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Abstract: Message conflicts caused by large propagation delays severely affect the performance of
Underwater Acoustic Networks (UWANs). It is necessary to design an efficient transmission schedul-
ing algorithm to improve the network performance. Therefore, we propose a Deep Reinforcement
Learning (DRL) based Time-Domain Interference Alignment (TDIA) scheduling algorithm (called
DRLSA-IA). The main objective of DRLSA-IA is to increase network throughput and reduce colli-
sions. In DRLSA-IA, underwater nodes are regarded as agents of DRL. Nodes intelligently learn the
scheduling by continuously interacting with the environment. Therefore, DRLSA-IA is suitable for the
highly dynamic underwater environment. Moreover, we design a TDIA-based reward mechanism to
improve the network throughput. With the TDIA-based reward mechanism, DRLSA-IA can achieve
parallel transmissions and effectively reduce conflicts. Unlike other TDIA-based algorithms that
require enumeration of the state space, nodes merely feed the current state to obtain the transmission
decision. DRLSA-IA solves the problem of computational expense. Simulation results show that
DRLSA-IA can greatly improve the network performance, especially in terms of throughput, packet
delivery ratio and fairness under different network settings. Overall, DRLSA-IA can effectively
improve network performance and is suitable for ever-changing underwater environments.

Keywords: underwater acoustic networks; medium access control protocol; deep reinforcement
learning; time-domain interference alignment

1. Introduction

The vast ocean is rich in resources, such as metals, energy, and biological assets. Un-
derwater Acoustic Networks (UWANs) provide technical support for the development and
utilization of marine resources, which has attracted widespread attention [1,2]. UWANs con-
sist of multiple underwater nodes. The underwater nodes cooperate to complete important
underwater tasks, such as pollution monitoring, geographic exploration, and emergency
rescue [3,4].

Different from terrestrial wireless networks that use radio waves to communicate,
UWANs rely on acoustic communication [5,6]. However, the propagation speed of acoustic
signals is approximately 1500 m/s, five orders of magnitude slower than that of radio
waves. The slow propagation speed of acoustic signals leads to large propagation delays of
UWANs. To this end, the terrestrial Medium Access Control (MAC) protocols that ignore
the effects of propagation delays have poor performance in UWANs. It is important to
design MAC protocols that are suitable for UWANs [7,8].

Several studies have focused on the design of underwater MAC protocols [9–11].
A limitation of these works is the assumption that the underwater environment is static and
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propagation delays between nodes do not change. However, the location of underwater
nodes is constantly changing due to internal waves and other factors. The propagation
delays between nodes vary with the location of the nodes. Consequently, the proposed
underwater MAC protocol needs to fit well in the highly dynamic underwater environment.

Time-domain Interference Alignment (TDIA)-based underwater MAC protocols have
attracted wide attention due to their excellent performance [12,13]. These protocols regard
large propagation delays of UWANs as an advantage and achieve parallel transmissions us-
ing large propagation delays. The protocols usually adopt enumeration or greedy methods
to obtain optimal scheduling [14]. However, these protocols are computationally expensive
in general due to the massive state space. For example, in an underwater node collabo-
ration network with N−nodes, the complexity of the enumerated decision space is N3,
and the state space is even larger. The protocols are not feasible in terms of run-time and
computation when the number of nodes slightly increases. Therefore, we need to design a
scheduling algorithm that does not need to enumerate the decision space and state space.

To address the above issues, we design a Deep Reinforcement Learning (DRL)-based
TDIA scheduling algorithm for UWANs (named DRLSA-IA). We regard the underwater
nodes as the DRL agents. In particular, nodes learn transmission scheduling as they contin-
uously interact with the environment. Therefore, DRLSA-IA adapts to the highly dynamic
underwater environment. Furthermore, instead of enumerating the state space, nodes
merely feed the observed state to the trained algorithm to obtain transmission decisions.
Hence, DRLSA-IA does not face computational restriction. To improve the network through-
put, we design a novel TDIA-based reward mechanism. With the reward mechanism, the
DRLSA-IA can align interference in time slots that have collided or interfered. In this way,
the number of conflicting and interfered time slots can be effectively reduced. Addition-
ally, nodes can use the free time slots to transmit messages and receive expected messages.
Parallel transmission of messages also can be implemented. Therefore, DRLSA-IA can
effectively improve the network throughput and reduce collisions.

