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ABSTRACT The integration of renewable energy sources (RES) is rapidly increasing in electric power

systems (EPS). While the inclusion of intermittent RES coupled with the wide-scale deployment of

communication and sensing devices is important towards a fully smart grid, it has also expanded the

cyber-threat landscape, effectively making power systems vulnerable to cyberattacks. This paper proposes

a cybersecurity assessment approach designed to assess the cyberphysical security of EPS. The work takes

into consideration the intermittent generation of RES, vulnerabilities introduced by microprocessor-based

electronic information and operational technology (IT/OT) devices, and contingency analysis results. The

proposed approach utilizes deep reinforcement learning (DRL) and an adapted Common Vulnerability

Scoring System (CVSS) score tailored to assess vulnerabilities in EPS in order to identify the optimal

attack transition policy based on N − 2 contingency results, i.e., the simultaneous failure of two system

elements. The effectiveness of the work is validated via numerical and real-time simulation experiments

performed on literature-based power grid test cases. The results demonstrate how the proposed method

based on deep Q-network (DQN) performs closely to a graph-search approach in terms of the number of

transitions needed to find the optimal attack policy, without the need for full observation of the system. In

addition, the experiments present the method’s scalability by showcasing the number of transitions needed

to find the optimal attack transition policy in a large system such as the Polish 2383 bus test system. The

results exhibit how the proposed approach requires one order of magnitude fewer transitions when compared

to a random transition policy.

INDEX TERMS Cybersecurity assessment, contingency analysis, cyberattacks, deep reinforcement

learning.

I. INTRODUCTION

The power grid is the cornerstone of all critical infrastruc-

tures. The safe and secure functionality of electric power sys-

tems (EPS) is directly related to every aspect of the economy

and society. In the last decades, worldwide energy demand

has significantly increased and is estimated to continue to do

so by nearly 50% by 2050 [1]. Due to the increasing energy

demand as well as the need to enhance system efficiency

and asset reliability, the technological modernization of the

power grid infrastructure has become an immediate priority

for governments and energy stakeholders around the world

[2]. This modernization, alongside environmental concerns,

are driving factors for the integration of renewable energy

sources (RES) to the power grid. For example, the U.S.

Energy Information Administration (EIA) indicates that, in

2019, the wind was responsible for generating approximately

42% of RES generated power at utility-scale facilities in

the U.S., and 7.3% of the total U.S. electricity generation,

making it the most popular RES [3]. Even though wind

integration aids in accommodating the increasing power de-

mand, its intermittent nature introduces challenges related

to the mismatch between supply and demand. For instance,

short-term wind power fluctuations occur on a second or

sub-second timescale during which load balancing methods

do not yet operate. Thus, to ensure system stability, critical

aspects such as optimal location, power flow, and generation
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Table 1: NERC TPL-001-4 contingency categories.

Category Contingency Case

A No contingency

B N − 1

C N − 1− 1 or N − 2

D N − k, k > 2 (cascading)

variance must be taken into consideration when interconnect-

ing wind energy systems.

Traditionally, contingency analysis has been used to assess

physical power system security in EPS [4]. This is achieved

by calculating the power flow of all the system elements in

the event of single or multiple failures. In essence, a con-

tingency is the failure or loss of any element such as a circuit

breaker, generator, or transmission line. Contingencies can be

planned or unplanned. Planned contingencies include events

resulting from scheduled maintenance and proactive emer-

gency preparedness, while unplanned events include fluctu-

ating wind injections, cyberattacks, human errors, etc. The

North American Electric Reliability Corporation (NERC) re-

quires system operators to meet the N −1 security constraint

and classifies systems into four main categories [5]. These

categories are shown in Table 1.

The intermittent nature of wind power generates chal-

lenges when performing security studies of power sys-

tems based on contingency analysis. Their intermittency can

rapidly change the most critical contingencies of the system

or create a number of contingencies (λ) that exceeds the max-

imum number of contingencies that the system can handle

(k); thus leading to cascading scenarios. A prime example of

insufficient security margins is the widespread power outage

across the U.K. in 2019 [6]. The near-simultaneous loss

of two-generation sites, one being an offshore wind farm

and the other one a gas-fired power station, resulted in a

massive under-frequency event. Load shedding mechanisms

responded immediately causing a major disturbance that

affected nearly one million people.

Additionally, the power grid is experiencing a rapid move

towards a more interconnected system. Operational technol-

ogy (OT) electronic devices are deployed and operated at

all scales of the power system and are often being designed

and retrofitted with information technology (IT) devices to

support communication processes and protocols that en-

hance the controllability and observability of the system.

The use of such digital electronic devices with software

applications [7], modules, drivers, commercial-off-the-shelf

(COTS) hardware [8], and network resources is a double-

edged sword [9]. On one hand, it assists in the development of

the future modern and advanced grid in terms of optimizing

asset utilization, addressing disturbances, providing better

power quality, and accommodating all storage and generation

options with grid-support functions. On the other hand, the

coupling between such cyber-electronic devices and physical

components in power systems has altered the threat model

[10], [11].

In the past, the threat model has been solely focused on

physical threats. However, due to the integration of such

network-controlled components, the security challenges need

to consider both the cyber and physical nature of the grid,

addressing the growing number of emerging threats [12].

Some examples of these potential threats are presented in

[13]–[15], where it has been demonstrated that attackers

can leverage publicly available sources by using open-source

intelligence (OSINT) techniques combined with open-source

exploitation methods in order to spoof GPS signals of phasor

measurement units (PMUs). Another example is presented in

[16], where a real-world attack within the Ukrainian power

system is accomplished by injecting malicious firmware in

serial-to-Ethernet gateways at targeted substations. Attackers

were able to trip circuit breakers and cause a blackout that

affected approximately 225,000 customers.

In this work, we provide an effective way for system

operators, at both the local and international level, to assess

the cyberphysical security of EPS, which takes into consid-

eration wind uncertainty together with cyber-based aspects

such as quantitative scoring systems of vulnerabilities identi-

fied in IT/OT devices supporting the grid infrastructure. The

assessment follows a step-by-step process, from an attacker’s

point of view, designed to identify the most critical system

points an adversary can leverage to compromise the targeted

EPS. Our contributions are summarized as follows:

(1) We propose a cybersecurity assessment approach that

considers adversaries that make use of OSINT modeling

techniques to construct power system models. Such mod-

els are then used in tandem with contingency analysis that

takes into account wind intermittent generation to identify

the critical cyber and physical vulnerabilities of the EPS.

The assessment process is performed without the need for

full observability of the system since it models the state of

the power system as a partially observable Markov decision

process (POMDP) that is solved using deep Q-networks

(DQNs). The solution given by the proposed DQN reveals

the optimal attack transition policy an adversary would fol-

low to potentially induce cascading failures in the assessed

cyberphysical EPS.

(2) We propose an adapted version of the Common Vulner-

ability Scoring System (CVSS) based on contingency analy-

sis results and information from the power and communica-

tion networks that reveal cyber and physical vulnerabilities

within system nodes. The adapted CVSS is used to generate

a transition graph designed to assess the complexity of each

possible attack path based on various adversarial strategies.

(3) We evaluate the performance of the proposed method-

ology using real-time simulations on test power systems

highlighting the method’s scalability. Our results showcase

that a fewer number of transitions is needed compared to a

random transition policy in order to find the optimal attack

transition.

The rest of the paper is organized as follows. Section

II presents related work. In Section III, we introduce the

methodology of the proposed cybersecurity assessment ap-
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proach. Section IV presents contingency analysis studies for

various power system test cases using real-time simulation.

In Section V, we demonstrate the effectiveness of the pro-

posed cybersecurity assessment approach and compare it to

different transition techniques. Finally, Section VI concludes

the paper and provides directions for future work.

