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Abstract: 
Mobile edge computing (MEC) is a promising technology to support mission-critical vehicular applications, such 
as intelligent path planning and safety applications. In this paper, a collaborative edge computing framework is 
developed to reduce the computing service latency and improve service reliability for vehicular networks. First, a 
task partition and scheduling algorithm (TPSA) is proposed to decide the workload allocation and schedule the 
execution order of the tasks offloaded to the edge servers given a computation offloading strategy. Second, an 
artificial intelligence (AI) based collaborative computing approach is developed to determine the task offloading, 
computing, and result delivery policy for vehicles. Specifically, the offloading and computing problem is 
formulated as a Markov decision process. A deep reinforcement learning technique, i.e., deep deterministic 
policy gradient, is adopted to find the optimal solution in a complex urban transportation network. By our 
approach, the service cost, which includes computing service latency and service failure penalty, can be 
minimized via the optimal workload assignment and server selection in collaborative computing. Simulation 
results show that the proposed AI-based collaborative computing approach can adapt to a highly dynamic 
environment with outstanding performance. 

SECTION I. Introduction 
Vehicular communication networks have drawn significant attention from both academia and industry in the 
past decade. Conventional vehicular networks aim to improve the driving experience and enable safety 
applications via data exchange in vehicle-to-everything (V2X) communications. In the era of 5G, the concept of 
vehicular networks has been extended to Internet-of-Vehicle (IoV), in which intelligent and interactive 
applications are enabled by communication and computation technologies [1]. A myriad of on-board 
applications can be implemented in the context of IoV, such as assisted/autonomous driving and platooning, 
urban traffic management, and on-board infotainment services [2], [3]. 

Although IoV technologies are promising, realizing the IoV applications still faces challenges. One of the 
obstacles is the limited on-board computation capability at vehicles. For example, a self-driving car with ten 
high-resolution cameras may generate 2 gigapixels per second of data, while 250 trillion computation operations 
per second are required to process the data promptly [4]. Processing such computation-intensive applications 
on vehicular terminals is energy-inefficient and time-consuming. To overcome the limitation, mobile edge 
computing (MEC) is an emerging paradigm that provides fast and energy-efficient computing services for vehicle 
users [5]–[6][7]. Via vehicle-to-infrastructure (V2I) communications, resource-constrained vehicle users are 
allowed to offload their computation-intensive tasks to highly capable edge servers co-located with roadside 
units (RSUs) for processing. Meanwhile, compared to the conventional mobile cloud computing, the network 
delay caused by task offloading can be significantly reduced in MEC due to the proximity of the edge server to 
vehicles [8]. Consequently, some applications that require high computing capability, such as path navigation, 
video stream analytics, and objective detection, can be implemented in vehicular networks with edge 
servers [9]. 

Despite the advantage brought by MEC-enabled vehicular networks, new challenges have emerged in task 
offloading and computing. One critical problem in MEC is to decide which edge servers should their computing 
tasks be offloaded to. In vehicular networks, the highly dynamic communication topology leads to unreliable 
communication links [10]. Due to the non-negligible computing time and the limited communication range of 
vehicles, a vehicle may travel out of the coverage area of an edge server during a service session, resulting in a 
service disruption. To support reliable computing services for high-mobility users, a service migration scheme 
has been introduced in [11]. Under this scope, when a user moves out of the communication area of the edge 
that the computing task was offloaded, the computing process will be interrupted, and the corresponding virtual 
machine (VM) will be migrated to a new edge according to the radio association. In the urban area, where highly 



dense infrastructure are deployed, frequent service interruption would happen due to the dynamically changing 
radio association, which can significantly increase the overall computing service latency. 

Alternatively, computing service reliability can be achieved by cooperation among edge servers. Different from 
service migration, which achieves service reliability by migrating the computing service according to the 
vehicle’s trajectory, computing cooperation improves the service reliability by accelerating task processing time. 
The computing task can be divided and computed by multiple servers in parallel or fully offloaded to a server 
with high computing capability at the cost of communication overhead [12], [13]. In this regard, the computing 
task can be forwarded to the edge server which is out of the user’s communication range. Compared to service 
migration, in which edge servers only execute the task offloaded by the vehicles under their communication 
coverage, computing cooperation allows edge servers processing the tasks offloaded by the vehicles out of their 
coverage for reducing the overall computing time. Nevertheless, multi-hop communications could result in 
significant transmission delay and waste communication spectrum resources in the task offloading process. The 
tradeoff between the communication overhead and the computing capability increases the complexity of the 
server assignment problem. In addition, although computing service latency can be reduced by cooperative 
computing, it is hard to guarantee service reliability for the vehicles with high mobility. The uncertainty of 
vehicle moving trajectories poses significant challenges in computing result delivery. 

Motivated by the issues in the existing service migration and computing cooperation schemes, we present a 
computing collaboration framework to provide reliable low-latency computing in an MEC-enabled vehicular 
network. Once an edge server receives the computing tasks offloaded by a vehicle, it may partially or fully 
distribute the computing workload to another edge server to reduce computing latency. Furthermore, by 
selecting proper edge servers to deliver the computing results, vehicle users are able to obtain computing 
results without service disruption caused by mobility. Under this framework, we propose a novel task offloading 
and computing approach that reduces the overall computing service latency and improves service reliability. To 
achieve this objective, we firstly formulate a task partition and scheduling optimization problem, which allows all 
received tasks in the network to be executed with minimized latency given the offloading strategy. A heuristic 
task partition and scheduling approach is developed to obtain a near-optimal solution of the non-convex integer 
problem. In addition, we formulate the radio and computing association problem into a Markov decision process 
(MDP). By characterizing stochastic state transitions in the network, MDP is able to provide proactive offloading 
policy for vehicles. An artificial intelligence (AI) approach, deep reinforcement learning (DRL), is adopted to cope 
with the curse of dimensionality in MDP and unknown network state transitions caused by vehicle mobility. 
Specifically, a convolutional neural network (CNN) based DRL is developed to handle the high-dimensional state 
space, and the deep deterministic policy gradient (DDPG) algorithm is adopted to handle the high-dimensional 
action space in the proposed problem. The major contributions of this paper are: 

1. We develop an efficient collaborative computing framework for MEC-enabled vehicular networks to 
provide low-latency and reliable computing services. To overcome the complexity brought by the 
dynamic network topology, we propose a location-aware task offloading and computing strategy to 
guide MEC server collaboration. 

2. We devise a task partition and scheduling scheme to divide the computing workload among edge 
servers and coordinate the execution order for tasks offloaded to the servers. Given the offloading 
strategy, our scheme can minimize the computing time by finding a near-optimal task scheduling 
solution with low time-complexity. 

3. We further propose an AI-based collaborative computing approach, which utilizes a model-free method 
to find the optimal offloading strategy and MEC server assignment in a 2-dimensional transportation 



system. A CNN based DDPG technique is developed to capture the correlation of the state and action 
among different zones and accelerate the learning speed. 

The remainder of the paper is organized as follows. In Section II, we present the related works. Section 
III describes the system model. Section IV formulates the service delay minimization problem. In Section V, we 
present the task partition and scheduling scheme, followed by an AI-based collaborative computing approach 
in Section VI. Section VII presents simulation results, and Section VIII concludes the paper. 

SECTION II. Related Works 
A. Mobile Edge Computing 
As proposed by ETSI in [14], the main objective of MEC is to reduce the computing task offloading and 
computing latency via utilizing the computing resources located in edge devices, such as base stations and 
access points. In the context of edge computing, one of the main problems is to determine the computing task 
offloading mechanisms. The edge server selection problem has been evaluated in [15] and [16]. In [15], Cheng et 
al. propose a user association strategy to jointly minimize the computing delay, user energy consumption, and 
the server computing cost under a space-air-ground integrated network. A model-free approach is proposed in 
the work to deal with the complex offloading decision-making problem. In [6], Liu et al. investigate the user-
server association policy, which takes into account the communication link quality and server computing 
capability. In both works, the computing association follows the radio association, i.e., the computing task is 
processed within the edge server that the task is offloaded. To further reduce the computation time, task 
partition has been considered in [17]–[18][19]. Computing tasks can be split and computed by multiple servers 
in parallel. The cooperation computing has been investigated among the works [17]–[18][19] under different 
network environments, while the impact of user mobility has not been addressed. Additionally, in [12], [20], 
and [21], task scheduling, i.e., ordering the task execution sequences, is also evaluated in the offloading decision 
making process. In those works, the task scheduling problem is formulated into a mixed-integer programming 
problem, and heuristic algorithms are proposed to obtain near-optimal solutions efficiently. Different from the 
above works, we investigate the task partition and scheduling under the collaborative computing framework, in 
which the adjustment on workload allocation for a task can affect the performance of other tasks, which makes 
the problem more complex. 

B. MEC-enabled Vehicular Networks 
The problem of computing offloading has been investigated in many research works in the context of vehicular 
networks [22]–[23][24][25]. In those works, the main objective is to minimize service time by selecting the 
optimal edge server, while service reliability in the presence of vehicle mobility is not taken into account. 
In [26]–[27][28], machine learning techniques are adopted to obtain the reliable offloading decision for vehicles 
via predict the vehicle trajectories. In [26], Sun et al. focus on task offloading and execution utilizing the 
computing resources on vehicles, i.e., vehicular edge. An online learning algorithm, i.e., multi-armed bandit, is 
utilized to determine the computing and communication association among vehicles. In [27], Ning et al. apply a 
DRL approach to jointly allocate the communication, caching, and computing resources in the dynamic vehicular 
network. Furthermore, to deal with service disruption when the vehicle leaving the server converge, service 
migration has been firstly proposed in [11]. According to the vehicle moving trajectory, the corresponding 
computing services can be migrated to another edge server that may associate the vehicle in the future. The 
proactive service migration strategy has been investigated in [29] and [30], where MDP is utilized to make the 
migration decision in a proactive manner. To alleviate service interruption and network overheads in virtual 
machine migration, server cooperation has been studied in [5], [31], and [32]. The works [5] and [31] consider 
that vehicles divide and offload the computing tasks to multiple servers according to the predicted traveling 
traces. Vehicle-to-vehicle communication is used to disseminate the computing result if the edge server cannot 



connect with the vehicle at the end of a service session. In [32], the work utilizes neural networks to predict the 
computing demand in the vehicular network. MEC servers are clustered to compute the offloaded tasks 
cooperatively. Different from the above works, our proposed approach achieves service reliability improvement 
by collaboration and task scheduling among edge servers without cooperative transmission, which reduces the 
communication overhead of result delivery. 