The main contributions of this paper are as follows:

• We propose a deep reinforcement learning based TDIA scheduling algorithm (called
DRLSA-IA). Nodes learn efficient transmission scheduling while continuously interact-
ing with the environment without enumerating the state space. Therefore, DRLSA-IA
is suitable for the highly dynamic underwater environment and has no computa-
tional restriction.

• We put forth a TDIA-based reward mechanism to increase the network throughput.
With the reward mechanism, nodes can take full advantage of large propagation
delays to achieve parallel transmissions.

• Considering large propagation delays of UWANs, we use an Long Short-Term Memory
(LSTM) layer in DRLSA-IA. LSTM maintains an internal state and aggregates observations
over time. Thus, DRLSA-IA can estimate the true state using history information.

• We conduct extensive simulation experiments to demonstrate the performance of the
proposed algorithm. DRLSA-IA outperforms in terms of throughput, packet delivery
ratio, and fairness compared to the other MAC protocols.

The remaining sections of the paper are structured as follows. We review the under-
water MAC protocols in Section 2. The system model and problem statement are described
in Section 3. Section 4 presents the proposed DRLSA-IA in detail. Section 5 shows the
simulation results. Finally, we conclude the paper in Section 6.

2. Related Works

Recently, there has been a lot of research work on underwater MAC protocols [15–17].
The MAC protocols of UWANs fall into two categories: schedule-based MAC protocols
and contention-based MAC protocols.

The schedule-based MAC protocols mean that the channel resources are allocated to
each node according to a predetermined mechanism. For example, Time Division Multiple
Access (TDMA)-based protocols divide time into several time slots. Nodes use pre-allocated
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time slots to transmit messages. Frequency Division Multiple Access (FDMA)-based
protocols divide the available frequency band of acoustic channels, and each user owns
their unique frequency channel. Code Division Multiple Access (CDMA)-based protocols
allow multiple users to transmit data simultaneously, and the receiving node uses pseudo-
random code to distinguish different sending nodes.

Contention-based protocols are mainly divided into random access protocols and
handshake-based protocols. Among them, the ALOHA protocol [18] is a classic random
access protocol. As long as there is a message, the node will send it immediately. Thus,
collisions occur frequently. Slotted-Aloha [19] is an improved version of pure ALOHA
with the time slot. In Slotted-Aloha, the node will start to transmit a message in the next
time slot. This algorithm prevents nodes from sending messages randomly and reduces
message conflicts to a certain extent. Random access protocols lead to frequent conflicts in
networks with high traffic, but it performs better in low-traffic networks due to the simple
access mechanism.

To avoid collisions, the handshake-based protocols send control packets to compete
for the channel before sending data. However, additional control packets increase network
load and network delay. To reduce the number of control packets, Lee et al. [20] proposed a
Hybrid Sender and Receiver-initiated (HSR) protocol. In HSR, multiple nodes share control
packages by inviting neighbor nodes to join the current handshake.

The time slot-based scheduling algorithms convert channel allocation into time slot
scheduling. Nodes use the allocated time slots to transmit or receive messages. Sivaku-
mar et al. [21] proposed an evolutionary genetic node scheduling algorithm called GA.
However, they assumed that the network was static. In [14], the authors proposed a
packet-level slot scheduling algorithm. The slot scheduling problem was formulated into a
combinatorial optimization problem. Similarly, the algorithm assumed that the network
was static. In [22], the authors considered the message scheduling problem in a linear topol-
ogy network and proposed a transmission scheduling algorithm. The limitation of these
algorithms is that they are not flexible enough to change with the underwater environment.

In recent years, the studies on resource allocation in wireless sensor networks using
reinforcement learning algorithms received considerable interest [23,24]. In UWANs, most
of the reinforcement learning-based works focus on routing protocols [25,26]. The studies on
the underwater MAC protocol based on reinforcement learning are in their infancy. In [27],
the goal was to redesign a protocol (UW-ALOHA-Q) based on the established RL-based
protocol (ALOHA-Q). UW-ALOHA-Q was more suitable for UWANs. UW-ALOHA-Q
algorithm used the Q-learning algorithm to learn optimal action. However, Q-learning
used the Q-table to store the Q-values of action-state pairs. Like [13], UW-ALOHA-Q also
faced the computation expense problem.

