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Unmanned ship navigates on the water in an autonomous or semiautonomous way, which can be widely used in maritime
transportation, intelligence collection, maritime training and testing, reconnaissance, and evidence collection. In this paper, we
use deep reinforcement learning to solve the optimization problem in the path planning and management of unmanned ships.
Specifically, we take the waiting time (phase and duration) at the corner of the path as the optimization goal to minimize the
total travel time of unmanned ships passing through the path. We propose a new reward function, which considers the
environment and control delay of unmanned ships at the same time, which can reduce the coordination time between
unmanned ships at the same time. In the simulation experiment, through the quantitative and qualitative results of deep
reinforcement learning of unmanned ship navigation and path angle waiting, the effectiveness of our solution is verified.

1. Introduction

Unmanned ships are intelligent platforms that rely on ship-
board sensors to navigate in an autonomous or semiautono-
mous manner on the surface of the water and can be widely
used in the fields of marine transportation, antimine, and
antisubmarine. The unmanned ship is an important node
in the networked unmanned system, which will overturn
the traditional naval warfare style and give rise to a new
marine equipment system and is of great significance to
the development of marine resources and the maintenance
of national maritime rights and interests [1]. Compared with
other unmanned systems, unmanned ships face special chal-
lenges such as harsh marine environment (e.g., strong wave
and current surges) and special characteristics of unmanned
ship motion models (e.g., highly nonlinear model, strong
time lag, and time variability) [2].

Path planning [3, 4] is a very important technique in the
field of unmanned ships, attracting the attention of countless
researchers. Depending on the planning method, there are
two different types of path planning: point-to-point and

full-coverage traversal. If the basic information about the
entire environment is known to the unmanned vessel during
the completion of the task, this is called global path plan-
ning, and the main algorithms include greedy algorithms,
genetic algorithms, and others [5-7]. If the unmanned vessel
can know part of the environmental information during the
work process and cannot grasp the full information, this is
called local path planning, and the main algorithms include
potential field method [8], fuzzy control method [9], and
neural network [10, 11].

In recent years, with the rapid progress of high-
performance computing, big data, and deep learning tech-
nology, the core technology of artificial intelligence software,
reinforcement learning algorithms, and their applications
have been more widely focused and developed more rapidly
[12]. In particular, the combination of reinforcement learn-
ing and deep learning has led to several breakthroughs in
deep reinforcement learning, and the game between
AlphaGo and top human chess players has led to a wider
interest in deep reinforcement learning in academia and
industry. Not only has reinforcement learning been a great
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success in computer gaming, but it is also considered to be
the most promising approach to advanced artificial intelli-
gence in areas such as unmanned ship control, inverted pen-
dulum control, and intelligent driving of steam unmanned
ships [13-16].

Standard QL algorithms generally give the Q values an
initial value and let them start at 0 or a random number,
so unmanned ships lack a priori knowledge of the envi-
ronment, and convergence is slow. During the learning
process, it is difficult to weigh long-term and short-term
benefits, and it is easy to fall into trap regions when faced
with a “symmetric dilemma.” Therefore, the convergence
of QL algorithms, balanced exploration, and exploitation,
as well as dangerous regions and incomplete access to
state-action pairs, has become the focus of reinforcement
learning research.

This paper uses reinforcement learning for local path
planning of mobile unmanned ships to improve the plan-
ning efficiency of optimal paths for unmanned ships. The
research objectives are to solve the problems of slow conver-
gence, exploration, and exploitation dilemmas as well as trap
regions and incomplete access to state-action pairs of the
reinforcement learning algorithm, to speed up the path plan-
ning efficiency, and to find the control rules for the optimal
path from the starting point to the endpoint.

