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Abstract—This paper proposes a deep reinforcement learning
(DRL) based relay selection scheme for cooperative networks with
the intelligent reflecting surface (IRS). We consider a practical
phase-dependent amplitude model in which the IRS reflection
amplitudes vary with the discrete phase-shifts. Furthermore, we
apply the relay selection to reduce the signal loss over distance
in IRS-assisted networks. To solve the complicated problem of
joint relay selection and IRS reflection coefficient optimization,
we introduce DRL to learn from the environment to obtain the
solution and reduce the computational complexity. Simulation
results show that the throughput is significantly improved with
the proposed DRL-based algorithm compared to random relay
selection and random reflection coefficients methods.

Index Terms—Intelligent reflecting surface (IRS), relay selec-
tion, throughput, deep reinforcement learning

I. INTRODUCTION

W ITH the development of 5th generation (5G) commu-
nications, the intelligent reflecting surface (IRS) has

attracted much attention in current research due to its efficiency
for wireless transmission as a cost-effective solution [1], [2].
An IRS is an array containing a vast number of passive
reflecting elements, each of which can control the amplitude
and phase shift of the incident signal to boost the reception
quality in IRS-assisted communications. Since compared with
many other technologies, IRS requires much less energy to
forward the signal, it is widely acknowledged as a low-cost
and efficient solution for future wireless networks [3], [4].

More recently, various related work has been investigated for
improving the spectral efficiency and achievable rate [5], [6].
In [5], the phase shifts of the IRS were optimized to maximize
the spectral efficiency, and 2 bit quantization was verified
to guarantee high spectral efficiency. A joint optimization of
the IRS reflection coefficients and transmit power allocation
was proposed to maximize the orthogonal frequency division
multiplexing (OFDM) achievable rate in [6].

However, the high computational complexity for optimizing
the phase shifts of IRS is a complicated problem for prac-
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tical implementation [7]. Fortunately, the deep reinforcement
learning (DRL) algorithm can be used to solve complicated
problems and reduce the computational complexity for wireless
communications without the training data set [8]. Therefore,
the phase shifts were optimized via the DRL algorithm to
enhance the received signal-to-noise ratio SNR and reduce
the computational complexity in [9]. In [10], a DRL-based
joint design of the transmit beamforming matrix and phase
shifts was proposed to improve the sum rate in IRS-assisted
networks. Most related works, however, assume the reflection
amplitude is fixed, which is not practical as the reflection
amplitude varies with the phase shift, according to the practical
phase shift model in [11]. Furthermore, the above DRL-based
schemes only consider the continuous phase shift design.
Therefore, in this paper, we will consider the discrete phase
shift variables and the practical phase shift model to design
our system.

On the other hand, a cooperative relay network is an
attractive technology to improve the outage performance in
wireless communications [12]. To amalgamate the benefits of
the IRS-assisted and relay-assisted networks, a hybrid half-
duplex (HD) decode-and-forward (DF) relay and IRS network
with continuous phase shifts and fixed reflection amplitude
was investigated to improve the achievable rate in [13]. To
further enhance achievable rate, [14] proposed optimization
of continuous phase shifts with fixed reflection amplitude
for a hybrid IRS with full-duplex (FD) DF relay networks.
Moreover, relay selection is an efficient way to harvest the
diversity gain in cooperative communications [15]. Motivated
by this, [16] utilized a DRL-based relay selection scheme to
enhance the outage performance.

In this paper, therefore, we propose DRL-based relay selec-
tion in IRS-assisted cooperative networks (DRL-RI) to maxi-
mize the throughput with the discrete phase shifts and practical
phase-dependent amplitude model. The main contributions of
this paper are listed as follows:

• We propose joint relay selection and optimization of IRS
reflection coefficients for cooperative networks, whilst
considering the discrete phase shifts and the practical
phase shift model.

• We introduce the DRL algorithm to solve the complicated
non-convex optimization problem and thereby reduce the
computational complexity of optimization in wireless net-
works.

