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Abstract—Accurate estimation of battery degradation cost is
one of the main barriers for battery participating on the energy
arbitrage market. This paper addresses this problem by using a
model-free deep reinforcement learning (DRL) method to opti-
mize the battery energy arbitrage considering an accurate battery
degradation model. Firstly, the control problem is formulated
as a Markov Decision Process (MDP). Then a noisy network
based deep reinforcement learning approach is proposed to learn
an optimized control policy for storage charging/discharging
strategy. To address the uncertainty of electricity price, a hybrid
Convolutional Neural Network (CNN) and Long Short Term
Memory (LSTM) model is adopted to predict the price for the
next day. Finally, the proposed approach is tested on the the
historical UK wholesale electricity market prices. The results
compared with model based Mixed Integer Linear Programming
(MILP) have demonstrated the effectiveness and performance of
the proposed framework.

Index Terms—Energy storage, Energy arbitrage, Battery
degradation, Deep reinforcement learning, Noisy Networks

I. INTRODUCTION

ENERGY storage systems can improve the flexibility of

the power systems by providing various ancillary services

to system operators, e.g. load shifting, frequency regulation,

voltage support and grid stabilization [1]. Among these, energy

arbitrage represents the largest profit opportunity for battery

storage. In electricity markets, the storage can take advantage

of the daily energy price fluctuations to buy the cheapest

energy available during the period of low demand and sell

it at the highest price in order to generate profits using energy

arbitrage.

Extensive research has been conducted on the optimisation

of energy storage arbitrage problem to maximise revenue. In

[2] and [3], a mixed integer linear approach was developed

to optimise the storage dispatch that can maximise the prof-

its in real-time markets in the United States and Germany,
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respectively. In order to handle the uncertainty in electricity

price, a scenario-based stochastic formulation was developed

in [4] for battery energy arbitrage in both day-ahead and real-

time market. The authors of [5] present a bidding mechanism

based on two stage stochastic programming for a group

of storage that participate in the day-ahead reserve market.

Apart from the above stochastic optimization approaches,

robust optimization is also widely used to handle uncertainty.

In [6], a robust optimization based bidding strategy has

shown an increasing probability of yielding better economic

performance than a deterministic optimization based bidding

strategy, when the forecast error in electricity price increases.

In [7], an affinely adjustable robust bidding strategy for a

solar power with a battery storage system was proposed to

address the uncertainties of both PV solar power productions

and electricity prices. However, the research in [2]-[7] did not

consider a detailed model of battery degradation during the

energy arbitrage process.

Battery degradation model is the key factor to energy

arbitrage problem. Accurate calculation of degradation costs

is crucial for obtaining realistic estimates of profitability.

There is a growing literature examining the impact of battery

degradation on energy arbitrage revenue [8], [9]. The impact

of battery degradation on energy arbitrage revenue is studied

in [8] and a novel battery operational cost model considering

degradation cost based on depth of charge and discharge

rate is developed in [9]. However, the degradation model

used in [8], [9] is quite simplistic, which is not realistic

to account for the degradation costs for energy arbitrage.

There are already some independent research works on battery

degradation model using either model based or data driven

methods [10], [11], which can provide a precise degradation

costs for different charging profiles. One of the main barriers

of embedding this accurate model to energy arbitrage prob-

lem is that the calculation of degradation process is quite

complicated and it is not straightforward to find a simple

mathematical degradation model that can be included into the

model-based energy arbitrage algorithm.

Recently, data-driven model-free approaches have made

great progress in decision-making problems [12]. Many studies

have focused on the application of Reinforcement Learning

(RL), a model-free agent based AI algorithm, for smart grid,

especially demand response. The authors of [13] present

a comprehensive review on RL for demand response. The

authors of [14] proposed a deep reinforcement learning based
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approach to optimize the EV charging scheduling. A Q learn-

ing based algorithm is proposed in [15] for energy arbitrage

on the real-time market. Compared to model-based methods,

the data-driven approaches show great advantages: 1) they

have self-adaptability, model-free nature, and the ability to

learn from historical data; 2) Deep reinforcement learning

(DRL) can learn a good control policy, even under a very

complex environment by using deep neural networks. This

feature provides great potentials for DRL to learn a battery

charging/discharging policy for energy arbitrage considering a

complicated, precise battery degradation model.

