
����������
�������

Citation: Chang, J.; Yu, D.; Hu, Y.; He,

W.; Yu, H. Deep Reinforcement

Learning for Dynamic Flexible Job

Shop Scheduling with Random Job

Arrival. Processes 2022, 10, 760.

https://doi.org/10.3390/pr10040760

Academic Editors: Kelvin K.L. Wong,

Dhanjoo N. Ghista, Andrew W.H. Ip

and Wenjun (Chris) Zhang

Received: 16 March 2022

Accepted: 11 April 2022

Published: 13 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Deep Reinforcement Learning for Dynamic Flexible Job Shop
Scheduling with Random Job Arrival
Jingru Chang 1,2,3, Dong Yu 2,*, Yi Hu 2,4, Wuwei He 1,2 and Haoyu Yu 1,2

1 University of Chinese Academy of Sciences, Beijing 100049, China; changjingru@neusoft.edu.cn (J.C.);
wuhewei2021@163.com (W.H.); yuhaoyu2021@sina.com (H.Y.)

2 Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;
huyi@sict.ac.cn

3 Department of Software Engineering, Dalian Neusoft University of Information, Dalian 116023, China
4 Shenyang Zhongke CNC Technology Co., Ltd., Shenyang 110168, China
* Correspondence: yudong@sict.ac.cn

Abstract: The production process of a smart factory is complex and dynamic. As the core of manu-
facturing management, the research into the flexible job shop scheduling problem (FJSP) focuses on
optimizing scheduling decisions in real time, according to the changes in the production environment.
In this paper, deep reinforcement learning (DRL) is proposed to solve the dynamic FJSP (DFJSP) with
random job arrival, with the goal of minimizing penalties for earliness and tardiness. A double deep
Q-networks (DDQN) architecture is proposed and state features, actions and rewards are designed.
A soft ε-greedy behavior policy is designed according to the scale of the problem. The experimental
results show that the proposed DRL is better than other reinforcement learning (RL) algorithms,
heuristics and metaheuristics in terms of solution quality and generalization. In addition, the soft
ε-greedy strategy reasonably balances exploration and exploitation, thereby improving the learning
efficiency of the scheduling agent. The DRL method is adaptive to the dynamic changes of the
production environment in a flexible job shop, which contributes to the establishment of a flexible
scheduling system with self-learning, real-time optimization and intelligent decision-making.

Keywords: smart factory; flexible job shop scheduling problem; deep reinforcement learning; random
job arrival; penalties for earliness and tardiness; double deep Q-networks

1. Introduction

Industry 4.0, also called the “smart factory” [1], focuses on the integration of advanced
technologies such as the Internet of Things, big data and artificial intelligence with en-
terprise resource planning, manufacturing execution management and process control
management. Thus, a smart factory has the capabilities of autonomous perception, analysis,
reasoning, decision-making and control. The flexible job shop scheduling problem (FJSP)
is an extension of the traditional job shop scheduling problem (JSP). The FJSP provides
possibilities and guarantees low variation in diversified and differentiated manufacturing,
which is widely used in the semiconductor manufacturing process, the automobile assem-
bly process, mechanical manufacturing systems, etc. [2]. As the core of manufacturing
execution management and process control management, the real-time optimization and
control of FJSP provides increased flexibility in the management of a smart factory, aiming
to improve factory productivity and the efficient utilization of resources in real time [3].

The FJSP breaks through the uniqueness restriction of production resources. Each
operation can be assigned on one or more available machines and the processing time is
different for different machines [4]. The FJSP reduces the machine constraints and expands
the size of the feasible solution search space, so it is a strong NP-hard problem that is more
complex than the JSP [5,6]. So far, a large number of studies on the FJSP have assumed
that the scheduling takes place in a static production environment, where the shop floor

Processes 2022, 10, 760. https://doi.org/10.3390/pr10040760 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10040760
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr10040760
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10040760?type=check_update&version=3

Processes 2022, 10, 760 2 of 20

information is known in advance, and the deterministic scheduling scheme cannot be
changed during the entire working process. However, an actual manufacturing shop has
dynamic and uncertain characteristics, such as random job arrival, machine breakdowns,
order cancellations, urgent order insertions, variations in delivery dates or processing times,
etc. The scheduling scheme should be adjusted continuously according to the changes
in the production environment [7,8], and the dynamic FJSP (DFJSP) can respond to the
unexpected events of the flexible job shop in real time. Therefore, the research into the FJSP
cannot meet the actual production demand and more and more scholars are now paying
attention to the DFJSP.