SECTION III. System Model 
A. Collaborative Edge Computing Framework 
An MEC-enabled vehicular network is illustrated in Fig. 1. A row of RSUs, equipped with computing resources, 
provide seamless communication and computing service coverage for vehicles on the road. An RSU can also 
communicate with other RSUs within its communication range via wireless links. The set of RSUs is denoted by  
ℛ, where the index of RSUs is denoted by 𝑟𝑟 ∈ ℛ. We assume that a global controller has full knowledge of the 
transportation network and makes offloading and computing decisions for all the vehicles in a centralized 
manner. In our model, a computing session for a task includes three steps. 

1. Offloading: When a computing task is generated at a vehicle, the vehicle selects an RSU, which is under 
its communication range, and offloads the computing data of the task to the RSU immediately. In the 
example shown in Fig. 1, RSU 𝑟𝑟 is selected to offload the computing load. Such RSU is referred to as 
the receiver RSU for the task. 

2. Computing: After the computing task is fully offloaded, the receiver RSU can process the whole 
computing task or select another RSU to share the computing load. The RSU, which is selected to 
process the task collaboratively with the receiver RSU, is referred to as the helper RSU for the task. 

3. Delivering: A vehicle may travel out of the communication range of its receiver RSU. Therefore, the 
controller may select an RSU, which could connect with the vehicle at the end of service session, to 
gather and transmit computing results. The RSU is referred to as the deliver RSU. To reduce the 
overhead, we limit the deliver RSU to be either the receiver RSU or the helper RSU of the task. In the 
example shown in Fig. 1, RSU 𝑟𝑟 +  1 behaves as both the helper RSU and the deliver RSU for the 
computing task offloaded by the vehicle. 

 
Fig. 1. Network model. 
 

To reduce the decision space in task offloading and scheduling, instead of providing the offloading and 
computing policy to individual vehicles, we consider location-based offloading and computing policy. We divide 
each road into several zones with equal length, where the set of zones is denoted by 𝒵𝒵. The index of the zones is 
denoted by 𝑧𝑧 = (𝑎𝑎, 𝑏𝑏) ∈ 𝒵𝒵. The terms a and b represent the index of the roads and the index of the segments 
on the road, respectively, where 𝑎𝑎 ∈ {1, … ,𝐴𝐴}, and 𝑏𝑏 ∈ {1, … ,𝐵𝐵}. As the vehicle drives through the road, it 
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traverses the zones consecutively. We assume that all vehicles in the same zone follow the same offloading and 
computing policy.1 For simplicity, we evaluate the aggregated tasks for vehicles in each zone at a time slot, and 
refer to the tasks offloaded by zone 𝑧𝑧 as task 𝑧𝑧 in the remainder of the paper. We suppose that the vehicle will 
not travel out of a zone during the time duration of a time slot, and vehicles can complete the offloading process 
of a task generated in a zone before it travels out of the zone. Denote the set of vehicles in zone 𝑧𝑧 and time slot  
𝑡𝑡 ∈ 𝒯𝒯 as 𝒱𝒱𝑧𝑧,𝑡𝑡. The offloading decision for vehicles in zone 𝑧𝑧 and time slot 𝑡𝑡 is represented by a vector  

𝜶𝜶𝑧𝑧,𝑡𝑡 ∈ ℤ+
|ℛ|, where � 𝛼𝛼𝑧𝑧,𝑟𝑟,𝑡𝑡 = 1|ℛ|

𝑟𝑟=1 . The element 𝛼𝛼𝑧𝑧,𝑟𝑟,𝑡𝑡 is 1 if RSU 𝑟𝑟 is selected as the receiver RSU for the 
vehicles in zone 𝑧𝑧 and time slot 𝑡𝑡, and 0 otherwise. Similarly, the collaborative computing decision for vehicles in 

zone 𝑧𝑧 and time slot 𝑡𝑡 is represented by a vector 𝜷𝜷𝑧𝑧,𝑡𝑡 ∈ ℤ+
|ℛ|, where � 𝛽𝛽𝑧𝑧,𝑟𝑟,𝑡𝑡 = 1|ℛ|

𝑟𝑟=1 . The element 𝛽𝛽𝑧𝑧,𝑟𝑟,𝑡𝑡 is 1 if 
RSU 𝑟𝑟 is selected as the helper RSU for the vehicles in zone 𝑧𝑧 and time slot 𝑡𝑡, and 0 otherwise. In addition, the 
decision on result delivery is denoted by a binary variable 𝛾𝛾𝑧𝑧,𝑟𝑟,𝑡𝑡, where 𝛾𝛾𝑧𝑧,𝑟𝑟,𝑡𝑡 is 0 if the computing results are 
delivered by RSU 𝑟𝑟 for task 𝑧𝑧 in time slot 𝑡𝑡, and 𝛾𝛾𝑧𝑧,𝑟𝑟,𝑡𝑡 is 1 if the computing results are delivered by RSU 𝑟𝑟. 

B. Cost Model 
In this paper, the system cost includes two parts: the service delay and the penalty caused by service failure. 

1) Service Delay: 
We adopt the task partition technique during task processing. Once a receiver RSU receives the offloaded task 
from vehicles in a zone, it immediately divides the task and offloads a part of the workload to the helper RSU of 
the corresponding zone. We denote the computing delay of task 𝑧𝑧 corresponding to the receiver or helper 
RSU 𝑟𝑟 in time slot 𝑡𝑡 as 𝑇𝑇𝑧𝑧,𝑟𝑟,𝑡𝑡

C . As shown in Fig. 2, the computing delay includes task offloading delay, queuing 
delay, and processing delay. Since the amount of output data is usually much smaller compared to the amount 
of input data, we neglect the transmission delay in result delivery [19], [24]. 

 
Fig. 2. An example of the task offloading and computing process. 
 

Firstly, task offloading comprises two steps: offloading tasks from vehicles to their receiver RSU and offloading 
the partial workload from the receiver RSU to the helper RSU. According to the propagation model in 3GPP 
standards [33], the path loss between a transmitter and a receiver with distance 𝑑𝑑 (km) can be computed as: 

𝐿𝐿(𝑑𝑑) = 40(1− 4 × 10−3𝐷𝐷ℎ𝑏𝑏) log10 𝑑𝑑 − 18 log10 𝐷𝐷ℎ𝑏𝑏

+21 log10 𝑓𝑓 + 80(dB),
 

(1) 
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where the parameter 𝑓𝑓 is the carrier frequency in MHz, and the parameter 𝐷𝐷ℎ𝑏𝑏 represents the antenna height 
in meter. We do not consider the shadowing effect of the channel. Denote the distance between the center 
point of zone 𝑧𝑧 and the location of RSU 𝑟𝑟 as 𝐷𝐷𝑧𝑧,𝑟𝑟, and the distance between RSU 𝑟𝑟 and 𝑟𝑟′ as 𝐷𝐷𝑟𝑟,𝑟𝑟′ . The data rate 
for vehicles in zone 𝑧𝑧 offloading task to RSU 𝑟𝑟 is 

𝑟𝑟𝑧𝑧,𝑟𝑟 = 𝐵𝐵Z log2 �1 +
𝑃𝑃V10−

𝐿𝐿�𝐷𝐷𝑧𝑧,𝑟𝑟�
10

𝜎𝜎𝑣𝑣2
� , 

(2) 

where the parameter 𝜎𝜎𝑣𝑣2 denotes the power of the Gaussian noise in the V2I channel, 𝑃𝑃V represents the vehicle 
transmit power, and 𝐵𝐵Z represents the bandwidth reserved for vehicles in a zone. As the receiver RSU for task 𝑧𝑧, 
a signal-to-noise ratio threshold should be satisfied, where 

𝑃𝑃𝑉𝑉10−𝐿𝐿�𝐷𝐷𝑧𝑧,𝑟𝑟� 10⁄

𝜎𝜎𝑣𝑣2
≥ 𝛼𝛼𝑧𝑧,𝑟𝑟,𝑡𝑡𝛿𝛿O,∀𝑡𝑡, 𝑧𝑧, 𝑟𝑟, 

(3) 

where 𝛿𝛿O is the signal-to-noise ratio threshold for data offloading. Assume that vehicles in a zone are scheduled 
to offload the tasks successively, and the channel condition is fixed in the duration of any computing task 
offloading. The transmission delay for offloading the computing data in zone 𝑧𝑧 to the receiver RSU is: 

𝑇𝑇𝑧𝑧,𝑡𝑡
T = �

𝛼𝛼𝑧𝑧,𝑟𝑟,𝑡𝑡𝑊𝑊𝑧𝑧,𝑡𝑡

𝑟𝑟𝑧𝑧,𝑟𝑟
𝑟𝑟∈ℛ

, 

(4) 

where 𝑊𝑊𝑧𝑧,𝑡𝑡 represents the overall computing data generated by vehicles in zone 𝑧𝑧, i.e., task 𝑧𝑧, and time slot 𝑡𝑡. In 
addition, the data rate between RSU 𝑟𝑟 and RSU 𝑟𝑟′ for forwarding the computing data offloaded from a zone is 

𝑟𝑟𝑟𝑟,𝑟𝑟′ = 𝐵𝐵R log2

⎝

⎛1 +
𝑃𝑃R10−

𝐿𝐿�𝐷𝐷𝑟𝑟,𝑟𝑟′�
10

𝜎𝜎𝑟𝑟2
⎠

⎞ , 

(5) 

where the parameter 𝜎𝜎𝑟𝑟2 represents the power of the Gaussian noise in the RSU to RSU channel, 𝑃𝑃R represents 
the RSU transmit power, and 𝐵𝐵R represents the bandwidth reserved for forwarding data offloaded from a zone. 
In data forwarding, the signal-to-noise constraint is also required to be satisfied, where 

𝑃𝑃𝑅𝑅10−𝐿𝐿(𝐷𝐷𝑟𝑟,𝑟𝑟′)/10

𝜎𝜎𝑟𝑟2
≥ 𝛽𝛽𝑧𝑧,𝑟𝑟′,𝑡𝑡𝛿𝛿O,∀𝑡𝑡, 𝑧𝑧, 𝑟𝑟, 𝑟𝑟′. 