The objective of energy arbitrage using battery storage

is to maximise the profits. In current literature, three rela-

tively simple assumptions in energy storage arbitrage remain

the major obstacles for its adoption in industry: 1) perfect

foresight about electricity market prices; 2) constant battery

charging/discharging efficiency; 3) simple representation of

battery degradation model. This paper aims to address all these

issues by using a deep reinforcement learning method. The

contribution of this paper is to propose a self-learning noisy

network based deep reinforcement learning approach to learn

the optimized control actions for battery storage under very

complex environment (e.g. accurate battery degradation, non-

linear charging/discharging efficiency and price uncertainty).

The remainder of this paper is organized as follows. Section

II introduces the environment model of the battery storage and

battery degradation costs. The control problem is formulated

as a Markov Decision Process in Section III. The deep

reinforcement learning algorithm is introduced in Section IV.

Section V presents case studies results and finally Section VI

concludes the paper.

II. ENVIRONMENT MODEL

To improve the training process of the proposed DRL

method, the battery and battery degradation are modeled based

on a standardized set of environments in OpenAI Gym [16]

in this section.

A. Battery Energy Storage Model

In this paper, a generalized mathematical model of energy

storage system based on state of charge (SoC) to describe the

battery behaviour, is defined as follows:

SoCt+1 =











SoCt −
1

Eess

· ηcht ·
∫ t+1

t
Pe,tdt, Pe,t < 0

SoCt −
1

Eess

· 1
ηdis

t

·
∫ t+1

t
Pe,tdt, Pe,t > 0

SoCt −
1

Eess

·
∫ t+1

t
Pstandby,tdt, Pe,t = 0

(1)

where SoCt is the state of charge at time t; Pe,t is the output

power of battery (Pe,t > 0, when discharging and Pe,t < 0,

when charging); Pstandby,t is the standby losses of battery;

Eess is the energy capacity of battery (kWs); ηcht and ηdist are

the charging and discharging efficiencies respectively.

In the conventional battery energy storage model, the charg-

ing/discharging efficiency is usually assumed to be constant.

However, the efficiency is actually a nonlinear function of

battery SoC and battery charging/discharging power [17]. To

calculate the efficiency of battery, a steady state equivalent
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Fig. 1. Steady state battery equivalent circuit.
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Fig. 2. The calculation process of discharging and charging efficiencies.

circuit model is adopted to represent the Li-ion battery, as

shown in Fig. 1. The circuit consists of an open circuit voltage

Voc and three resistors (Rs, Rts, Rtl) that represent different

electrochemical processes: ohmic losses, charge tansfer and

membrane diffusion. The open circuit voltage and three resis-

tors are the nonlinear function of SoC, which can be expressed

by [17]























Voc = a0e
(−a1SoC) + a2 + a3SoC − a4SoC

2 + a5SoC
3

Rs = b0e
(−b1SoC) + b2 + b3SoC − b4SoC

2 + b5SoC
3

Rts = c0 · e
−c1·SoC + c2

Rtl = d0 · e
−d1·SoC + d2

Rtot = Rs +Rts +Rtl

(2)

Then we can obtain the circuit current by solving the

quadratic equation Pe = I(Voc −RtotI) in Fig. 1:

I =
Voc −

√

V 2
oc − 4 ·Rtot · Pe

2 ·Rtot

(3)

The charging and discharging efficiencies of battery can be

given by (4) and (5), respectively.

ηch =
Voc

Voc −Rtot · I
(4)

ηdis =
Voc −Rtot · I

Voc

(5)

Fig. 2 shows the basic calculation process of charging

and discharging efficiencies. For a particular SoC and charg-

ing/discharging power Pe, we can derive the efficiencies

through the flowchart of Fig. 2. Fig. 3 shows the results

of different charging/discharging efficiency corresponding to

different SoC and charging/discharging rate (called C-rate,

defined as the charge or discharge current divided by the

battery’s capacity). As seen in Fig. 3, the efficiency of a battery

improves for higher SoC and lower C-rate.
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Fig. 3. Discharging and charging efficiencies.
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Fig. 4. Framework of the battery degradation assessment [11]

B. Battery Degradation Model

In the process of energy arbitrage, a key factor is the

accurate estimation of the battery operating cost, which mainly

stems from the battery degradation. An accurate battery degra-

dation model as a function of the battery operation is needed

to calculate the operation cost during the energy arbitrage.

