
ORIGINAL ARTICLE

Deep reinforcement learning for drone navigation using sensor data

Victoria J. Hodge1 • Richard Hawkins1 • Rob Alexander1

Received: 26 November 2019 / Accepted: 4 June 2020 / Published online: 21 June 2020

� The Author(s) 2020

Abstract

Mobile robots such as unmanned aerial vehicles (drones) can be used for surveillance, monitoring and data collection in

buildings, infrastructure and environments. The importance of accurate and multifaceted monitoring is well known to

identify problems early and prevent them escalating. This motivates the need for flexible, autonomous and powerful

decision-making mobile robots. These systems need to be able to learn through fusing data from multiple sources. Until

very recently, they have been task specific. In this paper, we describe a generic navigation algorithm that uses data from

sensors on-board the drone to guide the drone to the site of the problem. In hazardous and safety-critical situations, locating

problems accurately and rapidly is vital. We use the proximal policy optimisation deep reinforcement learning algorithm

coupled with incremental curriculum learning and long short-term memory neural networks to implement our generic and

adaptable navigation algorithm. We evaluate different configurations against a heuristic technique to demonstrate its

accuracy and efficiency. Finally, we consider how safety of the drone could be assured by assessing how safely the drone

would perform using our navigation algorithm in real-world scenarios.

Keywords UAV � drone � Deep reinforcement learning � Deep neural network � Navigation � Safety assurance

1 Introduction

Rapid and accurate sensor analysis has many applications

relevant to society today (see for example, [2, 41]). These

include the detection and identification of chemical leaks,

gas leaks, forest fires, disaster monitoring and search and

rescue. There are other less dramatic applications such as

agricultural, construction and environmental monitoring.

The sensors take measurements of specific chemical con-

centrations or infrared or thermal imaging levels which can

then be analysed to detect anomalies [22]. In this context,

we define an anomaly as an outlying observation that

appears to deviate markedly from other members of the

sample in which it occurs [6], i.e. a sensor reading that

appears to be inconsistent with the remainder of the set of

sensor readings [6]. In the sensor monitoring application

domain, an anomaly is indicative of a problem that needs

investigating further [21] such as a gas leak where the gas

reading detected by the sensors is elevated above normal

background readings for that particular gas. Sensor moni-

toring for environments, infrastructure and buildings needs

to be mobile, flexible, robust and have the ability to be used

in a broad range of environments. Many current sensors,

including IoT sensor systems, are static with fixed

mountings. One solution to the mobility and flexibility

issues is to mount the sensors on robotic/autonomous sys-

tems such as unmanned aerial vehicles (UAVs) often

referred to as drones [3]. These drones can be used

autonomously or operated by a human drone pilot to detect

and locate anomalies or perform search and rescue. They

can operate in areas unsafe or inaccessible to humans.

Example applications of sensor drones for condition

monitoring include agricultural analysis [39], construction

inspection [25], environmental (ecological) monitoring

[3, 28], wildlife monitoring [16], disaster analysis [15],

forest fire monitoring [12], gas detection [36, 42] and

search and rescue [17, 43, 51].

& Victoria J. Hodge

victoria.hodge@york.ac.uk

Richard Hawkins

richard.hawkins@york.ac.uk

Rob Alexander

rob.alexander@york.ac.uk

1 Department of Computer Science, University of York,

York YO10 5GH, UK

123

Neural Computing and Applications (2021) 33:2015–2033

https://doi.org/10.1007/s00521-020-05097-x (0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-2469-0224
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05097-x&domain=pdf
https://doi.org/10.1007/s00521-020-05097-x

In this paper, we present a drone navigation recom-

mender system for small or microdrones [3] although it can

easily be used on other applications including larger drones

or unmanned ground vehicles (UGVs). It can be considered

analogous to a sat-nav system in a car in terms of operation

and visuals—it recommends the best direction of travel to

get to the goal location (anomaly site). Hilder et al. [19]

documented a system for UGVs that had sensors mounted

on board. The system used artificial immune techniques to

detect anomalies in the sensor data, but the ground vehicle

used random walk to find the target. Here, we use intelli-

gent guidance incorporating the sensor data to guide the

drone to the anomaly site.

The following research topics are not in the scope of this

paper: UAV sensor module development and sensor

anomaly detection. We assume a sensor module attaches

underneath the drone: for example, to a gimbal or using a

mounting bracket. The gimbal provides geometric stability

for the sensors. This attachment approach has been widely

used in drone remote sensing [3]. We envisage this module

(see Fig. 1 for an example) containing a number of sensors

arranged in formation around a processing plate containing

a processing board such as a Raspberry Pi1 for lightweight

processing of simple sensor data, a Nvidia Jetson Nano2 for

heavier data processing such as image sensor data or bigger

boards such as Intel Nuc3 or Nvidia Jetson4 if the drone’s

payload permits and more heavyweight processing is nee-

ded. Thus, the processing board can collect the data from

the sensors. The sensors may be any arrangement of sensor

types appropriate for the anomaly detection application.

Sensor types range from the simplest temperature and

humidity sensors to high-end thermal imaging and camera

sensors. These sensor data are combined with location data

and obstacle detection data from a collision avoidance

mechanism (such as the drone’s mechanism) to enable

anomaly detection and navigation.

Every time the drone’s sensor module collects sensor

data, these data can be processed for anomalies on-board

(in the module’s processing plate) if sufficient compute

capacity is available or transmitted to a nearby device to

process [24]. The anomaly detection would be a two-stage

process: (1) determine whether there is an anomaly and (2)

determine which sensor is giving the most anomalous

reading. The anomaly detection software will use a real-

time sensor data anomaly detector for step 1 such as those

analysed in [23].

In this paper, we focus on the recommender software. It

uses artificial intelligence (AI) and operates once this

anomaly detection software detects an anomaly [22]. The

sensor data are coupled with the drone’s current direction

obtained either via the drone’s on-board navigation system

or from a compass mounted with the sensors and the

obstacle detection data from the drone’s collision avoid-

ance mechanism. The recommender uses these data as

input to an off-policy deep learning model to recommend

the direction of travel for the drone according to the current

prevailing conditions, surroundings and sensor readings.

This deep learning AI guides the drone to the site of the

anomaly and the drone can transmit the exact anomaly site

coordinates (and sensor data if needed) back to base for

further investigation as appropriate. This is particularly

important for safety-critical incidents or where the inves-

tigators have to wear hazardous material suits or breathing

apparatus with only a very limited time of usage (often

around 20 minutes). They can head straight to the tagged

location while the drone performs further sensor analyses.

The AI recommender allows the human pilot and on-board

collision avoidance or the drone’s autonomous navigation

system (including collision avoidance) to focus on the

actual navigation and the collision avoidance. This latter

Fig. 1 Schematic of a possible

sensor module which attaches

underneath the drone. Eight

sensor plates are shown in black

and clip together in an octagon

using magnets or clips. The

sensors are arranged facing

outwards to face 8 directions.

This octagon then clips to the

processing board (shown in

purple) using magnets or clips

(colour figure online)

1 https://www.raspberrypi.org/.
2 https://developer.nvidia.com/buy-jetson.
3 https://www.intel.co.uk/content/www/uk/en/products/boards-kits/

nuc/boards.html.
4 https://developer.nvidia.com/buy-jetson.

2016 Neural Computing and Applications (2021) 33:2015–2033

123

https://www.raspberrypi.org/
https://developer.nvidia.com/buy-jetson
https://www.intel.co.uk/content/www/uk/en/products/boards-kits/nuc/boards.html
https://www.intel.co.uk/content/www/uk/en/products/boards-kits/nuc/boards.html
https://developer.nvidia.com/buy-jetson

mechanism provides a separate safety net which overrides

the AI automatically if the AI recommendation would lead

the drone into a dangerous situation (such as a collision

with a concrete pillar).

Previous work used AI for drone navigation, processing

the images from on-board cameras for wayfinding and

collision avoidance [9, 43, 52]. However, this paper

introduces a new direction recommender to work in con-

junction with the navigator (human or AI pilot). Our rec-

ommender AI needs to be able to navigate generic

environments, navigate novel environments that it has not

seen before and navigate using only minimal information

available from a drone and the sensors mounted on-board.

We know: the drone’s location (generally from its on-board

GPS), if there is an obstacle to the immediate N, E, S, W of

the drone and the direction and magnitude of the sensor

reading.

Current navigation algorithms can be subdivided into:

• those that use global data (have an overview of the

entire navigation space)

• those that use only local (partially observable)

information.

A global algorithm such as A* needs visibility of the whole

exploration space (the whole grid). It expands paths to

determine the best path and backtracks if a path is no

longer best; it expands the search tree and must examine all

equally meritorious paths to find the optimal path as shown

in Fig. 2. Hence, the drone would have to fly paths and

backtrack to explore. A* often needs to examine large

areas of complex environments particularly if there are

concave obstacles. Additionally, A* cannot cope with

dynamic environments or next state transitions that are

stochastic. If the grid layout changes between moves or the

drone is blown off course, then A* needs to recalculate

from first principles.

