
Intelligent and Converged Networks Intelligent and Converged Networks

Volume 1 Number 2 Article 4

2020

Deep reinforcement learning for dynamic computation offloading Deep reinforcement learning for dynamic computation offloading

and resource allocation in cache-assisted mobile edge computing and resource allocation in cache-assisted mobile edge computing

systems systems

Samrat Nath
Walmart Inc., Bentonville, AR 72716, USA

Jingxian Wu
Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA

Follow this and additional works at: https://dc.tsinghuajournals.com/intelligent-and-converged-networks

 Part of the Computer Sciences Commons, and the Digital Communications and Networking

Commons

Recommended Citation Recommended Citation
Samrat Nath, Jingxian Wu. Deep reinforcement learning for dynamic computation offloading and resource
allocation in cache-assisted mobile edge computing systems. Intelligent and Converged Networks 2020,
1(2): 181-198.

This Research Article is brought to you for free and open
access by Tsinghua University Press: Journals
Publishing. It has been accepted for inclusion in
Intelligent and Converged Networks by an authorized
editor of the journal.

https://tsinghuauniversitypress.researchcommons.org/
https://tsinghuauniversitypress.researchcommons.org/
https://dc.tsinghuajournals.com/intelligent-and-converged-networks
https://dc.tsinghuajournals.com/intelligent-and-converged-networks/vol1
https://dc.tsinghuajournals.com/intelligent-and-converged-networks/vol1/iss2
https://dc.tsinghuajournals.com/intelligent-and-converged-networks/vol1/iss2/4
https://dc.tsinghuajournals.com/intelligent-and-converged-networks?utm_source=dc.tsinghuajournals.com%2Fintelligent-and-converged-networks%2Fvol1%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.tsinghuajournals.com%2Fintelligent-and-converged-networks%2Fvol1%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=dc.tsinghuajournals.com%2Fintelligent-and-converged-networks%2Fvol1%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=dc.tsinghuajournals.com%2Fintelligent-and-converged-networks%2Fvol1%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tsinghuauniversitypress.researchcommons.org/
https://tsinghuauniversitypress.researchcommons.org/

Intelligent and Converged Networks ISSN 2708-6240
2020, 1(2): 181–198 0?/0? pp???–??? DOI: 10.23919/ICN.2020.0014

C All articles included in the journal are copyrighted to the ITU and TUP. This work is available under the CC BY-NC-ND 3.0 IGO license:
https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

An intelligent self-sustained RAN slicing framework for diverse
service provisioning in 5G-beyond and 6G

Deep reinforcement learning for dynamic computation
offloading and resource allocation in cache-assisted mobile

edge computing systems
Triboelectric nanogenerators enabled internet of things: A survey

Space-Air-Ground Integrated Vehicular Network for Connected
and

Automated Vehicles: Challenges and Solutions

1

Samrat Nath and Jingxian Wu�

Abstract: Mobile Edge Computing (MEC) is one of the most promising techniques for next-generation wireless

communication systems. In this paper, we study the problem of dynamic caching, computation offloading, and

resource allocation in cache-assisted multi-user MEC systems with stochastic task arrivals. There are multiple

computationally intensive tasks in the system, and each Mobile User (MU) needs to execute a task either locally or

remotely in one or more MEC servers by offloading the task data. Popular tasks can be cached in MEC servers to

avoid duplicates in offloading. The cached contents can be either obtained through user offloading, fetched from a

remote cloud, or fetched from another MEC server. The objective is to minimize the long-term average of a cost

function, which is defined as a weighted sum of energy consumption, delay, and cache contents’ fetching costs.

The weighting coefficients associated with the different metrics in the objective function can be adjusted to balance

the tradeoff among them. The optimum design is performed with respect to four decision parameters: whether to

cache a given task, whether to offload a given uncached task, how much transmission power should be used during

offloading, and how much MEC resources to be allocated for executing a task. We propose to solve the problems by

developing a dynamic scheduling policy based on Deep Reinforcement Learning (DRL) with the Deep Deterministic

Policy Gradient (DDPG) method. A new decentralized DDPG algorithm is developed to obtain the optimum designs

for multi-cell MEC systems by leveraging on the cooperations among neighboring MEC servers. Simulation results

demonstrate that the proposed algorithm outperforms other existing strategies, such as Deep Q-Network (DQN).

Key words: Mobile Edge Computing (MEC); caching; computation offloading; resource allocation; Deep

Reinforcement Learning (DRL); Deep Deterministic Policy Gradient (DDPG); multi-cell

1 Introduction

With the advancement of Smart Mobile Devices (SMDs)
and the emergence of the Internet of Things (IoTs), many
new types of mobile applications, such as virtual and

� Samrat Nath is with Walmart Inc., Bentonville, AR 72716, USA.
E-mail: samrat.nath@walmart.com.

� Jingxian Wu is with the Department of Electrical Engineering,
University of Arkansas, Fayetteville, AR 72701, USA. E-mail:
wuj@uark.edu.

�To whom correspondence should be addressed.

Manuscript received: 2020-05-30; revised: 2020-09-15;
accepted: 2020-10-22

augmented reality, face and gesture recognition, online
interactive gaming, etc., are rapidly gaining shares in the
mobile computing market. Typically, these applications
are computation-intensive and delay-sensitive, and
require high energy consumption. However, due
to limited battery life and computational capacity
(processing speed) of an SMD, it is often very difficult
for the SMD to meet the requirements and Quality of
Experience (QoE) of these mobile applications. To
bridge the gap between the resource-limited SMDs
and the computation-intensive and delay-sensitive
applications, Mobile Edge Computing (MEC) has
recently emerged as a promising technology[1].

182 Intelligent and Converged Networks, 2020, 1(2): 181–198

The conventional Mobile Cloud Computing (MCC)
system relies on remote public clouds, such as Amazon
Web Services and Microsoft Azure. Usually, the
cloud servers are spatially far from the SMDs, which
causes high transmission delay. Unlike MCC, MEC
augments the computational capability at the edge of
mobile networks by deploying densely distributed high-
performance servers close to the Mobile Users (MUs)[1].
It enables MUs to offload computing tasks to the MEC
server connected with a Base Station (BS) via the
wireless network. Through the computation offloading
of delay-sensitive and computation-intensive tasks, MUs
can significantly reduce the computation latency and
energy consumption, and thus improving the QoE of
mobile applications. Hence, the interests on computation
offloading in MEC systems have been growing rapidly.

The efficiency of computation offloading depends
largely on how the limited computation, power, and
communication resources are managed in an MEC
system. Various computation offloading algorithms
with different design objectives and resource allocation
schemes have been studied extensively in the
literatures[2--16]. In Ref. [3], the joint optimization
problem of computation offloading and resource
allocation is solved by applying the Alternating
Direction Method of Multipliers (ADMM). The problem
studied in Ref. [9] considers a multi-user multi-channel
MEC system, where the goal is to jointly minimize
the energy consumption, delay, and deadline penalty
of all the users and determine the optimal offloading,
computational resource, and channel allocation. An
online algorithm based on Lyapunov optimization is
developed in Ref. [13] for jointly managing the radio
and computational resources of multi-user MEC systems.
However, most of the above-mentioned studies do not
consider dynamic task arrivals or/and dynamic channel
conditions. In practice, the MEC systems have time-
varying task arrivals and stochastic channel conditions.

Although in the MEC framework, the MUs are located
in proximity to the MEC server, they still experience
delay and consume energy due to computation
offloading. In order to further improve the performance
of MEC systems, content caching or task caching has
been proposed as a promising technique[2, 4, 12, 14--16]. Task

caching usually refers to caching task applications and
related data in the MEC server. If a task is cached, it
can be executed directly in the MEC server, whereas
uncached tasks either need to be executed locally
at the MU or need to be offloaded to the server
before execution. Thus, caching popular tasks in the
MEC server can further reduce the delay and energy
consumption by avoiding unnecessary duplicates in
data transmissions. An MEC architecture that combines
caching, cooperative task offloading, and security
service assignment is proposed in Ref. [4] for multi-
cell IoT networks, and the architecture is designed to
obtain both stringent security protection and energy
savings. The works in Refs. [14--16] study the problem
of dynamic caching with the consideration of time-
varying popularity of the tasks. However, these works
only consider the storage capacity of the MEC server
and assume that the server has enough computational
capacity to support all the tasks that are offloaded. This
assumption is impractical, because both the storage
and computational capacity of the MEC server are
limited. Both storage and computation constraints are
considered in Refs. [2, 12]. However, they do not
consider time-varying system dynamics and provide only
offline solutions. Therefore, it is imperative to study the
joint problem of online caching, offloading, and resource
allocation policy in dynamic MEC systems.