The degradation process of battery is a nonlinear process

with respect to time and cycle numbers, which is shown in

Fig. 5. Basically, battery aging consists of two types of aging:

(i) calendar aging and (ii) cyclic aging [18]. Calendar aging

reflects the battery’s inherent degradation over time, which

is affected by the temperature and SoC. Cyclic aging is

the capacity lost each time in the battery operation during

charging and discharging and it depends on the depth of

charge, discharging rate, ambient temperature, etc. [18].

A semi-empirical lithium-ion battery degradation model

which can account for irregular cycling operations in [11]

has been adopted to estimate the battery degradation costs.

Fig. 4 shows the framework of calculation process. Firstly,

a historical SoC profile is used as the input to the rainflow

cycle-counting algorithm [19] and the output of the algorithm

includes: 1) cycle amplitude; 2) cycle mean value; 3) cycle

number; 4) cycle begin and end time. Then, both the calendar

and cycling degradation results are combined to estimate the

final remaining capacity of the battery. Fig. 6 shows the results
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Fig. 5. General capacity degradation of lithium-ion battery [20]
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Fig. 6. The results of battery degradation using the framework in Fig. 4

of battery degradation using the framework in Fig. 4. The input

of the algorithm is the random SoC profile for one week (168

hours), as shown in Fig. 6 (a). Fig. 6 (b) dispalys the final

results, with the initial capacity Es at time 1 and remaining

capacity Ec at time 168.

However, this model in [11] can only estimate the degra-

dation for a period of cycling operations, which will lead to

a delayed reward to the reinforcement learning approach. It

can hardly recognise which action (charging/discharging) is

actually responsible for the high reward (degradation costs in

this paper), as the rewards are delayed and accumulated.

Actually, the degradation process can be treated as a linear

function to the cycle number during a short period of time

(see Fig. 6(b)). To account for the immediate rewards in

the learning process, a degradation coefficient αd, which

represents the slope of linear approximation of battery aging

during a short period of time in Fig. 5, is proposed to estimate

the reward for every charging or discharging control action.

The coefficient αd is updated based on the degradation results

of the last training episode in reinforcement learning algorithm

explained in Section IV. It is defined as:

αd,j =
Es,j − Ec,j
∑T

i=1 |Pe,i|
∗ CB (6)

where, Es,j and Ee,j are the battery remaining capacity at the

start and end point of the episode j. T is the time period

per episode (168 hours in this paper). Pe,i is the battery

charging/discharging power at time i during the episode j.

CB is the battery cost per kWh.

III. PROBLEM FORMULATION

A Markov Decision Process (MDP) model with discrete

time step Ts is formulated in this section for the energy

arbitrage problem. The time step Ts is chosen based on the

time interval of the input data. In this paper, Ts is one hour

according to the available data of the UK wholesale market.

The whole sequential decision-making process of the MDP

model for battery energy arbitrage is: given a state st ∈ S

at time step t which includes battery state of charge SoCt
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and next 24 hours electricity prices from forecasting, the agent

selects an action (charging or discharging) from a action-space

a ∈ A(s) based on the policy π. The goal of the proposed

algorithm is to find the optimal policy to maximise the reward

(profit) in the energy arbitrage process. The MDP formulation

for energy arbitrage is defined as:

1) State space: The state space at time instant t is defined as

st = (ct, ..., ct+22, ct+23, SoCt). where ct, ..., ct+22, ct+23 is

the predicted price for the next day. Using the predicted price

signal is to make sure the agent knows whether the price signal

is going up or down in order to make the best control action.

The state transition of the battery SoC from state st to st+1
is defined in (1).

2) Action space: The charging/discharging action space

is discrete as a = (−Pmax
e ,−0.5Pmax

e , 0, 0.5Pmax
e , Pmax

e ),
where Pmax

e is the maximum charging/discharging power of

the battery. The actual charging/discharging power is limited

by (7) due to the limit of SoC.

(SoCt − SoCmax) · Eess

ηt · Ts

≤ Pe,t ≤
(SoCt − SoCmin) · Eess

ηt · Ts
(7)

where SoCmax and SoCmin are the maximum and minimum

state of charge of the battery, respectively. ηt is the charg-

ing/discharging efficiency defined in (1).