II. RELATED WORK

In this part, we explore some of the state-of-the-art ap-

proaches being proposed by researchers that aim to ad-

dress issues related to (1) N − k contingencies simulations

considering intermittent RES generation, (2) assessing the

severity of electronic devices security vulnerabilities, and (3)

vulnerability and risk assessments methods for cyberphysical

EPS.

1) Methods for N − k Contingency Analysis

Towards reducing the occurrence of cascading failures, ex-

isting research efforts have focused on proposing efficient

methods that can perform studies based on N−k contingency

scenarios. Due to the size and complexity of power systems,

these “what-if” contingency scenarios are based on compu-

tationally expensive optimal power flow processes. Research

in this area aims to address the computational overhead of

N !/[k!(N − k)!] simulations for N − k contingencies. For

example, the work in [17] describes a fast-bounding case

which requires a small online memory model. Other efforts

compute the active power flow change at lines and the voltage

change at buses to evaluate the severity of N − 1 and N − 2
contingencies [18]. In [19], a graph-based power model anal-

ysis is presented for contingency ranking. In [20], a heuristics

pruning approach for identifying N − k contingencies is

discussed while a topology-based algorithm that considers

whether the generator or line is in densely populated areas is

presented in [21]. The authors use the concepts of closeness

and betweenness centrality to determine the component’s

importance for a N − k criterion.

One of the main challenges of performing contingency

studies in power systems with high penetration of wind is

that the uncertain nature of wind causes high variability when

identifying the most critical N − k contingencies of the sys-

tem. Existing studies do not often take into account this vari-

ability [22]–[24]. The authors in [23] and [25] demonstrate

some of the effects that intermittent power generation has in

critical contingency identification. They present probabilistic

power flow studies that show how the variable nature of

power flow, due to wind fluctuations and uncertainties, can al-

ter the number and location of the most critical contingencies

recognized by system operators. The correct identification of

these critical contingencies is of paramount importance as

they can be potentially leveraged by adversaries in order to

cause major disruptions in EPS [26], [27].

2) Severity Assessment of Electronic Devices Security

Vulnerabilities

The wide-scale integration of information and communica-

tion technologies in the form of digital electronic devices

into the electrical grid expands the list of possible attack vec-

tors that adversaries could exploit to cause major disruptive

events. Hence, in order to ensure the secure operation of the

entire system, it is essential to consider the inherent vulner-

abilities introduced by the grid-supporting IT/OT infrastruc-

ture. One scoring system that is widely used for device-level

vulnerability assessments in the IT industry is CVSS [28].

The CVSS can assess the severity of software, hardware,

and firmware vulnerabilities by using numerical scores. One

example of its use can be found in [29]. Here, the authors

utilize CVSS to estimate the probability of successfully

exploiting identified independent vulnerabilities, including

zero-days, existing in components connected to the LAN of

a supervisory control and data acquisition (SCADA) system.

Another example of CVSS use can be found in [30], where a

CVSS-based cyber asset impact score is presented providing

a real-time cyber impact severity score that can be used

as a basis for processes such as vulnerability management,

isolation of cyber assets, and system reconfiguration.

3) Vulnerability and Risk Assessment Methods for

Cyberphysical EPS

Several researchers have focused on developing system-wide

security assessment tools aimed to identify possible vulner-

abilities and attack vectors which can be subsequently used

to produce optimal control policies designed to guide secure

operations of cyberphysical EPS. The work presented in

[31], proposes power system emergency control mechanisms

based on DQNs to maintain the reliable operation of the

system by performing dynamic breaking of generation and

under-voltage load shedding. Other researchers have also

made use of DQNs to perform cybersecurity analysis studies

in EPS. One example is presented in [32], where the au-

thors propose a DQN-based cyberphysical topology attack

designed to trip critically-targeted transmission lines with

the objective of exceeding power flow line constraints in the

system. This research demonstrates how the disconnection

of essential transmission lines could cause system collapse,

and how attackers can find out what type of topology attack

needs to be performed in order to cause cascading failures.

A similar approach is taken by researchers in [33], where

a robust DQN-based contingency management mechanism

is proposed to provide remedial action when contingencies

exist in the system.

Other works have focused on more traditional ranking

mechanisms to improve EPS cybersecurity. For example, the

research presented in [21] assesses system vulnerability from

the cyberphysical security perspective using contingency

ranking methods and a cyber-intrusion ranking methodology.

Similarly, in [34], an operational reliability impact assess-

ment framework has been developed. In this study, the au-

thors incorporate cyberphysical threats in the assessment of
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Figure 1: Graphical depiction of the major steps of the proposed cybersecurity assessment process and the optimal attack

transition policy given as output.

the EPS operation. Another approach is presented in [35],

describing an overload risk assessment method based on

N − 1 contingency analysis and wind penetration.

Compared to the existing work, our proposed cybersecu-

rity assessment approach assesses the cyberphysical security

of EPS leveraging the use of deep reinforcement learning

(DRL) paradigms while considering the intrinsic interactions

between the system’s network and physical components. Our

work considers physical-based aspects, such as contingency

analysis and wind uncertainty, together with network-based

aspects, such as vulnerabilities stemming from OSINT meth-

ods. The proposed assessment framework reveals potential

threats that can be utilized by attackers to cause serious

disruptions in EPS, and at the same time, assist system

operators to prioritize the deployment of cybersecurity mech-

anisms, and thus, contribute towards reducing the risk of

cyberattacks.

III. CYBERSECURITY ASSESSMENT METHODOLOGY

In this section, we provide the methodology of the proposed

approach. Fig. 1 shows the step-by-step process that our

cybersecurity assessment approach follows. In step 1, the

assessment process determines the threat model based on

the adversary objectives and capabilities. Specifically, our

work considers an attacker that leverages OSINT techniques.

The OSINT methods are utilized in step 2 in order to run

contingency analysis with the objective of identifying the set

of k critical contingencies of the system. Our results focus

on two contingencies that assess the power system condition

when two components are lost, i.e., k = 2. However, the

proposed approach can be extended to consider a higher

number of contingencies. To proceed with the assessment

process without the need for full system observability [36], in

step 3, the proposed approach creates a POMDP by defining

a transition probability (TP ) based on the proposed adapted

version of the CVSS score metric. The score evaluates the

difficulty of each network transition in the generated system

graph. Then, in step 4, the POMDP is solved using a DRL

model designed to find the optimal attack policy between

the previously identified contingencies. Finally, the output

of the cybersecurity assessment process evaluates the poten-

tial threat by revealing the optimal attack transition policy

between the identified contingency pair which could cause

cascading failures in the physical system. The details of each

step are presented in the following subsections.

A. STEP 1: THREAT MODEL

OSINT refers to a collection of techniques and method-

ologies that can be used to gather, analyze, and exploit

publicly available information (e.g., public government data,

commercial data, social media, etc.) to characterize aspects

of a particular target system. Existing work has demonstrated

that the U.S. power grid infrastructure could be effectively

profiled using OSINT techniques [37], [38]. Following a sim-

ilar approach, we consider a threat model where an attacker

can leverage publicly available information using OSINT

methods to collect sufficient EPS data (e.g., line parameters,

the status and location of circuit breakers, system topology,

generation sites and capacity, etc.). Also, the attacker is

able to acquire data to calculate power flow and therefore

run contingency analysis [14]. Depending on the degree

of system contingencies (e.g., N − 1 secure system), the

adversary can leverage the ranking results of contingency

algorithms to identify which system elements if “removed”

can lead to an insecure power system state. Although a

plethora of public power system information is available, it

is unlikely that the attacker will ever have full knowledge

and real-time observability of the system [39]. In our ap-

proach, it is assumed that the attacker, in spite of having

the necessary information to perform contingency analysis

via OSINT techniques, he/she does not have the full state

information of the system. Specifically, while the adversarial

agent is transitioning through the cyber system network to

exploit vulnerabilities in the identified double contingency

nodes, he/she is unaware of his/her position relative to the

contingencies and the cyber network transition complexities

(based on the adapted CVSS) of the different attack paths.