(6) 



For computing task 𝑧𝑧 in time slot 𝑡𝑡, the portion of workload to be processed by the receiver RSU and the helper 
RSU is denoted by 𝑥𝑥𝑧𝑧,𝑡𝑡 and 1 − 𝑥𝑥𝑧𝑧,𝑡𝑡, respectively. Thus, the delay for forwarding the data to the deliver RSU is: 

𝑇𝑇𝑧𝑧,𝑡𝑡
R = �  

𝑟𝑟∈ℛ

�
𝛼𝛼𝑧𝑧,𝑟𝑟,𝑡𝑡𝛽𝛽𝑧𝑧,𝑟𝑟′,𝑡𝑡(1 − 𝑥𝑥𝑧𝑧,𝑡𝑡)𝑊𝑊𝑧𝑧,𝑡𝑡

𝑟𝑟𝑟𝑟,𝑟𝑟′
𝑟𝑟′∈ℛ

. 

(7) 

Furthermore, after the task is offloaded to edge servers, the queuing delay may be experienced. Let 
set 𝒵𝒵𝑟𝑟,𝑡𝑡 denote the zones which have tasks offloaded to RSU 𝑟𝑟, i.e., {𝑧𝑧|𝛼𝛼𝑧𝑧,𝑟𝑟,𝑡𝑡 = 1} ∪ {𝑧𝑧|𝛽𝛽𝑧𝑧,𝑟𝑟,𝑡𝑡 = 1}, and let 𝑖𝑖 (𝑧𝑧 ) 
represent the index of zone 𝑧𝑧 in set 𝒵𝒵𝑟𝑟,𝑡𝑡. We denote 𝑁𝑁𝑟𝑟,𝑡𝑡 as the number of tasks offloaded in time slot 𝑡𝑡 and 

assigned to the RSU 𝑟𝑟, where 𝑁𝑁𝑟𝑟,𝑡𝑡 = � 𝛼𝛼𝑧𝑧,𝑟𝑟,𝑡𝑡 + 𝛽𝛽𝑧𝑧,𝑟𝑟,𝑡𝑡𝑧𝑧 . Then, a matrix, 𝕀𝕀(𝑟𝑟,𝑡𝑡) ∈ ℤ+
𝑁𝑁𝑟𝑟,𝑡𝑡×𝑁𝑁𝑟𝑟,𝑡𝑡, can be defined to imply 

the processing order of tasks offloaded to RSU 𝑟𝑟 in time slot 𝑡𝑡, where 𝐼𝐼𝑖𝑖(𝑧𝑧),𝑗𝑗
(𝑟𝑟,𝑡𝑡) = 1 if the task offloaded from 

zone 𝑧𝑧 is scheduled as the 𝑗𝑗 -th task to be processed among the other tasks offloaded in the same time slot. As 
shown in Fig. 2, the queuing delay of a task depends on the computing time of the task scheduled priorly. For 
the first task to be processed among the tasks offloaded in time slot 𝑡𝑡, the queuing delay stems from the 
computing time for the tasks offloaded in previous time slots. Thus, the queuing delay of task 𝑧𝑧 in RSU 𝑟𝑟 can be 
formulated as follows: 

𝑇𝑇𝑧𝑧,𝑟𝑟,𝑡𝑡
Q = �

𝑇𝑇𝑟𝑟,𝑡𝑡
Q0, if𝐼𝐼𝑖𝑖(𝑧𝑧),1

(𝑟𝑟,𝑡𝑡) = 1,

�  
𝑧𝑧′

�𝐼𝐼𝑖𝑖(𝑧𝑧),𝑗𝑗
(𝑟𝑟,𝑡𝑡) 𝐼𝐼𝑖𝑖(𝑧𝑧′),𝑗𝑗−1

(𝑟𝑟,𝑡𝑡) 𝑇𝑇𝑧𝑧′,𝑟𝑟,𝑡𝑡
C

𝑗𝑗

, otherwise.  

(8) 

The term 𝑇𝑇𝑟𝑟,𝑡𝑡
Q0 represents the latency for finishing the tasks offloaded in previous time slots {1, … , 𝑡𝑡 − 1}, where 

𝑇𝑇𝑟𝑟,𝑡𝑡
Q0 = max{�𝐼𝐼𝑖𝑖(𝑧𝑧′),𝑁𝑁𝑟𝑟,𝑡𝑡−1

(𝑟𝑟,𝑡𝑡) 𝑇𝑇𝑧𝑧′,𝑟𝑟,𝑡𝑡−1
C − 𝜖𝜖, 0}

𝑧𝑧′
, 

(9) 

where 𝜖𝜖 is the length of a time slot. 

We consider that data transmission and task processing run in parallel. After the task is offloaded and other 
tasks scheduled priorly are completed, the task can be processed by the dedicated server. The delay for 
processing task 𝑧𝑧 offloaded to RSU 𝑟𝑟 in time slot 𝑡𝑡 can be formulated as 

𝑇𝑇𝑧𝑧,𝑟𝑟,𝑡𝑡
P =

𝜒𝜒𝑊𝑊𝑧𝑧,𝑡𝑡�𝛼𝛼𝑧𝑧,𝑟𝑟,𝑡𝑡𝑥𝑥𝑧𝑧,𝑡𝑡 + 𝛽𝛽𝑧𝑧,𝑟𝑟,𝑡𝑡�1 − 𝑥𝑥𝑧𝑧,𝑡𝑡��
𝐶𝐶𝑟𝑟

, 

(10) 

where 𝐶𝐶𝑟𝑟 denotes the computing capability (CPU-cycle frequency) of RSU 𝑟𝑟, and 𝜒𝜒 denotes the number of 
computation cycles needed to execute 1 bit of data. 

Given the offloading delay, queuing delay, and processing delay, the computing delay for task 𝑧𝑧 on RSU 𝑟𝑟 can be 
formulated as follows: 



𝑇𝑇𝑧𝑧,𝑟𝑟,𝑡𝑡
C = max�𝑇𝑇𝑧𝑧,𝑡𝑡

T + 𝛽𝛽𝑧𝑧,𝑟𝑟,𝑡𝑡𝑇𝑇𝑧𝑧,𝑡𝑡
R ,𝑇𝑇𝑧𝑧,𝑟𝑟,𝑡𝑡

Q � + 𝑇𝑇𝑧𝑧,𝑟𝑟,𝑡𝑡
P . 

(11) 

Denote the overall service delay for the task offloaded from zone 𝑧𝑧 in time slot 𝑡𝑡 as 𝑇𝑇𝑧𝑧,𝑡𝑡
service. As shown in Fig. 2, 

the overall service delay depends on the longest computing time between the receiver RSU and the helper RSU. 
Thus, we have 

𝑇𝑇𝑧𝑧,𝑡𝑡
service = max ��𝛼𝛼𝑧𝑧,𝑟𝑟,𝑡𝑡𝑇𝑇𝑧𝑧,𝑟𝑟,𝑡𝑡

C

𝑟𝑟

,�𝛽𝛽𝑧𝑧,𝑟𝑟,𝑡𝑡𝑇𝑇𝑧𝑧,𝑟𝑟,𝑡𝑡
C

𝑟𝑟

� . 

(12) 

2) Service Failure Penalty: 
The mobility of vehicles brings uncertainty in result downloading. Service failure may occur if a vehicle is out of 
the coverage of its deliver RSU during the service session. Denote the zone that vehicle 𝜐𝜐 is located when its 
computing result is delivered as 𝑚𝑚𝑣𝑣, i.e., the location of vehicle 𝑣𝑣 ∈ 𝒱𝒱𝑧𝑧,𝑡𝑡 in time slot 𝑡𝑡 + 𝑇𝑇𝑧𝑧,𝑡𝑡

Service. Also, we 
denote the signal-to-noise ratio threshold for result delivering as 𝛿𝛿D. We introduce a variable 𝟏𝟏𝑧𝑧,𝑡𝑡 to indicate 
whether the computing service for task 𝑧𝑧 offloaded in time slot 𝑡𝑡 is successful or not, where 

𝟏𝟏𝑧𝑧,𝑡𝑡 = �1, if𝑃𝑃𝑅𝑅10−
𝐿𝐿�𝐷𝐷𝑚𝑚𝑣𝑣,𝑟𝑟�

10 ≥ 𝜎𝜎𝑟𝑟2𝛾𝛾𝑧𝑧,𝑟𝑟,𝑡𝑡𝛿𝛿D,∀𝑣𝑣 ∈ 𝒱𝒱𝑧𝑧,𝑡𝑡
0, otherwise.