Different from the above algorithms, we propose a deep reinforcement learning-based
scheduling algorithm (called DRLSA-IA). DRLSA-IA learns transmission scheduling as
nodes constantly interact with the environment. Therefore, it can adapt to the highly
dynamic underwater environment. DRLSA-IA does not need to enumerate the state space.
Thus, it is not subject to computationally expensive constraints. We compare DRLSA-IA
and classical related algorithms in Table 1.

Table 1. Comparison of typical relevant works.

Research Work TDMA TDIA Adapt to the
Dynamic Environment

Solve the Computation
Expensive Problems

Slotted-Aloha X
UW-ALOHA-Q X
GA X
DRLSA X X X X
X indicates that the work has the corresponding ability.
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3. System Model and Problem Statement
3.1. System Model

In this paper, we consider an underwater node collaboration network comprising N
sensor nodes. As shown in Figure 1, nodes are divided into several clusters depending
on the physical proximity of the nodes. The nodes within a cluster communicate with
each other to accomplish cooperative tasks. Each node has a unique identity. As shown in
Figure 2, the network topology is mesh-type. The transmission range is the entire cluster.
Any two nodes can communicate with each other via a shared acoustic channel. We assume
the message is backlogged, i.e., a source node always has messages to send to other nodes
in the cluster. Each node is equipped with only one transceiver. Thus, only one message
can be successfully received by a node at a time. If more than one message simultaneously
reaches a node, no messages can be received successfully. This is because these messages
are conflict. Except for the source node and the destination node, the message is regarded as
interference. In addition, we assume that the node is half-duplex, so the node is incapable
of simultaneously sending and receiving messages. The network carries only unicast
messages, i.e., each message has a single destination node.

Underwater 

node

Surface sink

Acoustic link

Connected domain 1

Connected domain 2

Figure 1. The underwater node collaboration networks.

Figure 2. Mesh-type network topology.

We use the TDMA technique. In the time domain, the network channel is divided into
times slots of the same length. Nodes independently use single time slots to transmit or
receive messages. After the message reaches the destination node, the destination node
returns an Acknowledge Character (ACK) packet containing the message reception. All
messages are of equal length and all ACK packets are of equal length. Moreover, each time
slot corresponds to the time duration for a message transmission plus the time duration for
an ACK packet transmission.
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Like most scheduling-based MAC protocols, we use the time slot as the unit of propa-
gation delay between nodes, as shown in Equation (1),

dij =
|vi − vj|

v× η
, (1)

where i and j denote the nodes in the network. vi and vj are the position vectors of node i
and node j, respectively. v is the propagation speed of the sound in the water. η denotes
the length of a time slot. The propagation delay between node i and node j is dij. It takes
dij time slots to transmit messages between node i and node j.

G = max
i,j

dij, (2)

where G is the maximum propagation delay and indicates the network range. The unit of
dij and G is time slot.

We assume that the propagation delay from node i to node j is equal to the propagation
delay from node j to node i, i.e., dij = dji. Due to the non-negligible propagation delay,
node i sends a message in slot 1, but it does not reach node j until time slot t + dij. When
the message arrives at node j, node j returns an ACK packet with the message reception
status. As the ACK packet is very short, we assume that ACK packets do not conflict.

3.2. Problem Statement

In this paper, we aim to design a transmission scheduling algorithm that can improve
the network performance. Message conflicts not only severely reduce network throughput,
but also cause energy waste. DRLSA-IA is based on the TDMA, so the main task is to
reasonably schedule the transmission time slots to eliminate message collisions and increase
network throughput.

Due to large propagation delays of UWANs, simultaneous transmissions may be
collision-free, while nonsimultaneous transmissions may still collide at the receivers. For ex-
ample, as shown in Figure 3, both node A and node B transmit messages in time slot 2,
but the two messages reach node C in different time slots. The reason is that the propagation
delays are different, i.e., dAC 6= dBC. The two messages can both be received successfully.
However, node A and node D transmit messages in different time slots, and the two mes-
sages conflict in time slot 4. Therefore, large propagation delays need to be considered
when designing the transmission scheduling algorithm.

Figure 3. Complex collision situations caused by large propagation delay.

In addition, it is worth noting that the underwater environment is ever-changing
and the propagation delays between nodes may be different at each time. For example,
as shown in Figure 4, the propagation delays of node A, node B, node D, and node C at
time t1 are dAC = 2, dBC = 1, dCD = 1, respectively. However, due to environmental factors,
nodes move, and the propagation delays of node A, node B, node D, and node C at time t2
are dAC = 2, dBC = 3, dCD = 2 respectively, as shown in Figure 5.
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Figure 4. The propagation delays between nodes at time t1.