In addition, we assume that the cyber system network

graph is isomorphic with the physical system graph, indi-

cating that the topology of the communication network is

mapped with the topology of the physical system. Therefore,

we model the environment as a POMDP in which the agent

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3038769, IEEE Access

Liu et al.: Deep Reinforcement Learning for Cybersecurity Assessment of Wind Integrated Power Systems

may only access the current state and make an observation

for obtaining possible actions in each state (Step 3). Based

on the observation results for each state-action combination,

the network TP is calculated. This probability reveals the

transition complexity between different states. By leveraging

this methodology, a DQN-based algorithm is then utilized

to identify the optimal attack transition policy between the

critical contingency elements (Step 4).

B. STEP 2: CONTINGENCY ANALYSIS

In order to find the attacker’s optimal attack transition policy,

we first need to identify the set of critical double contin-

gencies of the physical power system (e.g., simultaneous

N − 2 or consecutively N − 1− 1). We utilize a fast pruning

N − 2 algorithm to find all the thermal constraint violations

via linear power flow approximation [40]. The algorithm is

initiated based on the set of all N − 2 pairs. The contingency

candidate list is pruned using line outage distribution factors

(LODFs). LODFs describe the power flow impact on other

lines when a line outage occurs. The pruning approach is

based on the thermal constraints of lines, running until the

number of contingencies included in the set does not change.

If the LODF exceeds its thermal constraint, it is added to the

contingency candidate set. The line overload condition can

be written as Axy · Bxc + Ayx · Byc > 1, where x and y are

lines experiencing outages, z is an arbitrary line experiencing

power flow changes, and c is a possible constraint. Matrix

Axy can be calculated by Axy = (1 + Lxy · fy/fx)/(1 −
Lyx · Lxy), where L is the LODF shown in Eq. (1). This

equation describes the change in the flow through line x,

where fx is the original flow, and f ′
x is the flow after the

outage. Correspondingly, fy represents the flow through line

y before the line is tripped. Matrix Bxc is calculated by

Bxc = fx · Lzx/(f
critical
z ± fz), where f critical

z is the

bound value, and the ± sign corresponds to the conditions

f ′
z < −f critical

z and f ′
z > f critical

z , respectively. Eq. (2)

shows the power flow variance experienced by line z when

lines x and y are experiencing outages.

Lxy =
f

′

x − fx
fy

(1)

f
′

z − fz =
Lzx · (fx + Lxy · fy)

1− Lyx · Lxy

+
Lzy · (fy + Lyx · fx)

1− Lyx · Lxy

(2)

C. STEP 3: POMDP TRANSITION MODEL BASED ON

ADAPTED CVSS

After finding the most critical contingency set, the pro-

cess advances to create the corresponding POMDP of the

cyberphysical-graph environment by calculating the corre-

sponding TP between the different nodes of the system.

Generally, POMDPs are used to model the response and

outcomes of systems when different actions are performed at

specific states. In our environment, observations made by the

attacker do not provide full state information, i.e., the agent

Table 2: Notation of POMDP tuples.

POMDP tuples

S State set

A Action set

Ω Observation set

P (TP ) Transition probability

R Reward function

O Observation probabilities set

does not know apriori how many nodes the system has nor

their respective states, and he/she needs to observe the envi-

ronment to determine potential actions, hence the selection of

POMDP system modeling. POMDPs can be mathematically

modeled as a 6-tuple (S,A,Ω, P,R,O), where S is the set

of all possible states in a given environment, A contains

all the agent’s potential actions, Ω is a set which includes

all possible observations, P is the TP for each state, R is

the reward function for performing different actions, and O
represents conditional observation probabilities. The notation

of POMDP tuples is summarized in Table. 2. At the current

state s, given the TP and observation o, the agent takes

action a to move to the next state s′. As a result of this

state-action pair, the agent receives reward R. This process

repeats until the terminal state is reached. In this POMDP

formulation, the TP for each state is an essential factor

that must be determined adequately according to the process

being modeled. In our case, the TP relies on the cyber system

vulnerabilities, i.e., vulnerabilities that exist in electronic

devices, and their potential impacts related to the physical

system, i.e., the identified power system contingencies.

Considering the cyber network system vulnerabilities as

well as the optimal attack transition policy between the

identified contingencies (physical vulnerabilities), a TP for

each transition step (between cyberphysical system nodes)

can be determined. These probabilities aid in the traversal

agent’s decision making since the values reveal the differ-

ence in complexity and difficulty for each transition, i.e.,

how vulnerable is the cyberphysical system at each node,

i.e., bus, from the point of view of the attacker transition

policy. In each step, the node’s identified cyber and physical

characteristics including the electronic device vulnerabilities,

thermal limits of lines, and power generation are considered.

A graphical illustration of this procedure is shown in Fig. 2.

In this work, we compute the TP using an adapted version

of CVSS v3.1.

CVSS is a vulnerability scoring system generally used in

the IT industry to assess the severity of the identified com-

puter system’s vulnerabilities. Although there exist temporal

and environmental metrics in CVSS, their main aim is to

reflect how vulnerabilities change over time or demonstrate

uniqueness to a particular user’s environment [28]. For our

application, base metrics portray a better picture regarding

how the cyber and physical vulnerabilities at each power

system node affect the transition difficulty of the threat. More

specifically, the base score provides a comprehensive assess-
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System (CVSS) base metric.

ment of the intrinsic characteristics of identified vulnerabil-

ities using quantitative Exploitability and Impact metrics as

shown in Fig. 3. The range of scores goes from 0 to 10, with

10 being the most severe – maximum value.

1) Exploitability Metric

This metric describes the difficulty and technical means by

which software, hardware, or firmware vulnerability can be

exploited. In our case, the exploitability represents the diffi-

culty of vulnerability exploitation for each electronic device

that exists in a particular node of the cyber-layer of the

power system. In other words, it represents the complexity

of the transition based on the type of node (i.e., PQ or PV
power system bus) to which the agent is transitioning to. The

overall score of this metric is determined by five sub-metrics,

described below.

a) Attack Vector (AV) – This metric is defined as one of

the following categories: network, adjacent network, local

network, or physical. In a network attack, an adversary

exploits a vulnerable device bound to the network stack.

This type of attack is conducted through the Open Systems

Interconnection (OSI) layer 3. In an EPS, an attacker may

conduct a network attack by manipulating TCP-level packets

flowing across a substation network. In an adjacent attack,

the adversary also exploits vulnerable devices bound to the

network stack. However, the attack cannot be performed

across the boundary of OSI layer 3. In essence, the attack

is limited to the same shared physical or logical network. An

example of this type of attack is an Address Resolution Pro-

tocol (ARP) flooding attack that leads to a denial-of-service

targeted at the control and monitoring devices connected to

a LAN segment of a microgrid [41]. In a local attack, a

direct path to the vulnerable element is required (e.g., local

terminal, remote terminal, or deceive legitimate users into

executing malicious instructions). In an EPS, this type of

attack could be performed by executing malicious code in

local control or monitoring electronic devices accessed via

a local or remote terminal. Finally, for a physical attack,

actual physical interaction between the attacker and the target

is necessary. In an EPS, this means that the attacker must

compromise the targeted electronic devices through physical

means (e.g., causing physical damage to the devices).

b) Attack Complexity (AC) – This metric represents the

amount of effort an attack on the vulnerable electronic device

would require. The value of this metric, high or low, depends

on the security level of the electronic devices as well as the

adversary’s capabilities and skills. In EPS, generation buses

can be considered of more significance than load buses in

regards to power grid operation and, consequently, possi-

ble threats. Typically, additional security mechanisms are in

place to protect bulk generation infrastructure [42]. This is

accomplished by using electronic security devices, physical

barriers, or security monitoring equipment. Hence, as part

of our CVSS vulnerability scoring, PV and PQ buses are

considered of high and low attack complexity, respectively.

c) User Interaction (UI) – This metric reveals whether user

interaction is required to exploit a certain electronic device. It

quantifies the amount of participation required from a human

user, different from the attacker, to successfully compromise

the targeted device. For example, attackers could attempt to

deceive the system operator to give them access to the control

room via phishing or malware attacks. Due to the importance

of PV buses, we assume that the attacker will require UI

to manipulate a PV bus. On the contrary, it is assumed that

attackers would not need to obtain special permission from

another human user to access PQ buses. The values for this

metric are: required for PV buses, and none for PQ buses.

d) Privileges Required (PR) – This metric determines the

level of privileges needed to carry out an attack, i.e., it eval-

uates the level of privileges that are required by the attacker

before successfully compromising the vulnerable electronic

device. Similarly to the previous metric, we designate its

values according to the type of power system bus being

evaluated: high for PV buses, and low for PQ buses.

e) Scope (S) – This metric demonstrates whether or not

compromising a particular electronic device will cause im-

plications beyond its security scope. If the scope metric is

defined as changed, attacking the corresponding electronic

device will result in a detrimental implication beyond its se-

curity scope, i.e., will affect the other elements in the system.