 

(13) 

SECTION IV. Problem Formulation 
Our objective is to minimize the weighted sum of the overall computing service delay for vehicle users and 
service failure penalty. The corresponding objective function can be formulated as follows: 

min
{𝜶𝜶,𝜷𝜷,𝜸𝜸,𝐱𝐱,

{𝐈𝐈(𝑟𝑟,𝑡𝑡),∀𝑟𝑟,𝑡𝑡}}

lim
𝑇𝑇→∞

1
𝑇𝑇�  
𝑇𝑇−1

𝑡𝑡=0

��𝑇𝑇𝑧𝑧,𝑡𝑡
service𝟏𝟏𝑧𝑧,𝑡𝑡 + 𝜆𝜆𝑊𝑊𝑧𝑧,𝑡𝑡�1 − 𝟏𝟏𝑧𝑧,𝑡𝑡��

𝑧𝑧∈𝒵𝒵

s. t. (3), (6),

�𝛼𝛼𝑧𝑧,𝑟𝑟,𝑡𝑡 = 1
𝑟𝑟∈ℛ

,�𝛽𝛽𝑧𝑧,𝑟𝑟,𝑡𝑡 = 1
𝑟𝑟∈ℛ

,�𝛾𝛾𝑧𝑧,𝑟𝑟,𝑡𝑡 = 1
𝑟𝑟∈ℛ

�𝐼𝐼𝑖𝑖,𝑗𝑗
(𝑟𝑟,𝑡𝑡) = 1

𝑁𝑁𝑟𝑟,𝑡𝑡

𝑖𝑖=1

,�𝐼𝐼𝑖𝑖,𝑗𝑗
(𝑟𝑟,𝑡𝑡) = 1

𝑁𝑁𝑟𝑟,𝑡𝑡

𝑗𝑗=1

0 ≤ 𝑥𝑥𝑧𝑧,𝑡𝑡 ≤ 1,
𝜶𝜶𝑧𝑧,𝑡𝑡 ,𝜷𝜷𝑧𝑧,𝑡𝑡 ∈ ℤ+

|ℛ|,
𝑰𝑰(𝑟𝑟,𝑡𝑡) ∈ ℤ+

𝑁𝑁𝑟𝑟,𝑡𝑡×𝑁𝑁𝑟𝑟,𝑡𝑡 ,

 



(14a)(14b)(14c)(14d)(14e)(14f)(14g) 

 

where 𝜆𝜆 represents per-unit penalty, for the case when the computing offloading service fails. The optimization 
variables include three aspects: edge server selection, i.e., {𝜶𝜶,𝜷𝜷,𝜸𝜸}, task partition, i.e., 𝐱𝐱, and task scheduling, 
i.e., �𝐈𝐈(𝑟𝑟,𝑡𝑡),∀𝑟𝑟, 𝑡𝑡�. It can be seen that Problem (14) is a mixed-integer nonlinear optimization problem. Solving the 
above problem directly by conventional optimization methods is challenging. Furthermore, the decision 
dimension of the problem is too large to apply model-free techniques directly. Taking the variable of task 
execution order as an example, i.e., 𝐈𝐈(𝑟𝑟,𝑡𝑡), there are 𝑁𝑁𝑟𝑟,𝑡𝑡 × 𝑁𝑁𝑟𝑟,𝑡𝑡 number of decisions to be determined for a 
server in a time slot. The number of combinations of scheduling decisions is at least (|𝒵𝒵|/|ℛ|)! × |ℛ| × |𝒯𝒯|, in 
which tasks are evenly assigned to servers and each task is processed by only one server. Thus, to reduce the 
decision dimension of the problem, we divide Problem (14) into two sub-problems: i) task partition and 
scheduling problem, and ii) edge server selection problem. In the task partition and scheduling problem, we aim 
to obtain the optimal task partition ratio and the execution order to minimize the computing latency given the 
offloading policy {𝜶𝜶,𝜷𝜷}. After that, we re-formulate the edge server selection problem as an MDP and utilize the 
DRL technique to obtain the optimal offloading and computing policy. 

SECTION V. Task Partition and Scheduling 
Multiple tasks offloaded from different zones can be received by an edge server in a time slot. The computing 
tasks can only be processed if the tasks scheduled priorly are executed. As a result, the overall computing time 
may vary depending on the task execution order in edge servers. In addition, the workload of a task can be 
divided and offloaded to two edge servers, i.e., receiver and helper RSUs. Workload allocation for a task also 
affects the overall service time. Therefore, we study task partition and scheduling to minimize the service 
latency given the offloading policy {𝜶𝜶,𝜷𝜷}. Based on Problem (14), the delay minimization problem can be 
formulated as follows: 

min
𝐱𝐱,{𝐈𝐈(𝑟𝑟,𝑡𝑡),∀𝑟𝑟,𝑡𝑡}

�𝑇𝑇𝑧𝑧,𝑡𝑡
service

𝑧𝑧∈𝒵𝒵
s. t. (14d), (14e), (14g).

 

(16a)(16b) 

Problem (16) is a mixed-integer programming, which involves a continuous variable x and an integer matrix 
variable �𝐈𝐈(𝑟𝑟,𝑡𝑡),∀𝑟𝑟, 𝑡𝑡�. Moreover, even if x is known, the remaining integer problem is a variation of the traveling 
salesman problem, which is an NP-hard problem. To reduce the time-complexity in problem-solving, we exploit 
the properties of task partition and scheduling and develop a heuristic algorithm to obtain an approximate result 
efficiently. To simplify the notations, we eliminate the time index 𝑡𝑡 in the remainder of the section since we 
consider the scheduling scheme for the tasks offloaded in one time slot. We further denote 𝑟𝑟(𝑧𝑧) and ℎ(𝑧𝑧) as the 
index of receiver and helper RSUs for task 𝑧𝑧, respectively. 

Lemma 1: 

If no task is queued after task 𝑧𝑧 for both the receiver RSU and the helper RSU, the optimal partition ratio for the 

task 𝑥𝑥𝑧𝑧∗ is min �max �0,𝑥𝑥
^
𝑧𝑧� , 1�, where 𝑥𝑥

^
𝑧𝑧 can be determined by Eq. (15), as shown at the bottom of the page. 

Proof: 

https://ieeexplore.ieee.org/document/#deqn14a-deqn14g
https://ieeexplore.ieee.org/document/#deqn14a-deqn14g
https://ieeexplore.ieee.org/document/#deqn14a-deqn14g
https://ieeexplore.ieee.org/document/#deqn16a-deqn16b
https://ieeexplore.ieee.org/document/#deqn15


Without considering the tasks queued later, the service time of task 𝑧𝑧 can be minimized by solving the following 
problem: 

minmax�𝑇𝑇𝑧𝑧,𝑟𝑟(𝑧𝑧)
C ,𝑇𝑇𝑧𝑧,ℎ(𝑧𝑧)

C �s. t. (14e). 

(17) 

Given that 0 < 𝑥𝑥𝑧𝑧 < 1, the optimal task partition strategy exists when 𝑇𝑇𝑧𝑧,𝑟𝑟(𝑧𝑧)
C = 𝑇𝑇𝑧𝑧,ℎ(𝑧𝑧)

C . The optimal task 

partition ratio is 𝑥𝑥𝑧𝑧∗ = 𝑥𝑥
^
𝑧𝑧. In addition, 𝑥𝑥𝑧𝑧∗ = max{0,𝑥𝑥

^
𝑧𝑧} = 0 when the helper RSU can fully process task 𝑧𝑧 in a 

shorter service time comparing to the queuing time in the receiver RSU, i.e., max �𝑇𝑇𝑧𝑧,𝑟𝑟(𝑧𝑧)
Q ,𝑇𝑇𝑧𝑧T� ≥

max �𝑇𝑇𝑧𝑧,ℎ(𝑧𝑧)
Q ,𝑇𝑇𝑧𝑧T + 𝜒𝜒𝑊𝑊𝑧𝑧

𝑅𝑅𝑟𝑟(𝑧𝑧),ℎ(𝑧𝑧)
� + 𝜒𝜒𝑊𝑊𝑧𝑧

𝐶𝐶ℎ(𝑧𝑧)
. Otherwise, 𝑥𝑥𝑧𝑧∗ = min{1,𝑥𝑥

^
𝑧𝑧} = 1, when the receiver RSU can process 

task 𝑧𝑧 by itself in a shorter service time comparing to the queuing time in the helper RSU, 

i.e., max �𝑇𝑇𝑧𝑧,𝑟𝑟(𝑧𝑧)
Q ,𝑇𝑇𝑧𝑧T� ≤ 𝑇𝑇𝑧𝑧,ℎ(𝑧𝑧)

Q − 𝜒𝜒𝑊𝑊𝑧𝑧
𝐶𝐶𝑟𝑟(𝑧𝑧)

. 

Lemma 1 shows the optimal partition ratio from the individual task perspective. However, multiple tasks could 
be offloaded from different zones to an RSU, where the role of the RSU could be different for those tasks. The 
task partition strategy for a single task could affect the computing latency for the task queued later. Therefore, 
we will investigate the optimality of the task partition scheme in Lemma 1 in terms of minimizing the overall 
service time for all tasks 𝑧𝑧 ∈ 𝒵𝒵. 

Lemma 2: 

Assume that the following conditions are met: 

• The computing capability 𝐶𝐶𝑟𝑟 is identical for all edge servers. 

• The receiver RSU and helper RSU are different for each task, i.e., 𝑟𝑟(𝑧𝑧) ≠  ℎ(𝑧𝑧). 