3) Reward: The design of reward function is the key factor

in the algorithm. The reward in the energy arbitrage problem

should include not only the profit from the discharging action,

but also the degradation costs of the control action. The

immediate reward Rt at time step t is defined as follows:

Rt = ct ·
Pe,t

Pmax
e

− αd ·
|Pe,t|

Pmax
e

(8)

where Pe,t · ct denotes the charging cost when Pe,t < 0 and

discharging revenue when Pe,t > 0. αd · |Pe,t| represents

the cost of battery degradation. αd is updated every training

episode. To improved the results and the speed of training, the

reward scale technique suggested by [21] is adopted to clip the

reward between -1 and 1.

The cumulative profits during the energy arbitrage are

denoted as:

Rcum
t =

T
∑

t

(Pe,t · ct − αd · |Pe,t|) (9)

Rcum
t is used as the only metric to evaluate the performance

of different methods.

IV. PROPOSED ALGORITHM

A. Reinforcement Learning

In this section, the background of the RL is introduced.

1) Q-learning: Q-learning is a model-free reinforcement

learning algorithm. The goal of Q-learning is to let the agent

learn a best policy in a given state by exploring the environ-

ment [22]. The quality of the charging/discharging action a

in a given state s is determined by the action-value function,

denoted as Qπ(s, a) for policy π, which is defined as:

Qπ(s, a) = Eπ

[

k=K
∑

k=0

γk ·Rt+k | st = s, at = a

]

. (10)

where γ is the discount factor, and the policy π maps from

the system states to the charging/discharging action.

By exploring the environment, the agent will iteratively

update the action-value function Qπ(s, a) using the following

Bellman Equation:

Q(st, at)← Q(st, at)+α
[

Rt + γmax
a

Q(st+1, a)−Q(st, at)
]

(11)

where α is the learning rate.

The iteration will continue until it converges to the best

action-value function Q∗

π(s, a). Then, the choosing action is

determined by the ǫ-greedy policy, which at every timestep

t, the agent selects the greedy action at = argmaxaQ(s, a)
with probability 1−ǫ and selects a random action to explore a

better reward with probability ǫ. The Q∗

π(s, a) is approximated

by a look up table in Q-learning.

2) Deep Q-network (DQN): Q-learning is confronted with

a difficult task when the state or action space are high-

dimensional. One solution proposed by Google DeepMind [12]

is to use a deep neural network to approximate the optimal

action-value function Q∗

π(s, a). The represented value function

by DQN with weights ω is denoted as:

Q(st, at;ω) ≈ Q∗(st, at) (12)

The objective of DQN is to minimise the Mean Squared

Error (MSE) loss L(ω) between Q(s, a) and TD (temporal

difference) target by Stochastic Gradient Descent (SGD):

L(ω) = (Rt+γmax
a

Q(st+1, at+1;ω
−)−Q(st, at;ω))

2 (13)

where, the TD target is yt = Rt + γmaxa Q(st+1, at+1;ω
−).

In (13), we actually use a separate network (target network)

with a fixed parameter ω− for estimating the TD target yt and

the parameters from DQN network ω are copied to update the

target network ω− periodically.

Some other improvements to the DQN includes: Double

DQN (DDQN), Dueling DQN and Noisy Networks for Ex-

ploration, which will be introduced in the following parts.

3) DDQN: The standard DQN suffers from upward bias

caused by maxa Q(s, a;ω) in (13) [23]. DDQN mitigates the

issue by using two separate networks to decouple the action

selection from the target Q value generation.

In DDQN, we use the current DQN network ω to select

what is the best action to take for the next state (the action

with the highest Q value) and use the older target network ω−

to evaluate the target Q value of taking that action at the next

state. The TD target of DDQN is defined as:

y
DDQN
t = Rt + γQ(st+1, argmax

at+1

Q(st+1, at+1, ω), ω
−)

(14)

4) Dueling DQN: To further improve the DQN, the dueling

DQN approximates the Q-function by decoupling the action-

independent value function V (s, v) and the advantage function

A(s, a, ω) [24].