All the above-mentioned works formulate the
complicated joint caching, computation offloading, and
resource allocation as optimization problems, which are
generally non-convex and very challenging to solve. In
order to tackle this challenge, a Reinforcement Learning
(RL)-based algorithm can be an effective approach
that can provide online solutions to the complicated
sequential decision-making problems without requiring
any prior knowledge of the system[17]. Moreover,
with the explosive growth of interest in the Deep
Neural Networks (DNNs), researchers have recently
started adopting Deep Reinforcement Learning (DRL)
algorithms to solve these problems[5--11]. DRL can be
considered as an advanced RL technique implemented
with DNNs. By exploiting the function approximation
property of DNNs, DRL can provide solutions to
large-scale problems, where the conventional RL

Samrat Nath et al.: Deep reinforcement learning for dynamic computation offloading and resource : : : 183

methods become infeasible[18]. A DRL-based State-
Action-Reward-State-Action (SARSA) algorithm is
proposed in Ref. [5] to resolve the classical problem
of task offloading and resource allocation in multi-cell
MEC systems. The solutions proposed in Refs. [6--8]
utilize the Deep Q-Network (DQN)[19], while the Deep
Deterministic Policy Gradient (DDPG) algorithm[20]

is adopted in Refs. [9--11]. However, the work in
Ref. [9] assumes the channel conditions to be quasi-
static. Despite considering dynamic channel conditions
and stochastic task arrivals, the problem in Ref. [10]
does not consider caching, while no constraint on the
computational capacity of MEC server is considered in
Ref. [11].

Even though task caching and computation offloading
can reduce the delay and energy consumption of
MUs, how to design the optimal strategy for caching,
offloading, and resource allocation in a dynamic MEC
system is a very challenging problem when considering
the time-varying nature of the system, the heterogeneity
of the tasks, and the limited resources at the MEC
server. Therefore, in this paper, we propose to develop
an online DRL-based scheme for dynamic caching,
computation offloading, and resource allocation in
a resource-constrained multi-user MEC system by
addressing four key questions:

(1) Whether a given task should be cached in the
MEC server?

(2) Whether a given uncached task should be
executed locally at an MU or offloaded to the MEC?

(3) How much transmission power should be
allocated to a given MU for task offloading? and

(4) How much computational resources should be
allocated by the MEC server for a given task?

In the proposed MEC framework, the time is divided
into slots of equal length, and the channel conditions,
task popularity, and task arrivals are assumed to be time-
varying and stochastic. At the beginning of each time
slot, the caching decision, offloading decision, power
allocation, and computational resource allocation are
determined centrally by the BS, and then the results are
forwarded to the MU. Our objective is to develop an
online DRL-based solution for efficient caching,

computation offloading, and resource allocation. The key
contributions of this paper are summarized as follows.
� The optimum designs of both single-cell and multi-

cell MEC systems are studied in this paper by solving the
joint problem of task caching, offloading, and resource
allocation in a dynamic setting, which considers time-
varying stochastic system conditions, such as channel
conditions, task popularity, and task arrivals. To the
best of our knowledge, no prior works in the literature
consider such a comprehensive setup under stochastic
system conditions.
� The problem is solved by adopting a DDPG-

based method, which can deal with the continuous
space of optimization variables, yet many other DRL-
based solutions, such as DQN, rely on discretization of
the continuous state and action space. Discretization
of optimization variables results in loss of precision.
Simulation results demonstrate the superiority of
proposed solution against other existing strategies, such
as DQN.
� In the design of the multi-cell MEC system, a

new decentralized DDPG solution is developed to
leverage the cooperations among neighboring MEC
servers. In the decentralized design, the MEC servers
can communicate and share resources among each
other to further improve the performance of the
system. Simulation results have shown that the proposed
decentralized DDPG significantly outperform non-
cooperative DDPG, and it can achieve a performance
that is very similar to centralized DDPG but with a much
lower complexity and overhead.

The rest of this paper is organized as follows. The
system model and problem formulation for the dynamic
caching, computation offloading, and resource allocation
of the single-cell MEC system are presented in Section 2.
In Section 3, some preliminaries on RL and DRL are
introduced and the design of the DRL-based algorithm
for the single-cell MEC system is proposed. Section 4
extends the work to multi-cell MEC network, where
a cooperative decentralized DRL-based solution is
presented. Simulation results are illustrated in Section 5.
Section 6 concludes this paper. A list of notations is
summarized in Table 1.

184 Intelligent and Converged Networks, 2020, 1(2): 181–198

Table 1 List of notations.
Notation Definition

T .K/ Set of discrete time slots (tasks)

N .S/ Set of MUs (BSs)

D.F / Cache (computational) capacity of the MEC server

bk.dk/ Data size (computational requirement) of k-th task

ct .xt / Caching (computation offloading) decision vector
at slot t

bt .fff t / Transmission power (computational resource)
allocation vector

Kot .KctC1/ Set of tasks offloaded to (cached in) the MEC server
at slot t

kkk t Tasks requested by all the MUs at the start of slot t

Ht Channel matrix at slot t

N c
t Set of MUs with requested task available in the

cache
NJ . NJ 0/ Long-term average cost of single-cell (multi-cell)

MEC system

!n.!c/ Weight for delay-energy tradeoff (fetching cost)

R.�/ Reward (policy) function

���Q.����/ Neural network weights of critic (actor) network

jN s j Number of MUs associated with the s-th BS

2 System model and problem formulation
for single-cell MEC network

Consider a multi-user MEC system that consists of one
BS withM antennas, one MEC server, and a set of N 6

M single-antenna MUs denoted by N D f1; 2; : : : ; N g.
The BS is connected directly with the MEC server with
a cache size ofD (in bits) and the computing capacity of
F (in CPU cycles per second). A discrete-time model is
adopted for the MEC system, where the time is divided
into slots with equal length Ts (in seconds) and indexed
by T D f0; 1; : : :g. The system model is shown in
Fig. 1.

2.1 Task model

Assume there are K heterogeneous tasks denoted by the
set K , f1; 2; : : : ; Kg. Each task k 2 K is characterized
by two parameters; dk (in cycles per second) denotes
the amount of computing resource required for the
task and bk (in bits) denotes the size of computation
input data, such as program codes and input parameters.
One example of application scenario for such tasks is
Virtual Reality (VR), where the MUs need to execute
various types of computation-intensive VR application

MU 2

MU 1

MU 3BS

MEC
server

Cache

Cloud/
internet

Tasks

Results download
Task computation
offloading
Task caching

Fig. 1 System model for single-cell MEC network.

tasks, such as rendering scenes, recognizing and tracking
objects, etc.

The number of MUs is assumed to be more than
the number of tasks (N > K). This is because some
computing tasks have higher popularity (e.g., rendering
scenes in VR), which are repeatedly requested and
executed multiple times[2]. At the beginning of each time
slot, each MU requests one task from the set K, where
multiple users may simultaneously request a particular
task. Denote knt 2 K as the task requested by the n-th
MU at the start of slot t and kkk t , Œk1t ; : : : ; k

N
t �

T as the
task request vector for all MUs.

The popularity of each task �k;t is dynamic and
follows Zipf distribution[21]. The popularity profile vector
is defined as ��� t , Œ�1;t ; : : : ; �K;t �

T. Given that the
popularity rank of task k during slot t is zk;t 2 K, the
popularity of the corresponding task can be expressed as

�k;t D
z
��

k;t

KP
lD1

z
��

l;t

(1)

where the Zipf parameter � > 0 controls the skewness
of popularity. Specifically, � D 0 yields a uniform
spread of popularity among the tasks, and the popularity
difference among the tasks becomes larger with a
larger �.

To model the time-varying nature of task popularity,
the popularity profile ��� t is modeled by a V -state
Markov chain[22], represented by V different popularity
profiles ���.1/; : : : ;���.V /. Each profile is modeled by Zipf
distributions with parameters �v. So, at each time slot
t , the popularity profile ��� t will follow one of these V
states and each task k 2 K will be assigned popularity

Samrat Nath et al.: Deep reinforcement learning for dynamic computation offloading and resource : : : 185

ranks zk;t randomly.

2.2 Caching model

Based on the definition of task caching, the application
programs are all cached in the MEC server, and a caching
policy is used to decide whether to cache the input data of
the computing task in the MEC server[2, 12]. Task caching
can reduce task latency and energy consumption of MU,
because there is no need for transmitting the data of
a task already available in the cache. However, how
to assign the limited caching capacity is a challenging
problem, which depends on the dynamic popularity
(�k;t), size (bk), and computational requirement (dk)
of each task.

Denote ck;t 2 f0; 1g as the binary variable that
represents the caching decision for task k in slot t
and denote ct D Œc1;t ; : : : ; cK;t �

T as the corresponding
decision vector for all tasks. If ck;t D 1, the input data
for computing task k is cached in the MEC server at
the end of slot t and the corresponding data can be
utilized in the next time slot t C 1 for executing the
task entirely at the server. Consequently, the system will
not experience any delay and will not incur any energy
cost corresponding to the data transmission from MUs
to the server for that particular task. Therefore, the users’
QoE will be significantly improved. However, all the
tasks cannot be cached due to the limited storage size of
the MEC server. Therefore, the caching decision variable
must meet the following constraint:

KX
kD1

111.ck;t D 1/bk 6 D; 8t 2 T (2)

where 111.E/ is the indicator function with 111.E/ D 1 if
the event E is true and 0 otherwise.

