is set as 128. From Fig. 5(a)

and 5(b), when the buffer size is 10000, the proposed RAT

finally remains stable between 450 J and 500 J, although it

has an obvious fluctuation during the learning process. The

DDPG has no convergence tendency during the entire learning

procedure. When the buffer size is 50000, DDPG becomes

worse after 1000-th epoch, and finally reaches 550 J. Overall,

we can observe that DDPG can only have a promising perfor-

mance when the buffer size is 30000, while RAT can always

converge and remain stable during the learning procedure, no

matter which the buffer size is. Thus, we can conclude that

RAT is less sensitive to the size of experience replay buffer

than DDPG.

B. Trajectory Evaluation of CAT and RAT

In Fig. 6 and Fig. 7, we show the trajectories obtained

by RAT and CAT, respectively. Note that during the training

procedure, the UAVs controlled by RAT always starts to serve

UEs from 20 different taking off points. Additionally, for

fairness, the UAVs controlled by CAT have the same taking off

points as RAT. For the initial trajectories, we group all the UEs

into 6 clusters and each UAV flies in the trajectory connecting

all cluster centers one by one. Note that the iteration number

of CAT is 10.

As shown in Fig. 6, we randomly select 5 pairs of taking off

points for comparison. One can observe that no matter which

the taking off points of the UAVs are, the proposed RAT can

12

0 50 100 150 200 250 300 350 400
X (m)

0

50

100

150

200

250

300

350

400
Y
(m

)

1

1

2

2 3

3

44

5

5

UAV1 UAV2 UE

Fig. 6: Multi-UAV enabled F-MEC controlled by RAT.

0 50 100 150 200 250 300 350 400
X (m)

0

50

100

150

200

250

300

350

400

Y
(m

)

1

1

2

2 3

3

44

5

5

UAV1 UAV2 UE

Fig. 7: Multi-UAV enabled F-MEC controlled by CAT.

guide the UAVs to their certain areas and move around to serve

different UEs. This is due to the fact that we train the RAT

to converge during the training stage by randomly generating

several taking off points of the UAVs. Then, during the testing

stage, RAT can intermediately output the best solutions once

taking off points are given.

In Fig. 7, one can also see that the trajectories obtained

by CAT are similar with the initial trajectories. This may

indicate that CAT may fall into the local optimum, whereas

the proposed RAT has the global search ability due to the

exploration feature of DRL.

C. Energy Consumption Evaluation of CAT and RAT

In Fig. 8, we compare the performance of RAT, CAT, CM,

RM and LE in terms of energy consumption of UEs. As shown

in Fig. 8 (a), we depict the overall energy consumption of

UEs achieved by RAT, CAT, CM, RM, and LE with different

taking off points. It is obvious to see that LE has the worst

performance. This is because all UEs execute their tasks

locally without offloading, which will inevitably consume

more energy. RM outperforms LE but it fluctuates with the

index of taking off points. CM has better performance than

RM, which always remains between 520 J and 550 J. CAT

outperforms LE, RM, and CM, which remains about 500 J.

1 2 3 4 5
Index of Taking Off Points

450

500

550

600

650

700

Ov
er
al
l E

ne
rg
y
Co

ns
um

pt
io
n
(J)

RAT
CAT

CM
RM

LE

(a) The overall energy consumption
of RAT, CAT, RM, CM, LE with
different taking off points.

5 10 15 20 25 30 35 40 45 50 55 60
Number of Time Slots

100

200

300

400

500

600

700

Ov
er
al
l E
ne
rg
y
Co

ns
um

pt
io
n
(J)

RAT
CAT

CM
RM

LE

(b) The overall energy consumption
of RAT, CAT, RM, CM, LE in dif-
ferent number of time slots.

Fig. 8: The performance comparison of RAT, CAT, RM, CM,

and LE.

Additionally, one can observe that RAT achieves the best

performance, as expected.

Furthermore, we depict the overall energy consumption of

UEs achieved by RAT, CAT, RM, CM, and LE in different

number of time slots in Fig. 8 (b), with the index of taking

off points setting as 1. It is readily to see that both the energy

consumption of RAT, CAT, RM, CM, and LE increase as

the number of time slots increases. LE performs the worst,

which consumes above 700 J eventually. Additionally, we can

observe that RAT outperforms other algorithms. Moreover,

CAT still has considerable performance, which is only slightly

worse than RAT.