If the scope is defined as unchanged, it will only cause im-

plications to elements under the same security scope. In our

context, when a PQ bus is attacked, no major disturbances

are observed in other system’s elements since generation

is not directly affected, thus its scope can be defined as

unchanged. However, if a PV bus is compromised, more

severe effects on surrounding nodes of the physical EPS

network, caused by power stability issues, are observed. In
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Table 3: Exploitability submetrics comparison of different

score systems: CVSS v3.1, CVSS v2.0, and IVSS.

Score

System
Metric Abb.

Metric

Value

Num.

Value

CVSS

v3.1

Attack
Vector

AV

Network 0.85
Adjacent
network

0.62

Local
network

0.55

Physical 0.2
Attack

Complexity
AC

Low 0.77
High 0.44

User
Interaction

UI
None 0.85

Required 0.62

Privileges
Required

PR
None 0.85

Low
0.62 if S = Unchanged
0.68 if S = Changed

High
0.27 if S = Unchanged
0.50 if S = Changed

CVSS

v2.0

Access (Attack)
Vector

AV
Network 1.0
Adjacent
network

0.646

Local
network

0.395

Access (Attack)
Complexity

AC
Low 0.71

Medium 0.61
High 0.35

Authentication
(v3.1 - Privileges

Required)

AU
(PR)

None 0.704
Single 0.56

Multiple 0.45

IVSS

Access (Attack)
Vector

AV

Remote
(v3.1 Network)

1.0

Local network
(v3.1 Adjacent)

0.7

Local host
(v3.1 Local)

0.4

Physical 0.2
Exploit

(v3.1 Attack)
Complexity

EC
(AC)

Low 1.0
Moderate 0.5

High 0.2
User

Interaction
UI

No 1.0
Yes 0.3

Authentication
(v3.1 - Privileges

Required)

AU
(PR)

None 1.0
User

(v3.1 - Low)
0.6

Admin
(v3.1 - High)

0.2

this case, the scenario needs to be characterized by changed

scope.

Following the description of the exploitability metrics,

Table 3 shows a detailed comparison between the metrics

values found in different available scoring systems. These

scoring systems are the CVSS v3.1 [28], CVSS v2.0 [43],

and the Industrial Vulnerability Scoring System (IVSS) [44].

CVSS v3.1 is the most up to date scoring system which

provides the most accurate way of capturing the main char-

acteristics of vulnerability via numerical scores. IVSS is an

outdated scoring system and not widely used and supported

by the community. Other quantitative risk assessment scoring

systems, such as CCSS [45] and CMSS [46], were also

considered when selecting the appropriate scoring system.

However, all of these scoring systems are based on the

previous version of CVSS, i.e., CVSS v2.0.

2) Impact Metric

In CVSS, the impact metric is used to evaluate different

exploitation methods and capture the effects of successfully

exploited vulnerabilities. This metric is determined using

three factors: confidentiality (C), i.e., the effect on system

information disclosure, integrity (In), i.e., how detrimental

the modification of system data would be, and availability

(A), i.e., the system accessibility after an adverse effect has

occurred. During an attack, an adversary can cause high,

low, or no impact in each specified factor. For our study, the

impact metric is designed to capture the effect of different

exploited vulnerabilities in the EPS. During an attack on a

PV or a PQ bus, the system may experience varying degrees

of impacts related to total loss, some loss, or no loss of

the confidentiality, integrity, and availability of certain grid-

supporting devices. More specifically, if the attacker is able

to attack a PV bus, we assume a worst-case scenario since

the attacker demonstrated to have enough information and

skills to attack a highly secure system and possibly have the

means to exploit additional vulnerabilities. This, in turn, may

result in a total loss of integrity, confidentiality, and avail-

ability. Using this assumption, the impact of compromising

a PV will cause high impact on confidentiality, integrity,

and availability. On the other hand, despite existing research

demonstrating the importance of load altering attacks on

power system stability [47], manipulation of PQ buses and

load change attacks will likely not result in interruption of

the operation of the generator, load, or transmission line in

the system due to frequency load shedding protections [48].

Under these circumstances, the impact of a compromised PQ
bus will not be significant enough when compared to the

impact of a compromised PV bus [49]. Thus, we assume

that compromising PQ buses will have low impact in all

three categories. Finally, the no impact value is used when

an attacker compromises an electronic device that is not

connected to any PV or PQ bus.

Based on the exploitability and impact metrics, CVSS can

be calculated as shown in Eq. (3) [28]:

CV SS =

{

min {E + I, 10}, if S unchanged

min {1.08 · (E + I), 10}, if S changed
(3)

E = (AV ·AC · UI · PR) · 8.22 (4)

I =







6.42 · Ib, if S unchanged

7.52 · (Ib − 0.029)−
3.25 · (Ib − 0.02)15, if S changed

(5)

where Ib = 1 − [(1 − C) · (1 − In) · (1 − A)]. E, AV ,

AC, UI , PR, S, and I represent the exploitability metric,

attack vector, attack complexity, user interaction, privileges

required, scope, and impact metrics, respectively. The calcu-

lated CVSS value is used as a major factor in the computation

of the TP within our transition model.
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The traditional CVSS scoring method provides a detailed

calculation process that assesses the impact of exploiting

a vulnerability with different attack vectors. However, it

cannot be used directly for our application since it fails to

consider important factors when used to evaluate complex

cyberphysical systems. In particular for power systems, it

does not take into account features such as system topology,

power generation, and line constraints. Since we assume the

adversarial agent does not have full topological information,

we include power generation and line constraint calculations

in our proposed TP calculation. Since generators provide

varying amounts of power to a system depending on the

current state of the grid, the relative importance of a generator

(and hence its attack impact) is determined by its power

output. In addition to considering the difficulty of transition-

ing to certain system nodes, we also examine the overload

percentage of the transmission lines. If the power flow across

that line is near its flow constraint, the line could be more

easily affected by changes in the surrounding system. Taking

each of the aforementioned aspects into consideration, we

define the TP as follows in Eq. (6):

TP =
CV SS

10
∗

G
∑n

k=1 Gk

∗
Pf

λcritical
(6)

where G is the power generation of a connected generator,

n is the total number of generation units in the system, Pf
represents the power flow through transmission lines, and

λcritical is the line power flow constraint for the connected

transmission line. For a power system operating under nor-

mal conditions, the range of G/{
∑n

k=1 Gk} ∈ [0, 1] and

λcritical ∈ [0, 1]. Since the CV SS score ∈ [0, 10], we

scale it by dividing by 10. A smaller TP value represents

a cyberphysical node vulnerability of low severity, i.e., the

node has lower possibilities to be exploited by attackers since

it has a lower CVSS score, and it is less important in terms

of overload percentage, generation amount, and thermal lim-

its. On the contrary, a TP represents a cyberphysical node

vulnerability of high severity.