At present, the methods of solving the DFJSP are mainly heuristic [9] and meta-
heuristic algorithms. Tao et al. [10] proposed an improved dual-chain quantum genetic
algorithm, based on the non-dominated ranking method, to solve the multi-objective
DFJSP. Nouiri et al. [11] used particle swarm optimization to solve the dynamic flexible
job shop scheduling problem under machine breakdowns, to reduce energy consumption.
Wu et al. [12] solved the DFJSP with multiple perturbations by the non-dominated sorting
genetic algorithm (NSGA) III to minimize the maximum completion time and energy
consumption. The heuristic algorithm is simple and efficient, but it often falls into the
local optimum and the solution quality is poor due to greed and short-sightedness. The
metaheuristic algorithm improves the solution quality through parallel searching and itera-
tive searching, but it is time-consuming. Moreover, there is a strong correlation between
algorithm structures and scheduling problems, which leads to the redesign of the algorithm
once the production resources, constraints or production objectives change. Therefore, a
method of solving the DFJSP urgently needs to be studied on the basis of new methods
and new theories that integrate the advantages of the heuristic algorithm’s solution time
and the metaheuristic algorithm’s solution quality.

With the advance of artificial intelligence, reinforcement learning (RL) to solve the
production scheduling problem originated in 1995 [13]. In 2018, some scholars applied
deep reinforcement learning (DRL) to the scheduling field and then it was widely used,
which attracted the attention and competitive research of scholars in China and abroad.
The basic components of reinforcement learning are the environment, agents, the behavior
policy, the reward and the value function, where the learning process is usually described
by a Markov decision process (MDP) [14]. For large-scale problems, it is necessary to
parameterize it through a policy network and to balance exploration and exploitation,
which ensures that the scheduling agent converges to the optimal or near-optimal solution
in a reasonable time, thus improving the adaptability and self-learning of production
scheduling in intelligent manufacturing.

Wang et al. [15] applied Q-learning to study a dynamic single-machine schedul-
ing problem (SMSP) with random arrival time and processing time. Fonseca et al. [16]
solved the flow job shop scheduling problem (FSP) to minimize the completion time of
all jobs via the RL approach. Shahrabi et al. [17] solved the dynamic job shop scheduling
problem with random job arrival and machine breakdowns by a variable neighborhood
search that dynamically adjusted the parameters by RL to minimize the average flow
time. Wang et al. [18] solved the job shop scheduling problem by a weighted Q-learning
algorithm based on clustering and dynamic searching to minimize penalties for earliness
and tardiness. Wang et al. [7] applied a dual Q-learning to solve an assembly job shop
scheduling problem with uncertain assembly times to minimize the total weighted earliness
penalty and completion time cost. The top level Q-learning is focused on the dispatching
policy and the bottom level Q-learning focuses on global targets. Bouazza et al. [1] utilized
the Q-learning algorithm to solve a partially flexible job shop scheduling problem with new
job insertions. One Q matrix was used to choose a machine selection rule and the other was
focused on a particular dispatching rule. Luo et al. [19] established double deep Q-networks
(DDQN) with seven state features and six composite dispatching rules to solve the DFJSP,
with the objective of minimizing total tardiness. Luo et al. [20] proposed a two-hierarchy
deep reinforcement learning model for solving the FJSP to minimize the total tardiness and

Processes 2022, 10, 760 3 of 20

average machine utilization rate. The higher-level DDQN determines the optimization goal
and the lower-level chooses a proper dispatching rule. Table 1 summarizes the differences
between the aforementioned work and our work.

Table 1. Existing RL methods for dynamic scheduling problem.

Work Problem Dynamic Events Objective Algorithm State Policy

Wang et al. [15] SMSP Random job arrival,
Random processing time

Makespan, Summed
tardiness, Mean

flow time
Q-learning Discrete ε-greedy

Fonseca et al. [16] FSP Sequence dependent
setup times Makespan Q-learning Discrete ε-greedy

Shahrabi et al. [17] JSP Random job arrival Mean flow time Q-learning Discrete ε-greedy

Wang et al. [18] JSP Random job arrival Penalties for earliness
and tardiness Q-learning Discrete ε-greedy

Wang et al. [7] JSP Uncertain assembly times Total earliness penalty,
Completion time cost

Dual
Q-learning Discrete ε-greedy

Bouazza et al. [1] FJSP Random job arrival
Makespan, Total

weighted
completion time

Q-learning Discrete Annealed
linearly ε-greedy

Luo et al. [19] FJSP Random job arrival Total tardiness DDQN Continuous Soft-max

Luo et al. [20] FJSP Random job arrival Total tardiness, Machine
utilization rate DDQN Continuous Annealed

linearly ε-greedy

Our work FJSP Random job arrival Penalties for earliness
and tardiness DDQN Continuous Soft ε-greedy

From the above literature review, the research has mainly focused on single machine
scheduling, flow job shop scheduling and job shop scheduling. Research on DRL for
solving the DFJSP has not been explored deeply. Moreover, the DFJSP, with random job
arrival and penalties for earliness and tardiness criteria, has not been solved by DRL. In
addition, the DRL methods are not compared with traditional metaheuristics in most of the
literature. It is unclear whether DRL approaches outperform traditional metaheuristics in
terms of solution quality and generalization. For instance, in the work of Luo et al. [19], the
proposed DRL demonstrated superiority only when compared with heuristic rules as well
as the Q-learning agent.