Moreover, it is assumed that the input data of all the
tasks are available in a remote cloud (as shown in Fig. 1).
The BS can download/fetch the data for any task from
the cloud via a back-haul link by incurring fetching cost.
In addition, the MEC can also cache the data of one or
more offloaded tasks in the current slot for future use
without incurring the fetching cost. Given the caching
decision vector ct at slot t and ct�1 at slot t � 1, the
overall fetching cost of the MEC system associated with
the caching decision at slot t is defined as

Ct D

KX
kD1

111.ck;t�1 D 0; ck;t D 1; k … Kot /gk (3)

where Kot is the set of tasks offloaded to the MU at
the t-th slot, and gk (in bits) is the fetching cost for
downloading the input data for task k from the remote
cloud server. Naturally, gk depends on the size of task
data bk .

Define Kct � K as the set of tasks that have been
cached during time slot t � 1 and are available for
utilization at the beginning of slot t , i.e., Kct , fk W

ck;t�1 D 1g. If a task requested by the n-th MU is
not cached, i.e., knt … Kct , either the task needs to be
executed in the MU locally, or the task data need to
be uploaded to the MEC server for remote execution.
Details regarding task execution and computation are
presented in Subsection 2.4.

2.3 Communication model

The BS and the MUs form a multi-user Multiple-Input
Multiple-Output (MIMO) system, with M antennas at
the BS serving N single-antenna MUs. The channel
conditions between the BS and MUs are described by
theM �N channel matrix Ht D Œh1;t ; : : : ;hN;t �, where
hn;t 2 CM�1 is the channel vector of the n-th MU. In
order to characterize the temporal channel correlation
between consecutive slots, the Gaussian Markov block
fading autoregressive model[23] is employed. The
channel vector for the n-th MU can be expressed as

hn;t D �nhn;t�1 C
q
1 � �2net (4)

where �n is the normalized channel correlation
coefficient for the n-th MU, the error vector et 2 CM�1

is uncorrelated with hn;t , and it is complex Gaussian
distributed with zero mean and covariance matrix �2e IM ,
with IM being a size M identity matrix. Here, �2e ,

h0.d0=dm/
ˇ , where h0 is the path-loss at reference

distance d0, dm is the maximum coverage radius of
the BS, and ˇ is the path-loss exponent. Moreover,
�n D J0.2 f

d
n Ts/ according to Jake’s fading spectrum,

where f dn is the Doppler frequency of the n-th MU, Ts
is the slot duration, and J0.�/ is the zero-order Bessel
function of the first kind[24].

Denote the transmission power of the n-th MU at
the t -th slot as pn;t 2 Œ0; Pmax

n �, where Pmax
n is the

186 Intelligent and Converged Networks, 2020, 1(2): 181–198

maximum transmission power of the n-th MU. The BS
manages the uplink transmissions of multiple single-
antenna MUs by adopting the linear detection algorithm
Zero-Forcing (ZF)[11, 25]. With the ZF detector at the BS,
the Signal-to-Interference-plus-Noise Ratio (SINR) for
the signal from the n-th MU is

n;t D
pn;t

�2Œ.
p

Pt
THH

t Ht

p
Pt /�1�nn

(5)

where �2 is the noise power, Pt D diagfbtg is a
diagonal matrix with bt D Œp1;t ; : : : ; pN;t �T on its main
diagonal, the operators AT and AH represent the matrix
transpose and Hermitian operations, respectively, and
ŒA�mn denotes the .m; n/-th element of the matrix A.
For those MUs that do not offload in a given slot, their
transmission power in that slot will be set to 0. The
transmission data rate from the n-th MU to the BS at slot
t [11] can be expressed as

rn;t D W log2.1C
n;t / (6)

where W is the system bandwidth.

2.4 Computation model

Define N c
t as the set of MUs that have requested the

tasks at time slot t , with the requested tasks available in
the cache of the MEC server, i.e., N c

t , fn W knt 2 Kct g.
Similarly, define Nt D N nN c

t as the set of MUs with
requested tasks at time slot t unavailable in the cache.
The computation tasks for the MUs belonging to the
set N c

t are executed in the MEC server during slot t
by default. Thus the offloading decision only needs to
be performed for n 2 Nt . Denote xn;t 2 f0; 1g as
the computation offloading decision variable of the n-th
MU at slot t , where n 2 Nt . Specifically, if xn;t D 0,
the n-th MU decides to execute its task locally, and
if xn;t D 1, the n-th MU decides to offload the data
of its current computation task to the MEC server via
the wireless link. The computation offloading decision
vector for all MUs is denoted by xt , Œxn;t �n2Nt .

2.4.1 Local execution

In the local execution approach, the n-th MU executes its
computation task knt locally using its own CPU. Denote
f ln as the computation capability (in CPU cycles per
second) of the n-th MU. Computational capabilities may
differ across various MUs. The computation time of task

knt by local execution can then be expressed as

T ln;t D
dknt
f ln

(7)

The corresponding energy consumption is

Eln;t D �ndknt (8)

where the coefficient �n denotes the energy consumption
per CPU cycle, which depends on the chip architecture
at the MU. In this paper, we set �n D 10�27.f ln /

2

according to Ref. [26].

2.4.2 MEC server execution

In this approach, the MEC server executes the
computation task on behalf of the MU. This approach
consists of three steps. First, the n-th MU uploads its
task data of size bknt to the BS through the wireless
channel, and the BS forwards that data to the MEC
server. Second, the MEC server allocates part of its
computational resources to execute the task. Finally, the
MEC server returns the execution results of the task to
the n-th MU.

In the first step, the transmission delay incurred by
task offloading by the n-th MU during slot t can be
computed as

T xn;t D
bknt
rn;t

(9)

where rn;t is the uplink data rate of the n-th MU as shown
in Eq. (6). The corresponding energy consumption due
to transmission is expressed as

Exn;t D pn;tT
x
n;t D

pn;tbknt
rn;t

(10)

In the second step during task execution, the
processing delay incurred by the MEC server is
computed as

T
p
n;t D

dknt
fn;t

(11)

where fn;t denotes the computational resource (in CPU
cycles per second) allocated by the MEC server to
the n-th MU during slot t . During this step, the n-
th MU is assumed to be in idle state and the energy
consumption of the MU is considered as negligible. The
energy consumption of the MEC server is not considered
either.

Denote ft , Œf1;t ; : : : ; fN;t �
T as the MEC

computational resource allocation vector for all
the MUs. The total amount of allocated resource can not

Samrat Nath et al.: Deep reinforcement learning for dynamic computation offloading and resource : : : 187

exceed the entire computational resource at the MEC
server, i.e.,

NX
nD1

111.xn;t ¤ 0 _ n 2 N c
t /fn;t 6 F; 8t 2 T (12)

where _ represents the logical “or” operation. It is
worth noting that, the MEC server will not allocate any
computational resource to an MU unless it offloads its
computation task to the server or the corresponding task
data are available in the server cache.

In the final step, the MU downloads the output
data from the MEC server. In general, the size of
the computation output data is much smaller than that
of the computation input data for many applications.
Besides, the download data rate is in general much higher
compared to the uplink data rate. Hence, similar to many
studies[27--29], the delay and energy consumption during
the final step are not considered in this paper.

2.5 Problem formulation

Given the computation offloading decision vector xt , the
energy consumption and computation delay for the n-th
MU can be calculated, respectively, as

En;tD111.n … N c
t /Œ111.xn;tD1/E

x
n;tC111.xn;tD0/E

l
n;t �

(13)

Tn;t D111.n … N c
t /Œ111.xn;t D 1/.T

x
n;t C T

p
n;t /C

111.xn;t D 0/T
l
n;t �C 111.n 2 N c

t /T
p
n;t (14)

The overall cost of all MUs in the MEC system during
slot t is defined as

Jt D

NX
nD1

En;t C

NX
nD1

!nTn;t C !cCt (15)

where !n (in W) denotes the weight parameter
associated with the delay at the n-th MU, and !c

(in J/bit) denotes the weight for the fetching cost
associated with caching. The weigh parameters !n
and !c control the tradeoff among delay-energy and
fetching cost, respectively. Different MUs might have
different requirements regarding the task execution delay.
For example, for MUs prioritizing faster execution, !n
can be set to a large value. Similar types of weighted
system cost formulation have also been observed in the
literatures[30--33].

The objective of this paper is to minimize the long-

term average cost of the MEC system, which is computed
as

NJ D E

"
lim
jT j!1

1

jT j
X
t2T

Jt

#
(16)

where E.�/ denotes mathematical expectation. The
optimization problem is formulated as follows.

P1: min
c;x;b;f

NJ

s.t. C1: ck;t 2 f0; 1g; 8k 2 K; 8t 2 T I
C2: xn;t 2 f0; 1g; 8n 2 Nt ; 8t 2 T I
C3: pn;t 6 Pmax

n ; 8n 2 fn W xn;t D 1g; 8t 2 T I

C4:
NX
nD1

111.xn;t D 1 _ n 2 N c
t /fn;t 6 F;8t 2 T I

C5:
KX
kD1

111.ck;t D 1/bk 6 D; 8t 2 T I

C6: Tn;t 6 Ts; 8n 2 N ; 8t 2 T :
Here, C3 represents the maximum transmission
power constraint imposed on each MU that offloads
computation, C4 indicates that the total amount
of allocated resources can not exceed the total
computational resource at the MEC server, C5 specifies
that the total amount of cached data cannot exceed the
cache size at the MEC server, and C6 represents the
constraint that each MU must execute its task either
locally or in the MEC server within one time slot.