D. STEP 4: SOLUTION OF ADVERSARIAL MODEL

After formulating and defining the corresponding POMDP,

in this step, we develop an algorithm to solve the model

and yield the optimal transition policy for the considered

threat. Due to the complexity of EPS, it is important to have

a mechanism to solve sequential decision-making problems

efficiently. In our studies, we develop a DQN-based DRL

algorithm.

1) Q-Learning

Q-learning is an off-policy RL algorithm designed to find the

optimal action an agent needs to take at the current state. All

the actions that the RL agent can take are evaluated using

a Q-value which determines how good is a particular action

in the current state. Eq. (7) shows the ‘update’ rule used to

calculate new Q-values at each state-action pair, where s is

A

C

B

G

E

D
FH

I

L

N

J

K

M Can be observed

Current State

𝑎2
𝑎3𝑎1

Figure 4: Example of the observation process for state A.

current state, a is the action at s, s′ is the new state, and a′

includes all the future potential actions. Using the learning

rate α ∈ [0, 1], the new Q-value (Qnew(s, a)) is updated

using the current Q-value (Qold(s, a)), the estimated optimal

future value (max
a

Q(s′, a′)), and the immediate reward (R).

γ ∈ [0, 1] represents a discount factor that determines the

importance of immediate rewards compared with potential

long-term rewards. A higher Q-value demonstrates that a

series of actions will produce a higher total accumulated

reward. These actions are referred to as the optimal policy.

Qnew(s, a) = Qold(s, a)

+ α · (R+ γ ·max
a

Q(s′, a′)−Qold(s, a)) (7)

Traditionally, Q-learning is implemented using Q-tables.

However, this approach is not practical nor scalable for

solving large state-action environments. To solve this issue,

researchers in [50] proposed the replacement of Q-tables

with deep neural networks, also known as DQNs.

2) Deep Q-Network (DQN)

In order to address the computational overhead of Q-learning

when dealing with large, uncertain, and dynamic environ-

ments, DQNs generalize the approximation of the Q-value

function using artificial neural networks rather than storing

every solution in a table. For our environment modeled

as a POMDP, we assume that the DQN agent starts in a

random initial state s (a node in the cyberphysical network)

and transitions to the next state s′ occur by taking actions

(i.e., moving through nodes/buses in the system) based on

observations until it reaches both nodes of the contingency

pair, regardless of transition order. As shown in Eq. (8), an

observation function O generates the observations for each

potential action a′ given state s. The state s refers to the

bus where the agent is currently located during the solution

process including all bus-related corresponding information

and measurements (i.e., circuit breaker status, power gener-

ation, power consumption, voltages, etc.). At every step, the

agent makes an observation o which helps to indicate which

possible movements (or actions) the agent can take according

to the observed available neighboring buses and branches

connected to the current bus. Then, based on the observation,

an action a (movement to another bus) is performed in order

to transition to the next state (i.e., the next bus). Fig. 4
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presents an overview of this process. It can be seen that if the

current state of the agent is bus A, then the attacker (agent)

can make an observation o to obtain the next available bus to

move into, which can be either K, I, or M, by taking a1, a2,

or a3, respectively. Using the observation, the agent is also

capable of revealing whether or not a contingency is present

in the current bus where it moved into, since the contingency

pairs are known to the attacker from the analysis in step 2

(Section III-B).

O(o|s, a) = O(o|s′, a′) (8)

Once each potential transition is determined, the TP for

each transition needs to be computed (as defined in Eq.

(6)). These calculated results will be utilized to determine

the security index, SI ′i , when making a transition from s
to s′ as shown in Eq. (9), where γ is a discount factor, and

∆Cp is the line flow difference between the current state and

each potential transition state. Finally, the maximum value of

the security index which represents the bus with the highest

vulnerabilities’ score and overload value, will be used to

compute the corresponding reward function. As shown in

Eq. (10), the reward function considers the overall benefit of

different transitions as it takes into account the security index

of each potential state, SI ′i .

SI ′i = max
a∈A

γ ·
∑

s′∈S

TP (s′|s, a) ·∆Cp (9)

R =
∑

s′∈S

TP (s′|s, a) · [∆Cp + SI ′i]) (10)

State-action-rewards tuples are stored in the replay mem-

ory set M for recording agent’s experiences. This memory

set assists in independently training the neural network.

All environmental information of the current state (weights,

biases) is stored in the action-value parameter θ. In each

step, the DQN combines multi-layered neural networks with

existing Q-learning algorithms to approximate Q(s, a; θ). θ−

will change as the result of changing θ. Eq. (11) demonstrates

the updated target value given by the current state and action,

where the target action-value parameter θ− is equal to θ
at the beginning of the iterations. When this number of

iterations is reached during training, θ− is updated to prevent

an obstructed learning process [51]. Using the parameters

described, the loss-function value can be calculated as shown

in Eq. (12) for each state-action pair. It represents the error

between the predicted Q-value and the target Q-value. The

goal is to determine an optimal policy that minimizes the

error and ensures that the training result will be as close as

possible to the target value, where the target value is the

estimated expected return of the actions taken by the DQN.

yi = R+ γmax
a′

Q
(

s′, a′; θ−i
)

(11)

Li (θi) = E(s,a,R,s′)∼M

[

(yi −Q (s, a; θi))
2
]

(12)

θLoss Function

Eq.12
θ−Power system 

Environment

Observation

Eq.8

Action 

Selection

Eq.13

Reward

Eq.10

Security 

Index 

Eq.9
S, S’, a’

Transition 

Probability

Eq.6
S, S’, a’, P S, S’, a’, P, 𝑺𝒊′ S, S’, a’, P, 𝑺𝒊′, R

S’, a’, θ𝒂𝒕O

Figure 5: Process of how the DQN model is utilized as part

of the proposed cybersecurity assessment.

Table 4: Notation of DQN parameters.

DQN parameters

α Learning rate

γ Discount factor

s Current node

s′ Next node transitioned from s

TP Transition probability

∆Cp Line flow difference between s and s′

SI′ Security index

R Reward

θ Action-value parameter

θ− Target action-value parameter

The agent performs an action that is selected according

to the designated exploration-exploitation (ǫ-greedy) strat-

egy of Eq. (13). Such a strategy controls the degree of

exploitation over exploration. At each step, if exploration is

being performed with probability ǫ, the algorithm selects a

random action at from the action set. During exploitation

with probability 1− ǫ, the action with the maximum Q-value

is taken. The target values θ− will only be updated once

the desired number of iterations has been reached [51]. The

overall learning process is presented in Fig. 5 and the notation

of the DQN parameters is summarized in Table 4. This

learning process is repeated until a terminal state is reached,

i.e., both contingency pairs have been finally “visited” by the

agent.

at =

{

random a′, ǫ

argmaxaQ(s′, a′; θ), 1− ǫ
(13)

E. STEP 5: OUTPUT OF THE ASSESSMENT PROCESS

An attacker with sufficient OSINT can aggregate enough

power system information (e.g., power generation, capacity,

load consumption, topological data, etc.) to perform contin-

gency analysis and identify critical system elements. These

identified critical contingency elements can be leveraged to

generate cyberattack transition policies following the process

described in previous steps. The generated cyberattack tran-

sition policies take into account vulnerabilities in electronic

devices that exist in the cyber network layer as well as

physical system vulnerabilities related to contingency stud-

ies. The DRL algorithm provides a solution known as the

optimal attack transition policy that can be used to attack

the devices controlling the operations of the critical elements

VOLUME 4, 2016 9
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Table 5: Number of contingencies for different cases and

scenarios.