2. Related Works

2.1. Path Optimization. Based on the situational awareness
map, the unmanned vessel navigation planning and naviga-
tion consider mission requirements, safety, efficiency, rules,
maneuverability, and uncertainty to calculate the key ele-
ments of planning and navigation and form intercompatible
commands with different granularity, so that the unmanned
vessel can be effective while satisfying the navigation safety
envelope. Unmanned vessel navigation planning and naviga-
tion face special challenges, such as many maritime rules
with fuzzy properties, the large time lag in the hull model,
high inertia, and large differences between different vessel
types. [17] proposes a predictor for estimating the sideslip
angle of an unmanned ship to achieve path following based
on predicted line of sight. [18] uses an extended state
observer for real-time estimation of unmanned ship sideslip
angle and combines it with line-of-sight navigation to solve
the path-following problem under disturbing conditions.
[19] proposed global and local route planning based on
Dijkstra and artificial potential field methods. [20] proposed
inverse adaptive sliding mode control in the Serret-Frenet
coordinate system to solve the path-following problem
under model and disturbance uncertainty. [21] implements
unmanned ship path-following control based on an
improved backstepping method. [22] proposed three PID
control methods to solve the linear path-following problem
under constant surge disturbance.

[23] used evidence-based reasoning to evaluate the haz-
ards and, based on the evaluation results, used mutual colli-
sion avoidance algorithms that satisfy maritime collision
avoidance rules to achieve real-time safe obstacle avoidance
of unmanned vessels [24, 25]
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2.2. Unmanned Boat Control. Unmanned vessel control
solves the problems of dynamic positioning, trajectory track-
ing, and path tracking during navigation, giving the
unmanned vessel the control capabilities of an experienced
pilot to successfully and stably perform the various maneu-
vers required for navigation. With the development of con-
trol theory, researchers in the marine field can apply the
latest control techniques to unmanned ship control. How-
ever, the control of unmanned ships faces challenges such
as high model nonlinearity and uncertainty, system underd-
rive, the time lag in the ship itself and in the actuators, satu-
ration characteristics of the actuators, and unpredictable
strong external disturbances.

[10, 11] systematically described the progress of research
on control of marine electromechanical systems and course
keeping of unmanned vessels, respectively. [12] is based on
the active method for model identification of unmanned ves-
sels. In [13], model identification of an unmanned boat with
integrated propulsion is based on the idea of MMG separa-
tion modelling. A robust controller with fast convergence
is also proposed based on the idea of multimodel control.
The [14] active antidisturbance control law based on com-
pound errors is used to suppress external disturbances.
[15] implemented the control of an unmanned ship based
on the GPC-PID method and conducted sea trials in the
southern Yellow Sea. [16] proposed the robust control with
variable delay using smith predictor and extended state
observer.

2.3. Unmanned Vessel Cluster Control. Single-ship capabili-
ties are particularly weak in the face of vast and hostile
oceans. The path-following control layer uses an inverse step
and neural network approach. A graph-theoretic approach is
used for the speed and route planning layer. [16] designed a
layered control architecture for cluster target tracking, clus-
ter obstacle avoidance, and collision avoidance for members
within the cluster. The control architecture is divided into
three layers: the cluster strategy layer, the motion planning
layer, and the control input layer. [17] uses neural optimiza-
tion for distributed cluster navigation and a fuzzy approach
for approximating the model of an unmanned ship for
unmanned ship path maneuver cluster control.

3. Preparation

This section provides an overview of reinforcement learning
and the deep reinforcement learning utilised in this paper.

Reinforcement learning is the scheme by which an agent
infers the best action rule through its interaction with the
environment. MDP is defined by a 4-tuple (S, A, P, R). Call
S the state space and A the action space, and call the respec-
tive original s € S states and a € A actions. P : SXA xS —
[0,1] is called the state transfer function and determines
the transfer probability to the next state s when action a is
performed in state s. R: SxAxS— R is the reward
function.

Once a strategy has been formulated, the intelligence can
interact with the environment as shown in Figure 1. At each
moment t, the intelligence in state s, decides on action a4,
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FIGURE 1: Interaction between agent and environment.

according to strategy 7z(s|s,). The next moment of the intel-
ligence’s state s, ~ Py, (+/s;, a,) and reward r,=R(s,,a,) is
then decided according to the state transfer function and
the reward function. Repeating this action gives the state
and action of the intelligence’s history (sy, ay, 51, dy, *+* Sp)-
Subsequently, the state and action that have been repeated
for T historical transfers from time 0 are noted as d,.