The optimization is performed with respect to
the binary caching decision vector c 2 BK , the
binary offloading decision vector x 2 BjNt j, the power
allocation vector b 2 PN , and the MEC computation
resource allocation vector f 2 FN , where B D f0; 1g,
jNt j is the cardinality of the set Nt , P D fu 2 Rj0 <
u 6 Pmax

n g is the set of real numbers, F D fv 2 Rj0 <
v 6 F g, and R is the set of real numbers.

The optimal solution to P1 requires complete
information regarding the mathematical models of the
system, such as the statistical distributions of the
requests and channel conditions. Such information is in
general not available in a practical system. Moreover,
P1 is a mixed-integer nonlinear programming, which
is challenging to solve even with all the statistical
distributions. One feasible approach to overcome
these challenges is to design an online solution that
can efficiently make the decisions regarding caching,

188 Intelligent and Converged Networks, 2020, 1(2): 181–198

computation offloading, and resource allocation in real-
time through interactions with the system. Therefore,
instead of applying conventional optimization methods
to solve the Non-deterministic Polynomial (NP)-hard
problem P1, we propose a DRL-based method to find
the optimal c; x; b, and f.

3 DRL-based solution for dynamic caching,
computation offloading, and resource
allocation

DRL can be considered as a combination of DNN and
RL. In order the solve P1 with a DRL-based method, we
will first reformulate P1 under the RL framework. Then
the details of the proposed DRL-based solution for the
single-cell MEC network are presented.

3.1 RL framework

The RL framework is usually defined based on Markov
Decision Process (MDP) with the underlying Markov
property, which states that the evolution of the Markov
process in the future depends only on the present state
and does not depend on the past history. MDP can be
solved by using classical dynamic programming. One
of the main differences between dynamic programming
and RL is that the latter does not require knowledge of
the underlying mathematical model of the MDP, such
as the Markovian transition probabilities. The RL can
implicitly learn the underlying model by interacting
with the environment. Generally, the RL framework is
well-suited for providing online solutions to complicated
sequential decision-making problems and near-optimal
solutions to large-scale MDPs where exact dynamic
programming methods become infeasible[17].

The RL framework consists of an agent, an
environment, and three key elements: a set of possible
states S 0, a set of available actions A, and a reward
function R W S 0 �A! R. The RL agent continually
learns and makes decisions through the interactions with
the environment in discrete time steps. In each time step
t , the agent observes the state of the environment sss t 2 S 0

and takes an action aaat 2 A. The agent’s behavior is
defined by a policy. In this paper, we consider a
deterministic policy �, which deterministically maps
a state to a specific action, i.e., � W S 0 ! A.

After executing the action, the environment returns a
scalar reward rt D R.st ; at / and makes a transition of
state from st to stC1.

The infinite-horizon discounted return is defined as
the sum of all rewards ever obtained by the agent, but
discounted by how far off in the future they are obtained
as

R.�/ D

1X
tD0

 trt (17)

where
 2 Œ0; 1� is the discount factor, and the trajectory
� D .s0; a0; s1; a1; : : :/ is a sequence of states and
actions leading to the sequence of rewards frtg1tD0.
The action-value function Q�.s; a/ (also known as Q-
function) represents the expected return under the policy
� with s as the initial state and a as the initial action,

Q�.s; a/ D EŒR.�/js0 D s; a0 D a� (18)

where the expectation is performed with respect to all
randomness in the environment.

The goal of the RL agent is to learn the optimal policy
�� that chooses the optimal action greedily in state s,
such that

��.s/ D argmax
a

Q�.s; a/ (19)

where Q�.s; a/ is the optimal Q-function, that is, the
Q-function obtained by following the optimum policy.

In order to interpret problem P1 in the RL framework,
we define the key elements according to the system
model as follows.

3.1.1 State

The state of a system is considered as a set of parameters
that can be used to describe the system. Based on the
system model presented in this paper, the system state at
an arbitrary time slot t is defined as

st , fkkk t ;Ht ; ct�1g (20)

where kkk t is the task request vector, Ht is the channel
matrix, and ct�1 is the caching decision in the previous
slot, which in turn represents the status of the MEC
server cache at the beginning of current time slot. The
randomness in the system is governed by the state
variables kkk t and Ht . At the start of each slot, kkk t is
made available to the system, and Ht for the upcoming
uplink transmission can be estimated by the channel
reciprocity[11]. The dimension of the state vector st is
K C .M C 1/N .

Samrat Nath et al.: Deep reinforcement learning for dynamic computation offloading and resource : : : 189

3.1.2 Action

Based on the observed system state st , the RL agent will
choose an action at based on the decision variables in
P1, i.e.,

at , fct ; xt ; bt ; ftg (21)

where ct is the caching decision, xt is the computation
offloading decision, bt is the MU transmission power
allocation decision, and ft is MEC server computational
resource allocation decision. The dimension of the
action vector at is K C 3N .

3.1.3 Reward

Given a particular state st and an action at at time slot t ,
it is evident that the overall system cost Jt in Eq. (15)
can be expressed by the reward function R, which maps
the state-action pair to a scalar reward rt , such that

rt D R.st ; at / D �Jt (22)

It is noteworthy to mention that although RL
algorithms maximize the infinite-horizon expected
discounted return, these algorithms can also be used to
approximate the true expected infinite-horizon expected
non-discounted return, when the discount factor
 !
1[34]. Therefore, the average system cost in Eq. (16)
will be minimized by applying the policy learned via RL
agent.

Many approaches in RL utilize the recursive
relationship of the state-action function known as the
Bellman equation. Under the optimal policy ��, the
Bellman optimality equation for the state-action function
can be written as

Q�.s; a/ D E
�
R.s; a/C
 max

a0
Q�.s0; a0/

�
(23)

where s0 denotes the next state being transitioned from
state s under action a.

It is very hard to obtain the exact solution of the RL
problem with high-dimensional state and action spaces
by directly maximizing the Q-function. We propose to
tackle this issue by obtaining an approximate solution
of the RL problem using DRL with DDPG. Details are
provided in the next subsection.

3.2 DRL-based solution with DDPG

A feasible method to solve the RL problem is the well-
known Q-learning algorithm[35]. Q-learning comes from
a class of model-free RL algorithms known as Temporal-

Difference (TD) learning, which combines the concepts
of Monte Carlo methods and dynamic programming
methods. With Bellman optimality equation as the core
of the algorithm, Q-learning solves Q-function through
a value iteration updating approach as

Q.s;a/ Q.s; a/C

˛

�
R.s; a/C
 max

a0
Q.s0; a0/ �Q.s; a/

�
(24)

where ŒR.s; a/C
 maxa0Q.s0; a0/�Q.s; a/� is the TD
error and ˛ is the learning rate. It is proven that the
Q-learning algorithm converges with probability one[17].

As the dimensions of the state space and action
space increase, the complexity in solving Eq. (24)
grows exponentially, which is known as the curse of
dimensionality. In order to address this issue, a DRL
algorithm can be an efficient alternative. This is because
the powerful function approximation properties of
DNNs allow DRL algorithms to learn low-dimensional
representations for RL problems. The DQN method[19]

exploits the architecture of DNN to approximate the Q
function with a finite number of parameters and thus to
facilitate solving Eq. (24).

Even though DQN can successfully solve problems in
high-dimensional state spaces, it can handle only discrete
and low-dimensional action spaces. Specifically, when
there are a finite number of discrete actions, finding
optimal policy according to Eq. (19) is relatively simple.
However, for problems with continuous action spaces
such as P1, the action space has to be discretized before
applying DQN. The discretization of the action space
results in loss of precision. Moreover, as the number
of discretization levels increases, the computational
complexity of DQN grows exponentially.

We propose to address this challenge by applying
DDPG[20], which extends DRL algorithms to continuous
action space and continuous state space. In DDPG,
an actor-critic approach is adopted by using two
separate DNNs, where the critic network Q.s; aj���Q/
approximates the Q-function, and the actor network
�.sj����/ approximates the policy function �. Here,
���Q and ���� are the neural network weights of the
critic and actor networks, respectively. Therefore,
unlike DQN, instead of running an expensive
optimization subroutine for computing maxaQ.s; a/

190 Intelligent and Converged Networks, 2020, 1(2): 181–198

each time, the DDPG algorithm approximates it
with maxaQ.s; a/ � Q

�
s; �.sj����/j���Q

�
. Moreover,

Q0.s; aj���Q0/ and �0.sj����0/ represent the target critic
and the target actor networks, respectively. The target
networks are used for computing target values, with
���Q
0

and ����
0

being their corresponding neural network
weights. The target networks are time-delayed copies
of their original networks that slowly track the learned
networks and greatly improve stability in learning.