Figure 5. The propagation delays between nodes at time t2.

In summary, we need to take into account the above characteristics of UWANs when
designing a transmission scheduling algorithm. Additionally, the algorithm produces a
schedule that maximizes the network throughput. A schedule S determines when each
node transmits and receives messages, where Sit is an element of S. If Sit = j > 0, then
node i transmits a message to node j in time slot t. If Sit = 0, then node i is idle in time slot
t. If Sit = −j < 0, then node i receives a message from node j in time slot t. The average
throughput thr (unit: packets/slots) with period T can be computed from the number of
successful transmissions in schedule S, as shown in Equation (3),

thr =
1
T

T

∑
t=1

N

∑
i=1

I(Sit > 0), (3)

where I(X) is the indicator function. The function value is 1 if the event occurred, 0 otherwise.
Therefore, we formulate the throughput maximization problem as follows:

max
S

E
[

T

∑
t=1

N

∑
i=1

I(Sit > 0)

]
. (4)

4. DRL Based TDIA Transmission Scheduling Algorithm (DRLSA-IA)

In this paper, we proposed a deep reinforcement learning-based time-domain inter-
ference alignment scheduling algorithm (named DRLSA-IA). In DRLSA-IA, nodes learn
efficient transmission scheduling in continuous interaction with the environment. There-
fore, DRLSA-IA can effectively adapt to the highly dynamic underwater environment.
Unlike other algorithms that require enumeration of the state space, DRLSA-IA can obtain
the current transmission decision when the observed state is fed to the trained algorithm,
so there is no computational restriction.

Specifically, we first describe the transmission scheduling problem in UWANs as a
DRL problem. Furthermore, we present our time-domain interference alignment-based
reward mechanism to improve the network throughput. Considering large propagation
delays and the partially observed network state of UWANs, we proposed a novel DRL
algorithm in DRLSA-IA. Finally, we describe DRLSA-IA in detail.

4.1. Formulated as a DRL Problem

The transmission scheduling problem is formulated as a DRL problem. We give the
following definitions: agent, action space, state space and objection function.

(a) Agent: We regard the node that uses DRLSA-IA as a DRL agent. There are N nodes
in the networks.
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(b) Action space: In an underwater node collaboration network, nodes communicate
with each other. Each node selects an expected node to send a message or remain idle in
each time slot t. Therefore, the action space A of nodes is defined as,

A = {0, 1, 2, . . . , N}. (5)

Each node i selects an action ai(t) from the action space A in every time slot t,
i.e., ai(t) ∈ A. If ai(t) = 0, node i will be idle in time slot t. If ai(t) = k 6= 0, node i
will transmit a message to node k in time slot t.

(c) State space: Each node i can only observe part of the network state. The network
state Si(t) observed by node i in time slot t consists of all ACK packets received and the
actions performed by node i before time slot t, as shown in Equation (6).

Si(t) =
{

ai(t),
{

oi
j(t)
}N

j=1

}t

t=1
, (6)

where oi
j(t) denotes the ACK packet returned by node j, o ∈ {−1, 0, 1}. o = 1 indicates

that the message is successfully received. o = 0 indicates that the message conflicts with
an unintended message. o = −1 indicates that the message conflicts with an intended

message.
{

oi
j(t)
}N

j=1
denotes all ACK packets received by node i in time slot t.

(d) Reward function: To improve the network throughput, we design a TDIA-based
reward function. We explain the reward function in detail in Section 4.2.

(e) Objective function: We formulate the transmission scheduling problem as a DRL
problem, so the throughput maximization problem can be formulated as follows:

max
S

E
[

T

∑
t=1

γt−1R(t)

]
, (7)

where γ ∈ (0, 1) is a discount factor and R(t) is the reward in time slot t. S is the trans-
mission schedule. The objective function is the expected value of the discounted sum of
reward over a time horizon of length T.