We need to navigate with only incomplete (partially

observable) information examining the drone’s local area.

The drone may also need to navigate potentially changing

and hazardous environments. Our navigator described in

this paper uses a partially observable step-by-step approach

with potential for recalculation at each step. In this paper,

we focus on static environments as a first step in devel-

oping our drone navigation system. Although we do not

explore dynamic environments in this paper, we need an

approach that can cope with changing layouts as we intend

to develop our algorithm to navigate dynamic environ-

ments as well in the future.

The contributions of this paper are:

• A novel recommender system for drone navigation

combining sensor data with AI and requiring only

minimal information. Hilder et al. [19] used random

walk for a similar system for UGVs (buggies) but that

can get stuck inside obstacles as we show in our

evaluation in Sect. 5.

• We combine two deep learning techniques, (1) proxi-

mal policy optimisation (PPO) [45] for deep reinforce-

ment learning to learn navigation using minimal

information with (2) long short-term memory networks

(LSTMs) [20] to provide navigation memory to over-

come obstacles.

• We evaluate our system in a simulation environment to

allow us to easily and thoroughly test it before

transferring to real-world testing which is more difficult

logistically and very expensive. Once we establish the

merits and limits of the system within the simulation

environment, we can deploy it in real-world settings

and continue the optimisation.

• We define safety requirements for the system using a

systematic functional failure analysis (FFA) [40]. We

consider each system function in turn and use standard

guidewords to consider deviations in those functions

(i.e. function not provided, function provided when not

required, function provided incorrectly). We then

identify the potential worst-case effects of each func-

tional deviation and hence identify a set of safety

requirements for the system.

In Sect. 2 we analyse potential algorithms, we describe

deep reinforcement learning and why we are using it here,

Sect. 3 describes how we implement a drone navigation

simulation using sensor data coupled with deep reinforce-

ment learning to guide the drone, Sect. 4 gives a brief

overview of the simulation’s operation, and we evaluate the

drone navigation AI in Sect. 5. Section 6 provides a safety

assurance assessment of our system and identifies a set of

safety requirements. We discuss our evaluations in Sect. 7

and provide conclusions and further work possibilities in

Sect. 8.

2 Reinforcement learning (RL)

As stated above, we use a local algorithm to navigate as the

drone only has local visibility of the exploration spaces

(they are partially observable). There are a number of local

navigation approaches. Genetic algorithms can perform

partially observable navigation [13]. They generate a

population of randomly generated solutions and use the

principles of natural selection to select useful sets of

solutions. However, they have a tendency to get stuck in

local minima. Fuzzy logic algorithms [55] have been used

to learn to navigate, and Aouf et al. [4] demonstrated that

their fuzzy logic approach outperformed three meta-

heuristic (swarm intelligence) algorithms: particle swarm

Neural Computing and Applications (2021) 33:2015–2033 2017

123

optimisation, artificial bee colony and a meta-heuristic

Firefly algorithm, for navigation time and path length.

However, fuzzy logic algorithms struggle in dynamic

environments as they are too slow to recompute the path on

the fly when the environment changes [46]. Patle et al. [38]

review a number of techniques including these meta-

heuristic algorithms such as GAs and swarm intelligence

(including particle swarm optimisation, artificial bee col-

ony, firefly algorithm and ant colony optimisation) for

robot navigation. Meta-heuristic swarm intelligence algo-

rithms aim to find the best model by exploring the model

space in an intelligent manner via emergent behaviour.

They aim to find a good rather than optimal solution and

can also become trapped in local minima. Patle et al. [38]

conclude that GAs and swarm intelligence can navigate in

uncertain environments, but they are complex and not

suitable for low-cost robots. Regular neural networks such

as multilayer perceptrons can be used to train a navigation

model [38, 46], but they do not have the computational

power of deep learning algorithms and would be restricted

to simpler environments. Navigation algorithms can use

deep classification learning with deep neural networks. The

deep neural network learns to navigate by generating

labelled training data where the label scores the quality of

the path chosen [49]. However, it is both time-consuming

and difficult to accurately label a large enough set of

training examples.

In contrast, deep reinforcement learning (deep RL) uses

a trial and error approach which generates rewards and

penalties as the drone navigates. A key aim of this deep RL

is producing adaptive systems capable of experience-dri-

ven learning in the real world. Matiisen et al. [34] observed

that deep RL has been used to solve difficult tasks in video

games [35], locomotion [33, 44] and robotics [31]. It has

also been used in robot navigation [56] where the authors

could navigate 20 � 20 grids with 62% success rate.

Reinforcement learning (RL) itself is an autonomous

mathematical framework for experience-driven learning

[5]. As noted by Arulkumaran et al. [5], RL has had some

success previously such as helicopter navigation [37], but

these approaches are not generic, scalable and are limited

to relatively simple challenges.

Formally, RL is a Markov decision process

(MDP) as shown in Fig. 3, comprising:

• A finite set of states S, plus a distribution of starting

states pðs0Þ. There may be a terminal state, sT . The

complexity of the learning task is exponential with

respect to the number of variables used to define a state.

We later describe how we minimise the state

representation.

• A set of actions A covering all agents, available in each

state. We have only one agent which can move in one

of four possible directions.

• Transition dynamics (policy) phðstþ1jst; atÞ that map a

state/action pair at time t onto a distribution of states at

time t þ 1 using parameter set h. Transitions only

depend on the current state and action (Markov

assumption)

• An instantaneous reward function Rðst; at; stþ1Þ associ-
ated with each transition; used to assess the optimum

transition.

• A discount factor c 2 ½0; 1�, which is the current value

of future rewards. It quantifies the difference in

importance between immediate rewards and future

rewards (lower values place more emphasis on imme-

diate rewards).

• Memorylessness. Once the current state is known, the

history is erased as the current Markov state contains all

useful information from the history; ‘‘the future is

independent of the past given the present’’. This will

Fig. 2 The grid cells examined during A* search from the red square

to the blue square. The black squares are an obstacle. The algorithm

finds the optimal path from the red square to the blue square but

explores a large portion of the grid. The drone would have to fly

across all of the grey squares and the pink squares to find the path to

the blue square (colour figure online)

Fig. 3 The agent–environment framework of a Markov decision

process

2018 Neural Computing and Applications (2021) 33:2015–2033

123

prove important later on as we develop our recom-

mender system.

We treat our drone navigation problem analogously to

the Grid-World navigation problem [48]. In this paper, we

know the drone’s GPS location, what is to the immediate

N, E, S, W of the drone and the direction of the sensor

reading in Cartesian coordinates (x-distance, y-distance)

(where N, E, S and W are relative to the ground in this

example). In a real-world scenario, we may know the

direction and magnitude of the sensor readings in polar

coordinates using direction relative to the ground or rela-

tive to the drone as appropriate. Magnitude and direction

can easily be converted from polar coordinates to Cartesian

coordinates. If there are 8 sensors arranged in an octagon as

shown in Fig. 4, then the highest sensor reading gives the

direction to fly relative to ground or drone, and the mag-

nitude (strength) of the anomaly. Here the drone would

head north-east.

In our drone navigation recommender system, only part

of the environment is observable at any point in time. In the

real world, we would only know the immediate vicinity of

the drone via the drone’s collision avoidance mechanism.

We do not know the locations of obstacles that lie further

ahead (in the real world they may be obscured by closer

obstacles) or beyond the range of the drone’s vision.

Alternative formulations for the Grid-World navigation

problem treat the environment as a picture (observations)

where each cell of the grid maps to a pixel whose value

represents the contents of that cell {empty, obstacle, goal}

[50]. This requires complete information of the environ-

ment which is not available from the drone. Additionally,

this approach does not scale to different grid sizes as it

learns to navigate using N � N grids as images. A deep

learner trained on a 16 � 16 observations grid cannot

generalise to a 32 � 32 grid using this observation

formulation as the network input size would be different

(16 � 16 compared to 32 � 32) and would be misaligned.

Our formulation is scalable, adaptable and flexible.

2.1 Partially observable MDPs (POMDPs)

To train the drone using this partial (local) information, we

use a generalisation of MDPs known as partially observ-

able MDPs (POMDPs). In a POMDP, the agent receives an

observation ot 2 X, where an observation’s distribution

pðotþ1jstþ1; atÞ depends on the previous action at and the

current state stþ1. Here, the observation is described by a

mapping in a state-space model that depends on the current

state {sensor direction, sensor magnitude, N, E, S, W

space} and the previously applied action (whether the

drone moved N, E, S, W).

An MDP represents transition probabilities from state to

state. A policy p is a distribution over actions given states,

phðatjstÞ ¼ P½At ¼ atjSt ¼ st�. A policy fully defines the

behaviour of an agent given the current state st; it generates

an action at given the current state st and that action, when

executed, generates a reward rt. The aim of RL is to

identify the optimal policy, p�, which maximises the

reward over all states (i.e. maximises the expected reward

value E): p� ¼ argmaxp E½Rtjp�. There are two common

approaches for determining the optimal policy: value

learning which maintains a value function model, and

policy learning which is model free and searches directly

for the optimal policy. In this paper, we use policy learn-

ing. Value learning considers all actions at each iteration

and is slow; it takes |A| times longer than policy evaluation.