• For the helper RSUs for all tasks, the queuing time is not shorter than the offloading time, i.e., 𝑇𝑇𝑧𝑧,ℎ(𝑧𝑧)
𝑄𝑄 ≥

𝑇𝑇𝑧𝑧,𝑟𝑟(𝑧𝑧)
𝑇𝑇 + 𝑇𝑇𝑟𝑟(𝑧𝑧),ℎ(𝑧𝑧)

𝑅𝑅 ,∀𝑧𝑧, 𝑟𝑟. 

Then, given the execution order of tasks, the optimal solution of Problem (16) follows the results shown 

in Lemma 1, i.e., 𝑥𝑥𝑧𝑧∗ = min{max{0,𝑥𝑥
^
𝑧𝑧},1},∀𝑧𝑧. 

Proof: 

See Appendix A. 

We have proved that, given the task execution order, the partition ratio in Lemma 1 is the optimal solution for 
Problem (16) under certain assumptions. Next, we will explore the optimal scheduling order given the workload 
allocation policy. 

Lemma 3: 

Consider only one available RSU in the system, i.e., 𝑟𝑟(𝑧𝑧) = ℎ(𝑧𝑧). Under the assumption in which the offloading 
time is proportional to the size of the task, the optimal task execution order is to schedule the task with the 
shortest service time first. 

Proof: 

See Appendix B. 

https://ieeexplore.ieee.org/document/#deqn16a-deqn16b
https://ieeexplore.ieee.org/document/#deqn16a-deqn16b


According to the properties provided in Lemmas 1–3, we design a heuristic algorithm to schedule the task 
execution order and allocate workload among RSUs. The full algorithm is presented in Algorithm 1. In the 
algorithm, we allocate the task that has the shortest service time first. For each task, we divide the workload 
between the receiver RSU and helper RSU according to the optimal partition ratio in Lemma 1. In the worst case, 
in which all zones have tasks to offload in a time slot, the algorithm requires |𝒵𝒵|(|𝒵𝒵| + 1)/2 iterations to 
compute the task partition and scheduling results, which can still provide fast responses in the dynamic 
environment. 

SECTION Algorithm 1 Task Partition and Scheduling Algorithm (TPSA) 
1. At time slot 𝑡𝑡, initialize set 𝒮𝒮 = {𝑧𝑧|𝑊𝑊𝑧𝑧,𝑡𝑡 ≠ 0}. 
2. Initialize 𝜓𝜓𝑟𝑟 = 𝑇𝑇𝑟𝑟,𝑡𝑡

Q0, 𝐈𝐈(𝑟𝑟,𝑡𝑡) = 0, and 𝑗𝑗𝑟𝑟 = 1,∀𝑟𝑟. 
3.  while |𝒮𝒮| ≠ 0 do 
4. Initialize 𝑄𝑄𝑧𝑧 = 0,∀𝑧𝑧 ∈ 𝒮𝒮. 
5. for Task 𝑧𝑧 = 1: |𝒮𝒮| do 
6. Update 𝑟𝑟(𝑧𝑧) = {𝑟𝑟|𝛼𝛼𝑧𝑧,𝑟𝑟,𝑡𝑡 = 1} and = {𝑟𝑟|𝛽𝛽𝑧𝑧,𝑟𝑟,𝑡𝑡 = 1}. 
7. Update partition ratio 𝑥𝑥𝑧𝑧 = min{max{0,𝑥𝑥

^
𝑧𝑧},1},where 𝑥𝑥

^
 is obtained by (15). 

8. Update 𝜓𝜓
^
𝑧𝑧,𝑟𝑟(𝑧𝑧) = 𝜓𝜓𝑟𝑟(𝑧𝑧) + 𝑇𝑇𝑧𝑧,𝑟𝑟(𝑧𝑧)

C . 
9. Update 𝜓𝜓

^
𝑧𝑧,ℎ(𝑧𝑧) = 𝜓𝜓ℎ(𝑧𝑧) + 𝑇𝑇𝑧𝑧,ℎ(𝑧𝑧)

C . 
10. If 𝑥𝑥𝑧𝑧 = 1, then 𝑄𝑄𝑧𝑧 = 𝜓𝜓

^
𝑧𝑧,ℎ(𝑧𝑧). 

11. If 𝑥𝑥𝑧𝑧 = 0, then 𝑄𝑄𝑧𝑧 = 𝜓𝜓
^
𝑧𝑧,𝑟𝑟(𝑧𝑧). 

12. If 0 < 𝑥𝑥𝑧𝑧 < 1, then 𝑄𝑄𝑧𝑧 = (𝜓𝜓
^
𝑧𝑧,𝑟𝑟(𝑧𝑧) + 𝜓𝜓

^
𝑧𝑧,ℎ(𝑧𝑧))/2. 

13. end for 
14. Find 𝑧𝑧∗ = argmin𝑧𝑧𝑄𝑄𝑧𝑧. 
15. Update 𝜓𝜓𝑟𝑟(𝑧𝑧∗) = 𝜓𝜓

^
𝑧𝑧∗,𝑟𝑟(𝑧𝑧∗) and 𝜓𝜓ℎ(𝑧𝑧∗) = 𝜓𝜓

^
𝑧𝑧∗,ℎ(𝑧𝑧∗). 

16. Update order matrix 𝐼𝐼𝑧𝑧∗,𝑗𝑗𝑟𝑟(𝑧𝑧∗)

𝑟𝑟(𝑧𝑧∗),𝑡𝑡 = 1, and 𝐼𝐼𝑧𝑧∗,𝑗𝑗ℎ(𝑧𝑧∗)

ℎ(𝑧𝑧∗),𝑡𝑡 = 1.                                                          

17. Update 𝑗𝑗𝑟𝑟(𝑧𝑧∗) = 𝑗𝑗𝑟𝑟(𝑧𝑧∗) + 1, and 𝑗𝑗ℎ(𝑧𝑧∗) = 𝑗𝑗ℎ(𝑧𝑧∗) + 1. 
18. 𝒮𝒮 = 𝒮𝒮 ∖ {𝑧𝑧∗}. 
19. end while 
20. 𝑇𝑇𝑟𝑟,𝑡𝑡+1

Q0 = 𝜓𝜓𝑟𝑟 − 𝜖𝜖,∀𝑟𝑟. 
 

 

SECTION VI. AI-Based Collaborative Computing Approach 
To deal with the server selection problem, we utilize a DRL technique to conduct the complex decision-making 
problem in a dynamic environment. To implement the DRL method, we first re-formulate the problem into an 
MDP. An MDP can be defined by a tuple (𝕊𝕊,𝔸𝔸,𝕋𝕋,ℂ), where 𝕊𝕊 represents the set of system states; 𝔸𝔸 represents 
the set of actions; 𝕋𝕋 = {𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)} is the set of transition probabilities; and ℂ is the set of real-value cost 
functions. The term 𝐶𝐶 (𝑠𝑠,𝑎𝑎) represents the cost when the system is at state 𝑠𝑠 ∈ 𝕊𝕊 and an action 𝑎𝑎 ∈ 𝔸𝔸 is taken. 
A policy 𝜋𝜋 represents a mapping from 𝕊𝕊 to 𝔸𝔸. In our problem, the state space, action space, and cost model in an 
MDP are summarized as follows: 
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1. State space: In time slot 𝑡𝑡, the network state, 𝑠𝑠𝑡𝑡, includes the computing data amount in zones, 
i.e., {𝑊𝑊𝑧𝑧,𝑡𝑡,∀𝑧𝑧}, the average vehicle speed, i.e., {𝑣𝑣𝑧𝑧,𝑡𝑡 ,∀𝑧𝑧}, and the delay for edge servers to finish the 
tasks offloaded in previous time slots {1, … , 𝑡𝑡 − 1}, i.e., {𝑇𝑇𝑟𝑟,𝑡𝑡

Q0,∀𝑟𝑟}. 

2. Action space: For zone 𝑧𝑧 and time slot 𝑡𝑡, the action taken by the network includes three elements: the 
index of receiver RSU, helper RSU, and deliver RSU, which can be represented by {𝑎𝑎𝑧𝑧,𝑡𝑡

1 ,𝑎𝑎𝑧𝑧,𝑡𝑡
2 ,𝑎𝑎𝑧𝑧,𝑡𝑡

3 }, 
respectively. 

3. Cost model: Given the state-action pair, the overall service time can be available by the TPSA algorithm. 
Thus, according to the objective function (14), the cost function can be formulated as 

𝐶𝐶(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = ��𝑇𝑇𝑧𝑧,𝑡𝑡
service𝟏𝟏𝑧𝑧,𝑡𝑡 + 𝜆𝜆𝑊𝑊𝑧𝑧,𝑡𝑡�1 − 𝟏𝟏𝑧𝑧,𝑡𝑡��

𝑧𝑧∈𝒵𝒵

. 

(18) 

Then, to obtain the expected long-term discounted cost, the value function 𝑉𝑉 of state 𝑠𝑠 is 

𝑉𝑉(𝑠𝑠,𝜋𝜋) = 𝔼𝔼 ��𝛾𝛾𝑡𝑡𝐶𝐶(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)|𝑠𝑠0 = 𝑠𝑠,𝜋𝜋
∞

𝑡𝑡=0

� , 

(19) 

where the parameter 𝛾𝛾 is a discount factor. By minimizing the value function of each state, we can obtain the 
optimal offloading and computing policy 𝜋𝜋∗; that is, 

𝜋𝜋∗(𝑠𝑠) = argmin𝑎𝑎�𝑝𝑝(𝑠𝑠′|𝑠𝑠,𝑎𝑎)
𝑠𝑠′

[𝐶𝐶(𝑠𝑠, 𝑎𝑎) + 𝛾𝛾𝛾𝛾(𝑠𝑠′,𝜋𝜋∗)]. 