A Q-function is used to evaluate the accumulative reward of the system, as shown in
Equation (8),

Q(S, a) = E
[

T

∑
t=1

γt−1R(t) | Si(t) = S, ai(t) = a

]
. (8)

The node follows a policy ß to interact with the environment. The ß maps states to
actions. We aim to find the optimal policy ß∗ that maximizes the Q-function as ß∗(S) =
arg max

a
{Q(S, a)}. Equation (9) is the optimal Q-function,

Q∗(S, a) = E
[

R(t) + γ max
a′

Q∗
(
S′, a′

)
|Si(t) = S, ai(t) = a

]
, (9)

where S′ and a′ are the next state and action after the node takes action ai(t) when in state
Si(t), respectively.

4.2. Reward Mechanism Based on Time-Domain Interference Alignment

Different from other TDIA-based algorithms that obtain optimal scheduling using
the enumeration method, we utilize deep reinforcement learning to achieve the TDIA-
based scheduling. In reinforcement learning, the agent judges whether his behavior is
good or bad by accepting rewards from the environment, to ensure that the agents can
move toward the goal state by choosing behaviors with higher returns. In our algorithm,
the goal is to achieve the TDIA-based scheduling. Therefore, we design the TDIA-based
reward mechanism.
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Time-domain interference alignment means that the interference is aligned in a time
slot that has already collided or interfered. In this way, each node can reserve more free
time slots to receive and transmit messages. We give an example to intuitively explain
time-domain interference alignment, as shown in Figure 6. At time t3, the propagation
delays between node A, node B, node C, and node D are dAD = 1, dBD = 2, and dCD = 1,
respectively. Node A is expected to send the message mA to node D. The expected node of
the messages mB and mC sent by node B and node C is not node D. Thus the two messages
mB and mC are the interference for node D. The message mB is sent by node B in time
slot 1. The message reaches node D in time slot 3 due to the propagation delay. Thus, time
slot 3 is an interfered time slot for node D. To reduce the number of interfered time slots,
message mC preferably also reaches node D in time slot 3. Therefore, message mC must be
transmitted by node C in time slot 1. In order to successfully receive message mA, message
mA cannot reach node D in time slot 3. Message mA must be sent by node A in a time slot
outside of time slot 2.

Figure 6. Time-domain interference alignment diagram.

As shown in Equation (10), if the current transmission action ai(t) follows the TDIA idea,
it will be rewarded. In particular, a transmission action ai(t) will not allow self-transmission,
i.e., the source node i and the destination node j cannot be the same. The destination node
j successfully receives the message in the receiver time slot. This transmission does not
interfere with the ongoing message reception. If the above conditions are satisfied, this
transmission satisfies the time-domain interference alignment idea.

R(t) =


0, if ai(t) = j & i = j
0, if ai(t) = j & oi

j
(
t + 2dij

)
6= 1

0, if ai(t) = j & ∃ k s.t. oi
k(t + 2dik) 6= 0.

1, otherwise

(10)

The reward of time slot t is dependent on the observations of time slot t + 2G due to
large propagation delays. Considering this issue, we make corresponding improvements
in DRLSA-IA and describe DRLSA-IA in detail in Section 4.3.

4.3. The Describe of DRLSA-IA

In this paper, we propose a deep reinforcement learning-based scheduling algorithm,
called DRLSA-IA. An illustration of the DRLSA-IA is shown in Figure 7.

Instead of obtaining transmission decisions by enumerating the decision space and
state space, we use value function approximation to express the Q-value of each state-
action pair, i.e., Q(S, a) ≈ f (S, a, ω). A vector containing the Q-values of all state-action
pairs can be obtained when the state is input. We use the deep neural network to fit the
value function. The Q-value of each action in each state can be calculated by the deep
neural network.
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Figure 7. Illustration of the DRLSA-IA algorithm.

To avoid selecting overestimated Q-values that degrade performance, we use two
deep neural networks to decouple the selection of the action from the calculation of target
Q-values. The two deep neural networks are named as Q1 and Q2. Specifically, we use Q1
to find the action with the largest Q-value and use Q2 to estimate the target Q-value. Q1
and Q2 have the same network structure.

For each node in the network, it is difficult to obtain the global network state. Thus,
the class DQN does not perform well in this setting. In DRLSA-IA, we use an Long Short-
Term Memory (LSTM) layer to replace the first fully connected layer of the deep neural
network. Message transmission scheduling is a sequential decision problem. When making
transmission decisions, it is not only based on the currently obtained information, but also
needs to refer to previously stored prior information. LSTM maintains an internal state and
aggregates observations over time. This gives the network the ability to estimate the true
state using the history of the process.