Also, the policy does not change at each iteration wasting

further time.

2.2 Policy gradients learning

The drawbacks of RL, as with many other AI algorithms,

are memory usage, computational complexity, and sample

complexity. There has recently been a move to underpin

RL with deep neural networks (DNNs) which provide

powerful function approximation and representation

learning properties. One subset of deep RL algorithms are

Policy gradient algorithms. They search for a local maxi-

mum in the policy quality by ascending the gradient of the

policy. Policy gradients learning is robust, but the gradient

variance is high. To lower this variance, we use unbiased

estimates of the gradient and subtract the average return

over several episodes which acts as a baseline. Addition-

ally, policy gradients have a large parameter set which can

create severe local minima. To minimise the likelihood of

local minima, we can use trust regions. Trust region search

constrains the optimisation steps so that they lie within a

region where the true cost function approximation still

Fig. 4 The eight sensor plates clip together in an octagon formation.

Our system uses anomaly detection to determine whether the sensor

readings are outside the normal range for the environment. If they are

abnormal, then it detects which sensor is giving the most anomalous

reading. Here, the north-east sensor is most anomalous and indicates

the direction to head

Neural Computing and Applications (2021) 33:2015–2033 2019

123

holds. We can reduce the likelihood of a very poor update

by ensuring that updated policies have low deviations from

prior policies, by using the Kullback–Leibler (KL) diver-

gence [29] to measure the deviation between the current

and proposed policy. Trust region policy optimisation

(TRPO) has demonstrated robustness by limiting the

amount the policy can change and guaranteeing that it is

monotonically improving. However, this constrained opti-

misation requires calculating second order gradients, lim-

iting its applicability. To overcome this, Schulman et al.

[45] developed the proximal policy optimisation (PPO)

algorithm which performs unconstrained optimisation,

requiring only first-order gradient information. PPO exe-

cutes multiple epochs of stochastic gradient descent to

perform each policy update. Hence, it performs a trust

region update in a way that is compatible with stochastic

gradient descent, thus simplifying the algorithm by

removing the need to make adaptive updates. PPO com-

putes an update at each time step t that minimises the cost

function while ensuring the deviation from the previous

policy is relatively small.

2.3 Proximal policy optimisation (PPO)
algorithm

PPO interleaves policy optimisation with collecting new

examples, in our case running a navigation example. PPO

demonstrates performance comparable to or better than

state-of-the-art approaches but is much simpler to imple-

ment and tune [45]. Its performance has also been

demonstrated for Minecraft and simple maze environments

[7]. PPO optimises the KL penalty by forming a lower

bound using a clipped importance ratio LClipðhÞ; this is an

element-wise minimum between the clipped and unclipped

objective. PPO performs optimisation using a batch of

navigation examples and minibatch stochastic gradient

descent to maximise the objective. This simplifies the

algorithm by removing the KL penalty and the requirement

to make adaptive updates. It finds a reliable update between

the updated policy p and the old policy pold which gener-

ated the batch of navigation examples. It prevents PPO

from being too greedy and trying to update too much at

once and updating outside the region where this sample

offers a good approximation. PPO is described in Eq. 1, h

is the policy parameter, Êt is the empirical expectation over

time, ratiot is the ratio of the probability of the new and old

policies, Ât is the estimated advantage at time t and � is a
hyper-parameter set to 0.1 or 0.2 which is an entropy factor

to boost exploration.

LClipðhÞ ¼ Êt½minð
pðatjstÞ

poldðatjstÞ
ÞÂt; clip

pðatjstÞ

poldðatjstÞ
Þ; 1� �; 1þ �

� �

ÂtÞ�

ð1Þ

PPO is gaining popularity for a range of RL tasks as it is

less expensive whilst retaining the performance of TRPO

[45].

3 Models and system architecture

Our drone simulation uses Unity 3-D’s ML-agents frame-

work [26] to design, develop and test the simulations prior

to real-world deployment. ML-agents uses the Unity 3-D

C# development framework as a front-end and middleware

interfacing to a Google TensorFlow [1] backend in Python.

The MS Windows version of ML-agents has a DLL library

to interface between C# and Python. It allows users to

develop environments for training intelligent agents [26].

In this paper, we focus on 2-D navigation and do not

consider the altitude of the drone. Thus, our anomaly

detection problem is a deterministic, single-agent search,

POMDP problem implemented using Grid-World in Unity

3-D ML-agents. We specify the grid size and number of

obstacles and the grid is randomly generated (see Fig. 5 for

an example grid). The Unity 3-D game environment runs

the simulation. Our system comprises three main interact-

ing processes.

3.1 Agents

In the ML-agents framework, the agents are Unity 3-D

Game Objects as demonstrated in [10, 11, 32] and [54]. In

our simulation, the agent is a drone. In ML-agents, the

agent generates the state, performs the prescribed actions

and assigns the cumulative rewards. The agent is linked to

exactly one brain (Sect. 3.2).

The agent (drone) takes the prescribed actions (move N,

E, S or W by one cell) to navigate the grid, avoiding the

obstacles and finding the goal. Our state space is a length 6

vector of the contents of the adjacent grid cells (N, E, S,

W), and the x-distance and y-distance to the target

(anomaly). This is both compact, scalable and realistically

achieved. (In the real world, the drone can only sense its

local environment; it cannot guarantee to see ahead due to

occlusions.)

In our RL, the agent receives a small penalty for each

movement, a positive reward (þ 1) for reaching the goal,

and a negative reward (- 1) for colliding with an obstacle.

3.2 Brains

Each agent has one brain linked to it which provides the

intelligence and determines the actions. The brain provides

the logic for making decisions for the agent; it determines

the best action to take at each instance. Our brain uses the

2020 Neural Computing and Applications (2021) 33:2015–2033

123

proximal policy optimisation (PPO) RL algorithm as

developed by OpenAI [45] which is optimised for real-time

environments. The ML-agents’ PPO algorithm is imple-

mented in TensorFlow and run in a separate Python process

(communicating with the running Unity application over a

socket).

The PPO algorithm receives the state-space representa-

tion (the contents of the adjacent grid cells (N, E, S, W),

and the x-distance and y-distance) and the set of possible

actions (move N, E, S or W one cell) as input and selects

the action to maximise the reward using the learned policy.

3.3 Academy

This element of the environment orchestrates the decision-

making process. It forms a conduit between the brain

(logic) and the actual Python TensorFlow implementation

of the brain which programmatically contains the logic as a

learned deep neural network model.

3.4 Configuration

To configure the agent and brain, we spent a long time

evaluating different agent, state, reward configurations.

These settings are key to a successful implementation so it

is worth investing time evaluating the different configura-

tions. We analysed:

• Different state representations, in particular different

distance representations where we used different scal-

ing factors relating to the grid size and the remaining

distance. We found the best results came from using a

state space of N, E, S, W, d(x), d(y) where dðxÞ ¼

distx
maxðdistx;distyÞ

and dðyÞ ¼
disty

maxðdistx;distyÞ

• Different step rewards where we used different scaling

factors relating to the grid size finding a step penalty of

stepPenalty ¼ �1

ðlongestPathÞ
where longestPath ¼

ððgridSize� 1Þ � gridSize=2Þ þ gridSizeÞ was best.

• A number of PPO hyper-parameters sets and found the

best results came from the settings listed in

‘‘Appendix’’.

If we train the agent using only 1 obstacle in the training

grids, then the agent learns to travel directly to the goal

which is desirable. However, after training and during

evaluation, it struggles when it encounters more complex

obstacles (2 or more red crosses joined). If we commence

training with multiple obstacles, e.g. 32 obstacles (ran-

domly placed red crosses), then it learns to walk haphaz-

ardly. This enables it to overcome more complex obstacles,

but it does not travel directly to the goal when the Grid-

World environment has very few obstacles. This is prob-

lematic and nullifies our desire for the agent to be generic

and able to tackle a variety of environments. Hence, we

Fig. 5 A randomly generated Unity 3-D ML-agents Grid-World with

a 32 � 32 grid, 64 obstacles (red �) and one goal (green ?). The AI

navigates the drone to the goal. The compass (top left) shows the

recommended direction of travel to the pilot. The inset bottom left is

what the drone’s forward-facing camera would see (colour

figure online)

Neural Computing and Applications (2021) 33:2015–2033 2021

123

looked at step-by-step (curriculum) learning described

next.

3.5 Curriculum learning

Training of deep learning networks can be expedited by

exploiting knowledge learned from previous related tasks.