TABLE III: Executed Time of CAT and RAT

Index CAT (s)
RAT

Training (s) Testing (s)

1 1405.23

10534.88

1.23
2 1491.74 1.22
3 1460.46 1.20
4 1445.11 1.21
5 1402.48 1.21

In Table III, we show the time consumed by CAT and RAT

for each pair of taking off points in Fig. 8. Note that RAT is

trained for 3000 epochs, while the iteration number of CAT is

10. One can see that for all the taking off points, the proposed

CAT takes over 1400 seconds to find solutions, while RAT

only takes 1.2 seconds in average, although it takes longer time

in training process. This is because once the RAT are trained

properly, it only needs a few number of algebra calculations

to obtain the solution.

Additionally, in Fig. 9, we analyse the overall energy

consumption of RAT, CAT, RM, CM and LE when we have

different number of UAVs. Note that for fairness, the UAVs

controlled by RAT, CAT, RM, CM have the same taking off

points. Specifically, in Fig. 9, one observes that the energy

consumption of UEs achieved by RAT, CAT, RM, and CM

decrease with the increasing number of UAVs. This is because

deploying more UAVs provides higher computational capacity.

Therefore, more UEs will benefit from offloading, which

will decrease their overall energy consumption. Besides, we

observe that for all the cases, RAT can achieve the best

performance, whereas CAT performs slightly worse than RAT.

13

Also, CM, LM and RM have worse performance than CAT,

as expected.

1 2 3 4 5
Number of UAVs

300

400

500

600

700

Ov
er
al
l E

ne
rg
y
Co

ns
um

pt
io
n
(J)

RAT
CAT

CM
RM

LE

Fig. 9: The overall energy consumption of RAT, CAT, RM,

CM, LE with different number of UAVs.

D. Extension to 3-D channel model

In this subsection, we analyse the performance of proposed

RAT in 3-D channel model. We set the number of time slots

) as 50, the channel bandwidth as 20 MHz, �8 (C) ∈ [5, 10]

KB, �8 (C) ∈ [7.5× 108, 2× 109] cycles, the size of mini-batch

is 512, and the size of experience replay buffer is 100000. In

each training epoch, each UAV starts to serve UEs with the

altitude of / 9 (0) = 50 m. Firstly, we depict the overall energy

consumption achieved by the proposed RAT algorithm during

the training procedure in Fig. 10. One can see that the overall

energy consumption of UEs remains between 600 J and 700 J

in the beginning. When the learning process starts, the curve

decreases and eventually remains slightly above 350 J.

0 500 1000 1500 2000 2500 3000
Training Epoch

350

400

450

500

550

600

650

700

Ov
er
al
l E
ne
rg
y
Co

ns
um

pt
io
n
(J)

RAT

Fig. 10: The convergence performance of proposed RAT in

3-D UAV trajectory and 3-D channel model scenario.

Then, we depict the UAV trajectories obtained by RAT

during testing phase in Fig. 11. Note that blue dots represent

UEs, red stars represent the trajectories of UAV1 and green

triangles represent the trajectories of UAV2. As shown in

Fig. 11, one can see that the UAVs always move from their

taking off points to the certain areas, and move around to serve

different UEs with the most sufficient distance. In addition,

one can observe that each UAV will increase its altitude at

the beginning. This is because higher altitude may increase

the coverage radius of the UAV, thereby serving more UEs,

although it also decreases the data rate of the offloading

process.

X (m)

0 50 100150200250300350400

Y (m
)

50
100

150
200

250
300

350

Z
(m

)

0
20
40
60
80
100
120

1 12

23 3

4

4
5 5

Fig. 11: 3-D trajectories obtained by RAT in 3-D scenario

(blue dots for UEs, red stars for UAV1 and green triangles

for UAV2).

Furthermore, we analyse the overall energy consumption of

UEs and UAVs achieved by RAT, CM, and RM in different

scenarios in Fig. 12, where the UAVs controlled by CM

first climb from the minimal altitude /min to the maximal

altitude /max in the first 10 time slots, and after that fly

horizontally. Also, the RM randomly selects the available

flying action for each UAV, including the horizontal flying

direction, the vertical flying direction, and the flying distance.

More precisely, in Fig. 12 (a), one can observe that our

proposed RAT consistently outperforms CM and RM, whereas

CM performs worse than RAT but better than RM, as expected.

1 2 3 4 5
Index of Taking Off Points

400

450

500

550

600

650

Ov
er

al
l E

ne
rg

y
Co

ns
um

pt
io

n
(J)

RAT CM RM

(a) The overall energy consumption
of UEs achieved by RAT, CM, and
RM with different taking off points.

1 2 3 4 5
Index of Taking Off Points

18000

19000

20000

21000

22000

23000

Ov
er
al
l E
ne
rg
y
Co

ns
um

pt
io
n
(J)

RAT
CM
RM

(b) The overall energy consumption
of UAVs achieved by RAT, CM, and
RM with different taking off points.