Instead of using a single stream of fully connected layers

for Q-value estimation, the dueling network uses two streams

of fully connected layers with parameters v and ω respectively.

One stream is used to provide value function estimate given
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Fig. 7. The overall framework of the proposed approach. (The top part is the proposed prediction algorithm based on hybrid CNN and LSTM networks; the
bottom part is the basic DQN approach. To improve the stability of training process, we use the experience replay mechanism [12] which stores the state
transitions in a replay buffer and randomly sampled during the training).

a state, while the other stream is for estimating advantage

function for each valid action. Finally, the two streams are

combined in a way to produce and approximate the Q-function,

which is denoted as follows:

Q(s, a) = V (s, v) +A(s, a, ω) (15)

5) Noisy network for Exploration

An alternative approach to exploration when using neural

network to approximate the action-value function is Noisy

Networks for Exploration [25] that replaces the linear layer

with a noisy linear layer, which is defined as:

Y = (µω + σω ⊙ ǫω)X + (µb + σb ⊙ ǫb) (16)

where ǫ = [ǫω, ǫb] are randomly sampled, zero mean noise ma-

trices with fixed statistics, and µ = [µω, µb] and σ = [σω, σb]
are the learning parameters of the network. In noisy network,

instead of using an ǫ− greedy policy, the agent can act greedily

according to a network using noisy linear layers.

B. Proposed algorithm

The overall framework of the proposed approach is shown

in Fig. 7. The first part of the algorithm is forecasting the

electricity price using hybrid CNN and LSTM network. Then

the prices predicted concatenated with other features such as

SoC are fed into the DRL to learn the optimal policy. The

detailed explanation of these two parts are shown as follows:

1) Price forecasting: The goal of the proposed forecasting

approach is to forecast the hourly market price of the next

day (24 hours), by using the historical price data of the last

one week (168 hours). There are three steps in the forecasting

approach:

(i) Data pre-processing: the database used has some extreme

high peaks which are caused by either the market failure

or data errors. To reduce the impact of data outliers

on prediction accuracy, all the values that are outside

the range of 15% and 85% quantiles are replaced by

the threshold values. Then, the price data are scaled to

[0,1] values by using MinMaxScaler function in Python

Sklearn [26].

(ii) Model architecture design: The proposed model uses a

combined CNN and LSTM networks. LSTM network is

well known for modelling the time series data [27] and

has shown great advantages in load forecasting using

smart meter data [28], [29]. The reason for adding a

CNN layer prior to the LSTM network is to incorporate

multiple features simultaneously (other features such as

weather, generation) and reduce the temporal input di-

mension if only one feature is included. In this paper, only

one feature is included in the input data which is the price.

The CNN layer can reduce the temporal input dimension

(from 1× 168 to 7× 24). Finally, a fully connected layer

with 24 nodes is connected to the output. Each node is

corresponding to every hour that predicted.

(iii) Training and accuracy assessment: The architecture de-

signed in step (ii) will be tuned and trained. The final

trained model will be used for prediction and the accuracy

will be assessed using Mean Absolute Error (MAE).

2) NoisyNet-DDQN algorithm (NN-DDQN): The detailed

algorithm for energy arbitrage using NN-DDQN is presented

in Algorithm 1.

V. CASE STUDY

In this section, we evaluate the proposed approach using

actual UK wholesale market electricity price [30]. Electricity

prices from Yeas 2015 and 2016 are used as the training and

testing data, respectively.

We use five Lithium-ion batteries and each battery has

the capacity 200kWh and the charging/discharging power is

discretised to [-100kW, -50kW, 0, 50kW, 100kW]. The battery

parameters for calculating efficiency are shown in Table I. The

whole training takes about three and half hours on a Computer

with GPU GTX 1080 Ti and CPU i7-7800X. Once the training

is finished, the proposed approach takes about 5ms to output

the control actions, which could be used in real time control.

The algorithm is developed on Python and Keras, which is a

high-level neural networks API [31].