(20) 

Due to the limited knowledge on transition probability between the states and the sizeable state-action space in 
the network, the traditional dynamic programming is not able to find the optimal policy efficiently. Therefore, 
we adopt DRL to solve the proposed server selection problem. There are three common DRL algorithms: deep Q 
network (DQN), actor-critic (AC), and DDPG. DQN is a powerful tool to obtain the optimal policy with a high 
dimension in the state space. Besides an online neural network (evaluation network) to learn the Q value, a 
frozen network (target network) and the experience replay technique are applied to stabilize the learning 
process. However, the method shows the inefficiency on the network with a high dimension in the action space, 
while in our problem, the large number of zones leads the high dimension in both state and action spaces. On 
the other hand, both AC and DDPG tackle the problem with a high action dimension by the policy gradient 
technique. Two networks, i.e., actor and critic networks, are adopted, in which the critic evaluates the Q value, 
and the actor updates policy parameters in the direction suggested by the critic. Moreover, DDPG combines the 
characteristics of DQN on top of the AC algorithm to learning the Q value and the deterministic policy by the 
experience relay and the frozen network, thereby helping reach the fast convergence [34]. In this paper, we 
exploit the DDPG algorithm to obtain the optimal collaborative computing policy in vehicular networks. 

The illustration of our AI-based collaborative computing approach is shown in Fig. 3. The system states are 
observed from the MEC-enabled vehicular network. After state 𝑠𝑠𝑡𝑡 is obtained, the optimal server selection policy 
can be computed by the DDPG algorithm. According to the server selection results, the corresponding task 
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partition and scheduling policy can be obtained by the proposed TPSA algorithm. Then, the cost of the 
corresponding state-action pair and the next system state can be observed from the environment. The state 
transition set (𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) is stored in the replay memory for training the neural networks. In DDPG, four 
neural networks are employed. Two of the four networks are evaluation networks, where the weights are 
updated when the neural network is trained, and the other two networks are target networks, where the 
weights are replaced periodically from the evaluation network. For both evaluation and target networks, two 
neural networks, i.e., actor and critic networks, are adopted to evaluate the optimal policy and Q value, 
respectively. The weights in evaluation and target critic networks are denoted by 𝜃𝜃𝑄𝑄 and 𝜃𝜃𝑄𝑄′, and the weights in 
evaluation and target actor networks are denoted by 𝜃𝜃𝜇𝜇 and 𝜃𝜃𝜇𝜇′, respectively. 

 
Fig. 3. AI-based collaborative computing approach. 
 

In each training step, a batch of experience tuples are extracted from the experience replay memory, where the 
number of tuples in a mini-batch is denoted by 𝑁𝑁. The critics in both evaluation and target networks 
approximate the value function and compute the loss function 𝐿𝐿, where 

𝐿𝐿(𝜃𝜃𝑄𝑄) = 𝐄𝐄 ��𝑦𝑦𝑡𝑡 − 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡|𝜃𝜃𝑄𝑄)�2� . 

(21) 

The term 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡|𝜃𝜃𝑄𝑄) represents the Q function approximated by the evaluation network. The value of 𝑦𝑦𝑡𝑡 is 
obtained from the value function approximated by the target network, where 

𝑦𝑦𝑡𝑡 = 𝐶𝐶(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛾𝛾𝛾𝛾�𝑠𝑠𝑡𝑡+1, 𝜇𝜇′�𝑠𝑠𝑡𝑡+1�𝜃𝜃𝜇𝜇
′��𝜃𝜃𝑄𝑄′�. 

(22) 

The term 𝜇𝜇′(𝑠𝑠𝑡𝑡+1|𝜃𝜃𝜇𝜇′) represents the action taken at 𝑠𝑠𝑡𝑡+1 given by the target actor network. By minimizing the 
loss function (21), the weights in the evaluation critic, i.e., 𝜃𝜃𝑄𝑄, can be updated. On the other hand, to update the 
weights of the evaluation actor network, the policy gradient can be represented as 

∇𝜃𝜃𝜇𝜇𝐽𝐽 ≈
1
𝑁𝑁�∇𝑎𝑎𝑄𝑄(𝑠𝑠,𝑎𝑎|𝜃𝜃𝑄𝑄)| 𝑠𝑠=𝑠𝑠𝑡𝑡,

𝑎𝑎=𝜇𝜇(𝑠𝑠𝑡𝑡)
𝑡𝑡

∇𝜃𝜃𝜇𝜇𝜇𝜇(𝑠𝑠|𝜃𝜃𝜇𝜇)|𝑠𝑠=𝑠𝑠𝑡𝑡 . 

(23) 

From (23), it can be seen that actor weights are updated in each training step according to the direction 
suggested by the critic. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6687307/9286928/9119487/li3-3003036-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6687307/9286928/9119487/li3-3003036-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6687307/9286928/9119487/li3-3003036-large.gif
https://ieeexplore.ieee.org/document/#deqn21
https://ieeexplore.ieee.org/document/#deqn23
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/6687307/9286928/9119487/li3-3003036-large.gif


Although the DDPG algorithm is able to tackle the problem with a high dimension of state and action spaces, it is 
inefficient to apply the DDPG algorithm directly in our problem due to the 2-dimensional transportation network 
and the multiple dimensions of the input. A huge number of neurons in a network will be deployed if the 
conventional neural network with fully connected layers is adopted. To improve the algorithm efficiency, we 
utilize CNN in both actor and critic networks to exploit the correlation of states and actions among different 
zones. The structure of actor and critic networks is shown in Fig. 4. Before fully connected layers, convolution 
layers and pooling layers are applied to learn the relevant features of the inputs among zones. Due to the weight 
sharing feature of CNN filters, the number of training parameters can be significantly reduced compared to the 
network with fully connected layers [35]. After several convolution and pooling layers, the output of the CNN 
combines the state of edge servers and forwards to fully connected layers. 

 
Fig. 4. The structure of actor and critic neural networks. 
 

The proposed AI-based collaborative computing approach is provided in Algorithm 2, where 𝜏𝜏 is a small number 
less than 1. In our algorithm, to learn the environment efficiently, the system will continuously train the 
parameter by 𝑁𝑁𝑡𝑡 times after 𝑁𝑁𝑒𝑒  time step, where 𝑁𝑁𝑒𝑒 > 𝑁𝑁𝑡𝑡. 

SECTION Algorithm 2 AI-Based Collaborative Computing Approach 
1. Initialize critic network 𝑄𝑄(𝑠𝑠0,𝑎𝑎0|𝜃𝜃𝑄𝑄) and actor network 𝜇𝜇(𝑠𝑠0|𝜃𝜃𝜇𝜇) with weights 𝜃𝜃𝑄𝑄 and 𝜃𝜃𝜇𝜇. 
2. Initialize target network with weights 𝜃𝜃𝑄𝑄′ = 𝜃𝜃𝑄𝑄 and 𝜃𝜃𝜇𝜇′ = 𝜃𝜃𝜇𝜇. 
3. Initialize the experience replay buffer. 
4. Initialize a random vector 𝒩𝒩 as the noise for action exploration. 
5. for episode = 1: G do 
6. Initialize environment, and observe the initial state 𝑠𝑠0. 
7. for time slot 𝑡𝑡 = 1:𝑇𝑇 do 
8. Select action 𝑎𝑎𝑡𝑡 = 𝜇𝜇(𝑠𝑠|𝜃𝜃𝜇𝜇) + 𝒩𝒩. 
9. Let 𝛼𝛼𝑧𝑧,𝑎𝑎𝑧𝑧,𝑡𝑡

1 ,𝑡𝑡, 𝛽𝛽𝑧𝑧,𝑎𝑎𝑧𝑧,𝑡𝑡
2 ,𝑡𝑡, and 𝛾𝛾𝑧𝑧,𝑎𝑎𝑧𝑧,𝑡𝑡

3 ,𝑡𝑡 equal to 1. 
10. Compute the task partition and scheduling results by Algorithm 1. 
11. Observe next state 𝑠𝑠𝑡𝑡+1 and cost 𝐶𝐶(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡). 
12. Store transition (𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) into the experience replay buffer. Delete the oldest 

transition set  
if the buffer is full. 

13. if 𝑘𝑘 mod 𝑁𝑁𝑒𝑒 == 0 then 
14. for 𝑗𝑗 = 1:𝑁𝑁𝑡𝑡  do 
15. Sample a mini-batch of 𝑁𝑁 samples. 
16. Update 𝑦𝑦𝑡𝑡 by (22). 
17. Update the weights in the evaluation criticnetwork by minimizing the loss in (21). 
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18. Update the weights in the evaluation actornetwork using sampled policy 
gradientpresented in (23). 

19. Update target networks: 𝜃𝜃𝑄𝑄′ = 𝜏𝜏𝜃𝜃𝑄𝑄 + (1 − 𝜏𝜏)𝜃𝜃𝑄𝑄′; 𝜃𝜃𝜇𝜇′ = 𝜏𝜏𝜃𝜃𝜇𝜇 + (1 − 𝜏𝜏)𝜃𝜃𝜇𝜇′. 
20. end for 
21. end if 
22. end for 
23. end for 

 

SECTION VII. Performance Evaluation 
In this section, we first present the efficiency of the proposed TPSA algorithm in task partition and scheduling. 
Then, we evaluate the performance of the proposed AI-based collaborative computing approach in a vehicular 
network simulated by VISSIM [36], where TPSA is applied to schedule computing tasks according to the policy 
given by the DDPG algorithm. 