Details of the proposed solution are described in
Algorithm 1, which is used to solve P1. The objective
function in P1 is modified by using Eqs. (17) and
(22) under the RL framework. The constraints in
P1 are used during the training of DRL framework
to determine whether to adopt or discard a certain
learning result. In the proposed DDPG framework,
four-layer fully connected neural networks with two
hidden layers are used for both the actor and critic
networks. The number of neurons in the two hidden
layers are 8N and 6N , respectively. The neural networks
use the Rectified Linear Unit (ReLU) as the activation
function for all hidden layers, while the final output
layer of the actor network uses a sigmoid layer to
bound the actions. Ornstein-Uhlenbeck process[36] is
used to provide temporally correlated noise for action
exploration, while the Adaptive moment estimation
(Adam) method[37] is adopted for updating the neural
network parameters.

4 Dynamic caching, computation offloading,
and resource allocation in multi-cell MEC
network

The topic of MEC in a network consisting of multiple
cells has been studied widely in the literatures with
various design objectives and solution approaches[3--6].
In this section, we extend our problem to the case
of multi-cell MEC network and present a DRL-based
decentralized solution that utilizes cooperative task
caching and execution.

4.1 System model

In the multi-cell scenario, we consider a network
consisting of multiple small cells, where each small cell

Algorithm 1 Proposed solution for single-cell MEC
Input: System model parameters, number of episodes Kmax,
number of time steps in each episode Tmax, replay buffer size
jRB j, mini-batch size B , learning rates for critic network ˛Q and
actor network ˛�, and update rates �Q and �� for the target critic
network and target actor network, respectively.

1: Initialization:
2: Randomly initialize the critic network Q.s; aj���Q/ and

actor network �.sj����/ with weights ���Q and ����, respectively
from a uniform distribution Œ�3 � 10�3; 3 � 10�3�.

3: Initialize associated target networks Q0 and �0 with
weights ����

0

 ����; ���Q
0

 ���Q.
4: Initialize the experience replay buffer RB as an empty array.
5: for each episode k D 1; 2; : : : ; Kmax do
6: Randomly generate an initial state s1
7: for each episode t D 1; 2; : : : ; Tmax do
8: Determine the decision vectors by selecting an action

at D �.st j����/ C �� using the current policy � and
exploration noise ��, which is generated by following the
Ornstein-Uhlenbeck process[36].

9: Execute action at and observe the reward rt D

R.st ; at / D �Jt and the new state stC1 from the simulation
environment.

10: Save the transition .st ; at ; rt ; stC1/ into the replay
buffer RB . If RB is full, discard the oldest samples.

11: Randomly sample a mini-batch of B transitions
f.s.b/
i
; a.b/
i
; r
.b/

i
; s.b/
iC1

/gB
bD1

from RB .
12: for each transition b in the mini-batch do
13: Compute the target value y.b/ as

y.b/ D r
.b/

i
C
Q0

�
s.b/
iC1

; �0.s.b/
iC1
j����

0

/j���Q
0�

(25)

14: end for
15: Update the critic network Q.s; aj���Q/ by one-step

gradient descent as ���Q ���Q�˛Qr���QL
Q, where the loss

LQ is

LQ D
1

B

BX
bD1

�
y.b/ �Q.s.b/

i
; a.b/
i
j���Q/

�2 (26)

16: Update the actor network �.s; aj���Q/ by using one-
step sampled policy gradient ascent as ���� ���� �

˛�r����J
�, where J� , Es;a ŒQ

�.s; a/�, and

r����J
�
�
1

B

BX
bD1

raQ.s.b/i ; aj���Q/ jaDa.b/
i

�

r�����.s
.b/

i
j����/ (27)

17: Update the target networks,

���Q
0

 ����Q C .1 � �/���Q
0

and ����
0

 ����� C .1 � �/����
0

18: end for
19: end for

Output: Optimal policy ��.

Samrat Nath et al.: Deep reinforcement learning for dynamic computation offloading and resource : : : 191

represents a single MEC network as shown in Fig. 1.
Each small cell consists of one BS with M antennas,
one MEC server, and a set of dedicated MUs. Denote
the set of BSs (or equivalently the set of small cells)
as S D f1; 2; : : : ; Sg, where S is the number of BSs
in the MEC network. Denote N s as the set of MUs
associated with the s-th BS. One important feature of
the multi-cell model is that the BSs can communicate
with each other and forward the cached tasks from one’s
MEC server to another. However, the MUs in set N s

can only communicate with the s-th BS.
It is noteworthy to mention that for the sake of

brevity, we have not redefined all the notations of system
parameters in the multi-cell model. Instead, we will add
the symbol “s” as a superscript to the existing notations
introduced earlier in order to represent the counterparts
of the single-cell model parameters for the s-th BS in
the multi-cell setting.

The set of tasks K D f1; : : : ; Kg is assumed to be
uniform throughout the entire network with the same
data sizes Œbk�k2K and computational requirements
Œdk�k2K. However, the popularity profile of tasks ���st can
vary both across time slots t 2 T and across cells/BSs
s 2 S . Denote kst as the task request vector for all the
MUs in N s at the start of slot t .

Denote cst as the caching decision vector for all the
tasks in the s-th BS. In the cooperative multi-cell model,
the communication among BSs can provide an additional
option for task caching at the MEC servers. In the single-
cell network, a BS can either cache the task data from
the data offloaded by one of its MUs in the previous
time slot or fetch/download from the cloud. With the
cooperative model, a BS can also fetch task data from
another nearby BS and cache it for possible future use.
Therefore, similar to Eq. (3), the overall fetching cost of
the s-th BS associated with the caching decision in the
multi-cell MEC system at slot t is defined as

C st D

KX
kD1

�
111.csk;t�1 D 0; c

s
k;t D 1; k … K

s;o
t /�

f111.ıss
0

k;t D 0/gk C 111.ı
ss0

k;t D 1/g
ss0

k g
�

(28)

where ıss
0

k;t
is a binary variable with ıss

0

k
D 1 indicating

that the input data for task k is fetched by the s-th BS
from the s0-th BS during time slot t and 0 indicating no

communication, and gss
0

k
is the corresponding fetching

cost between the two BSs. For simplicity, we assume
that the fetching costs between the BSs are mutual, i.e.,
gss
0

k
D gs

0s
k

. These fetching costs depend on several
factors, such as the size of task data bk , the distance and
channel condition between the BSs, etc. However, it
is worth noting that the fetching costs between BSs are
considerably less than the fetching cost from the cloud
for all the tasks, i.e., gss

0

k
< gk .8 k 2 K; 8 s; s0 2 S/.

Therefore, the cooperative multi-cell model will yield
lower overall fetching cost compared to the single-cell
model.

Similar to the additional task caching option, the
cooperative multi-cell MEC network will also provide
an additional option for task execution. In the single
MEC network, if an MU requests a task that is not
available in the MEC server cache, then there are two
approaches: local execution and MEC server execution
by offloading the task data (as mentioned in Section 2.4).
In the multi-cell setting, a BS can fetch the results of task
execution from another nearby BS given that the later BS
has executed that task in its MEC server through either
offloading computation data or leveraging the cached
data during same time slot. We denote a binary variable

 ss
0

k;t
with
 ss

0

k;t
D 1 indicating that the result of task k is

fetched by the s-th BS from the s0-th BS during slot t
and 0 indicating otherwise. Again we assume that the
download/fetching costs (both in terms of energy and
delay) for the task results are negligible since the size of
the results is usually much smaller than that of the input
data.

We define Ks;ft , fk W
 ss
0

k;t
D 1 9 s0 2 S n sg as the

set of tasks whose results have been fetched by the
s-th BS during slot t from any nearby BS. Denote
N s;f
t , fn 2 N s W knt 2 K

s;f
t g as the set of MUs

whose requested tasks are executed by fetching the task
results from a nearby BS. It is evident that the MUs in
N s;f
t are indirectly leveraging the computational power

of a non-anchor BS by fetching the results of executed
tasks in the cooperative model.