• Simulation results show that the proposed DRL-based
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Fig. 1. System model of the hybrid relay and IRS network.

scheme can achieve a higher throughput than the random
relay-selection/reflection-coefficients methods.

The rest of the paper is organized as follows. Section II
introduces the system model and the problem formulation. The
DRL-based algorithm is proposed in Section III. Simulation
results verify the proposed scheme in Section IV. Finally,
Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a two-hop IRS assisted
cooperative network, which is composed of one source S, one
destination D, K HD DF relays Rk (k ∈ {1, ...,K}), and
one IRS I with M reflecting elements. Each of S, D and Rk
nodes is equipped with a single omnidirectional antenna. The
IRS is equipped with a controller to determine the phase shift
for each reflecting element at a given time slot. We assume
there is no direct link between S and D by considering the
signal loss over distance. Moreover, we assume the channels
of S → Rk and Rk → D links are assumed to be Non-Line-of-
Sight (NLoS) Rayleigh fading channels. On the other hand, we
assume the channels from and to I are assumed to be Rician
fading with pure Line-of-Sight (LoS) components [14], [17].
Therefore, we can obtain the channel coefficients hij between
node i and node j as

hij =

{ √
Kij

Kij+1
ĥij , Rician (LoS)

h̄ij , Rayleigh (NLoS)
, (1)

where Kij denotes the Rician factor between node i and
j. In NLOS Rayleigh fading channels, h̄ij = ḡijd

−ᾱ/2
ij ,

ij ∈ {SRk, RkD}, where ḡij is modeled by complex-Gaussian
small-scale fading with zero mean and unit variance, dij
denotes the distance between nodes i and j, ᾱ denotes the
path loss exponent for NLoS Rayleigh fading channels, and
all channels are assumed to remain unchanged during the
two hops. On the other hand, in LoS Rician fading channels,
ĥij = ĝijd

−α̂/2
ij , where α̂ denotes the path loss exponent for a

LoS Rician fading channel, and ĝij can be expressed as

ĝij =
√
β0[1, e−jπ sinψij , ..., e−jπ(M−1) sinψij ]T , (2)

where β0 is the path loss at the reference distance D0 = 1 m
[18], ψij ∈ [0, 2π] is the angle of departure (AoD) or angle of
arrival (AoA) for the signal between nodes i and j1.

At the first hop S → Rk, the source S transmits the signal
xS to both I and relay Rk, and I can reflect the incident signal
to Rk. Thus, the received signal at relay Rk is given by

yRk =
√
PS(hSRk + hHIRk

ΘhSI)xS + nRk , (3)

where PS denotes the transmit power at S, nRk
denotes

the additive-white-Gaussian-noise (AWGN) with variance σ2
n

at Rk, Θ = diag(η1e
jθ1 , η2e

jθ2 , ..., ηMe
jθM ) denotes the

diagonal reflection matrix for the IRS, with ηm ∈ [0, 1] and
θm ∈ [0, 2π] denoting the reflection amplitude and phase-shift
for the mth reflecting element of I , respectively. Without loss
of generality, we assume v = [v1, ..., vM ] denotes the reflection
coefficient vector for the IRS, such that ηm = |vm| and
θm = arg(vm) for the mth IRS element [11]. Notice that the
reflection amplitude varies with the phase shift. Therefore, in
this paper we apply the practical model to obtain the amplitude
and phase shift based on the reflection coefficient as in Fig.
3(b) of [11] with the effective resistance R = 2 Ω. Moreover,
we assume that the phase shifts are discrete variables for
implementing the IRS in practice as in [19], and the range
of the phase shift for each IRS element z can be given as

z ,

{
0,

2π

L
, ...,

(L− 1)2π

L

}
, (4)

where L denotes the number of phase quantization levels.
Based on (3), the received SNR at Rk for the first hop

transmission can be given as

γRk =
PS
∣∣hSRk + hHIRk

ΘhSI
∣∣2

σ2
n

. (5)

Therefore, the channel capacity for the first hop transmission
is CSRk

= log2(1 + γRk
).