Define the value function, which averages the (dis-
counted) reward sum when the action a is selected in state
s and thereafter continued according to the strategy 7, as
given by

T
- 1 k
Q*(s.a) = Thjloo[EZT Z Y R(sp s 1) s =S @ =a |, (1)
k=0

where A € [0, 1] is the discount rate and Ej; represents the
average operation about the occurrence mode in policy 7.
When a policy 71, 7’ meets Q7 (s,a) = Q" (s,a) in any s € S, a
€ A, since strategy 7 can be expected to bring more rewards
to the agent than 7'; 727’ is to strengthen learning and
obtain the best method 77* to meet any scheme 7 and 7* > 7.

The optimal strategy function is obtained by using its
value function Q* (the optimal value function) set to 7*(a/
s)=0(a—arg max, Q*(s,a")). The optimal strategy func-
tion is the optimal Bernoulli equation:

Q*(s,a)=Ey [R(s, a,s') +y max, Q" (s',a')]. (2)

The conditions are known to be satisfied and are esti-
mated using the relational formulation above. The represen-
tative method is a method called Q-learning, and many
experiments have shown that it works well but is difficult
to apply to continuous and large state problems if the state
space is discrete and the number of states is not huge.

4. Reinforcement Learning for Unmanned Ship
Control Mapping

In this subsection, we describe the method proposed in
this study for simultaneously controlling the path of
movement of an unmanned ship and path corner waiting.
We first describe the path corner waiting for optimization

S
e
RGN
R

FIGURE 2: Unmanned boat direction change.

problem as a reinforcement learning task by giving details
of the state, behaviour, and reward as shown specifically in
Figure 2.

4.1. Action Space Definition. The intelligent body must con-
sider the current unmanned vessel signal and the selected
action when switching between unmanned vessel signals in
order to ensure safety.

When the control object is a beacon and an unmanned
ship movement path, the action space related to the path
corner waiting as a whole s;;, and the space related to the

unmanned ship movement path as a whole are defined as
Ayeh- Each action space, e.g.sg,= {north-south, east-west}
andA,,= {routeA, routeB, routeC}, the north-south (up
and down) direction of the signal turns blue, and the east-
west (left and right) direction turns red.

Define the action space as the product of the action space
S for path corner waiting and the action space A, for each
unmanned ship present, with the size of the action space
growing according to the number of unmanned ships.

4.2. Path Indicator. We address the onerous task of learning
a strategy due to the growth in the number of unmanned
vessels in the action space of the intelligence by introducing
a virtual machine defined as a path indicator.

For definition, a machine that performs the same route
indication for all control object drones present in a defined
section is called a path indicator.

In addition, the “virtual” machine, as it is called here,
does not necessarily need a physical counterpart, unlike the
usual path corner waiting. For example, even if there is no
device that can be seen by the pilot as in the case of path cor-
ner waiting, it is possible to use a device that is set remotely
to allow the unmanned vessel to receive information within
a defined section of road and to act as a path indicator by
giving the unmanned vessel information on the path it
should take.
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FIGURE 4: Path diagram of the training process.

Based on the above discussion, the action space of the
proposed solution is defined as the product of the action
space of the path corner wait and the action space A, of
the unmanned vessel where each path indicator is present.
In the case of the control object area defined in Figure 3,
the action space of path indicator 1 is A‘(Ii = {indication 1,
indication 2}, and the action space of path indicator 2 is
A‘(il)l = {indication 3, indication 4}. The action space is there-
fore shown below, with a total number of actions of 2 x 2
x 2 = 8. The definition of equation (3) thus allows the prob-
lem of simultaneously optimizing path corner waiting and

moving paths to be solved as a practical problem.

1 2
A=Agx Al xAZ . (3)
—————

Number of path indicators

5. Improved Reward Function

Deep Policy Gradient (DPG) methods attempt to optimize
the policy function iteratively by learning the parameter 0
to estimate the gradient of the policy performance. A disad-
vantage of DPG methods is that they typically lead to high
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FIGURE 6: Average Q value during training.

variance in the gradient estimation. This problem arises
because the trajectories in the gradient estimation are ran-
domly sampled. That is, the derivative of the log and reward
variance of a strategy can be very high.

The reward r, € R is a scalar value which is the step obtained
after each execution of an action by agent, defined as follows:

n=D,, -D, (4)

where D,_; and D, are the total cumulative delays between
the current and previous times.