4.2 Problem formulation

Given the computation offloading decision xst , the MU
power transmission allocation bst , the MEC server’s

192 Intelligent and Converged Networks, 2020, 1(2): 181–198

computational resource allocation f st , and the caching
decision cst in the s-th BS, the energy consumption and
computation delay for the n-th MU in the s-th BS are
calculated, respectively, as

Esn;t D 111.n … N
s;c
t ; n … N s;f

t /�

Œ111.xsn;t D 1/E
s;x
n;t C 111.x

s
n;t D 0/E

s;l
n;t � (29)

T sn;t D111.n … N
s;c
t ; n … N s;f

t /�

Œ111.xsn;tD1/.T
s;x
n;t CT

s;p
n;t /C111.x

s
n;tD0/T

s;l
n;t �C

111.n 2 N s;c
t ; n … N s;f

t /T
s;p
n;t (30)

Similar to Eq. (15), the overall cost of the s-th BS
during slot t can be defined as

J st D
X
n2N s

�
Esn;t C !

s
nT

s
n;t

�
C !scC

s
t (31)

The optimization problem in the multi-cell MEC
system is formulated as follows:

P2: min
CCC;XXX;P;FFF

NJ 0 , E

"
lim
jT j!1

1

jT j
X
t2T

X
s2S

J st

#
s.t.

C7: csk;t 2 f0; 1g; 8s 2 S; 8k 2 K; 8t 2 T I
C8: xsn;t 2 f0; 1g; 8s 2 S; 8n 2 Nt ; 8t 2 T I
C9: psn;t 6 P s;max

n ; 8n 2 fn W xsn;t D 1gI

C10:
X
n2N s

111.xsn;t D 1 _ n 2 N
s;c
t /f sn;t 6 F sI

C11:
X
k2K

111.csk;t D 1/bk 6 Ds; 8s 2 S; 8t 2 T I

C12: T sn;t 6 Ts; 8s 2 S; 8n 2 N ; 8t 2 T ;
where NJ 0 denotes the long-term average system cost of
multi-cell MEC network, C;X;P, and FFF are the matrix
counterparts of the all the decision vectors as previously
mentioned in P1 and thus represent all the decisions for
all the MUs in all the cells in multi-cell model. Moreover,
F s andDs denote the computational capacity and cache
size of the MEC server associated with the s-th BS,
respectively.

In the next subsection, we propose a DRL-based
cooperative decentralized solution with DDPG for P2.

4.3 Cooperative decentralized solution with DDPG

One obvious approach to solve P2 is to extend the
proposed solution in Algorithm 1 to the multi-cell
model by incorporating all the state and action variables
from all the cells into the RL framework and yield a

centralized decision. However, centralized solutions are
usually computationally prohibitive since the system
overhead among the MUs and MEC servers grows
exponentially as the numbers of MUs and BSs/cells
increase[11]. Hence, a decentralized solution at each cell
is more favorable for better scalability.

The key elements of RL framework for the proposed
decentralized solution are defined as follows.

4.3.1 State

The system state for s-th cell at an arbitrary time slot t
is defined as

SSS st , fKKK t ;Hs
t ; CCC t�1g (32)

where KKK t , Œk1t ; : : : ; k
S
t � is the N 0-dimensional task

request vector with N 0 D
P
s2S jN sj being the total

number of MUs in all the cells, Hs
t is the channel matrix

of the s-th BS/cell, and CCC t�1 , Œc1t�1; : : : ; c
S
t�1� is

the K � S caching decision matrix in the previous slot.
The dimension of the state variable for s-th cell SSS st is
N 0 CM jN sj CKS . Please note that the variables KKK t

and CCC t�1 are obtained through the cooperative nature
of the multi-cell model where these information are
shared among all the cells at the beginning of a time
slot. However, unlike the centralized approach, we do
not need to include the channel information from nearby
cells as part of the state variables in the decentralized
approach, because they do not influence the decision in
the s-th cell, thus reduce a large portion of the system
overhead.

4.3.2 Action

Based on the observed system state SSS st , the RL agent
will choose decentralized actions ast for the s-th cell,
such that

ast , fc
s
t ; x

s
t ; b

s
t ; f

s
t g (33)

where cst ; xst ; b
s
t , and fst are the multi-cell model

counterparts of the all the decision vectors as previously
mentioned in Eq. (21). The dimension of the action
vector ast is K C 3jN sj.

4.3.3 Reward

Similar to the definition of reward given in Eq. (22), the
overall cost J st for s-th cell in Eq. (31) can be expressed
by the reward function Rs , which maps the state-action
pair to a scalar reward rst , such that

rst D Rs.SSS st ; a
s
t / D �J

s
t (34)

Samrat Nath et al.: Deep reinforcement learning for dynamic computation offloading and resource : : : 193

Details of the proposed decentralized solution
are described in Algorithm 2. In the proposed
DDPG framework, there are individual critic network
Qs.SSS

s; asj���Qs / and actor network �s.SSS sj���
�
s / for each

cell s 2 S . These networks will be trained in parallel
as indicated by Steps (6)–(14) of Algorithm 2. We
adopt similar structure, activation functions, and action
exploration process for all the neural networks as
mentioned at the end of Section 3.2. However, the
number of neurons in the two hidden layers of each
neural network corresponding to the s-th cell are 8jN sj

and 6jN sj, respectively. Once all the networks have
been trained, the algorithm will output the final policy
function �s for each cell s 2 S that maps the state to
actions, i.e., �s.SSS st / D ast , which in turn combines into
the solution of P2, i.e., decision variables C;X;P; and
F of the whole system.

Algorithm 2 Proposed cooperative decentralized solution
for multi-cell MEC system using DDPG
Input: System model parameters, number of episodes Kmax,
number of time steps in each episode Tmax, same size jRB j for
replay buffers, Rs

B
for all cells s 2 S, along with other hyper-

parameters as mentioned in the input of Algorithm 1 .

1: for each cell s D 1; 2; : : : ; S do
2: Randomly initialize the critic network Qs.SSSs ; as j���Qs /

and actor network �s.SSSs j���
�
s / with weights ���Qs and ����s ,

respectively, from a uniform distribution Œ�3; 3� � 10�3.
3: Initialize associated target networks Q0s and �0s with

weights ����
0

s ���
�
s ; ���

Q0

s ���
Q
s .

4: Initialize the experience replay buffers Rs
B
.8 s 2 S/ as

empty arrays.
5: end for
6: for each episode k D 1; 2; : : : ; Kmax do
7: Randomly generate an initial state SSS1 , fSSSs1gs2S for the

whole multi-cell MEC system.
8: for each episode t D 1; 2; : : : ; Tmax do
9: Share the information regarding task requests and

cache status among all the BSs.
10: for each cell s D 1; 2 : : : ; S do
11: Perform Steps (8)–(17) of Algorithm 1 for

independently training the networks of cell s with DDPG.
12: end for
13: end for
14: end for

Output: Policy �s for all cells s 2 S.

5 Simulation Result

Simulation results are presented in this section to
illustrate the performance of the proposed algorithm
with DDPG. Unless specified otherwise, the default
settings of the single-cell MEC system are set as follows:
the number of MUs is N D 5, the number of antennas
BS is M D 6, the coverage radius of the small cell
BS is dm D 50m, the cache size of the MEC server is
D D 200MB, the computational resource of the MEC
server F D 5 GHz, the CPU frequency of each MU is
f ln D 1 GHz, the channel bandwidth is W D 20 MHz,
and the duration of a time slot is Ts D 1 s.

At the beginning of every episode, the channel
vector of each MU is initialized as hn;0 � CN
.0; h0.d0=dn/ˇ IM /, where h0 D �30 dB, d0 D 1 m,
the path-loss exponent is ˇ D 3, and dn (in meters)
denotes the distance from the BS to the n-th MU[11]. In
each episode, the locations of MUs are randomly set
such that they are uniformly scattered throughout the
coverage region, and the locations are independent in
different episodes. The channel vectors hn;t , 8n 2 N ,
are updated according to Eq. (4), where the channel
correlation coefficient is �n D 0:95 and the error vector
is et � CN .0; h0.d0=dm/ˇ IM /. The MU’s maximum
allowed transmission power is Pmax

n D 2 W, 8n 2 N ,
and the background noise power is �2 = 10�9 W[11].
The energy-delay tradeoff parameters are !n D 1 W
for all MUs, and the weight for fetching cost is !c D
10�8 J/bit.

There are K D 4 computation tasks. The number
of CPU cycles required to complete the tasks dk are
uniformly distributed between Œ Nd � 0:05; Nd C 0:05�

Gigacycles with Nd being the average computations per
task. The data sizes of the computation tasks bk are
uniformly distributed between Œ Nb � 5; NbC 5� MB with Nb
being the average data size. Unless specified otherwise,
the default values are Nd D 0:5 G cycles and Nb D 75MB.
The fetching cost of each task is assumed to be the same
as the data size of corresponding task, i.e., gk D bk .
Moreover, the popularity profile ��� t of the tasks is
modeled by a three-state Markov chain[22], represented
by three different popularity profiles ���.1/;���.2/, and
���.3/. These profiles are modeled by Zipf distributions

194 Intelligent and Converged Networks, 2020, 1(2): 181–198

with parameters �1 D 1; �2 D 1:2; and �3 D 1:5,
respectively. So, at each time slot t , the popularity
profile ��� t will follow one of these three states and
each task k 2 K will be assigned popularity ranks zk;t
randomly. Then, MUs will request tasks by sampling
Zipf distribution defined by ��� t . The Markov transition
probabilities among the three popularity profiles are
given by the transition matrix,

���,

264�1;1 �1;2 �1;3

�2;1 �2;2 �2;3

�3;1 �3;2 �3;3

375D
264 0:5 0:3 0:2

0:1 0:6 0:3

0:25 0:35 0:4

375 (35)

where �i;j represents the transition probability from state
i to state j , for i; j 2 f1; 2; 3g. Please note that these
states are different from the system states defined in our
problem formulation.