There are several techniques including: transfer learning,

multitask learning and curriculum learning [8]. We focus

on curriculum learning because it can begin learning in

simulators with visual rendering and then the learned

model can be fine-tuned in real-world applications. This is

beneficial to our application. It allows us to use drone

simulations to bootstrap the system and progress to drone

flights. Formally, a curriculum is a series of lessons (se-

quence of training criteria). Curriculum learning starts with

a simple task and gradually increases the complexity of the

task as learning progresses until we reach the training

criterion of interest. It does not forget previously learned

instances. Each lesson (training criterion) generates a dif-

ferent set of weights during training building on the pre-

vious weights. We progress from 1 obstacle to 4 then 8 then

16 then 32 all in a 16 � 16 grid. At the end of the

sequence, the drone can still efficiently navigate the

16 � 16 grid with 1 obstacle as the network has not for-

gotten the knowledge gained during the first lesson. It can

also now efficiently navigate the 16 � 16 grid with 32

obstacles from the knowledge gained during the final

lesson.

In this paper, we use an adaptive curriculum learning

approach that we call ‘‘incremental curriculum learning’’.

Curriculum learning requires the number of iterations for

each lesson to be pre-specified, e.g. train lesson one for 5

million iterations. Often, this number cannot be determined

accurately in advance. Incremental curriculum learning

allows the user to adapt the number of iterations for each

lesson to optimise training. It trains the network during a

curriculum lesson for the pre-specified number of iterations

unless a user stops the learning process early if the model is

trained sufficiently or the user adds extra iterations if the

model is not sufficiently trained after the pre-specified

number of iterations. There are a number of metrics we can

use to determine how many epochs to train each lesson

such as loss, entropy or mean final reward. We analysed the

metrics and found that mean final reward generated the best

model for navigation with our incremental curriculum

learning. The other metrics tended to either over-train or

under-train the models leading to poor generalisation

capabilities. Thus, we use the mean final reward to identify

when each lesson should end. For example, if we specify

train lesson one for 5 million iterations and examine the

agent’s mean final reward (averaged over every 10,000

training iterations), we can determine if the reward is still

increasing or has become stable. If it is still increasing, then

we assume the agent has not learned this curriculum step

sufficiently and can add a further 0.5 million iterations to

lesson one and test again once it has run 5.5 million iter-

ations. Hence, we incrementally learn each lesson until we

are satisfied that the PPO has learned that lesson suffi-

ciently then we move onto the next lesson (more complex

task in the curriculum). We analyse this incremental cur-

riculum learning further in the Evaluations in Sect. 5.

3.6 Memory

In Sect. 2, we formally defined an MDP. We highlighted

that MDPs are memoryless. This proved an issue for our

navigation recommender system. When the agent encoun-

ters concave obstacles (cul-de-sacs) a lack of memory is a

problem. The PPO agent steps back and forth or circles

repeatedly as it cannot remember previous movements. To

overcome this, we added an LSTM memory layer for the

PPO deep learning, as shown in Fig. 6. An LSTM is a

gated recurrent neural network [20] capable of learning

longer-term dependencies (sequences) making it ideal to

provide a memory layer for the agent.

An LSTM network comprises memory blocks called

cells. The cells form sequences and are responsible for

remembering and memory manipulations that update the

hidden state (memory). Each cell is gated so it can store or

delete information (by opening and closing the gate). Thus,

the LSTM can read, write and delete information from its

memory. The sequence length is the number of steps the

agent must remember. It is also the length of input data and

the sequences passed through the LSTM during training.

This length needs to be sufficiently long to capture the

Fig. 6 Schematic of the PPO and LSTM network. There are 2 hidden

layers in our PPO network with 64 nodes per layer. The LSTM

provides a recurrent connection between hidden layers. This loop

back allows the network ‘‘to remember’’ the previous inputs and to

include this recurrent information into the decision-making. Further

hyper-parameter settings are given in the ‘‘Appendix’’

2022 Neural Computing and Applications (2021) 33:2015–2033

123

information the agent must remember. However, a longer

sequence increases the training time as it increases the

LSTM complexity. In this case, we need to remember

sufficient steps to allow the agent to navigate cul-de-sacs

and other more complex obstacles. LSTMs are recurrent

and backpropagate the output error through time and lay-

ers. This recurrent mechanism allows such networks to

learn over time steps.

3.7 Training

During training, the TensorFlow PPO model with LSTM

sequence memory performs the decision-making. The

TensorFlow model is separate from the Unity environment

and communicates via a socket. We trained the brain for 50

million training episodes using our incremental curriculum

learning. Each episode is generated independently by Unity

3-D as a separate navigation task. For each grid (episode),

the navigator either solves the grid, fails or times out. It

then moves on to the next grid layout. The obstacles are

placed in the grid using the Unity 3-D C# random number

generator to select the positions.

The PPO network setup is shown in Fig. 6 and the set of

parameters for Unity ML-Agents is given in the ‘‘Ap-

pendix’’. Input to the network is the six-dimensional state

vector (N, E, S, W, x-distance, y-distance) and it outputs

which action to take: move N, E, S or W by one step.

4 Simulation operation

Once we have a trained model, we switch to Internal mode

where the Unity 3-D environment uses it to navigate. Unity

passes the agent’s current state to the stored TensorFlow

graph which returns the recommended action. This repre-

sents the best action to take given the current state of the

system and the set of possible actions. In Internal mode, no

more learning is performed and the model graph is frozen.

We can train the model further by switching back to

training mode in the Unity 3-D setup if needed.

5 Evaluations

Our first analysis is to investigate our incremental cur-

riculum learning. We demonstrate why we use the incre-

mental approach and how we use the training reward

metric to determine when to stop training each lesson. We

evaluate two versions of the drone AI and a baseline PPO

without memory.

• The baseline PPO has no LSTM memory but trained

with incremental curriculum learning (PPO).

• The first drone AI uses PPO trained with curriculum

learning and having an LSTM with memory length 8 (it

remembers the last 8 steps taken) (PPO8).

• The second drone AI is identical except the memory is

length 16 (PPO16).

Figure 7 shows the mean reward while training 5,000,000

iterations of the first lesson of the curriculum (16 � 16 grid

with 1 obstacle) for PPO, PPO8 and PPO16 along with the

mean reward during training of the second lesson of the

curriculum (16 � 16 grid with 4 obstacles) for PPO8 L2.

PPO8 L2 in the second lesson has already undergone

5,000,000 training iterations on a 16 � 16 grid with 1

obstacle during lesson 1 and we show how this affects

training. The lower chart is a zoomed version of the top

chart and shows the oscillations in the mean reward more

clearly. Similarly, Fig. 8 shows the standard deviation of

the reward during training of the first lesson of the cur-

riculum for PPO, PPO8 and PPO16 along with the reward

standard deviation during training of the second lesson of

the curriculum for PPO8.

Figures 7 and 8 show that for lesson 1, PPO with no

memory initially learns fastest as the mean reward and

reward standard deviation plot lines oscillate least and

settle quickest but there is a slight increase in oscillation

around 4 million training iterations. The figures show that

the larger the AI memory then the longer the AI takes to

learn. This is illustrated by the plot line oscillating more

and settling slowest initially. At the start of training, PPO16

takes 240,000 iteration to reach a mean reward of 0.9

compared to 50,000 for PPO and 150,000 for PPO8.

However, PPO8 oscillates least after 3 million training

iterations as the memory is helping it navigate compared to

PPO with no memory. When PPO8 is on the second lesson,

PPO8 L2 oscillates least of all and settles quickly as it has

already learned one previous lesson and carries over its

navigation knowledge from one lesson to the next. This

variation in length to settle demonstrates why we use

incremental curriculum learning as we can vary the length

of each lesson according to the AI’s time to settle and

ensure it undergoes sufficient training to learn. Figures 7

and 8 show that PPO8 and PPO8 L2 are ready to move to

the next lesson but PPO and PPO16 would benefit from at

least 0.5 million more iterations.

There is some variation in the standard deviation

throughout the lesson due to our random grid generation.

We calculate the average reward and reward standard

deviation over each block of 10,000 iterations. Some

blocks may contain more grids with long paths from the

starting point to the goal and other blocks may contain

more grids with short paths due to chance. However, the

standard deviation should still settle to within a range.

Occasionally during learning, the AI may get stuck. This

Neural Computing and Applications (2021) 33:2015–2033 2023

123

can be seen in the plot for PPO8 around 1,000,000 itera-

tions where the mean reward drops and the standard

deviation increases as the AI has to relearn. Again, by

varying lesson length and using a metric, we can ensure the

AI has learnt sufficiently before progressing to the next

lesson.

Next, we evaluate a baseline PPO without memory, two

versions of the drone AI and a simple heuristic approach

across a number of Grid-World configurations. The pur-

pose of this evaluation is to show the effectiveness and

generalisability of the PPO and LSTM combination and

how much benefit using the LSTM to remember the last

N steps provides for the AI. The Unity 3-D simulator

randomly generates 2000 episodes of the Grid-World for

each of the different drone AI configurations. Using visual

observation, we qualitatively assessed the obstacle layouts

in around 50–100 of each of the 2000 episode sets to ensure

they were distributed across the grid and provided a good

mix of obstacle shapes and sizes that were both close

together and further apart. We analyse the episode length

(how many steps the drone takes to reach the goal), the

reward when the episode ends (either with the drone

reaching the goal, hitting an obstacle or running out of

steps) and the accuracy (how many times the agent suc-

cessfully finds the goal in the 2000 runs). Each episode can

last up to 1000 steps before it times out. We evaluate:

• PPO8—the drone AI (PPO with an LSTM with memory

length 8).