Case Name N − 1 N − 1− 1 N − 2

IEEE 30 Bus System 1 2 8

IEEE 39 Bus System 13 19 71

IEEE 39 Bus System +
16 24 73

Wind (Table 6: SC7, t = 800m)

IEEE 39 Bus System +
17 26 67

Wind (Table 6: SC7, t = 1400m)

IEEE 39 Bus System +
16 23 103

Wind (Table 7: SC5, t = 0m)

UIUC 150 Bus System 176 174 442

Polish 2383 Bus System 2236 2234 15881

(e.g., microprocessor-based relays controlling circuit break-

ers, protocol translator converters, etc.) and results in poten-

tial power outages in the EPS. Our methodology can also

be leveraged by control center operators and stakeholders

to identify vulnerable components in the EPS or investigate

potential attack strategies.

IV. CONTINGENCY ANALYSIS SIMULATIONS

In this section, we introduce a number of contingency sim-

ulation case studies used to demonstrate the effectiveness

of the proposed approach. These case scenarios prove how

the most critical contingency pairs of a system vary when

wind energy systems are in-place. We provide an analysis

of the varying degrees of severity with different contingency

scenarios and examine how wind generation impacts critical

contingencies. For this validation study, we use a doubly-fed

induction generator (DFIG) model for wind power generation

modeling and real-time simulation (OPAL-RT) for testing the

system in a real-time environment.

A. CONTINGENCY SCENARIOS

First, we run the assessment process of Section III up to

Step 2 in order to assess multiple contingency scenarios in

different test systems. In Table 5, we present the number of

critical contingencies for N − 1, N − 1 − 1, and N − 2
scenarios in different power system test cases. For example,

the IEEE 39 bus system has 13 N − 1, 19 N − 1 − 1, and

71 critical N − 2 contingencies without any wind power

injection, while the number of these contingencies varies

with different wind penetration levels.

The N − 1 contingencies are determined by disconnecting

each line and observing system responses. For N −1−1, the

most severe N − 1 case is removed from the system, and the

process is run again. The N − 2 pruning algorithm is carried

out as described in Section III. In the rest of the section, we

focus on the N−2 case as the most severe scenario. It should

be noted that the proposed approach can be adapted, based on

user requirements, for any number of contingencies k.
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Figure 6: IEEE 39 bus system with wind power integration.

(a)

(b)

Figure 7: (a) Wind speed, and (b) wind power variation for

scenario A.

B. WIND POWER GENERATION MODELING USING A

DFIG MODEL

A DFIG model consists of a wound rotor induction generator

driven by wind turbines and an AC/DC/AC insulated-gate

bipolar transistor-based pulse width modulated converter.

The DFIG model used in our case studies for modeling wind

energy systems is developed in MATLAB/Simulink. Using

this model, we are able to study the dynamic response of

EPS to wind speed variations and investigate the impact of

different penetrations. Three DFIGs are modeled and inte-

grated to the IEEE 39 bus system at buses 5, 21, and 26

(Fig. 6) [52]. The wind speed and wind power data for each

wind system are collected at a one-minute resolution on May
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Table 6: Scenario A: Impact of different wind power injections on the number of N − 2 contingencies in the IEEE 39 bus

system.

Time WF1 WF2 WF3 SC1 SC2 SC3 SC4 SC5 SC6 SC7
(m) (MW) (MW) (MW) WF1 WF2 WF3 WF1+WF2 WF2+WF3 WF1+WF3 WF1+WF2+WF3

0 2.39 146.90 67.30 71 78 79 78 85 80 84

200 108.10 131.10 125.60 52 77 83 64 92 65 80

400 90.92 54.10 96.80 51 74 81 52 83 62 72

600 2.68 54.79 73.68 71 74 79 76 82 80 83

800 153.70 159.20 155.70 53 77 84 71 100 78 73

1000 93.11 76.37 148.40 52 76 83 51 91 67 82

1200 154.30 117.50 153.80 53 77 83 68 96 78 79

1400 77.52 54.52 105.70 81 74 81 50 83 63 67

Table 7: Scenario B: Impact of different wind power injections on the number of N − 2 contingencies in the IEEE 39 bus

system.

Time WF1 WF2 WF3 SC1 SC2 SC3 SC4 SC5 SC6 SC7
(m) (MW) (MW) (MW) WF1 WF2 WF3 WF1+WF2 WF2+WF3 WF1+WF3 WF1+WF2+WF3

0 174.30 136.80 187.30 55 77 91 73 103 85 68

200 30.66 178.00 66.20 74 80 80 81 85 82 87

400 15.39 107.00 29.09 69 77 72 78 79 77 80

600 27.94 3.56 119.20 74 71 82 74 82 86 86

800 179.20 182.90 134.80 56 80 83 80 97 79 67

1000 176.80 178.20 180.20 55 80 89 81 101 86 71

1200 75.87 161.20 178.40 81 78 89 76 100 70 90

1400 126.30 163.90 69.06 52 79 79 70 87 58 81

(a)

(b)

Figure 8: (a) Wind speed, and (b) wind power variation for

scenario B.

14, 2020 (1440 mins = 24 hrs) from [53]. In the rest of the

paper, we investigate two scenarios of wind integrated power

systems: scenario A, in which the wind data is collected from

three locations in Tallahassee, FL, with similar variation and

power generation levels. The wind speed and corresponding

wind power generation information are provided in Fig.7(a)

and Fig.7(b). In scenario B, the wind speed and power data

are obtained from three locations in Boston, MA (Wind 1),

Dallas, TX (Wind 2), and Tiffin, OH (Wind 3) with different

weather characteristics. For this scenario, the wind speed

and power generation are shown in Fig.8(a) and Fig.8(b),

respectively.

C. CONTINGENCY SCENARIOS WITH WIND POWER

INJECTION

The amount of power produced by wind energy systems

fluctuates due to wind’s intermittent nature. As the generation

changes, power flow varies, which may affect contingency

analysis results. Therefore, we simulate wind power injection

levels at eight distinct timestamps, for the two simulation

scenarios (scenario A and scenario B) throughout one day

and observe the changes in reported contingencies with dif-

ferent wind penetration. These tests are performed for the

IEEE 39 bus system (Fig. 6). As shown in Table 6 and Table

7, seven wind power integration simulation cases (SC1-SC7)

are simulated for scenario A and scenario B. For each case,

we present the amount of power injected by the three DFIG-

based wind farms (WF1, WF2, WF3) and the number of

identified N − 2 contingencies.

For scenario A in Table 6, the highest number of N − 2
contingency pairs (100) exists when WF2 and WF3 are inte-

grated to the system (SC5) with generation of 159.20MW and

155.70MW, respectively. The least amount of pairs occurs
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Contingency scenarios for IEEE 39 bus system: (a) contingency pair at lines 5−8, 6−7 without wind penetration, (b)

contingency pair 5− 8, 6− 7 with wind penetration levels as case of Table 6: SC7, t = 800m, (c) contingency pair 5− 8, 6− 7
with wind penetration as case of Table 7: SC5, t = 0m. (d) contingency pair 10 − 13, 16 − 21 without wind penetration, (e)

contingency pair 10−13, 16−21 with wind penetration as case of Table 6: SC7, t = 800m, (f) contingency pair 10−13, 16−21
with wind penetration as case of Table 7: SC5, t = 0m.

when WF1 and WF2 turbines are injecting power into the

system (SC4), and the wind power injection for WF1 and

WF2 are 77.52MW and 54.52MW, respectively. As shown in

the results, the number of N − 2 contingencies change when

the same amount of power is injected at different locations.

Additionally, injecting varying levels of power in the same

location also changes the number of contingencies.

As for scenario B in Table 7, the highest number of

N − 2 contingency pairs (103) exists when WF2 and WF3

are integrated into the system (SC5), and the wind power

injection for WF2 and WF3 are 136.80MW and 187.30MW,

respectively. The least amount of pairs occurs when only

WF1 is injecting 126.30MW power into the system (SC1).