The hyper-parameters for training the neural networks
in the proposed DDPG-based algorithm are described
in Table 2. To evaluate the performance of policy
�� learned by the proposed algorithm, testing results
are averaged over 1000 episodes, with each episode
consisting of 100 steps. Results obtained from the
proposed algorithm are compared to four baseline
strategies for single-cell MEC setting that are described
as follows.

Popularity-based Caching and Local execution
(PCL): The MEC server caches the data of the
computing tasks with the maximum number of requests,
till reaching the caching capacity. Computational
resource F is distributed equally to each MU that
requests a cached task. The MUs that request uncached
tasks execute their tasks by local CPU.

Popularity-based Caching and full Offloading
(PCO): The MEC server caches the data of the
computing tasks with the maximum number of requests,
till reaching the caching capacity. All tasks are executed

Table 2 Hyper-parameters for training neural networks.
Parameter Value

Number of training episodes (Kmax) 2000

Number of steps in each episode (Tmax) 100

Experience replay buffer size (jRB j) 50 000

Mini-batch size (B) 128

Learning rate for critic network (˛Q) 10�4

Learning rate for actor network (˛�) 10�3

Soft update rate for target networks (�) 10�3

at the MEC server. That means all MUs who requested
uncached tasks will offload their tasks to the MEC
server and transmit the corresponding data with the
maximum power available. The computational resource
F is distributed uniformly across N MUs.

Randomized Caching, Offloading, and Resource
allocation (RCOR): The MEC server caches the data
of computing tasks randomly, till reaching the caching
capacity. For MUs requesting uncached tasks, all the
offloading and resource allocation decisions are also
taken randomly.

DQN-based solution: DQN[19] can only be
implemented on systems with discrete state and
action spaces. The support spaces for b and f are
both discretized uniformly into finite L levels each.
Therefore, the size of the action space becomes
2K.2L2/N for K tasks and N MUs. We arbitrarily
set L D 3, train the DQN with the same values of
hyper-parameters as mentioned in Table 2, and maintain
the same neural network architecture as mentioned in
Section 3.2. Moreover, �-greedy exploration method
is adopted for exploring the actions during network
training with � D 0:01.

Figure 2 shows the average system cost (NJ) as a
function of the computational resource capacity of
the MEC server (F) with various algorithms. Due to
the extra computational resources from the MEC, the
performances of all algorithms improve as F increases,
but with different slopes. The PCL approach has the
smallest absolute slope, because the average number

3 5 7 9 11 13
MEC server computational capacity F (GHz)

2

3

4

5

6

A
ve

ra
ge

 sy
st

em
 c

os
t J

 (W
)

PCL
RCOR
DQN
PCO
DDPG

Fig. 2 Average system cost v.s. computational capacity of
the MEC server.

Samrat Nath et al.: Deep reinforcement learning for dynamic computation offloading and resource : : : 195

of MUs using the MEC resources in each time slot is
the least among all approaches. The proposed DDPG-
based algorithm achieves the best performance. The
performance gap between the DDPG-based algorithm
and DQN algorithm becomes larger as F increases.
Specifically, the performance gap increases from 10.3%
when F D 3 to 49% when F D 13. This means
that the DDPG-based algorithm can better utilize the
MEC resources. Even though with a larger number
of discrete levels L, it may be possible to get better
results by the DQN approach, it will yield a very
high-dimensional action space with prohibitively high
computational complexity.

Figure 3 shows NJ as a function of the cache size
D of the MEC server. Here, the results obtained at
D D 0 represents the case without caching. The
average system cost decreases as D becomes larger for
all approaches except the RCOR strategy. A larger cache
size allows the MEC server to cache more tasks, thus
reduce the transmission delay and the corresponding
energy consumption incurred by the MUs. However,
the RCOR strategy demonstrates a different behavior
because caching decision in the RCOR strategy is
changed frequently in a random manner, which leads to a
much larger average fetching cost than other approaches.
The larger fetching cost of RCOR negates the advantage
of lower delay and energy cost. For the cache-assisted
MEC system, the proposed DDPG-based algorithm has
the best performance, followed by PCO, DQN, PCL, and
RCOR, respectively.

Figure 4 shows the effects of different computation
offloading and resource allocation approaches on NJ ,
and the results are shown as functions of the average

0 80 160 240
MEC server cache size D (MB)

3.0

3.5

4.0

4.5

5.0

A
ve

ra
ge

 sy
st

em
 c

os
t J

 (W
) RCOR

PCL
DQN
PCO
DDPG

Fig. 3 Average system cost vs cache size of the MEC server.

0.2 1.0 0.4 0.6 0.8 ----
Average computations per task d (×109 cycles)

1

2

3

4

5

6

7

8

9

A
ve

ra
ge

 sy
st

em
 c

os
t J

 (W
)

Cache + ROR
Cache + FO
Cache + DQN
Cache + LE
Proposed DDPG

Fig. 4 Effect of computation offloading and resource
allocation.

computations resources required for each task (Nd).
In all the approaches, the policy for determining the
decision variables x; b, and f differs, while the caching
decision variable c is obtained according to the proposed
DDPG-based solution. Here, LE refers to the local
execution approach as defined in the PCL strategy,
FO refers to the full offload approach as defined in
the PCO strategy, and ROR refers to the randomized
offloading and resource allocation strategy. In all the
approaches, NJ gets larger as Nd increases, since more
computation-intensive tasks incur more processing delay
and energy consumption. The proposed DDPG-based
solution achieves the best performance, followed by LE,
DQN, FO, and ROR, respectively. The performance
gaps between the proposed algorithm and all the other
approaches become larger as Nd increases, which means
the proposed solution can achieve better MEC resource
allocation, especially when more computations resources
are needed.

Figure 5 demonstrates the tradeoff relationship
between average energy consumption and average delay
of the system. Various tradeoff points are obtained by
changing the values of !n for all n 2 N MUs. Please
note that here we consider the time-average not the
ensemble average across all the MUs. The average
delay experienced by all the MUs can be decreased at
the cost of higher energy consumption, and vice versa.
Moreover, the proposed DDPG-based algorithm shows
better tradeoff performance compared to the DQN-based
solution, i.e., the MUs governed by the DDPG-based
policy experience comparatively less average delay for

196 Intelligent and Converged Networks, 2020, 1(2): 181–198

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
Average delay (s)

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

en
er

gy
 c

on
su

m
pt

io
n

(W
)

ω=0.1

ω=0.2

ω=0.4
ω=0.6

ω=0.7

ω=0.8

ω=1

ω=10

ω=5
ω=2

ω=0.01

DQN
DDPG

ω=0.1
ω=0.75

Fig. 5 Tradeoff between average energy consumption
and average delay with tradeoff parameter !!!n DDD !!! (in W)
888n 222 N.

the same average energy consumption. Since all the
other baseline approaches have fixed policies, !n does
not have any impact on the decision variables. Therefore,
no tradeoff relationships are observed in the PCL, PCO,
and RCOR approaches.

Figure 6 illustrates the performance of proposed
cooperative decentralized solution for multi-cell MEC
model in terms of NJ 0 for different values of the average
task data size (Nb). In this example, we consider the
number of small cells in the network as S D 3, with
each small cell having the same properties as mentioned
at the start of this section, i.e., each cell has the same
coverage radius, computational capacity, cache size,
etc. In addition, all the BSs are equally distanced from
each other and we assume the fetching costs between
the BSs for a given task k are constants, such that
gss
0

k
D 0:5bk;8 s; s

0 2 S .
In Fig. 6, the proposed solution is compared with

two approaches: cooperative centralized solution and

60 70 90 100
7.0

7.5

8.0

8.5

9.0

9.5

10.0

Non-cooperative decentralized
Cooperative decentralized (proposed)
Cooperative centralized

80
Average task data size b (MB)

A
ve

ra
ge

 sy
st

em
 c

os
t J
' (W

)

Fig. 6 Average system cost vs average task data size in the
multi-cell MEC model.

non-cooperative decentralized solution. Naturally, NJ 0

increases for all the approaches as the average size of
the tasks gets larger. The non-cooperative solution is
equivalent to implementing Algorithm 1 independently
at each cell without utilizing nearby cells’ caches and
executed task results. Therefore, it performs the worst.
As mentioned in Section 4.3, the centralized solution
considers all system parameters and state variables from
all the cells, thus it yields the optimal decision at the cost
of prohibitively high computational complexity, huge
system overhead, and slower convergence. Compared
to the centralized solution, our proposed cooperative
decentralized solution achieves great performance, with
the performance gap ranging between 1.8% and 2.8%.

6 Conclusion

We have studied the problem of dynamic caching,
computation offloading, and resource allocation in cache-
assisted MEC systems with stochastic wireless channel
conditions. In the MEC system, multiple MUs execute
random computation-intensive tasks either locally or
remotely in one or more MEC servers. Popular
tasks can be fetched from a remote cloud and cached
in MEC servers to avoid unnecessary duplicates in
transmissions. We have formulated the problem under
the MDP framework, which aims at minimizing the
long-term average system cost that includes a weighted
sum energy consumption, delay, and cache fetching
cost, under the constraint of limited storage and
computational resource at the MEC server. Centralized
and decentralized DDPG-based algorithms have been
developed to solve the problems for single-cell and multi-
cell MEC systems, respectively. Simulation results have
shown that the proposed algorithm outperforms other
existing approaches such as DQN.