Considering the delayed reward caused by large propagation delays, we collect
the ktimes episodes at each iteration. All experiences in an episode are used to update.
As shown in Equation (11), we create target values for all the episodes. By the LSTM layer,
DRLSA-IA can aggregate observations from time slot t to time slot t + 2G over time.

Qtarget

(
aj(t)

)
= R(t)+

γQ2

(
Sj(t + 1), arg max

a′
Q1

(
Sj(t + 1), a′, ω

)
, ω′
)

,
(11)

where j is the j-sample experience.
Each node in the network executes DRLSA-IA. The training process of DRLSA-IA

is shown in Algorithm 1. Specifically, there are the following several steps: (1) The first
step is when the node inputs the current observed state to the eval-net Q1 and obtains
the estimation Q-values of all of the actions. (2) The second step occurs when the node
determines to transmit a message to a destination node or wait according to the Q-values
of all the actions. The node uses the ε-greedy method to select the action. (3) The third step
is when the node takes the action and obtains the reward. Then, the network transforms
to the next state. (4) The next step is when the node feeds the new network state to the
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eval-net Q1 and the target-net Q2, as well as obtains the Q-values of all the actions. (5) The
target Q-value is computed according to Equation (11). After each iteration, the eval-net Q1
is trained with all experiences of ktimes episode, as in Equation (12). After every c iteration,
the parameters of the target-net Q2 are updated.

We use the Mean Squared Error (MSE) loss function to update all parameters ω
of the eval-net Q1 through gradient backpropagation of the neural network, as shown
in Equation (12). The node obtains all experiences of ktimes episodes and uses these
experiences to update the parameters of the model. The node inputs the current state Sj(t)
of an experience to the eval-net Q1 and obtains the estimation Q-values of all of the actions.
Then, target Q-values are calculated, as shown in Equation (11). We calculate the distance
between the current Q-value and the target Q-value through the MSE loss function. Finally,
all the parameters (ω) of the eval-net Q1 are updated through gradient backpropagation of
the neural network.

Loss =
1

T ktimes

T ktimes

∑
j=1

(
Qtarget −Q1

(
Sj(t), aj(t), ω

))2
. (12)

Algorithm 1 Training Process of DRLSA-IA
Input: Iteration times Itimes, episode size ktimes, the number of nodes N, the number of
time slots T.
Input: discount factor γ, learning rate α, exploration probability ε, the updated frequency
of target-net Q2 parameters c.
Output: the parameters of the eval-net Q1.

1: Initialize eval-net Q1 parameters θ with random weights ω ← ω0;
2: Set target-net Q2 parameters ω

′ ← ω
′
0;

3: for Iteration m = 1, · · · , Itimes do
4: for episode k = 1, · · · , ktimes do
5: for timeslot t = 1, · · · , T do
6: for node i = 1, · · · , N do
7: Feed network state Si(t) into the Q1;
8: Q1 generates an estimation of Q-values for all actions A = {0, 1, 2, · · · , N};
9: Use ε-greedy method to select action ai(t);

10: Take action ai(t), then update network state Si(t + 1) and obtain reward R(t);
11: Feed state Si(t + 1) into the Q1, Q2;
12: Q1 and Q2 generate estimations of Q-value, for all available actions;
13: Form a target Q-value of ai(t) by (11);
14: end for
15: end for
16: end for
17: Train Q1 with the all experiences in ktimes episode;
18: Every c iterations update target Q-Network Q2 parameter ω

′
= ω;

19: end for

Each node uses the trained DRLSA-IA to distributely decide on transmission in
real-time. In each time slot t, node i obtains observation oi(t), and then feeds observed
state Si(t) into the trained Q1. Q-values are generated by Q1 for all available actions
ai(t) ∈ {0, 1, 2, . . . , N}. Then, node i selects an action according to the ε-greedy policy.
The network state is updated.

5. Performance Evaluation

To demonstrate the effectiveness of the proposed DRLSA-IA, we carry out numerous
simulation experiments. We use the Python programming language to implement and
simulate DRLSA-IA based on the TensorFlow framework. We assume that nodes are
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randomly placed. The details of the simulation parameter settings are summarized in
Table 2.