Fig. 7 Line plots of mean reward on the y-axis (averaged over each

10,000 iterations) with iteration number on the x-axis for PPO, PPO8

and PPO16 on the first lesson of the curriculum (16 � 16 grid with 1

obstacle). PPO8 L2 is PPO8 on the second lesson of the curriculum

(16 � 16 grid with 4 obstacles). The lower chart is a zoomed version

of the top chart

2024 Neural Computing and Applications (2021) 33:2015–2033

123

• PPO16—the drone AI (PPO with an LSTM with

memory length 16).

• PPO—the baseline PPO with no memory.

• Heuristic—the simple heuristic calculates the distance

in both the x and y directions from the drone’s current

position to the goal and then moves in the direction (N,

E, S, W) with the lowest distance to the goal. This is

analogous to PPO without LSTM that uses the x and

y distances and the contents of the four grid cells to the

N, E, S, W to determine the next move. If the drone

cannot move in the direction recommended by the

heuristic due to an obstacle then it randomly selects a

direction to move in that is not blocked by an obstacle.

The PPO without LSTM tends to get stuck in obstacles

but the heuristic’s random moves may free it from the

obstacle.

Figure 9 and Tables 1 and 2 detail the analyses of the

algorithms each across eight Grid-World scenarios with

different grid sizes and numbers of obstacles. Note, the

agents only trained on the 32 � 32 grid with 32 obstacles;

all other Grid-World setups are novel.

For the sensor drone, it is desirable to have low episode

length (fewest steps) but high reward (lowest penalties) and

the highest accuracy (highest success rate) possible. We

want the drone to find the goal and find it in as few steps as

possible. It is possible to have low episode length with low

reward if the drone takes a few steps and then hits an

obstacle which is not desirable. Considering these factors,

the PPO with LSTM length 8 performs best overall. The

PPO with LSTM length 16 is the best approach for grids

size 32 with 256 obstacles which represents a very

overcrowded environment filled with obstacles. PPO and

the heuristic approaches get stuck in more complex envi-

ronments and have a higher episode length (step count)

overall. However, for the 64 grid with 64 obstacles

heuristic is best and PPO is best for 64 grid with 128 and

256 obstacles w.r.t. accuracy and reward but not for

number of steps due to it getting stuck (Fig. 9). Also, they

are only just best and their box and whisker plots are higher

(higher mean, quartiles and more outliers) as they often get

stuck and crash less frequently. PPO with memory tends to

crash and gets stuck infrequently.

6 Safety assurance

The use of the drone navigation recommender system

described in this paper in a real-world environment has the

potential to cause harm to humans. This harm may either

be caused directly by the system (e.g. failures in the system

leading to collisions between the drone and other obstacles

in the environment), or indirectly result from the system

causing a failure to successfully complete a mission (de-

laying an emergency rescue response for example). If using

the drone navigation recommender system in a real-world

environment, we must therefore provide confidence that the

use of the system will not lead to such harm. We refer to

such confidence that behaviour will be safe as ‘‘assurance’’.

In this section we will focus on directly caused harm and

briefly discuss a strategy for demonstrating assurance in the

system and discuss the challenges that would need to be

addressed prior to deployment.

Fig. 8 Line plot of reward standard deviation on the y-axis (over each

10,000 iterations) with iteration number on the x-axis for PPO, PPO8

and PPO16 on the first lesson of the curriculum (16 � 16 grid with 1

obstacle). PPO8 4 is PPO8 on the second lesson of the curriculum

(16 � 16 grid with 4 obstacles)

Neural Computing and Applications (2021) 33:2015–2033 2025

123

Fig. 9 Box plots of episode length on the y-axis (number of steps

taken by the drone to find the goal) across 2000 runs with ‘‘grid size/

number of obstacles’’ on the x-axis for PPO8 (top left), PPO16 (top

right),PPO (bottom left) and heuristic (bottom right). Lower values

are better (fewer steps taken)

Table 1 Average reward (the

average reward achieved by the

drone when finding the goal)

Algorithm Grid size/number of obstacles

32/32 32/64 32/128 32/256 64/64 64/128 64/256 64/512

Heuristic 0.92 0.83 0.33 - 1.04 0.98 0.96 0.86 0.52

PPO 0.94 0.93 0.82 - 0.50 0.97 0.96 0.95 0.83

PPO8 0.95 0.94 0.91 0.65 0.97 0.95 0.93 0.83

PPO16 0.92 0.90 0.89 0.78 0.91 0.86 0.78 0.73

The average is taken across 2000 runs and higher values are better (maximum reward is 1.0). The best

(highest) value in each column is shown in bold

Table 2 Accuracy (how many

times the drone finds the goal)
Algorithm Grid size/number of obstacles

32/32 32/64 32/128 32/256 64/64 64/128 64/256 64/512

Heuristic 1986 1946 1717 1100 1997 1981 1873 1504

PPO 1993 1988 1930 1346 1994 1984 1968 1857

PPO8 1994 1992 1961 1739 1992 1970 1950 1858

PPO16 1985 1961 1944 1866 1944 1892 1811 1755

The total is taken across 2000 runs and higher values are better (fewer failures). The best (highest) value in

each column is shown in bold

2026 Neural Computing and Applications (2021) 33:2015–2033

123

6.1 Identifying safety requirements

In order to define safety requirements for the system we

performed a systematic functional failure analysis (FFA)

[40]. This analysis considered each function of the system

in turn and used a set of standard guidewords as prompts to

consider deviations in those functions (function not pro-

vided, function provided when not required, function pro-

vided incorrectly). The potential worst credible effects of

each of those functional deviations were identified, in the

form of hazard states of the system that could lead to harm.

For those deviations that were determined to be potentially

hazardous, potential causes of those deviations by the

navigation recommender system were identified. These

identified hazard causes can be used to determine a set of

safety requirements that must be met by the system.

In Table 3 we extract the results of the FFA for just

those deviations that could result in the hazard of collision.

Of these failures, the move function relates to the action

of the drone itself, and the avoid collision function relates

to the collision avoidance system. We therefore focus here

on hazardous failure of the function to determine which

way to move, which is implemented by the navigation

recommender system. It would be potentially catastrophic

for the system to create a plan that would lead to a colli-

sion. It is therefore necessary to demonstrate with sufficient

confidence prior to putting the system into operation that

the system will not produce a plan that results in a

collision.

In this case, the results of the FFA are elementary and

perhaps quite predictable, but they serve to illustrate how

such a technique would contribute to safety assurance. For

a more complicated system, FFA is capable of identifying

hazardous failures that would not be easily identified

through unstructured engineering judgement. Beyond that

primary benefit, safety case developers can use its struc-

tured nature as grounds for arguing that all hazardous

failures have been identified—something that unstructured

approaches make difficult. The structure of the FFA also

helps to provide traceability from the functional design to

the hazards of the system and leads to a tangible artifact

that can be reviewed by diverse experts.

Beyond FFA, there are a variety of more complex and

specialised techniques with similar properties. Notable ex-

amples include FMEA for considering effects of compo-

nent failures [53], STPA for assessing the overall control

structures of a system [30] and ESHA for considering the

effects of interactions with a complex environment [14].

6.2 Demonstrating assurance

Demonstrating safety assurance of the navigation recom-

mender system will require the generation of evidence that

the defined safety requirement is met. The safety require-

ment is: The navigation recommender system shall never

plan a move that leads to collision with an obstacle.

To provide the necessary confidence that this require-

ment is satisfied will require assurance in three areas:

• Assurance of the training

• Assurance of the learned model

• Assurance of the overall performance of the drone

The third of these is analogous to system testing. System

testing alone, however, is generally deemed to be insuffi-

cient for the assurance of safety related systems [18]. For

this reason, lower-level verification, analogous to unit level

verification of software systems, must also be performed.

Similarly, assuring the learned model may not be sufficient

unless the training of the model is also assured. In the

remainder of this section, we will discuss each of these

areas in turn, and consider how assurance could be

demonstrated.

6.2.1 Assurance of the training performed

When considering the confidence we can demonstrate in

the training that has been carried out for the navigation

recommender system, we need to consider both the data

used to train the algorithm, and the simulation environment

in which the training is performed. From a data perspec-

tive, we will consider two critical question for assurance:

1. Are the simulation cases sufficient to ensure robust

performance in a real-world environment?

Table 3 Extract of FFA results
Function Failure mode Effects

Determine which

way to move

(Provided incorrectly)

Plans collision

Potentially catastrophic

Move (Provided when not required)

Unplanned move

Potentially catastrophic

(Provided incorrectly)

Move inconsistent with plan

Potentially catastrophic

Avoid collision (Not provided) Potentially catastrophic

Neural Computing and Applications (2021) 33:2015–2033 2027

123

2. Does the training deal well with the low-probability

high-impact edge cases?

The algorithm has been trained in such a way that the

safety requirement defined above is met. This training

provides evidence to support a safety case for operation.