Fig. 12: The performance comparison of RAT, CM, and RM.

Finally, we show the overall energy consumption of UAVs

achieved by RAT, CM and RM in Fig. 12 (b). One observes

that our proposed RAT has the best performance, whereas CM

has the worse performance than RAT, but better than RM.

14

VIII. CONCLUSION

In this paper, we have considered the flying mobile edge

computing architecture, by taking advantage of the UAVs to

serve as the moving platform. We aim to minimize the energy

consumption of all the UEs by optimizing the UAVs’ tra-

jectories, user associations and resource allocation. To tackle

the multi-UAVs’ trajectories problem, a convex optimization-

based CAT has been first proposed. Then, in order to conduct

fast decision, a DRL-based RAT including a matching algo-

rithm has also been proposed. Simulation results show that

CAT and RAT have considerable performance.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5G,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[2] Y. Du, K. Wang, K. Yang, and G. Zhang, “Energy-efficient resource
allocation in UAV based MEC system for IoT devices,” in IEEE Global

Communications Conference, 2018, pp. 1–6.

[3] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-
efficient admission of delay-sensitive tasks for mobile edge computing,”
IEEE Trans. Commun., vol. 66, no. 6, pp. 2603–2616, June. 2018.

[4] Q. Wu and R. Zhang, “Common throughput maximization in UAV-
enabled OFDMA systems with delay consideration,” IEEE Trans. Com-

mun., vol. 66, no. 12, pp. 6614–6627, Dec. 2018.

[5] Z. Li, M. Chen, C. Pan, N. Huang, Z. Yang, and A. Nallanathan, “Joint
trajectory and communication design for secure UAV networks,” IEEE

Commun. Lett., pp. 1–4, Feb. 2019.

[6] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient
UAV control for effective and fair communication coverage: A deep
reinforcement learning approach,” IEEE J. Select. Areas Commun.,
vol. 36, no. 9, pp. 2059–2070, Sep. 2018.

[7] L. Kong, L. Ye, F. Wu, M. Tao, G. Chen, and A. V. Vasilakos, “Au-
tonomous relay for millimeter-wave wireless communications,” IEEE J.

Select. Areas Commun., vol. 35, no. 9, pp. 2127–2136, 2017.

[8] U. Challita, A. Ferdowsi, M. Chen, and W. Saad, “Machine learning for
wireless connectivity and security of cellular-connected UAVs,” IEEE

Wireless Communications, vol. 26, no. 1, pp. 28–35, 2019.

[9] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in
UAV enabled wireless sensor network,” IEEE Wireless Communications

Letters, vol. 7, no. 3, pp. 328–331, June 2018.

[10] J. Xu, Y. Zeng, and R. Zhang, “UAV-enabled wireless power transfer:
Trajectory design and energy optimization,” IEEE Transactions on

Wireless Communications, vol. 17, no. 8, pp. 5092–5106, Aug 2018.

[11] N. Zhao, F. Cheng, F. R. Yu, J. Tang, Y. Chen, G. Gui, and H. Sari,
“Caching UAV assisted secure transmission in hyper-dense networks
based on interference alignment,” IEEE Transactions on Communica-

tions, vol. 66, no. 5, pp. 2281–2294, 2018.

[12] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial
vehicle with underlaid device-to-device communications: Performance
and tradeoffs,” IEEE Transactions on Wireless Communications, vol. 15,
no. 6, pp. 3949–3963, 2016.

[13] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude
for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6,
pp. 569–572, Dec. 2014.

[14] H. He, S. Zhang, Y. Zeng, and R. Zhang, “Joint altitude and beamwidth
optimization for UAV-enabled multiuser communications,” IEEE Com-

mun. Lett., vol. 22, no. 2, pp. 344–347, Feb. 2018.

[15] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with tra-
jectory optimization,” IEEE Transactions on Wireless Communications,
vol. 16, no. 6, pp. 3747–3760, June 2017.

[16] J. Lyu, Y. Zeng, and R. Zhang, “UAV-aided offloading for cellular
hotspot,” IEEE Transactions on Wireless Communications, vol. 17, no. 6,
pp. 3988–4001, 2018.

[17] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication
design for multi-UAV enabled wireless networks,” IEEE Transactions

on Wireless Communications, vol. 17, no. 3, pp. 2109–2121, March
2018.