Table 2. Simulation Parameter Settings

Parameter Settings Value

Reward discount factor γ 0.95

Learning rate α Decay from 0.01 to 0

Exploration probability ε Decay from 0.1 to 0.001

The physical size of the network G 100 time slots

The range of node communication Entire network

The range of interference communication Entire network

The number of nodes 10∼100

The network traffic 10∼200 packets/slots

Number of simulation time slots T 100

In addition, the network traffic is defined as the number of messages created every
time slot. We compare DRLSA-IA with Slotted-Aloha [19] and GA [21] under the same
conditions. Among them, Slotted-Aloha is a classic time-slotted MAC protocol. GA is the
latest genetic algorithm-based scheduling algorithm.

5.1. Performance Metrics

We compare DRLSA-IA with the other two algorithms in the same simulation environ-
ment. Following the past works, the throughput, packet delivery ratio, and fairness index
are used to evaluate the performance of algorithms.

• We use the number of successfully received messages over the period T to calculate
the average throughput.

• As shown in Equation (13), the Packet Delivery Ratio (PDR) is calculated by dividing
the number of messages created by all nodes (Mc) by the number of messages that
were successfully sent (Ms).

PDR =
Ms

Mc
. (13)

• The Fairness Index (FI) is used to evaluate the fairness of the node access channel. It
is an important metric to measure the performance of the underwater MAC protocol.
As shown in Equation (14), we use the Jain’s Fairness Index.

FI =
(∑N

i=1 xi)
2

(N ×∑N
i=1 x2

i )
, (14)

where N denotes the total number of nodes. The throughput of node i is represented
by xi. The fairness index has a value between 0 and 1. Network fairness rises when the
fairness index draws closer to 1. Network fairness decreases as the fairness index gets
closer to 0. When the fairness index is equal to 1, accessing the channel is entirely fair.

5.2. Simulation Results

Figure 8 shows the average throughput as a function of the iteration times for the three
different episode times. As expected, the average throughput first increases as the number
of iterations increases, and then it stabilizes. The environment is constantly changing as
the nodes perform transmission actions. Thus, the average throughput fluctuates within a
certain range. The greater the number of episodes, the more sample experiences DRLSA-IA
collects, and thus the better the learning results and the higher the efficiency.
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Figure 8. Correlation between the average throughput and iteration times for different episode times.

Figure 9 shows the average throughput as a function of the iteration times with differ-
ent discount factors. We chose a configuration with 10 nodes, 10 time slots, and 100 episodes.
As expected, the larger the discount factor, the higher the average throughput, but the
slower the convergence rate. The discount factor γ is used to adjust the impact of short-term
and long-term rewards. The value range of the discount factor is (0, 1]. The closer the
discount factor is to 0, the more the agent cares about short-term returns and the faster
the algorithm converges. Otherwise, the agent considers long-term rewards, and the the
algorithm converges more slowly. If the agent only focuses on short-term rewards, the al-
gorithm may fall into a local optimum. If the discount factor is set to 1, the algorithm
may be stuck in an infinite loop of states and is impossible to converge. In DRLSA-IA,
the transmission of a node may not only interfere with ongoing transmissions but also have
an impact on future transmissions. Therefore, we need to consider long-term rewards and
set the discount factor to 0.95.
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Figure 9. Correlation between the average throughput and iteration times for different discount factors.

We compare the throughput of DRLSA-IA with the other two algorithms with various
network traffic. The number of nodes is 10. As shown in Figure 10, the throughput
of DRLSA-IA outperforms that of the other two algorithms. Compared with Slotted-
ALOHA and GA algorithm, the throughput of DRLSA-IA increase by 55.23% and 19.85%,
respectively. Slotted-ALOHA sends the message as soon as there is a message. As a result,
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the likelihood of conflicts increases as network traffic increases. Slotted-ALOHA cannot
reasonably schedule message transmissions, and thus the throughput decreases. GA can
reduce conflicts to some extent, but cannot achieve parallel transmission. However, due to
TDIA, more than one node can concurrently transmit messages in DRLSA-IA, effectively
improving the network throughput. Furthermore, interference is aligned in the interfered
time slot, reducing conflicts.
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Figure 10. Throughput of protocols with different network traffic.