References

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief,
A survey on mobile edge computing: The communication
perspective, IEEE Communications Surveys Tutorials, vol.
19, no. 4, pp. 2322–2358, 2017.

[2] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim,
Energy efficient task caching and offloading for mobile
edge computing, IEEE Access, vol. 6, pp. 11 365–11 373,
2018.

Samrat Nath et al.: Deep reinforcement learning for dynamic computation offloading and resource : : : 197

[3] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang,
Computation offloading and resource allocation in wireless
cellular networks with mobile edge computing, IEEE
Transactions on Wireless Communications, vol. 16, no. 8,
pp. 4924–4938, 2017.

[4] M. I. A. Zahed, I. Ahmad, D. Habibi, and Q. V. Phung,
Green and secure computation offloading for cache-enabled
IoT networks, IEEE Access, vol. 8, pp. 63 840–63 855,
2020.

[5] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G.
Fortino, Task offloading and resource allocation for mobile
edge computing by deep reinforcement learning based on
SARSA, IEEE Access, vol. 8, pp. 54 074–54 084, 2020.

[6] N. Maurice, Q.-V. Pham, and W.-J. Hwang, Online
computation offloading in noma-based multi-access edge
computing: A deep reinforcement learning approach, IEEE
Access, vol. 8, pp. 99 098–99 109, 2020.

[7] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, Deep
reinforcement learning-based joint task offloading and
bandwidth allocation for multi-user mobile edge computing,
Digital Communications and Networks, vol. 5, no. 1, pp.
10–17, 2019.

[8] J. Wang, L. Zhao, J. Liu, and N. Kato, Smart
resource allocation for mobile edge computing:
A deep reinforcement learning approach, IEEE
Transactions on Emerging Topics in Computing, doi:
10.1109/TETC.2019.2902661.

[9] S. Nath, Y. Li, J. Wu, and P. Fan, Multi-user multi-channel
computation offloading and resource allocation for mobile
edge computing, doi: 10.1109/ICC40277.2020.9149124.

[10] S. Nath and J. Wu, Dynamic computation offloading
and resource allocation for multi-user mobile edge
computing, presented at IEEE Global Communications
Conf. (GLOBECOM), Taipei, China, 2020.

[11] Z. Chen and X. Wang, Decentralized computation
offloading for multi-user mobile edge computing: A
deep reinforcement learning approach, EURASIP Journal
on Wireless Communications and Networking, doi:
10.1186/s13638-020-01801-6.

[12] P. Liu, G. Xu, K. Yang, K. Wang, and X. Meng, Jointly
optimized energy-minimal resource allocation in cache-
enhanced mobile edge computing systems, IEEE Access,
vol. 7, pp. 3336–3347, 2018.

[13] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, Stochastic
joint radio and computational resource management
for multi-user mobile-edge computing systems, IEEE
Transactions on Wireless Communications, vol. 16, no. 9,
pp. 5994–6009, 2017.

[14] L. Chunlin and J. Zhang, Dynamic cooperative caching
strategy for delay-sensitive applications in edge computing
environment, The Journal of Supercomputing, vol. 76,
no. 1, pp. 1–25, 2020.

[15] J. Xu, L. Chen, and P. Zhou, Joint service caching and task
offloading for mobile edge computing in dense networks, in
Proc. of IEEE Conference on Computer Communications
(INFOCOM), Honolulu, HI, USA, 2018, pp. 207–215.

[16] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. Shen,
Dynamic mobile edge caching with location differentiation,
doi: 10.1109/GLOCOM.2017.8254034.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction. Cambridge, MA, USA: MIT press, 2018.

[18] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A.
A. Bharath, Deep reinforcement learning: A brief survey,
IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38,
2017.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. Riedmiller, Playing
atari with deep reinforcement learning, arXiv preprint
arXiv:1312.5602, 2013.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T.
Erez, Y. Tassa, D. Silver, and D. Wierstra, Continuous
control with deep reinforcement learning, arXiv preprint
arXiv:1509.02971, 2015.

[21] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch,
and G. Caire, Femtocaching: Wireless content delivery
through distributed caching helpers, IEEE Transactions on
Information Theory, vol. 59, no. 12, pp. 8402–8413, 2013.

[22] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis,
Optimal dynamic proactive caching via reinforcement
learning, doi: 10.1109/SPAWC.2018.8445899.

[23] H. A. Suraweera, T. A. Tsiftsis, G. K. Karagiannidis,
and A. Nallanathan, Effect of feedback delay on amplify-
and-forward relay networks with beamforming, IEEE
Transactions on Vehicular Technology, vol. 60, no. 3, pp.
1265–1271, 2011.

[24] M. Abramowitz and I. A. Stegun, Handbook of
Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. Washington, DC, USA: US
Government Printing Office, 1948.

[25] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, Energy and
spectral efficiency of very large multiuser mimo systems,
IEEE Transactions on Communications, vol. 61, no. 4, pp.
1436–1449, 2013.

[26] Y. Wen, W. Zhang, and H. Luo, Energy-optimal mobile
application execution: Taming resource-poor mobile
devices with cloud clones, in Proc. IEEE Conference on
Computer Communications (INFOCOM), Orlando, FL,
USA, 2012, pp. 2716–2720.

[27] X. Chen, L. Jiao, W. Li, and X. Fu, Efficient multi-user
computation offloading for mobile-edge cloud computing,
IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp.
2795–2808, 2016.

[28] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, Energy-efficient offloading for

198 Intelligent and Converged Networks, 2020, 1(2): 181–198

mobile edge computing in 5G heterogeneous networks,
IEEE Access, vol. 4, pp. 5896–5907, 2016.

[29] J. Li, H. Gao, T. Lv, and Y. Lu, Deep reinforcement learning
based computation offloading and resource allocation for
MEC, in Proc. Wireless Communications and Networking
Conference (WCNC), Barcelona, Spain, 2018, pp. 1–6.

[30] S. Nath, J. Wu, and J. Yang, Delay and energy efficiency
tradeoff for information pushing system, IEEE Transactions
on Green Communications and Networking, vol. 2, no. 4,
pp. 1027–1040, 2018.

[31] S. Nath, J. Wu, and H. Lin, Optimum multicast scheduling
in delay-constrained content-centric wireless networks, doi:
10.1109/ICC.2019.8761690.

[32] S. Nath, J. Wu, and J. Yang, Optimum energy efficiency and

age-of-information tradeoff in multicast scheduling, doi:
10.1109/ICC.2018.8422521.

[33] S. Nath, J. Wu, and J. Yang, Optimizing age-of-
information and energy efficiency tradeoff for mobile
pushing notifications, doi: 10.1109/SPAWC.2017.8227712.

[34] D. Adelman and A. J. Mersereau, Relaxations of
weakly coupled stochastic dynamic programs, Operations
Research, vol. 56, no. 3, pp. 712–727, 2008.

[35] C. J. Watkins and P. Dayan, Q-learning, Machine learning,
vol. 8, no. 3, pp. 279–292, 1992.

[36] G. E. Uhlenbeck and L. S. Ornstein, On the theory of the
brownian motion, Physical Review, vol. 36, no. 5, p. 823,
1930.

[37] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv preprint arXiv:1412.6980, 2014.

Jingxian Wu received the BS (EE) degree
from the Beijing University of Aeronautics
and Astronautics, Beijing, China in 1998,
the MEng (EE) degree from Tsinghua
University, Beijing, China in 2001, and
the PhD (EE) degree from the University
of Missouri at Columbia, Missouri, USA

in 2005. He is currently a professor at the Department of
Electrical Engineering, University of Arkansas, Fayetteville. His
research interests mainly focus on signal processing for large scale
networks and wireless communications, cybersecurity for smart
grids, statistical data analytics, etc. He served as symposium
or track co-chairs for a number of international conferences,
such as the 2012 and 2019 IEEE International Conference
on Communications, the 2009, 2015, and 2017 IEEE Global
Telecommunications Conference, etc. He served as an associate

editor of the IEEE Transactions on Vehicular Technology from
2007 to 2011, an editor of the IEEE Transactions on Wireless
Communications from 2011 to 2016, and is now serving as an
associate editor of the IEEE Aeeess.

Samrat Nath received the BS degree in
electrical and electronic engineering from
the Bangladesh University of Engineering
and Technology, Dhaka, Bangladesh in
2014, and the PhD degree in electrical
engineering from the University of
Arkansas, Fayetteville, USA in 2020. He

is currently a data scientist at Walmart Inc. in Bentonville, AR,
USA. His research interests include statistical signal analysis,
information sensing and processing, optimization, machine
learning, and wireless communication.

	Deep reinforcement learning for dynamic computation offloading and resource allocation in cache-assisted mobile edge computing systems
	Recommended Citation

	tmp.1616023234.pdf.nYYcp