A. Task Partition and Scheduling Algorithm 
We first evaluate the performance of the proposed TPSA algorithm. In the simulation, we consider that tasks can 
be offloaded to five edge servers with an identical offloading rate of 6 Mbits/s. The communication rate among 
the servers is 8 Mbits/s. We set that the computing capability of the servers is 8 GC/s, and the number of 
computation cycles needed for processing 1 Mbit is 4 GC. The computing data amount of tasks is uniformly 
distributed in the range of [1, 21] Mbits. For each task, the receiver and helper RSUs are randomly selected from 
the five servers. We compare the proposed TPSA algorithm with brute-force and random schemes. In the brute-
force scheme, we utilize an exhaustive search for finding the optimal scheduling order. In the random scheme, 
we randomly assign the scheduling order of the tasks. Note that, for both brute-force and random schemes, we 
adopt the optimal task partition ratio in workload allocation. The simulation results presented in Figs. 
5(a) and 5(b) are averaged over 200 rounds of Monte Carlo simulations. 
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Fig. 5. (a) Average service delay among the three task partition and scheduling schemes with respect to the 
number of tasks. (b) Average computation runtime among the three task partition and scheduling schemes with 
respect to the number of tasks. 
 

The service delay performance of the proposed algorithm is shown in Fig. 5(a). It can be seen that an increase in 
the task number leads to increasing overall service time, and the increasing rate of the random scheme is the 
highest among the three schemes. The proposed TPSA algorithm can achieve a performance very close to the 
brute-force scheme. Moreover, we compare the runtime between the proposed TPSA and the brute-force 
scheme. As shown in Fig. 5(b), as the number of the task increases, the runtime of brute-force scheme increases 
exponentially, while the proposed TPSA algorithm has imperceptible runtime to compute the scheduling result 
that is close to the optimal one. In summary, the proposed TPSA algorithm can achieve a near-optimal 
performance for task partition and scheduling with low computation complexity. 

B. AI-Based Collaborative Computing Approach 
In this subsection, we evaluate the performance of the proposed AI-based collaborative computing approach. In 
the simulation, we consider an 800 m ×800 m transportation system, where the transportation topology is 
shown in Fig. 6. Nine RSUs with edge servers are deployed, as indicated in the figure. We generate vehicle traffic 
by VISSIM [36], where 200 vehicles are traveling in the area. The speed of vehicles depends on the speed limit 
on the road and the distance to the vehicle ahead. For each vehicle, the computing tasks are generated using a 
Poisson process, and the input data amount of each task is uniformly distributed in the range of [2, 5] Mbits. The 
length and width of a zone are 40 m and 10 m (2 driving lanes), respectively. Other network parameter settings 
are presented in Table I. We test the system performance within a duration of 20 seconds. 
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TABLE I Network Parameters 

𝑃𝑃𝑉𝑉 𝑃𝑃𝑅𝑅 𝜎𝜎𝑟𝑟2,𝜎𝜎𝜐𝜐2 𝜆𝜆 𝜖𝜖 
27 dBm 37 dBm -93 dBm 50 1 s 

𝑓𝑓 𝜒𝜒 𝑁𝑁𝑒𝑒 ,𝑁𝑁𝑡𝑡  𝛿𝛿𝑜𝑜 𝛿𝛿𝐷𝐷 
2800 MHz 1200 C/bits 80, 25 7 dB 7 dB 

 

 
Fig. 6. The transportation network topology for simulation. 
 

The neural network structures of the DDPG algorithm are presented in Table II. The initial learning rates of the 
actor and critic networks are 1e-5 and 1e-4, respectively, and the learning rates are attenuated by 0.991 in every 
500 training steps. The experience replay buffer can adopt 8,000 state-action transitions, and in each training 
step, the number of transition tuples selected for training, i.e., the batch size, is 128. We adopt a soft parameter 
replacement technique to update the parameters in the target network, where τ is 0.01. We compare the 
performance of the proposed AI-based collaborative computing approach with three approaches. In 
the Greedy approach, vehicles always offload their tasks to the RSU with the highest SNR, and the received 
computing tasks will not be collaboratively computed with other RSUs. In the Greedy + TPSA approach, a vehicle 
offload their tasks to the RSU with the highest SNR, and the RSU randomly selects another RSU to compute the 
task collaboratively. The task partition and scheduling policy follows the TPSA algorithm, and the computing 
results are delivered by the receiver RSU. In the Random+TPSA approach, the receiver, helper, and deliver RSUs 
are selected randomly, and the TPSA algorithm is applied to determine the task partition ratio and the execution 
order. 

TABLE II Neural Network Structure 
 

Actor Network   
Layer Number of neurons Activation function 
CONV1 5 × 1 × 2 × 10, stride 1 relu 
POOL1 2 ×  1 none 
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Data Concatenation and Batch Normalization Layer   
FC1 1400 tanh 
FC2 1400 tanh 
FC3 5 ×  𝐴𝐴 ×  𝐵𝐵 tanh 
Critic Network   
Layer Number of neurons Activation function 
CONV1 5 ×  1 ×  2 ×  40, stride I relu 
POOL1 2 ×  1 none 
CONV2 3 ×  1 ×  40 ×  10, stride 1 relu 
POOL2 2 ×  1 none 
Data Concatenation and Batch Normalization Layer   
FC1 640 relu 
FC2 512 relu 
FC3 128 none 
FC4 1 relu 

 

The overall weighted computing cost with respect to task arrival rates is shown in Fig. 7. Our proposed approach 
can achieve the lowest computing cost compared to the other three approaches. The random approach suffers 
the highest cost compared to others due to the inefficient server selection in the scheme. Moreover, the 
greedy+TPSA approach achieves a lower cost compared to the greedy approach. The reason is that parallel 
computing is able to reduce the overall service time, and the proposed TPSA is able to achieve near-optimal task 
partition and scheduling results. However, the greedy approach selects the servers according to the 
instantaneous cost of the network rather than the value in the long term. Therefore, the greedy + TPSA 
approach cannot attain a lower cost compared to the proposed AI-based approach. 

 
Fig. 7. Average weighted computing delay cost versus computing task arrive rate per vehicle. 
 

As indicated in Eq. (18), the service cost consists of the service delay and the failure penalty. The results of the 
service failure percentage is shown in Fig. 8. Similar to the service cost, the proposed AI-based approach 
achieves the lowest failure percentage among the four approaches. Correspondingly, as shown in Fig. 9, the 
proposed approach can successfully process the highest amount of data among the four approaches. On the 
other hand, the results of the average service delay for 1 Mbits successful computed data are shown in Fig. 10. 
Compared to the other three approaches, the proposed scheme reduces the service delay significantly. 
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Furthermore, the delay of the random approach increases exponentially since less amount of data can be 
successfully computed when the task arrival rate is high. 

 
Fig. 8. Average percentage of service failure versus computing task arrive rate per vehicle. 

 
Fig. 9. Average computing data amount which is successfully computed versus computing task arrive rate per 
vehicle. 

 
Fig. 10. Average service delay for 1 Mbits successful computed data versus computing task arrive rate per 
vehicle. 
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The convergence performance of the proposed AI-based approach is shown in Fig. 11, where the highlighted line 
represents the moving average from 50 samples around the corresponding point. Note that in our algorithm, we 
explore multiple times in each training step. It can be seen that our approach converges after 10,000 episodes, 
or equivalently, after the network being trained by around 3,000 episodes, i.e., 60,000 training steps. 

 
Fig. 11. Convergence performance of the proposed algorithm, where the task arrival rate is 0.1 request/sec. 
 

SECTION VIII. Conclusion 
We have introduced a novel collaboration computing framework to reduce computing service latency and 
improve service reliability in MEC-enabled vehicular networks. The proposed framework addresses the 
challenge of maintaining computing service continuity for vehicle users with high mobility. As a result, our 
collaborative computing approach is able to support proactive decision making for computation offloading 
through learning the network dynamics. Our work can be applied to offer low-latency and high-reliable edge 
computing services to vehicle users in a complex network environment, such as urban transportation systems. In 
the future, we will investigate multi-agent learning approach to compute the optimal computing strategy with 
the limited information collected by the edge servers. 

Appendix A Proof of Lemma 2 
An illustration of task partition is shown in Fig. 12. Consider that the workload of all tasks are divided and shared 
among RSUs following the results in Lemma 1. We focus on a single task which is numbered as task 1 as shown 
in the figure. As indicated in the second and the third assumptions in Lemma 2, the computing load of task 1 is 
shared between RSUs 𝑟𝑟 (1) and ℎ (1). Tasks 2 and 3 are scheduled after task 1 in RSUs 𝑟𝑟 (1) and ℎ (1), 
respectively. In addition, 𝑇𝑇2,ℎ(2)

𝑄𝑄 ≥ 𝑇𝑇2,𝑟𝑟(2)
𝑇𝑇 + 𝑇𝑇𝑟𝑟(2),ℎ(2)

𝑅𝑅 . We then prove that, under the assumption in Lemma 2, 
the overall service time will be increased if the partition ratio of task 1 does not follow the policy presented 
in Lemma 1. 
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Fig. 12. An illustration of task partition. 
 

Consider that, for task 1, the workload assigned to RSU 𝑟𝑟 (1) is decreased by Δ𝑥𝑥. Correspondingly, the computing 
time of task 1 in server 𝑟𝑟 (1) is reduced by Δ𝑡𝑡1

𝑟𝑟(1) = Δ𝑥𝑥/𝐶𝐶𝑟𝑟(1), while the computing time of task 1 in server ℎ (1) 

is increased by Δ𝑡𝑡1
ℎ(1) = Δ𝑥𝑥/𝐶𝐶ℎ(1). Thus, the service time of task 1 is increased by Δ𝑇𝑇1 = Δ𝑥𝑥/𝐶𝐶ℎ(1). Denote the 

new partition ratio of task 2, after task partition ratio 𝑥𝑥1 is decreased by Δ𝑥𝑥, as 𝑥𝑥
^
2. We then list following cases 

to analyze the time deduction from the tasks queued after the task 1: 

• Case 1: Task 2 regards RSU 𝑟𝑟 (1) as the receiver RSU, i.e., 𝑟𝑟 (1) =𝑟𝑟 (2), and 𝑥𝑥
^
2 < 1. According to Eq. 