Comparing with the normal case of IEEE 39 bus system

without wind power injections (71 pairs of N − 2 contin-

gencies in Table 5), the number of N − 2 contingencies in

38 cases (out of 56 cases in total in Table 6) of scenario

A are over 71. For scenario B, 44 cases (out of 56 cases in

total in Table 7) are more than 71. These results demonstrate

how the intermittent behavior of wind energy directly affects
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the number and location of contingencies in EPS with high

penetration of RES. A more specific case that shows how

the intermittent behavior of wind can alter the number of

contingencies can be observed in Table 5. The number of

N−2 contingencies can increase or decrease when compared

with the case of no wind injection. One scenario that results

in a lower number of N−2 contingencies is SC7 at t = 1400
where the number of N−2 contingencies decreases from the

original 71 to 67; thus making the EPS more secure under

contingency conditions. A counterexample of this behavior

can be observed in SC7 at t = 0 where the number of N − 2
contingencies increases from 71 to 84.

D. REAL-TIME SIMULATION OF IEEE 39 BUS SYSTEM

We further examine the effect of contingency scenarios in a

real-time simulation environment. We observe the impact of

intermittent wind power injections across the IEEE 39 bus

system by analyzing the variability of all the bus voltages

in the system. At t = 0.3s, a N − 2 contingency event is

triggered by simultaneously disconnecting two three-phase

circuit breakers. To understand the severity of losing critical

elements, we disconnect the most critical pair (lines 5 − 8
and 6 − 7) from the N − 2 contingency set of the IEEE

39 bus system. Fig. 9(a) presents the N − 2 effect that

disconnecting lines 5 − 8 and 6 − 7 have in the test system

without any wind connected. Fig. 9(b) demonstrates the same

contingency scenario (disconnection of lines 5−8 and 6−7)

with wind power being injected to the system (Table 6: SC7

t = 800m). In this scenario, WF1, WF2, and WF3 inject

153.70MW, 159.20MW, and 155.70MW power to the test

case system, respectively. An additional test scenario is run

using the same contingency pairs (disconnection of lines 5−8
and 6 − 7) with different wind power injections (Table 7:

SC5 t = 0m). In this case, WF2 and WF3 inject 136.80MW

and 187.30MW, respectively, with the results depicted in

Fig.9(c).

In order to understand the effect that different N − 2
contingency pairs may have in the EPS, we perform studies

using different N − 2 pairs present in the contingency set.

For these studies, we disconnect a less critical contingency

pair from the N − 2 contingency set. At t = 0.3s, circuit

breakers are tripped at lines 10 − 13 and 16 − 21, in a test

case system without any wind power penetration, and the re-

spective voltage variations can be observed in Fig. 9(d). Fig.

9(e) depicts how the voltage variations change when wind

penetration (Table 6: SC7 t = 800m) is considered under

the same contingency scenario. An additional case (Table 7:

SC5 t = 0m) with the contingency pair 10 − 13, 16 − 21 is

demonstrated in Fig. 9(f).

When comparing the real-time simulation results, we can

observe that the most critical contingency pair (lines 5 − 8
and 6 − 7) causes higher voltage variations when compared

to a less critical contingency pair (lines 10−13 and 16−21).

Several buses in the EPS reach under and over-voltage values

of around 0.87 p.u. and 1.1 p.u. for the most critical contin-

gency pair (lines 5−8 and 6−7) and under and over-voltage

values of around 0.92 p.u. and 1.18 p.u. for the less critical

contingency pair (lines 10 − 13 and 16 − 21). Also, besides

observing the voltage variations different contingency pairs

can produce, we can also observe, in some cases, how the

intermittent behavior of wind power helps to mitigate the

severity of line overloads. Figs. 9(d) – 9(f) demonstrate this

behavior. For instance, in Fig. 9(e), most buses of the power

system have voltage measurements that are closer to the

nominal 1.0 p.u value. On the other hand, the case in Fig.

9(f) shows the opposite, since some voltage values measured

at some buses are farther apart from 1.0 p.u when compared

with the case where no wind power injection is included,

i.e., Fig. 9(d). Our results demonstrate how important is to

coordinate the amount of wind power as it penetrates the

system. For example, the authors in [24] proposed a scheme

for power systems to maintain N−1 security within different

levels of wind power injection. In addition, a dynamic reserve

allocation of DFIG wind farms is presented in [54] to sustain

system frequency stability. In our case, the results not only

demonstrate the variation of N − 2 contingency numbers but

also how these results can be used to control the penetration

level of wind farms to increase the N − 2 secure operational

range of power systems.

V. RESULTS: THE EFFECTIVENESS OF THE PROPOSED

CYBERSECURITY ASSESSMENT

This section presents our experimental results that demon-

strate the effectiveness of the proposed cybersecurity as-

sessment approach. We evaluate the efficacy of the process

according to the optimal attack transition policies given as

outputs. In this part, we provide the experimental setup for

the presented test cases, the DQN agent model implemen-

tation details, and its corresponding hyperparameters. Six

test case systems are used to demonstrate the number of

transitions needed to identify the optimal attack path for

the corresponding case. Furthermore, the performance of the

DQN model is evaluated according to the obtained rewards

and losses, i.e., convergence for each test case. Finally, the

effectiveness of the DQN, used to solve the transition model,

is verified by comparing it to other transition-path policy-

finding methods, and specifically to the: (i) random policy

search, (ii) depth-first search (DFS), (iii) Dijkstra’s shortest

path algorithm, and an (iv) IVSS-based DQN model.

A. EXPERIMENTAL SETUP AND DQN

HYPERPARAMETERS

The RL DQN model is trained and tested on a 64-bit ma-

chine with an Intel Core i7-7600U, 2.8GHz, and 16.00GB of

memory. The proposed algorithm is implemented in Julia,

a high-level, high-performance, dynamic programming lan-

guage. The DQN solver for POMDP is provided in [55].

The source files and models associated with this work can

be found at [56]. The DQN hyperparameters are presented in

Table 8.
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Table 8: DQN hyperparameters.

DQN Hyperparameters

Num. of hidden layers System size

Num. of hidden neurons 1000

Learning rate (α) 0.005

Activation fcn. ReLu

Optimizer Adam

Max. steps 1000

Max. episodes 100

Replay memory buffer (samples) 1000

Exploration policy
ǫ-greedy

linear decay

Exploration rate (ǫ) 0.01

Table 9: Average number of transitions and timing for cyber-

physical attacks.

Case Name
# # # TTr TTo

Trans PV PQ (sec) (sec)

IEEE 30 Bus System 9.8 2.6 9.8 76.2 83.6

IEEE 39 Bus System 8.8 0.4 4.6 89.3 96.9

IEEE 39 Bus System + Wind
11.6 0.6 5.8 90.1 97.6

W1 (Table 6: SC7, t = 800m)

IEEE 39 Bus System + Wind
14.8 2.8 7.6 87.8 95.5

W2 (Table 7: SC5, t = 0m)

UIUC 150 Bus System 34.0 2.4 28.4 237.9 245.6

Polish 2383 Bus System 35.0 5.4 30.8 1459.5 1506.7

B. CYBERSECURITY ASSESSMENT: ATTACK-PATH

TRANSITION RESULTS

In order to demonstrate the efficacy of the proposed cyberse-

curity assessment process, we use six test case power systems

related with the contingency studies in Section IV (Table 5):

(a) IEEE 30 bus system, (b) IEEE 39 bus system, (c) IEEE

39 bus system with wind W1 (Table 6 SC7 at t = 800m), (d)

IEEE 39 bus system with wind W2 (Table 7 SC5 at t = 0m),

(e) UIUC 150 bus system, and the (f) Polish 2383 bus system.