However, this evidence only supports a case for real

operation of a drone if the training scenarios provide suf-

ficient examples of real-world scenarios. Although a suf-

ficiently large training set is important to achieve reliable

performance of the algorithm, this is not simply a question

of quantity of training runs performed. Of equal importance

is the ‘‘quality’’ of those training runs with relation to

meeting the safety requirement in real-world scenarios. The

quality of the training runs will depend upon both their

diversity and the inclusion of low-probability edge cases.

With regard to diversity, consider, for example, 1000

training runs that present extremely similar scenarios.

These are of less value than a single run that exposes the

algorithm to a previously unseen scenario.

With regard to low-probability edge cases, it is often

unanticipated scenarios that are seen to lead to accidents.

Effective training from an assurance perspective must

therefore provide as many edge cases as possible. In the

training described in this paper, we have been able to

achieve a high level of coverage of real-world scenarios,

largely due to the abstract nature of the simulation. There

are approx. 5 � 1040 combinations of 32 obstacles in a

16 � 16 grid using C255
32 (with the goal occupying one cell

leaving 255 to place 32 obstacles in). We cannot evaluate

them all and would also over-train the neural network

preventing it from generalising to new scenarios. Our Unity

3-D simulation uses the C# random number generator to

generate the grid layouts. Microsoft describe this number

generator as ‘‘sufficiently random for practical purposes’’.

In our evaluations, we trained the neural networks for 50

million iterations.

Having evidence of the sufficiency of the training set on

its own is insufficient for assurance of the training per-

formed. This provides assurance that the algorithm has

been effectively trained to meet the safety requirement in

the simulation; it must also be demonstrated that the sim-

ulation is sufficiently representative that the learned

behaviour in simulation will also be the behaviour

observed in the real system. Clearly, the simulation used in

this paper for training the navigation recommender system

is a very abstract representation of the real-world envi-

ronment it simulates. From a safety assurance perspective,

it is important to understand what simplifying assumptions

are made in the simulation, and what impact those

assumptions may have on the safety of the system.

In this paper, we have made the following assumptions:

• In the approach here, we assume that all obstacles are

equal (- 1 penalty). In reality, some obstacles may be

more dangerous than others and we will need to factor

this into our model learning in the future, such as using

different rewards (penalties) for obstacles.

• There is a single anomaly to be detected or one large

anomaly that would override all others and always be

detected by the sensors. If there are multiple anomalies,

then the sensor data could cause see-sawing of the

drone as the highest sensor reading switches between

anomaly sites during the drone navigation. However,

we would assume that multiple anomalies would

require a swarm-based approach so do not consider

that here

• In a gas-based anomaly search scenario, if the drone is

searching a building for anomalies, then ventilation

problems in the building could cause gas to accumulate

in particular regions of the building. This could cause

false positives. However, these false positives could be

eliminated by flying the drone to these sites and circling

to assess the accumulation.

• We assume that the drone can find the exact anomaly

site once it reaches the ‘‘goal’’ in the simulation. In

reality, the drone may need to circle and analyse sensor

gradients (differences in sensor reading for adjacent

locations) to pinpoint the exact location of the anomaly.

• We have not accounted for defective sensors or

erroneous sensor readings. The simulation at this stage

assumes that the sensor readings input to the AI are

correct and the AI navigates the drone accordingly. A

next step for the simulation development is to occa-

sionally perturb the sensor readings, build data cleaning

into the anomaly detection algorithms and an accom-

modation mechanism into the AI so that it can cope.

• We assume that all movement commands are imple-

mented faithfully in the real world (i.e. a command to

move North results in the drone moving North in the

environment). Under real environmental conditions the

movement might be imperfect, so, for example, wind

effects may result in a drone being blown off its desired

trajectory. If such effects were felt to be important in

the target environment, then they could be included in

the simulation.

• The AI could lead the drone into a complex cul-de-sac

from where it cannot navigate out. Drones have a

‘‘return-to-home’’ mechanism where they follow their

flight path back to base. This would be actioned as

appropriate. Alternatively, in a collapsed building

where the ‘‘return-to-home’’ path is no longer safe than

the drone could simply land and await rescue.

2028 Neural Computing and Applications (2021) 33:2015–2033

123

6.2.2 Assurance of the learned model

As well as gaining confidence in the safety of the naviga-

tion recommender system through the way it has been

trained (as discussed in the previous section), it is also

important to generate evidence about the sufficiency of the

learned model itself. This evidence could be obtained

through testing the model in the real world or in the sim-

ulator. In this case we have only tested the navigation

recommender system in the simulator, and this places

natural limits on the level of assurance that can be

demonstrated. The confidence that the test evidence pro-

vides in the safety of the system will depend upon the

following considerations:

1. Are the test cases sufficiently distinct from the training

cases?

2. Are the test cases sufficiently representative of real-

world situations?

The aim of the testing is to demonstrate that the learned

model will satisfy the safety requirements in all real-world

scenarios. Although it is not possible to exhaustively test

all real-world scenarios, it is important to maximise the

coverage of the identified scenarios. In effect we must

attempt to simulate raw sensor data in the simulation that

corresponds to real-world data as would be sensed by the

real sensors in that scenario. As well as coverage of sce-

narios, a further potential source of uncertainty is the level

of correspondence between the approximated raw sensor

data in the simulation and the performance of the real

sensors. Testing the learned model in this way should

provide confidence that the safe behaviour that has been

learned by the system from a finite set of training data will

also be observed when the system is presented with data

upon which it was not trained. If the test cases that are used

are too similar to the training cases, then this will not be

demonstrated.

The testing described in this paper uses distinct training

cases, i.e. 2000 randomly generated grid layouts. Each grid

layout is independent of all other grid layouts and the set of

layouts should provide good coverage of the scenarios. It is

difficult to measure the ‘‘quality’’ of one layout against

another when testing. It is the overall coverage of the

sequence of layouts that is important rather than each

individual layout. Again, it is difficult to measure the

quality of one sequence of 2000 layouts against another

sequence of 2000 layouts. The C# number generator that

we use to randomly generate the training and testing grids

is not completely random as it uses a mathematical algo-

rithm to select the numbers, but the numbers are ‘‘suffi-

ciently random for practical purposes’’ according to

Microsoft5. The current implementation of the C# Random

class is based on a modified version of Donald E. Knuth’s

subtractive random number generator algorithm [27]. This

should ensure that a sequence of 2000 layouts provides

good coverage during testing.

We also evaluated different grid sizes (different to those

used to train the model) and different numbers of obstacles

within those grids (again different to those used in train-

ing). Each learned model was tested using eight different

configurations. This again should make the testing more

thorough.

6.2.3 Assurance of the overall performance of the drone

We have dealt here with the assurance of the navigation

recommender system. When in operation, this system will

be used as one system integrated into a larger drone plat-

form. It is important to provide evidence that the system

continues to satisfy its safety requirement when integrated

into the drone platform. We have already discussed the role

of real-world (‘‘target’’) testing of the system to gain extra

assurance. This not only provides evidence of the system

performance in the real-world environment, but also pro-

vides evidence that the system performance is not

adversely affected by its integration with other compo-

nents. In particular, target testing would provide the

opportunity to identify discrepancies caused by real sensor

data. Real-world testing also enables validation of the

assumptions described earlier. For instance, the effect of

non-simulated environmental factors, such as wind, on the

performance of the algorithm could be tested.

The navigation recommender system is just one of many

systems that would need to be assured as part of an overall

safety assurance case for the drone operation. It is outside

the scope of this paper to discuss how a complete assurance

case for the drone would be developed. In this discussion,

we have, however, provided a strategy by which sufficient

assurance could be demonstrated in the navigation rec-

ommender system to enable it to be used with confidence

as part of a larger drone, or other autonomous platform.

7 Discussion

In this paper, we have demonstrated a drone navigation

recommender that uses sensor data to inform the naviga-

tion. We adapt the standard PPO approach by incorporating

‘‘incremental curriculum learning’’ (Sect. 3.5). Curriculum

learning starts with a simple task and gradually increases

the task complexity as it learns. Our incremental curricu-

lum learning dovetails with this by allowing us to vary the

length of each lesson in the curriculum until the AI has

5 https://docs.microsoft.com/en-us/dotnet/api/system.random?view=

netframework-4.7.2.

Neural Computing and Applications (2021) 33:2015–2033 2029

123

https://docs.microsoft.com/en-us/dotnet/api/system.random?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.random?view=netframework-4.7.2

learned that task sufficiently well as demonstrated in

Sect. 5. This allows us to gradually learn to navigate

complex environments. We added a memory to the AI

using a long short-term memory (LSTM) neural network

that allows the drone to remember previous steps and

prevent it retracing its steps and getting stuck. We train our

algorithm using a Unity 3-D simulation environment.

The paper evaluated two configurations of PPO with

LSTM against PPO and a simple heuristic technique which

functions similar to the PPO (without the learned intelli-

gence). We evaluated PPO with an LSTM memory of

length 8 and length 16 to remember where the drone has

been. PPO and the heuristic approach form our baseline.