A. Forecasting method evaluation

The price forecasting method proposed in Section IV-B

is adopted to predict the electricity price and the model

architecture developed in Keras is shown in Table II. The data
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Algorithm 1 NN-DDQN for Energy Arbitrage

1: Initialize the ǫ set of random variables of the network;

2: Initialize the network and target network parameters;

3: Initialize the reply memory: D and the mini-batch size;

4: for Episode e = 1 to J do

5: Observe state space st = (ct−23, ct−22, ...ct, SoCt)
6: for t = 1, . . . T : do

7: Sample zero mean noisy ǫ

8: Select an action at = argmaxa(Q(s, a))
9: Execute action at, receive reward rt

and next state st+1

10: Store transition st, at, rt, st+1 in D

11: Sample random mini-batch of transitions

sj , aj , rj , sj+1 from D

12: Sample the noisy variable for the online and

target network ǫ

13: Estimate the target yj
yj = Rj +γQ(sj+1, argmaxa′ Q(sj+1, a

′, ω), ω−)
14: Do a gradient descent with loss yj−Q(st, at, ω))

2

15: Every C steps update ω′ = ω

16: end for

17: end for

TABLE I
BATTERY PARAMETERS IN (2) [17]

a0 -0.852 a1 63.867 a2 3.6297 a3 0.559
a4 0.51 a5 0.508 b0 0.1463 b1 30.27
b2 0.1037 b3 0.0584 b4 0.1747 b5 0.1288
c0 0.1063 c1 62.94 c2 0.0437 d0 -200
d1 -138 d2 300

are randomly splitted using train_test_split function

in Sklearn [26]. The input data spans a whole last week of

electricity prices (168 hours) and these data are fed into the

convolutional layer with a kernel size and a stride of 24,

which results in a length 7 per feature map. The output is

the electricity price prediction for the next day (24 hours).

Fig. 8 shows the forecasting results of one week during

summer and winter seasons. We can clearly see that the model

can learn not only the daily variations of prices, but also the

week and seasonal patterns (more peaks values during winter).

The forecasting accuracy MAE is 4.686 in this case.

B. Performance Evaluation of NN-DDQN

The performance of the proposed NN-DDQN is evaluated

using the electricity prices at year 2016 in this section. To

compare the effectiveness of the proposed approach, the pro-

posed NN-DDQN is compared with other two DRL methods:

TABLE II
MODEL ARCHITECTURE IN KERAS

Layer type Output shape Param

Input Layer (None, 168,1) 0
Conv1D (None, 7, 128) 3200
LSTM (None, 32) 20608
Dense (None, 24) 792

(a)

(b)
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Fig. 8. Electricity price forecasting results during summer and winter season.
((a)Electricity forecasting results from 1st July to 7th July; (b)Electricity
forecasting results from 1st Jan to 7th Jan)

TABLE III
SUMMARY OF DRL TRAINING SETTINGS

Item Value

No. of hidden layers 3
No. of nodes in each layer 16

Activation function ReLU
Learning rate 0.00025

Optimizer Adam optimizer
batch size 32

Target model update 10000 steps

Vanilla DQN and Double dueling DQN, described in Section

IV. All the training settings are summarized in Table III. The

NN-DDQN is trained with 12000 episodes. The convergence

process of the episode rewards over 12000 episodes for these

three methods is illustrated in Fig.10. It can be observed that

the NN-DDQN is more stable during the training process,

compared with other two approaches. It can converge to the

optimized reward which is around 6 at episode 2200. As the

NN-DDQN keeps on choosing random actions with a small

probability of epsilon 0.01, therefore the episode rewards keep

fluctuating.

After training, the optimal weight parameters of NN-DDQN

are used to control the charging/discharging actions of battery

storage using the electricity price at year 2016. Fig. 9 shows

the charging/discharging results over one week for different

summer and winter price patterns. The electricity prices are il-

lustrated with the green line and the SoC, charging/discharging

actions are represented with blue and red bars respectively. The

charging power (-100kW) and discharging power (100kW)

are scaled to -1 and 1 to allow them draw on one figure.

We can clearly see that the proposed approach can learn the

optimized charging/discharging strategy (charging during low
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Fig. 9. The charging/discharging results over one week for summer (a) and winter (b). (Blue bar: SoC; Red bar: charging(-)/discharging(+) actions, the
values are scaled from [-100kW, 100kW] to [-1, 1]; The green curve with the right axis represents the electricity prices)

0 2000 4000 6000 8000 10000
Episode

2

0

2

4

6

E
pi

so
de

_r
ew

ar
d

Double Dueling DQN
NNDDQN
Vanilla DQN

Fig. 10. The episode reward during the training process

prices, and discharging during high prices) for battery not only

in the summer period, but also during the winter when the

variation of electricity price is quite high. We have found that

the battery experiences roughly two cycles per day during the

winter season and it can still make profits considering the

higher price difference between the peak and valley electricity

price in the whole sale market.