Based on the identified critical N − 2 pairs, the malicious

agent begins at a random initial state and finds the optimal

attack-path transition policy to the existing and most critical

N − 2 contingencies. A contingency is identified when one

of the two buses has been visited by the agent. In Table 9,

we show the number of transitions required to reach both

critical contingencies as well as the number of PV and PQ
buses visited by the agent. For each comparison, five random

initial states are selected for each test system, and the average

results are presented. For example, the IEEE 39 bus system

requires an average of 8.8 transitions to correctly identify

the most critical contingency pair. During the transitions, an

average number of 0.4 generation (PV ) and 4.6 load (PQ)

buses need to be visited, i.e., compromised, by the agent. TTr

is the training and evaluation time (in seconds) needed for the

DQN to ‘learn’ the optimal attack path for different cases,

and TTo is the total time (in seconds) required to complete the

process. The utilization of the Polish 2383 bus system in our

experimental results aids in the evaluation of our proposed

process with a realistic large-scale EPS. As seen in Table 9,
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Figure 10: DQN rewards for bus test systems.
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Figure 11: Average DQN loss for bus test systems.

the training and evaluation process of the DQN in a typical

computer with 2.8GHz CPU and 16.00GB RAM requires an

average of 1459.5 seconds (approximately 24 minutes), and a

total running time of 1506.7 seconds (approximately 25 min-

utes). Note that the running time of the entire process could

be reduced by decreasing the number of hidden neurons in

the DQN model. The results demonstrate that the proposed

cybersecurity process can be used in tandem with medium

and long-term control and planning applications. On the other

hand, the proposed approach would require high computing

power in order to be integrated into very short-term decision

making processes [57].

C. DQN REWARDS AND LOSS CONVERGENCE

As mentioned in Section III, the DQN aims to minimize

the loss between the target value and the predicted value.

The DQN agent learns the optimal policy as this loss is

minimized. Here, we verify and evaluate the performance of

our proposed approach by examining the convergence of the

DQN loss during the training process. We also show how

the average reward gradually increases at each step, for each

test case, up to 250 training steps. It should be noted that the
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(a) (b) (c)

(d) (e) (f)

Figure 12: Number of transitions needed for DQN (CVSS-based), DQN (IVSS-based), DFS, random, and Dijkstra transition

policies for (a) IEEE 30 bus system, (b) IEEE 39 bus system, (c) IEEE 39 bus system + Wind W1 (Table 6: SC7, t = 800m),

(d) IEEE 39 bus system + Wind W2 (Table 7: SC5, t = 0m), (e) UIUC 150 bus system, and the (f) Polish 2383 bus system.

total number of training steps used is 500 while the update

frequency of the plot is set to 2, thus only 250 steps can be

observed in the graph. Fig. 10 shows the rewards for each

test case system and Fig. 11 shows the corresponding loss for

each case. As shown in Fig. 10, the DQN agent progressively

‘learns’ how to maximize the cumulative rewards in each

test case system. At the same time, as the agent ‘learns’, the

loss keeps decreasing until it converges to a minimum value

as depicted in Fig. 11. These results showcase the training

process of the DQN agent and its performance on all bus test

case systems.

D. EFFECTIVENESS OF DQN: COMPARISON WITH

OTHER TRANSITION TECHNIQUES

The effectiveness of using a DQN model in our cybersecurity

assessment process is demonstrated by comparing our DQN

agent based on the CVSS scoring system with different

techniques that could be used to find the optimal attack

transition policy in a graph. The techniques used to compare

the performance of the proposed DQN are: (i) random policy

search, (ii) DFS, (iii) Dijkstra’s shortest path algorithm, and

(iv) IVSS-based DQN model. The random transition tech-

nique provides a baseline, or naive case, where transitions

are performed randomly, i.e., without any intelligent control

mechanisms. DFS is a searching technique for traversing a

tree structure by starting from an arbitrary root node and

exploring each branch as far as possible before going back

to the root node and continuing to the next branch. Dijkstra’s

algorithm is a more sophisticated way of finding an optimal

path through a graph structure. Dijkstra’s algorithm is used

to solve shortest-path problems in non-negative weighted

graphs by finding an acyclic path between a source and a

target node with the minimum transition cost. Both DFS

and Dijkstra’s search policies need full observability of the

network, hence, for testing purposes in those two cases, we

assume full observability of the system and its corresponding

contingency pair. Finally, the IVSS-based DQN model is

designed to evaluate the differences between the CVSS and

IVSS vulnerability assessment criteria.

The tests conducted are run using the power system test

cases presented in Table 9. For each case, five random initial

states are selected and the average number of transitions is

calculated. The maximum, minimum, and average number of

transitions for each case are shown in the box plots presented

in Fig.12. From Figs. 12(a) – 12(f), we can observe that, in

general, the results of the DQNs-based transition techniques

tend to require fewer number of transitions, i.e., are more

efficient, when compared with the random and the DFS tran-

sition techniques. When compared with Dijkstra’s algorithm,

our DQN implementation performs slightly worse due to

its iterative learning process. However, Dijkstra’s shortest

path algorithm has the major disadvantage of requiring full

system observability. The results demonstrate the advantages

of using DQN as the main solver technique for our proposed
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(a) (b)

Figure 13: Number of transitions needed for DQN (CVSS-based) and DQN (IVSS-based) on all test systems evaluated. These

figures demonstrate the scalability of the proposed approach as the number of buses increases.

process. Finally, it can also be observed from Fig. 12 that

using CVSS v.3.1 has major advantages when compared to

the IVSS scoring system. The CVSS-based DQN consis-

tently requires fewer number of transitions in all evaluated

test cases.

To understand the scalability of the proposed DQN ap-

proach based on CVSS and IVSS, the number of transitions

for the different test systems evaluated are plotted in the

box plots shown in Figs. 13(a) and 13(b). In these figures,

we can observe that as the number of buses increase, the

number of transitions also increases but not in an exponen-

tial fashion. Additionally, the results depicted in the figures

demonstrate that in almost all test systems the DQN based

on CVSS requires a smaller number of transitions than the

DQN approach based on IVSS. An example of the improved

performance when using the CVSS-based approach can be

observed when comparing the number of transitions required

for the Polish 2383 test system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a cybersecurity assessment approach

designed to assess the cyberphysical security of EPS with

high penetration of wind. The proposed process assumes that

adversaries could leverage OSINT to perform contingency

analysis. Based on the contingency results and identified ex-

ploitable cyberphysical vulnerabilities via an adapted CVSS

metric, an optimal attack transition policy is generated that

can be potentially leveraged to cause major outages in an

EPS. The results provided by the proposed process are also

critical for improving cybersecurity visibility for system op-

erators and stakeholders; it provides information regarding

the most critical attack-path an adversary must follow to

severely compromise the system alongside with information

about the most vulnerable elements in the EPS at a partic-

ular time. The proposed approach is tested using real-time

simulation, realistic data from various actual wind energy

systems, and various test case power systems. Additionally,

results regarding the training and convergence of the DQN

agent, proposed as the main optimal attack-path transition

technique, are presented and compared with other competing

techniques. These results demonstrate the applicability of the

cybersecurity assessment approach in modern EPS.

The limitations of the cybersecurity assessment approach

presented in this work include mostly the assumptions related

to the threat model: (i) The contingency analysis can only be

performed when the attacker has sufficient power system data

acquired using OSINT techniques. Without the necessary

information, the set of contingencies cannot be correctly

identified. (ii) The cyber system network graph is assumed

to be isomorphic with the physical system graph, indicating

that the topology of the communication network is mapped

one-to-one with the topology of the physical system. This

assumption may not be necessarily true on some systems,

since the physical and communication networks could have

different network topologies.

Based on the limitations discussed, future work will focus

on: (i) Exploring potential defense strategies based on mov-

ing target defense methods that could be used to enhance

the overall system security and resilience by dynamically

updating time-varying parameters within the control system

of EPS (act as a moving target), thus, limiting adversaries

understanding of the cyberphysical EPS model. (ii) Analyz-

ing and investigating other DRL solvers that can be adapted

into the proposed cybersecurity assessment approach (e.g.,

UCB, A3C, or TRPO). (iii) Investigating how transitions, in

the proposed cybersecurity assessment approach, are affected

in scenarios where the cyber and physical networks are

not assumed isomorphic; examined by using real-time co-

simulation testbeds.
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