At the second hop Rk → D, relay Rk transmits the decoded
signal xRk

to both I and D, and I can reflect the incident signal
to D. Thus, the received signal at D is given by

yD =
√
PR(hRkD + hHIDΘhRkI)xRk + nD, (6)

where PR denotes the transmit power for node Rk and nD
denotes the AWGN with variance σ2

n at D. Therefore, the
received SNR at D can be given as

γD =
PR
∣∣hRkD + hHIDΘhRkI

∣∣2
σ2
n

. (7)

Thus, the channel capacity for the second hop transmission
is CRkD = log2(1 + γD). Moreover, we assume that the
transmission for each hop is available when the corresponding
channel capacity satisfies

Cij ≥ ϑ, (8)

where ϑ denotes the target rate. This means that if Cij satisfies
(8), the corresponding link can support the single packet

1The angle ψij was randomly generated between [0, 2π] for each channel
in this paper as in [5], [13].
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transmission from nodes i to j at a given time slot.
Due to considering the DF relay, a packet can be transmitted

from S to D successfully when min{CSRk
(t), CRkD(t+1)} ≥

ϑ at time slot t and t + 1. To investigate the maximum
throughput in IRS-assisted cooperative networks with practice
phase shift model, the joint relay selection and reflection
coefficients optimization can be formulated as

O = max
k(t),v(t)

1

T

T−1∑
t=1

µ
(
min

{
CSRk

(t), CRkD(t+ 1)
}
≥ ϑ

)
,

(9)
s.t. t = 1, 3, 5, ..., T − 1, (9a)

v(t) = [v1(t), ..., vM (t)], (9b)
θm(t) = arg(vm(t)) ∈ z,∀m, (9c)
ηm(t) = |vm(t)|, (9d)

where T denotes the number of time slots observed at the
destination, µ(.) = 1 if the enclosed holds and µ(.) = 0
if otherwise. With the relay selection, the discrete phase
shifts variables, and the relation between the phase shifts
and reflection amplitudes, (9) is a complicated non-convex
optimization problem [9] and hard to solve. The exhaustive
search algorithm to maximize the throughput has a high com-
plexity of O(KLM ). In addition, the existing IRS optimization
schemes usually require high computational complexity to find
the solution [20]. To solve the optimization problem in (9) with
low complexity, we introduce DRL in the following section.

III. DEEP REINFORCEMENT LEARNING BASED
OPTIMIZATION SCHEME

To avoid the overestimation problem, the double deep Q-
Learning network (DDQN) is applied in this paper. Firstly,
there is an agent in the DDQN algorithm to make decisions
to optimize the relay selection and IRS reflection coefficients
for the proposed network. The agent can apply the ε-greedy
strategy to explore the network and make decisions randomly,
and then learn the decision policy from its exploration experi-
ence. Secondly, when the agent selects the exploitation mode, it
makes decisions from its stored experience. We can model the
proposed system as a Markov Decision Process (MDP) [16]. In
DDQN, the algorithm has two different Q-tables, A and B, to
store its experience. We assume s(t) = {t, hSRk

(t), hRkD(t)}
denotes the system state of the MDP at time slot t, and
a(t) = {k,Θ(t)} denotes the action of the MDP (decision)
at time slot t, where k ∈ {1, ...,K}. Then the function of
updating Q-values in the Q-table A at time slot t is given by

QA(s(t), a(t)) = QA(s(t), a(t)) + ρ(rs(t),a(t) + δ ·QB

(s(t+ 1), argmaxa{Q
A(s(t+ 1), a)})