[18] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy
efficient resource allocation in UAV-enabled mobile edge computing
networks,” IEEE Transactions on Wireless Communications,
vol. 18, no. 9, p. 4576–4589, Sep 2019. [Online]. Available:
http://dx.doi.org/10.1109/twc.2019.2927313

[19] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned
aerial vehicles (UAVs) for energy-efficient internet of things communica-
tions,” IEEE Transactions on Wireless Communications, vol. 16, no. 11,
pp. 7574–7589, 2017.

[20] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[21] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Transactions on Wireless Communica-

tions, vol. 16, no. 8, pp. 4924–4938, Aug 2017.

[22] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp.
4569–4581, Sep. 2013.

[23] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “AI
driven heterogeneous MEC system with UAV assistance for dynamic
environment: Challenges and solutions,” IEEE Network, pp. 1–9, 2020.

[24] Y. Du, K. Yang, K. Wang, G. Zhang, Y. Zhao, and D. Chen, “Joint
resources and workflow scheduling in UAV-enabled wirelessly-powered
MEC for IoT systems,” IEEE Transactions on Vehicular Technology, pp.
1–14, 2019.

[25] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization
in UAV-enabled wireless-powered mobile-edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 9,
pp. 1927–1941, 2018.

[26] A. Asheralieva and D. Niyato, “Hierarchical game-theoretic and
reinforcement learning framework for computational offloading in
UAV-enabled mobile edge computing networks with multiple service
providers,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8753–
8769, 2019.

[27] Q. Zhang, J. Chen, L. Ji, Z. Feng, Z. Han, and Z. Chen, “Response
delay optimization in mobile edge computing enabled UAV swarm,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3280–
3295, 2020.

[28] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529–533, Feb. 2015.

[29] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” 2015.

[30] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[31] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, Nov. 2015.

[32] X. Wang, K. Wang, S. Wu, S. Di, H. Jin, K. Yang, and S. Ou, “Dynamic
Resource Scheduling in Mobile Edge Cloud with Cloud Radio Access
Network,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 11, pp. 2429–
2445, Nov. 2018.

[33] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep learning
based joint resource scheduling algorithms for hybrid MEC networks,”
IEEE Internet of Things Journal, 2019.

[34] S. Mitchell, M. G. O. Sullivan, and I. Dunning, “Pulp : A linear
programming toolkit for python,” in Python, 2011.

[35] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[36] C. Pan, H. Zhu, N. J. Gomes, and J. Wang, “Joint precoding and RRH
selection for user-centric green MIMO C-RAN,” IEEE Transactions on

wireless Communications, vol. 16, no. 5, pp. 2891–2906, 2017.

[37] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances

in neural information processing systems, 2000, pp. 1008–1014.

[38] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Thirtieth AAAI Conference on Artificial

Intelligence, Mar. 2016.

[39] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[40] J. Hamari, J. Koivisto, H. Sarsa et al., “Does gamification work?-a
literature review of empirical studies on gamification.” in HICSS, vol. 14,
no. 2014, 2014, pp. 3025–3034.

15

[41] A. R. Mahmood, H. P. Van Hasselt, and R. S. Sutton, “Weighted
importance sampling for off-policy learning with linear function ap-
proximation,” in Advances in Neural Information Processing Systems,
2014, pp. 3014–3022.

[42] R. Ding, F. Gao, and X. S. Shen, “3D UAV trajectory design and
frequency band allocation for energy-efficient and fair communication: A
deep reinforcement learning approach,” IEEE Transactions on Wireless

Communications, vol. 19, no. 12, pp. 7796–7809, 2020.
[43] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless

communication with rotary-wing UAV,” IEEE Transactions on Wireless

Communications, vol. 18, no. 4, pp. 2329–2345, 2019.

Liang Wang received his B.Eng. degree in 2014
and MSc. degree in 2015. He is currently working
towards the Ph.D. degree in computer science with
Northumbria University, Newcastle upon Tyne, U.K.
His research interests include UAV communication,
mobile edge computing, and machine learning.

Kezhi Wang received his B.E. and M.E. degrees in
School of Automation from Chongqing University,
China, in 2008 and 2011, respectively. He received
his Ph.D. degree in Engineering from the University
of Warwick, U.K. in 2015. He was a senior research
officer in University of Essex, U.K. from 2015-2017.
Currently he is a Senior Lecturer with Department
of Computer and Information Sciences at Northum-
bria University, U.K. His research interests include
mobile edge computing, intelligent reflection surface
(IRS) and machine learning.

Cunhua Pan received the B.S. and Ph.D. degrees
from the School of Information Science and En-
gineering, Southeast University, Nanjing, China, in
2010 and 2015, respectively. From 2015 to 2016, he
was a Research Associate at the University of Kent,
U.K. He held a post-doctoral position at Queen Mary
University of London, U.K., from 2016 and 2019,
where he is currently a Lecturer.