We next compare the PDR of DRLSA-IA with the other two algorithms with different
network traffic. The number of nodes equals 10. As shown in Figure 11, the packet delivery
ratio of DRLSA-IA outperforms that of the other two algorithms. Compared with Slotted-
Aloha and GA, the PDR of DRLSA-IA is increased by 38.9% and 34.37%, respectively.
With the increase in network traffic, the PDR of the three algorithms drops sharply. High
traffic means there are more messages to be generated. That is, the possibility of message
conflicts increases. Thus, the PDR of algorithms decreases. However, DRLSA-IA allows
multiple nodes to transmit simultaneously without collisions, which greatly improves the
transmission efficiency. The other two algorithms only allow one message transmission at
most. Therefore, the PDR of DRLSA-IA is higher than the other two algorithms.

The network traffic (Packets/Slots)

PD
R

 Slotted-Aloha
 GA
 DRLSA-IA

Figure 11. Packet delivery ratio of algorithms with different network traffic.
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We also compare the fairness index of the three algorithms with different network
traffic. The number of nodes equals 10. As shown in Figure 12, the FI of DRLSA-IA is
marginally less than the FI of Slotted-Aloha, remaining approximately 0.9. The reason
is that Slotted-Aloha starts transmission immediately when there is a message. How-
ever, the Slotted-Aloha throughput is considerably low. Compared with Slotted-ALOHA,
the throughput of DRLSA-IA increases by 55.23%. Moreover, the FI of DRLSA-IA is greater
than the FI of GA.
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Figure 12. Fairness index of algorithms with different network traffic.

We then study the network throughput of algorithms with a different number of nodes;
the offered network traffic is 80 packets/slots. As shown in Figure 13, the throughput of
DRLSA-IA outperforms the other two algorithms. Compared with GA and Slotted-Aloha,
the throughput of DRLSA-IA increases by 22.77% and 3.36 times, respectively. The main
reason is that DRLSA-IA uses deep reinforcement learning algorithms to intelligently learn
the idea of time-domain interference alignment. Moreover, as there is no need to enumerate
the state space, DRLSA-IA can be applied to a network with a large number of nodes.
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Figure 13. Throughput of algorithms with different number of nodes.

We also study the packet delivery ratio of algorithms with a different number of nodes;
the offered network traffic is 80 packets/slots. As shown in Figure 14, the PDR of DRLSA-
IA outperforms that of the other two algorithms. Compared with GA and Slotted-Aloha
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algorithm, the PDR of DRLSA-IA increases by 20.46% and 3.38 times, respectively. The
start transmission time and propagation delay between sender and receiver determine
whether there will be a collision at the destination node. Thus, reception time can be shown
as a duality between the transmission time and the location of the nodes. In DRLSA-IA, we
use reinforcement learning to learn the relationship between them. In addition, we design
the TDIA-based reward mechanism to improve the PDR and reduce message collisions.
DRLSA-IA can better adapt to different network scales and maintain a highly PDR in
large-scale networks.
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Figure 14. Packet delivery ratio of algorithms with different number of nodes.

We evaluate the fairness index of algorithms with a different number of nodes. The net-
work traffic is 80 packets/slots. As shown in Figure 15, the fairness index of DRLSA-IA
outperforms that of the other two algorithms. Compared with Slotted-Aloha and GA algo-
rithm. the fairness index of DRLSA-IA increases by 14.23% and 75.75%, respectively. As the
number of nodes increases, the fairness index of DRLSA-IA and GA algorithms decreases,
while the Slotted-Aloha remains basically unchanged. The main reason is that as long as
there is a message, Slotted-Aloha will immediately send it in the next slot. Changes in the
number of nodes do not affect the fairness of Slotted-Aloha. The fairness of DRLSA-IA
decreases slightly as the number of nodes increases, but that of DRLSA-IA is still fairer
than the other two algorithms.
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Figure 15. Fairness index of protocols with different number of nodes.
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6. Conclusions

In this paper, we proposed a deep reinforcement learning-based time-domain inter-
ference alignment scheduling algorithm (called DRLSA-IA). In DRLSA-IA, nodes learned
efficient transmission scheduling in continuous interaction with the environment. With the
TDIA-based reward mechanism, nodes achieved parallel transmission of messages, and col-
lisions effectively reduced. We also considered large propagation delays of UWANs and
proposed a novel DRL algorithm in DRLSA-IA. Simulation results have shown that DRLSA-
IA performs well in terms of throughput, packet delivery ratio and fairness index with the
different network traffic and the different number of nodes. We believe that DRLSA-IA is a
promising scheduling algorithm as it achieved better performance than other algorithms.
In future work, we plan to consider the energy consumption of the algorithm based on
deep reinforcement learning.
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