The best overall method is PPO with LSTM length 8 which

should be used unless the environment is very overcrowded

where PPO with LSTM length 16 is best. If the environ-

ment is open with very few obstacles then the heuristic is

best, e.g. a 64 � 64 grid with 64 obstacles and PPO is

marginally better for 64 � 64 grids with 128 and 256

obstacles w.r.t. final reward and success rate but takes more

steps due to backtracking. The advantage provided by the

LSTM memory component to the PPO is that it prevents

repetition. Observing the heuristic and PPO approaches, the

lack of memory causes the agent to wander side to side

when confronted by obstacles, whereas a PPO agent with

memory tends to pick a direction and try that way. If it

succeeds then it carries on. If it fails, then it backtracks

using the memory and tries a different direction. It does not

tend to retrace its steps unless it has to as it remembers

where it has tried.

The PPO with LSTM approaches tend to wander slightly

and deviate from straight lines whereas the heuristic and

PPO are more direct. In particular, the LSTM length 16

longer memory rarely gets stuck but takes much longer to

train and slightly longer to run as the extra memory

increase the degrees of freedom and thus increases the

exploration space of the AI so we only recommend it for

complex environments.

The advantage provided by the curriculum learning is

that it prevents wandering. By starting with a grid with

only one obstacle, the AI learns to walk directly to the goal.

We then gradually increase the number of obstacles and the

AI learns to navigate to the goal with as little wandering as

possible. If we do not use curriculum learning and just train

from a grid with many obstacles, then the AI learns to

wander too much, most noticeably on grids with few

obstacles. Hence, using curriculum learning is key to

developing a recommender.

While we focussed on drone navigation in hazardous

environments in this paper, our navigation model could be

deployed in a number of different domains including the

detection and identification of chemical leaks, gas leaks,

forest fires, disaster monitoring, and search and rescue. It

could be used for navigating autonomous ground vehicles

(robots) that need to navigate complex and dynamic envi-

ronments such as Industry 4.0 reconfigurable factories or

hospitals to supply equipment; it could be used for delivery

robots that deliver parcels or food; and it could be used in

agricultural monitoring. The same AI navigator can be used

to guide unmanned underwater vehicles used for explo-

ration or maintenance where the environment is ever

changing due to currents in the water. It could even be used

in video games to navigate characters within the video

game. For each of these new domains, the algorithm would

remain the same; the only change needed is to select

suitable sensors and data to provide the local navigation

information required as inputs (i.e. what is immediately to

the N, S, E, W and the distance to the target.)

8 Conclusion and future work

Identifying anomalies in environments, buildings and

infrastructure is vital to detect problems and to detect them

early before they escalate. In this paper, we introduced an

anomaly locating drone. It uses a drone-mounted sensor

module. We developed an AI-based navigation algorithm

that uses the data from these sensors to guide the drone to

the exact location of the problem. An anomaly locator is

particularly important in safety-critical or hazardous situ-

ations for rapid locating and so humans can minimise their

exposure to the hazard. The drone may be piloted by a

human or fly autonomously.

Whether piloted by a human or an autonomous drone,

our navigation algorithm acts as a guide while the pilot

focuses on flying the drone safely. Our algorithm is based

on the Proximal Policy Optimisation (PPO) deep rein-

forcement learning algorithm with incremental curriculum

learning to improve training and an LSTM recurrent layer

to allow the agent to remember where it has been and

backtrack when it gets stuck. Deep reinforcement learning

algorithms are capable of experience-driven learning for

real-world problems making them ideal for our task. We

have deliberately configured our algorithm to be generic

adaptable and potentially able to work in complex and

dynamic environments.

We showed in Sect. 5 that a general algorithm of PPO

with LSTM length 8 is best except for very simple envi-

ronments with very few obstacles where a simple heuristic

or PPO with no memory can traverse straight to the

problem and very complex environments with many and

complex obstacles where PPO with longer short-term

memory (LSTM length 16) is best that can retrace its steps

further.

Although the human pilot or autonomous drone is

responsible for flying the drone while our algorithm acts as

2030 Neural Computing and Applications (2021) 33:2015–2033

123

a recommender, it is still important to consider the safety

aspects of the system. In Sect. 6, we performed a safety

assurance analysis of the system, what safety requirements

are needed; and we demonstrated the assurance of training,

of the learned model and of the drone.

In the future, we will plug our AI into our wireless

sensor module mounted on a drone and navigate our Unity

3-D environment using real sensor data rather than simu-

lated for a qualitative analysis. Following this, we will

consider a more rigorous simulation environment such as

[47] for a more rigorous quantitative analysis. Next, we

will thoroughly qualitatively assess the navigation capa-

bilities by using a human pilot to test the system while

flying the drone and using our navigation recommenda-

tions. We can then perform the safety assurance analyses

recommend in Sect. 6 to ensure safe and trustworthy

hardware and software. Once we have completed all steps

for the static navigator, we can repeat the process for

dynamic environments. This entails training the algorithm

to navigate in simulation and then training in the real world

followed by qualitative assessments and assurance of safety

and trustworthiness.

Funding This work is supported by Innovate UK (Grant 103682) and

Digital Creativity Labs jointly funded by EPSRC/AHRC/Innovate

UK Grant EP/M023265/1. The work on assurance is funded by the

Assuring Autonomy International Programme (www.york.ac.uk/

assuring-autonomy).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Appendix

The main Grid-World ML-agents hyper-parameter settings

for training. We use the same settings for our PPO, PPO

with LTSM length 8 and PPO with LSTM length 16.

• Number of hidden layers: 2

• Number of hidden units in each layer: 64

• Beta—strength of the entropy regularisation, ‘‘policy

randomness’’: 2.5e-3

• Gamma—discount factor for future rewards: 0.99

• Lambda—regularisation parameter: 0.95

• Epsilon—acceptable threshold of divergence between

the old and new policies: 0.2

• Learning rate—strength of each gradient descent update

step: 3.0e-4

• LSTM length: 8 or 16

(See https://github.com/Unity-Technologies/ml-agents/

blob/master/docs/Training-PPO.md for more details of the

parameters).

References

1. Abadi M et al (2015) TensorFlow: Large-scale machine learning

on heterogeneous systems. http://tensorflow.org/. Software

available from tensorflow.org

2. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002)

Wireless sensor networks: a survey. Comput Netw 38(4):393–422

3. Anderson K, Gaston KJ (2013) Lightweight unmanned aerial

vehicles will revolutionize spatial ecology. Front Ecol Environ

11(3):138–146

4. Aouf A, Boussaid L, Sakly A (2019) Same fuzzy logic controller

for two-wheeled mobile robot navigation in strange environ-

ments. J. Robot. 2019:2465219

5. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA

(2017) A brief survey of deep reinforcement learning. arXiv

preprint arXiv:1708.05866

6. Barnett V, Lewis T (1984) Outliers in statistical data. Wiley

series in probability and mathematical statistics: applied proba-

bility and statistics. Wiley, Hoboken

7. Beck J, Ciosek K, Devlin S, Tschiatschek S, Zhang C, Hofmann

K (2020) Amrl: aggregated memory for reinforcement learning.

In: Eighth international conference on learning representations

(ICLR). https://www.microsoft.com/en-us/research/publication/

amrl-aggregated-memory-for-reinforcement-learning/

8. Bengio Y, Louradour J, Collobert R, Weston J (2009) Curriculum

learning. In: Proceedings of the 26th annual international con-

ference on machine learning. ACM, pp 41–48

9. Bristeau PJ, Callou F, Vissiere D, Petit N et al (2011) The nav-

igation and control technology inside the ar. drone micro uav. In:

18th IFAC world congress, Milano, Italy, vol 18, No 1,

pp 1477–1484

10. Cao Z, Lin CT (2019) Reinforcement learning from hierarchical

critics. arXiv:1902.03079 [cs.LG]

11. Cao Z, Wong K, Bai Q, Lin CT (2020) Hierarchical and non-

hierarchical multi-agent interactions based on unity reinforce-

ment learning. In: International conference on autonomous agents

and multiagent systems (AAMAS) 2020, demonstration track

https://www.youtube.com/watch?v=YQYQwLPXaL4

12. Casbeer DW, Kingston DB, Beard RW, McLain TW (2006)

Cooperative forest fire surveillance using a team of small

unmanned air vehicles. Int J Syst Sci 37(6):351–360

13. da Silva Assis L, da Silva Soares A, Coelho CJ, Van Baalen J

(2016) An evolutionary algorithm for autonomous robot naviga-

tion. Procedia Comput Sci 80:2261–2265

Neural Computing and Applications (2021) 33:2015–2033 2031

123

http://www.york.ac.uk/assuring-autonomy
http://www.york.ac.uk/assuring-autonomy
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Training-PPO.md
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Training-PPO.md
http://tensorflow.org/
https://www.microsoft.com/en-us/research/publication/amrl-aggregated-memory-for-reinforcement-learning/
https://www.microsoft.com/en-us/research/publication/amrl-aggregated-memory-for-reinforcement-learning/
https://www.youtube.com/watch?v=YQYQwLPXaL4

14. Dogramadzi S, Giannaccini ME, Harper C, Sobhani M, Wood-

man R, Choung J (2014) Environmental hazard analysis—a

variant of preliminary hazard analysis for autonomous mobile

robots. J Intell Robot Syst 76(1):73–117. https://doi.org/10.1007/

s10846-013-0020-7

15. Erdelj M, Natalizio E, Chowdhury KR, Akyildiz IF (2017) Help

from the sky: leveraging uavs for disaster management. IEEE

Pervasive Comput 16(1):24–32

16. Gonzalez L, Montes G, Puig E, Johnson S, Mengersen K, Gaston

K (2016) Unmanned aerial vehicles (uavs) and artificial intelli-

gence revolutionizing wildlife monitoring and conservation.