We can also consider the flow of unmanned vessels in
the unmanned ship channel by looking at the occupancy
rate, defined as the percentage of the given unmanned ship
channel that is full. In addition, we can consider the number
of unmanned vessels parked unmanned in the unmanned
ship channel as a frustrating phenomenological bonus. Con-
sidering the combination of the above parameters, we can
positively reward the unmanned boat flow as follows:

2 N Occupancy
Number Of Halting Vehicles + ¢’

(5)
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FIGURE 7: Payoff values during training.

where ce (0,1) is a constant used to prevent division by
zero. Intuitively, if the unmanned boats in the unmanned
boat lane do not stop to encourage unmanned boat traffic,
we will give a positive reward for a full unmanned boat lane.

Suppose we have a highway that goes 90 miles per hour.
Also, suppose that all the unmanned ships in the graph on
the left have a speed of 80 miles per hour. Then, the delay
for each unmanned boat is (90 —80)/90 = 1/9, since there
are 3 unmanned boats in the left graph and the delay at ¢
=0 is 1/3. For the graph on the right, suppose that another
unmanned boat enters the highway at t=1 at a speed of
80 miles per hour. Then, in this case, the delay at time t =1

is 4/9, and the second reward function is rgl) =1/3-4/9=
—1/9, assuming that each unmanned boat lane can accom-
modate 10 unmanned boats and ¢ = 1.

6. Experiment

The starting position of the unmanned ship in the simula-
tion scene is (0m, Om), and the target point is (4.5m,
4.5m). The scene is surrounded by a wall with some random
obstacles inside. The unmanned ship continuously learns
and explores the scene according to the reinforcement learn-
ing algorithm proposed in this paper, and once the
unmanned ship collides with the obstacles or reaches the tar-
get point, the whole scene is reset. The parameters of the
simulation experiment are set as follows: learning rate a =
02, r=1, ¢,=-1, d;, =0.25 discount rate y=0.9, r
=-1,d.; =0.05, and total training times 5,000 [26, 27].

Figure 4 shows the path diagrams during training.
Figures 4(a)-4(d) are the results of the 423rd, 1,566th,
3,532nd, and 4,879th training sessions, respectively. Because
of the high random probability in the early stage of training,
our algorithm in Figure 4(a) does not converge, and the
unmanned boat collides with the obstacle.

Figure 5 shows the Q values obtained by the unmanned
ship at each step during the above training process. (a) to (d)
in the figure correspond to (a) to (d) in Figure 3, respec-
tively, and the unmanned ship selects the action with the
largest Q value in the current state to execute each time. In
(b), (¢), and (d), the unmanned boat successfully avoided
the obstacles and reached the end point, especially in the late
training period when the unmanned boat was approaching
the end point. The expected future payofts for these states
were high, and the selection of these actions resulted in
higher payoffs, so the Q values were higher, in line with
the results that the reinforcement learning method could
produce [28].

Figure 6 shows the average Q value of each selected
action during the training process, and it can be seen from
Figure 6 that in the early stage of training, the average Q
value is low because the random probability is large and
the unmanned ship has gained less knowledge and experi-
ence, so the number of times the unmanned ship reaches
the target point is low; after the training reaches 1,000 times,
the number of times the unmanned ship reaches the target
point after learning gradually increases, and the number of
times it gains positive reward is increasing, so the averageQ
value gradually increases, i.e., the average cumulative reward
value obtained by the unmanned ship for the selected action
becomes higher and higher; after that, as the number of
training times increases, the number of arriving at the target
point becomes more and more, the reward also becomes
more and more, the Q value gradually increases, and the
algorithm finally converges gradually.

Figure 7 illustrates the cumulative payoffs (r and ravg are
the payoffs and average payofls, respectively) during the
training process. The highest payoft value of 1 is obtained
when the unmanned ship reaches the end point, the lowest
payoft value of -1 is obtained when a collision occurs, and
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the corresponding positive payoft is obtained when the
unmanned ship moves towards the target point.

7. Conclusions

In this paper, we use deep reinforcement learning to solve
the optimization problem in unmanned boat path planning
management; specifically, we take the timing of path corner
waiting as the optimization objective to minimize the total
travel time of an unmanned boat crossing the path. In the
experiments, quantitative and qualitative results of deep
reinforcement learning on unmanned ship travel and path
corner waiting are reported to verify the effectiveness of
our solution.
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