−QA(s(t), a(t))),

(10)

where rs(t),a(t) is the reward of the MDP to evaluate the
corresponding state s(t) and action a(t), ρ ∈ (0, 1) denotes the
learning rate for Q-tables in the DDQN, δ ∈ (0, 1) denotes the
discount rate in the DDQN, and argmaxa{QA(s(t+ 1), a)}

denotes the action with the maximum Q-value for the next
state s(t + 1) in Q-table A. In the proposed scheme, the
reward is given to the agent when a packet arrives at the
destination successfully. To reduce the impact of the over-
estimation problem, Q-table A provides the policy to make
the decision for the next action, but the updating value
QB(s(t+ 1), argmaxa{QA(s(t+ 1), a)}) is selected from an-
other policy in Q-table B. Then we can form the function of
updating Q-table B at time slot t as

QB(s(t), a(t)) = QB(s(t), a(t)) + ρ(rs(t),a(t)

+ δ ·QA(s(t+ 1), argmaxa{Q
B(s(t+ 1), a)})

−QB(s(t), a(t))).
(11)

Since the dimension of the action-state space is high in the
proposed MDP, it is difficult to form and update Q-tables for
the DDQN. To solve this problem, the deep neural network
(DNN) is introduced in the DDQN as the function approxi-
mator instead of Q-tables. Similar to Q-tables, the DNN can
receive the state as the input and output the actions as the
decisions for the proposed network. It significantly reduces the
computational complexity of estimating the optimal decision
for IRS assisted communication. Moreover, the DDN can use
the gradient descent algorithm to update the neural network
for high performance with high-dimensional environment. In
this paper, we apply Adam [21] as the adaptive learning rate
iterative optimization algorithm to calculate the gradients for
the DDN.

In the proposed scheme, every T time slots the
agent can generate samples for each time slot as
{s(t), a(t), rs(t),a(t), s(t + 1)}, and then selects W samples
randomly for the training in the DNNs to avoid the overfitting
problem. Two neural networks are designed for the proposed
scheme as the prediction network and the target network, and
provide the estimation value QP (s(t), a(t)) and the target
value QT

(
s(t+ 1), argmaxaQ

P (s(t+ 1), a)
)
, respectively.

Thus, we can calculate the loss between the prediction
network and the target network, and then obtain the gradients
via the Adam algorithm to update the prediction network. The
loss function in the proposed algorithm is given by

LM =

W∑
t=1

(
rs(t),a(t) + δ ·QT

(
s(t+ 1), argmaxaQ

P (s(t+ 1), a)
)

−QP (s(t), a(t))

)2

.

(12)

After updating the prediction networks V times, we can copy
the weights from the prediction networks to update the target
network. The Pseudo code of the proposed DRL-RI scheme
is shown in Algorithm 1. The computational complexity of
the proposed algorithm is V (T +W ) for each iteration during
training. After training, the computational complexity of the
DRL-based algorithm for making decisions is much smaller
than that in training, because it only depends on the structure
of the neural network without any more learning. Thus, the
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Algorithm 1 DRL-RI:

1: Initialize the environment.
2: Repeat:
3: for v = 1, · · · , V do
4: for t = 1, · · · , T do
5: Use the ε-greedy strategy to obtain the action a(t).
6: Obtain the reward rs(t),a(t) and state s(t+ 1).
7: Generate a sample {s(t), a(t), rs(t),a(t), s(t+ 1)}.
8: end for
9: for w = 1, · · · ,W do

10: Get value QP (s(t), a(t))
w from the prediction net-

work.
11: Get value QT (s(t+ 1), argmaxaQ

P (s(t+ 1), a))
w

from the target network based on s(t+ 1).
12: end for
13: Use the loss function (12) to update the prediction

network.
14: end for
15: Update the target network.

proposed algorithm can reduce the complexity significantly,
compared with conventional methods such as SDR with com-
plexity of O(K(M + 1)6) [9].