Sensors 16(1):97

17. Goodrich MA, Morse BS, Gerhardt D, Cooper JL, Quigley M,

Adams JA, Humphrey C (2008) Supporting wilderness search

and rescue using a camera-equipped mini uav. J Field Robot

25(1–2):89–110

18. Hawkins R, Kelly T (2009) Software safety assurance—what is

sufficient? In: 4th IET international conference on systems safety

2009. Incorporating the SaRS annual conference. IET, pp 1–6

19. Hilder JA, Owens ND, Neal MJ, Hickey PJ, Cairns SN, Kilgour

DP, Timmis J, Tyrrell AM (2012) Chemical detection using the

receptor density algorithm. IEEE Trans Syst Man Cybern Part C

(Appl Rev) 42(6):1730–1741

20. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780

21. Hodge V (2011) Outlier and anomaly detection: a survey of

outlier and anomaly detection methods. Lambert Academic

Publishing, Saarbrücken

22. Hodge V, Austin J (2004) A survey of outlier detection

methodologies. Artif Intell Rev 22(2):85–126

23. Hodge VJ, Austin J (2018) An evaluation of classification and

outlier detection algorithms. arXiv preprint arXiv:1805.00811

24. Hodge VJ, O’Keefe S, Weeks M, Moulds A (2015) Wireless

sensor networks for condition monitoring in the railway industry:

a survey. IEEE Trans Intell Transp Syst 16(3):1088–1106

25. Irizarry J, Gheisari M, Walker BN (2012) Usability assessment of

drone technology as safety inspection tools. J Inf Technol Constr

17(12):194–212

26. Juliani A, Berges VP, Vckay E, Gao Y, Henry H, Mattar M,

Lange D (2018) Unity: a general platform for intelligent agents.

arXiv preprint arXiv:1809.02627

27. Knuth DE (1997) The art of computer programming, vol 2, 3rd

edn. Seminumerical algorithms. Addison-Wesley, Reading

28. Koh LP, Wich SA (2012) Dawn of drone ecology: low-cost

autonomous aerial vehicles for conservation. Trop Conserv Sci

5(2):121–132

29. Kullback S, Leibler RA (1951) On information and sufficiency.

Ann Math Stat 22(1):79–86. https://doi.org/10.1214/aoms/

1177729694

30. Leveson N, Thomas J (2018) The STPA handbook. MIT. http://

psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.

pdf

31. Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D (2018)

Learning hand-eye coordination for robotic grasping with deep

learning and large-scale data collection. Int J Robot Res

37(4–5):421–436

32. Li Y, Dai S, Shi Y, Zhao L, Ding M (2019) Navigation simula-

tion of a mecanum wheel mobile robot based on an improved a*

algorithm in unity3d. Sensors 19(13):2976

33. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver

D, Wierstra D (2015) Continuous control with deep reinforce-

ment learning. arXiv preprint arXiv:1509.02971

34. Matiisen T, Oliver A, Cohen T, Schulman J (2017) Teacher-

student curriculum learning. arXiv preprint arXiv:1707.00183

35. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Belle-

mare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G

et al (2015) Human-level control through deep reinforcement

learning. Nature 518(7540):529

36. Neumann PP, Hernandez Bennetts V, Lilienthal AJ, Bartholmai

M, Schiller JH (2013) Gas source localization with a micro-drone

using bio-inspired and particle filter-based algorithms. Adv Robot

27(9):725–738

37. Ng AY, Coates A, Diel M, Ganapathi V, Schulte J, Tse B, Berger

E, Liang E (2006) Autonomous inverted helicopter flight via

reinforcement learning. In: Ang MH, Khatib O (eds) Experi-

mental robotics IX. Springer tracts in advanced robotics.

Springer, Berlin, pp 363–372

38. Patle B, Ganesh LB, Pandey A, Parhi DR, Jagadeesh A (2019) A

review: on path planning strategies for navigation of mobile

robot. Def Technol 15(4):582–606. https://doi.org/10.1016/j.dt.

2019.04.011

39. Peña JM, Torres-Sánchez J, Serrano-Pérez A, de Castro AI,

López-Granados F (2015) Quantifying efficacy and limits of

unmanned aerial vehicle (uav) technology for weed seedling

detection as affected by sensor resolution. Sensors

15(3):5609–5626

40. Pumfrey DJ (1999) The principled design of computer system

safety analyses. Ph.D. thesis, University of York

41. Rashid B, Rehmani MH (2016) Applications of wireless sensor

networks for urban areas: a survey. J Netw Comput Appl

60:192–219

42. Rossi M, Brunelli D, Adami A, Lorenzelli L, Menna F,

Remondino F (2014) Gas-drone: portable gas sensing system on

uavs for gas leakage localization. In: SENSORS, 2014 IEEE.

IEEE, pp 1431–1434

43. San Juan V, Santos M, Andújar JM (2018) Intelligent uav map

generation and discrete path planning for search and rescue

operations. Complexity 2018:6879419

44. Schulman J, Moritz P, Levine S, Jordan M, Abbeel P (2015)

High-dimensional continuous control using generalized advan-

tage estimation. arXiv preprint arXiv:1506.02438

45. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017)

Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347

46. Singh NH, Thongam K (2019) Neural network-based approaches

for mobile robot navigation in static and moving obstacles

environments. Intell Serv Robot 12(1):55–67

47. Smyth DL, Glavin FG, Madden MG (2018) Using a game engine

to simulate critical incidents and data collection by autonomous

drones. arXiv preprint arXiv:1808.10784

48. Sutton RS, Barto AG, Bach F et al (1998) Reinforcement learn-

ing: an introduction. MIT Press, Cambridge

49. Tai L, Liu M (2016) Deep-learning in mobile robotics—from

perception to control systems: a survey on why and why not.

arXiv:1612.07139

50. Tamar A, Wu Y, Thomas G, Levine S, Abbeel P (2016) Value

iteration networks. In: Lee DD, Sugiyama M, Luxburg UV,

Guyon I, Garnett R (eds) Advances in neural information pro-

cessing systems, vol 29. Curran Associates, Inc., Red Hook,

pp 2154–2162

51. Tomic T, Schmid K, Lutz P, Domel A, Kassecker M, Mair E,

Grixa IL, Ruess F, Suppa M, Burschka D (2012) Toward a fully

autonomous uav: research platform for indoor and outdoor urban

search and rescue. IEEE Robot Autom Mag 19(3):46–56

52. Vanegas F, Gonzalez F (2016) Enabling uav navigation with

sensor and environmental uncertainty in cluttered and gps-denied

environments. Sensors 16(5):666. https://doi.org/10.3390/

s16050666

53. Villemeur A (1992) Reliability, availability, maintainability and

safety assessment: volume 1—methods and techniques. Wiley,

Chicester

2032 Neural Computing and Applications (2021) 33:2015–2033

123

https://doi.org/10.1007/s10846-013-0020-7
https://doi.org/10.1007/s10846-013-0020-7
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.3390/s16050666
https://doi.org/10.3390/s16050666

54. Yang J, Liu L, Zhang Q, Liu C (2019) Research on autonomous

navigation control of unmanned ship based on unity3d. In: 2019

5th international conference on control, automation and robotics

(ICCAR), pp. 422–426. IEEE

55. Zadeh LA (1974) The concept of a linguistic variable and its

application to approximate reasoning. In: Fu KS, Tou JT (eds)

Learning systems and intelligent robots. Springer, Berlin,

pp 1–10

56. Zeng J, Ju R, Qin L, Hu Y, Yin Q, Hu C (2019) Navigation in

unknown dynamic environments based on deep reinforcement

learning. Sensors 19(18):3837

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:2015–2033 2033

123

	Deep reinforcement learning for drone navigation using sensor data
	Abstract
	Introduction
	Reinforcement learning (RL)
	Partially observable MDPs (POMDPs)
	Policy gradients learning
	Proximal policy optimisation (PPO) algorithm

	Models and system architecture
	Agents
	Brains
	Academy
	Configuration
	Curriculum learning
	Memory
	Training

	Simulation operation
	Evaluations
	Safety assurance
	Identifying safety requirements
	Demonstrating assurance
	Assurance of the training performed
	Assurance of the learned model
	Assurance of the overall performance of the drone

	Discussion
	Conclusion and future work
	Open Access
	Appendix
	References