His research interests mainly include reconfig-
urable intelligent surfaces (RIS), intelligent reflec-
tion surface (IRS), ultra-reliable low latency commu-

nication (URLLC) , machine learning, UAV, Internet of Things, and mobile
edge computing. He serves as a TPC member for numerous conferences,
such as ICC and GLOBECOM, and the Student Travel Grant Chair for ICC
2019. He is currently an Editor of IEEE Wireless Communication Letters,
IEEE Communications Letters and IEEE ACCESS. He also serves as a lead
guest editor of IEEE Journal of Selected Topics in Signal Processing (JSTSP)
Special Issue on Advanced Signal Processing for Reconfigurable Intelligent
Surface-aided 6G Networks, lead guest editor of IEEE ACCESS Special Issue
on Reconfigurable Intelligent Surface Aided Communications for 6G and
Beyond.

Wei Xu (S’07-M’09-SM’15) received his B.Sc.
degree in electrical engineering and his M.S. and
Ph.D. degrees in communication and information en-
gineering from Southeast University, Nanjing, China
in 2003, 2006, and 2009, respectively. Between 2009
and 2010, he was a Post-Doctoral Research Fellow
with the Department of Electrical and Computer
Engineering, University of Victoria, Canada. He is
currently a Professor at the National Mobile Com-
munications Research Laboratory, Southeast Uni-
versity. He is also an Adjunct Professor of the

University of Victoria in Canada, and a Distinguished Visiting Fellow of
the Royal Academy of Engineering, U.K. He has co-authored over 100
refereed journal papers in addition to 36 domestic patents and four US patents
granted. His research interests include information theory, signal processing
and machine learning for wireless communications. He was an Editor of IEEE
COMMUNICATIONS LETTERS from 2012 to 2017. He is currently an Editor
of IEEE TRANSACTIONS ON COMMUNICATIONS and an Senior Editor of
IEEE COMMUNICATIONS LETTERS. He received the Best Paper Awards from
a number of prestigious IEEE conferences including IEEE Globecom/ICCC
etc. He received the Youth Science and Technology Award of China Institute
of Communications in 2018.

Nauman Aslam received the Ph.D. degree in en-
gineering mathematics from Dalhousie University,
Halifax, NS, Canada, in 2008. He is currently an
Associate Professor with the Department of Com-
puter Science and Digital Technologies, Northum-
bria University, Newcastle upon Tyne, U.K. He is
also an Adjunct Assistant Professor with Dalhousie
University. Prior to joining Northumbria University,
he was an Assistant Professor with Dalhousie Uni-
versity. His research interests include wireless sensor
network, energy efficiency, security, and WSN health

applications.

Arumugam Nallanathan (S’97-M’00-SM’05-F’17)
is Professor of Wireless Communications and Head
of the Communication Systems Research (CSR)
group in the School of Electronic Engineering and
Computer Science at Queen Mary University of
London since September 2017. He was with the
Department of Informatics at King’s College London
from December 2007 to August 2017, where he was
Professor of Wireless Communications from April
2013 to August 2017 and a Visiting Professor from
September 2017. He was an Assistant Professor in

the Department of Electrical and Computer Engineering, National University
of Singapore from August 2000 to December 2007. His research interests
include Artificial Intelligence for Wireless Systems, Beyond 5G Wireless
Networks, Internet of Things (IoT) and Molecular Communications. He
published nearly 500 technical papers in scientific journals and international
conferences. He is a co-recipient of the Best Paper Awards presented at
the IEEE International Conference on Communications 2016 (ICC’2016),
IEEE Global Communications Conference 2017 (GLOBECOM’2017) and
IEEE Vehicular Technology Conference 2018 (VTC’2018). He is an IEEE
Distinguished Lecturer. He has been selected as a Web of Science Highly
Cited Researcher in 2016.

He is an Editor for IEEE Transactions on Communications and Senior
Editor for IEEE Wireless Communications Letters. He was an Editor for IEEE
Transactions on Wireless Communications (2006-2011), IEEE Transactions
on Vehicular Technology (2006-2017) and IEEE Signal Processing Letters.
He served as the Chair for the Signal Processing and Communication Elec-
tronics Technical Committee of IEEE Communications Society and Technical
Program Chair and member of Technical Program Committees in numerous
IEEE conferences. He received the IEEE Communications Society SPCE
outstanding service award 2012 and IEEE Communications Society RCC
outstanding service award 2014.