IV. SIMULATION RESULTS

Simulation results of the proposed DRL-based schemes are
shown in this section. Unless otherwise stated, we set the
parameters for the system as follows: the number of relays
K = 5, the transmit power to noise ratio P/σ2

n = PS/σ
2
n =

PR/σ
2
n = 35 dB, the number of IRS elements M = 16, the

path loss exponent α̂ = 2, ᾱ = 2.5, the Rician factor K = 10
dB for links with Rician fading, the target rate ϑ = 0.5 bps/Hz,
the discount coefficients δ = 0.9, the number of time slots for
updating the prediction network T = 500, the training sample
number W = 32, and the iteration number of updating the
target network V = 100. Moreover, the suggested quantization
for the IRS log2(L) is two bits based on [5], [19]. Thus, we
consider the number of phase quantization level L = 4 in this
paper. The locations of S, I , D, R1, R2, R3, R4 and R5 are
(0, 0) m, (5, 25) m, (0, 50) m, (1, 25) m, (-4.1, 23.4) m, (4.5,
26.1) m, (3.8, 24.2) m and (1.5, 29.1) m, respectively.

Fig. 2 shows the throughput versus training iterations for
the proposed scheme. It is shown that the DRL-RI scheme can
achieve approximately 0.1 packets/time slot at the beginning,
and converges to about 0.4 packets/time slot after 13,000
training iterations. This result indicates that due to the high-
dimensional space of the hybrid relay and IRS networks,
the DRL-based scheme needs many iterations to explore the
environment and the convergence is not very stable during
training. However, finally the DRL algorithm can converge
and obtain a solution because it can learn from the exploration
experience. Moreover, after training, the proposed scheme can
obtain a low complexity DNN for making decisions [9], which
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Fig. 2. Throughput vs. training iterations.
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Fig. 3. Throughput vs. target rate.

can be implemented to reduce the computational complexity in
hybrid relay and IRS networks.

Fig. 3 shows the comparison of throughput versus different
target rates between the proposed scheme, IRS reflection
coefficient optimization scheme with random relay selection
(Random RS), and relay selection scheme with random IRS
reflection coefficient (Random IRS). It is shown that the pro-
posed scheme outperforms the other two schemes significantly.
The DRL-RI scheme achieves about 0.4 packets/time slot when
the target rate ϑ = 0.5 bps/Hz, while Random RS and Random
IRS achieve 0.17 and 0.12 packets/time slot, respectively. The
proposed DRL-RI scheme can not only optimize the reflection
coefficients for the IRS, but also optimize the relay selection to
reduce the outage probability. Thus, the proposed scheme can
amalgamate the benefits of relay selection and IRS to achieve
a high throughput.

Fig. 4 shows the comparison of throughput versus different
transmit power to noise ratios between the proposed scheme,
Random RS, and Random IRS. It is shown that the proposed
DRL-RI scheme achieves approximately 0.45 packets/time slot
when the transmit power to noise ratio P/σ2

n = 40 dB, while
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Fig. 4. Throughput vs. P/σ2
n.

Random RS and Random IRS only achieve 0.35 and 0.31
packets/time slot, respectively. It is clearly shown that the
performance of all algorithms get better with the increase of
the transmit power to noise ratio. This is because the SNR
varies directly proportionally to the transmit power to noise
ratio, based on (5) and (7).

V. CONCLUSION

This paper investigated the throughput maximization prob-
lem in cooperative networks with IRS joint relay selection
and discrete IRS reflection coefficients optimization. We apply
the DRL algorithm to learn from the environment to map
the relation between the optimization variables and through-
put, solve the non-convex optimization problem in which the
IRS reflection amplitudes vary with the discrete phase-shifts.
Compared with the random relay selection algorithm and the
random IRS reflection coefficient optimization algorithm, the
proposed scheme can obtain significant performance gain. This
result shows the benefits of joint relay selection and IRS
reflection coefficients to reduce the signal loss over distance,
and provide a potential way to solve complicated optimization
problems in wireless communications with low computational-
complexity.
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