C. Comparison Results

1) Comparison results with model-based method: The pro-

posed approach is compared with the mixed integer linear

programming (MILP) shown in Appendix. The electricity

price in MILP is predicted using the same prediction method

illustrated in Section IV-B. The cumulative profits of the pro-

posed methods and MILP method over the whole year of 2016

are presented in Fig. 11. We can observe that the proposed NN-

DDQN improves the profits by 58.51% in comparison with the

MILP method. In addition, the NN-DDQN shows better results

in comparison with Vanilla DQN and Double Dueling DQN.

2) Comparison results without uncertainty (perfect fore-

casting of price): The proposed approach is compared with

perfect forecasting of electricity price to show how forecasting

algorithm influences the results. The cumulative profits of
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Fig. 11. Comparison results of cumulative profits with MILP

the proposed methods and perfect forecasting over the whole

year of 2016 are presented in Fig. 12. We can observe that

the perfect forecasting can improve the profits by 4.63% in

comparison with the proposed NN-DDQN method. The reason

of this small difference is that the proposed prediction method

illustrated in Section IV-B can already predict the electricity

price accurately as shown in Fig. 8.

3) Comparison results without accurate degradation model:

The proposed approach is compared to the model that does not

consider the battery degradation which means αd,j = 0 in (6).

The cumulative profits of the proposed methods and the model

without battery degradation over the whole year of 2016 are

presented in Fig. 12. We can observe that the model without

considering degradation can influence the profits by 5.13% in

comparison with the proposed NN-DDQN method.

4) Comparison results with different hyperparameters of

training: The proposed approach is compared with different

hyperparameters of training shown in Table III. The number of

hidden layers in Table III is changed to 4 in the comparison.

The cumulative profits of the proposed methods and different

hyperparameters over the whole year of 2016 are presented

in Fig. 12. We can observe that fine-tuned hyperparameters in

NN-DDQN can improve the profits.
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Fig. 12. Comparison results of cumulative profits

VI. CONCLUSIONS

In this paper, we have proposed a charging/discharging

strategy for energy storage participating in the energy arbitrary

based on DRL methods, which is a model-free approach, and

can learn any complex system models. We use DRL meth-

ods to address three challenges in energy storage arbitrage:

nonlinear efficiency of battery charging/discharging, accurate

battery degradation model and electricity price uncertainty.

In the DRL, a combined CNN and LSTM hybrid network

is proposed to predict the electricity prices. Then a NN-

DDQN is implemented to learn the optimal control policy of

battery considering the price uncertainty and battery degrada-

tion. Experimental results using actual electricity prices have

demonstrated the effectiveness of the proposed methods.
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VII. APPENDIX

The energy arbitrage problem is formulated as a MILP and

solved using CPLEX [32] in Python. The objective of the
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MILP is:

N
∑

k=1

((Pc,k − Pd,k) · ck − αd(Pc,k + Pd,k)) (17)

constraints:






































SoCk = SoCk−1 − ηdPd,k · ud,k + ηcPc,k · uc,k

0 ≤ Pc,k ≤ uc,kP
max
c

0 ≤ Pd,k ≤ ud,kP
max
d

0 ≤ uc,k + ud,k ≤ 1
uc,k, ud,k ∈ {0, 1}
0.2 ≤ SoCk ≤ 1
SoC0 = 0.5

(18)

The state of charge of a storage unit, denoted by SoCk,

at time step k depends on its state of charge in the previous

time step k − 1 and the current charge power Pc,k or dis-

charge power Pd,k. Losses of the battery are represented by

charging/discharging efficiencies ηc and ηd respectively.

ck is the predicted prices using the method in Section IV-

B. ud,k is a binary variable with ud,k = 1 if the battery

is discharging and ud,k = 0 if the battery is charging. The

binary variables ud,k and uc,k prevent the model from using

the charge and discharge efficiencies of the storage units to

dump energy by simultaneously charging and discharging the

battery.