(12) and Lemma 1, the optimal service time of task 2 is 

𝑇𝑇2service = max�𝑇𝑇2T,𝑇𝑇2,𝑟𝑟(1)
Q �

+
�𝑇𝑇2,ℎ(2)

Q − max�𝑇𝑇2T,𝑇𝑇2,𝑟𝑟(1)
Q ��𝐶𝐶ℎ(2) + 𝜒𝜒𝑊𝑊2

𝐶𝐶𝑟𝑟(1) + 𝐶𝐶ℎ(2)
.
 

(24) 

After task partition ratio 𝑥𝑥1 is decreased by Δ𝑥𝑥, task 2 can be processed by RSU 𝑟𝑟 (1) in advance by Δ𝑡𝑡1
𝑟𝑟(1). The 

new optimal service time of task 2 is 

(𝑇𝑇2service)′ = max �𝑇𝑇2T,𝑇𝑇2,𝑟𝑟(1)
Q − Δ𝑡𝑡1

𝑟𝑟(1)�

+
�𝑇𝑇2,ℎ(2)

Q − max �𝑇𝑇2T,𝑇𝑇2,𝑟𝑟(1)
Q − Δ𝑡𝑡1

𝑟𝑟(1)�� 𝐶𝐶ℎ(2) + 𝜒𝜒𝑊𝑊2

𝐶𝐶𝑟𝑟(1) + 𝐶𝐶ℎ(2)
.
 

(25) 

The service time deduction on task 2 can be obtained by subtracting Eq. (24) by Eq. (25). We found the reduced 
service time Δ𝑇𝑇2 ≤ Δ𝑡𝑡1

𝑟𝑟(1)𝐶𝐶𝑟𝑟(1)/(𝐶𝐶𝑟𝑟(1) + 𝐶𝐶ℎ(2)), where equality can be reached when 𝑇𝑇2T ≤ 𝑇𝑇2,𝑟𝑟(1)
Q − Δ𝑡𝑡1

𝑟𝑟(1). 

• Case 2: Task 2 regards RSU 𝑟𝑟 (1) as the receiver RSU, i.e., 𝑟𝑟 (1) =𝑟𝑟 (2), and 𝑥𝑥
^
2 = 1. In this case, the new 

optimal service time of task 2 is 
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(𝑇𝑇2service)′ = max �𝑇𝑇2T,𝑇𝑇2,𝑟𝑟(1)
Q − Δ𝑡𝑡1

𝑟𝑟(1)� +
𝜒𝜒𝑊𝑊2

𝐶𝐶𝑟𝑟(1)
. 

(26) 

Via subtracting Eq. (24) by Eq. (26), we have 

Δ𝑇𝑇2 ≤ Δ𝑡𝑡1
𝑟𝑟(1) −

�𝜒𝜒𝑊𝑊𝑧𝑧 𝐶𝐶𝑟𝑟(1)⁄ − 𝑇𝑇2,ℎ(2)
Q + 𝑇𝑇2,𝑟𝑟(1)

Q �𝐶𝐶ℎ(2)

𝐶𝐶𝑟𝑟(1) + 𝐶𝐶ℎ(2)

≤
Δ𝑡𝑡1

𝑟𝑟(1)𝐶𝐶𝑟𝑟(1)

�𝐶𝐶𝑟𝑟(1) + 𝐶𝐶ℎ(2)�
,

 

(27) 

where equality can be achieved when 𝑇𝑇2T ≤ 𝑇𝑇2,𝑟𝑟(1)
Q − Δ𝑡𝑡1

𝑟𝑟(1). 

• Case 3: Task 2 regards RSU 𝑟𝑟 (1) as the helper RSU, i.e., 𝑟𝑟 (1) =h (2). In this case, the new optimal service 
time of task 2 is 

(𝑇𝑇2service)′ = max �𝑇𝑇2T,𝑇𝑇2,𝑟𝑟(2)
Q − Δ𝑡𝑡1

𝑟𝑟(2)�}

+
�𝑇𝑇2,𝑟𝑟(1)

Q − Δ𝑡𝑡1
𝑟𝑟(2) − max�𝑇𝑇2T,𝑇𝑇2,𝑟𝑟(2)

Q ��𝐶𝐶𝑟𝑟(1) + 𝜒𝜒𝑊𝑊2

𝐶𝐶𝑟𝑟(2) + 𝐶𝐶𝑟𝑟(1)
.
 

(28) 

Similar as case 1, the reduced service time for task 2 is Δ𝑇𝑇2 = Δ𝑡𝑡1
𝑟𝑟(1)𝐶𝐶𝑟𝑟(1)/(𝐶𝐶𝑟𝑟(1) + 𝐶𝐶𝑟𝑟(2)). 

Considering that the computing capabilities Cr are identical for all servers (the first assumption in Lemma 2), the 
maximum service time deduction for task 2 is Δ𝑡𝑡1

𝑟𝑟(1)/2. For all tasks queued after task 1 in RSU 𝑟𝑟 (1), the overall 

service time deduction is less than Δ𝑡𝑡1
𝑟𝑟(1)[1/2 + (1/2)2 + (1/2)3 + ⋯ ], which is always less than Δ𝑡𝑡1

𝑟𝑟(1). We 
omit the proof for the case when the workload assigned in RSU h (1) is decreased by Δ𝑥𝑥 due to the similarity. 
Therefore, we obtain that, under the assumptions presented in Lemma 2, the overall service time will be 
increased if the workload allocation does not follow the task partition ratio presented in Lemma 1. 

Appendix B Proof of Lemma 3 
Suppose the tasks in edge server 𝑟𝑟 are scheduled by the shortest-task-first rule, and task 2 is queued after the 
task 1. Then, we have 

max�𝑇𝑇1,𝑟𝑟
Q ,𝑇𝑇1,𝑟𝑟

T � + 𝑇𝑇1,𝑟𝑟
P ≤ max�𝑇𝑇1,𝑟𝑟

Q ,𝑇𝑇2,𝑟𝑟
T � + 𝑇𝑇2,𝑟𝑟

P . 

(29) 

If the order of task 1 and task 2 are switched with each other, the service time of task 2 will be decreased by 

𝐷𝐷 = max�max�𝑇𝑇1,𝑟𝑟
Q ,𝑇𝑇1,𝑟𝑟

T � + 𝑇𝑇1,𝑟𝑟
P ,𝑇𝑇2,𝑟𝑟

T � − max�𝑇𝑇1,𝑟𝑟
Q ,𝑇𝑇2,𝑟𝑟

T � . 
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(30) 

On the other hand, the service time of task 1 will be increased by 

𝐼𝐼 = max�𝑇𝑇1,𝑟𝑟
Q ,𝑇𝑇2,𝑟𝑟

T � + 𝑇𝑇2,𝑟𝑟
P − max�𝑇𝑇1,𝑟𝑟

Q ,𝑇𝑇1,𝑟𝑟
T � . 

(31) 

From (29), we can derive that 𝐼𝐼 ≥ 𝑇𝑇1,𝑟𝑟
P . Then, the overall service time of tasks 1 and 2 will be increased by 

𝐼𝐼 − 𝐷𝐷 ≥ 𝑇𝑇1,𝑟𝑟
P − max�max�𝑇𝑇1,𝑟𝑟

Q ,𝑇𝑇1,𝑟𝑟
T � + 𝑇𝑇1,𝑟𝑟

P ,𝑇𝑇2,𝑟𝑟
T �

+ max�𝑇𝑇1,𝑟𝑟
Q ,𝑇𝑇2,𝑟𝑟

T � .
 

(32) 

We then list the three scenarios on 𝑇𝑇2,𝑟𝑟
T : 

• Case 1: 𝑇𝑇2,𝑟𝑟
T ≥ max{𝑇𝑇1,𝑟𝑟

Q ,𝑇𝑇1,𝑟𝑟
T } + 𝑇𝑇1,𝑟𝑟

P . In this case, 𝐼𝐼 − 𝐷𝐷 ≥ 𝑇𝑇1,𝑟𝑟
P ≥ 0. 

• Case 2: 𝑇𝑇1,𝑟𝑟
Q ≤ 𝑇𝑇2,𝑟𝑟

T ≤ max�𝑇𝑇1,𝑟𝑟
Q ,𝑇𝑇1,𝑟𝑟

T � + 𝑇𝑇1,𝑟𝑟
P . In this case, 𝐼𝐼 − 𝐷𝐷 ≥ 𝑇𝑇2,𝑟𝑟

T − max�𝑇𝑇1,𝑟𝑟
Q ,𝑇𝑇1,𝑟𝑟

T �. According the 
assumption, where 𝑇𝑇1,𝑟𝑟

T ≤ 𝑇𝑇2,𝑟𝑟
T , we then have 𝐼𝐼 − 𝐷𝐷 ≥ 0. 

• Case 3: 𝑇𝑇2,𝑟𝑟
T ≤ 𝑇𝑇1,𝑟𝑟

Q . In this case, 𝐼𝐼 − 𝐷𝐷 ≥ 𝑇𝑇1,𝑟𝑟
Q − max{𝑇𝑇1,𝑟𝑟

Q ,𝑇𝑇1,𝑟𝑟
T } = 0. 

Therefore, we can obtain the conclusion that the service time will be increased if the task execution order does 
not follow a shortest-task-first rule under the assumptions. 
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Footnotes 
1. The accuracy of vehicle locations will be improved when the length of the zone is reduced. In 

consideration of the length of a car, the length of a zone is larger than 5 m. 
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