In most of the RL-based methods mentioned above, Q-learning is mostly used, which
requires the problem to have discrete and finite state space. To maintain a lookup Q table
and reduce computational complexity, model accuracy is often sacrificed when dealing with
continuous-state problems. For instance, in the work of Shahrabi et al. [17], the number of
machines/jobs/operations chosen as state features is unlimited and extremely large. There
is no efficient theoretical guidance on how to determine the proper number of states, so the
drawback of compulsive state discretization is obvious. In the work of Luo et al. [19,20], the
DDQN-based scheduling agent is designed, whereas there are strong correlations between
hand-crafted features, which may mislead the neural networks and increases many invalid
computations. Without loss of generality, ε-greedy or annealed linearly ε-greedy are used
for most of the literature above. With the rapid growth of the scheduling solution space,
the fixed ε and fixed linear annealing rates are not conducive to searching for the optimal
or near-optimal solution.

For the reasons mentioned above, a DRL method is proposed to solve the DFJSP with
random job arrival, to minimize penalties for earliness and tardiness in this study, so as to
realize the real-time optimization and decision-making of the DFJSP. The experimental re-
sults indicate that the proposed DRL outperforms other reinforcement learning algorithms,
heuristics and metaheuristics in terms of solution quality and generalization. The three
contributions of this research are as follows.

Processes 2022, 10, 760 4 of 20

(1) To the best of our knowledge, this is the first attempt to solve the DFJSP with random
job arrival, to minimize the total penalties for earliness and tardiness using DRL. The
work can thus fill a research gap regarding solving the DFJSP by DRL.

(2) A DDQN algorithm model of flexible dynamic scheduling is proposed and state
features, actions and rewards for the scheduling agent have been designed.

(3) A soft ε-greedy behavior policy is proposed, which reasonably balances exploration
and exploitation according to the solution space of strong NP-hard problems, thus
improving the learning speed of the scheduling agent.

The remainder of this study is organized as follows: The mathematical model of DFJSP
with random job arrival is established in Section 2. Section 3 presents the background of
DDQN and gives the implementation details. Section 4 provides the results of numerical
experiments. Section 5 discusses the findings and the implications and gives future research
directions. Finally, conclusions are drawn in Section 6.

2. Problem Formulation
2.1. Problem Description

We describe the dynamic flexible job shop scheduling problem with random job arrival
using symbols defined as follows: There are n successively arriving jobs J = {J1, J2, . . . , Jn},
which should be processed on m machines M = {M1, M2, . . . , Mm}. Each job Ji consists of
a predetermined sequence of hi operations. Oij is the jth operation of job Ji, which can
be processed on a compatible machine set. The processing time of Oij on machine Mk
is denoted tijk. The arrival time of job Ji is Ai and the due date is Di. In this study, the
assumptions and constraints were as follows:

(1) Each machine can process only one operation at a time.
(2) The order of precedence of operations belonging to the same job must be followed

and there are no precedence constraints among the operations of different jobs.
(3) The operation must be processed without interruption.
(4) Jobs are independent and no priorities are assigned to any job.
(5) The setup time of the equipment, the transportation time between operations and the

breakdown time of the machine are negligible.
(6) An unlimited buffer between machines is assumed.

2.2. Mathematical Model

In order to meet the needs of the just-in-time production mode, the basic requirement
of the scheduling problem to minimize penalties for earliness and tardiness [21] is as
follows: From the perspective of the economic benefit of an enterprise, the processing of
products should meet the requirements of delivery time, with neither delays nor a principle
of “the sooner the better”. A mathematical model of the DFJSP was established to minimize
penalties for earliness and tardiness with random job arrival. The notation used in this
model is as follows:
i,r: Index of jobs, i = 1, 2, 3 . . . n;
j,t: Index of operations belonging to job Ji and Jt;
k: Index of machines, k = 1, 2, 3 . . . m;
hi: The number of operations of Ji;
tijk: The processing time of operation Oij on machine Mk;
sij: The starting time of Oij;
mij: The available machine set for operation Oij;
fi: The delivery relaxation factor of Ji;
we

i : Unit (per day) earliness cost of Ji;
wt

i : Unit (per day) tardiness cost of Ji;
Ai: The arrival time of Ji;
Di: The due date of Ji;
Ci: The completion time of Ji;
Z: A large enough positive number.

Processes 2022, 10, 760 5 of 20

In an actual production environment, the swift completion of products results in
more inventory pressure and financial costs, whereas delays in completing the job result
in financial damage [22]. Therefore, here, the objective was to obtain a schedule that
has the least penalties for earliness and tardiness (PET) in the DFJSP with new job inser-
tions. The objective function is given by Equation (1) and some constraints are given in
Equations (2)–(8).

Objective:

PET = min
{
∑N

i=1

(
we

i ×max(Di − Ci, 0) + wt
i ×max(Ci − Di, 0)

)}
(1)

Subject to:

sij ≥ 0 , si1 − Ai × xi1k >= 0 i = 1, 2, 3 . . . n; j = 1, 2, 3 . . . hi; k = 1, 2, 3 . . . m; (2)

sij + tij ≤ si(j+1) i = 1, 2, 3 . . . n; j = 1, 2, 3 . . . hi; (3)

sij + tijk ≤ srt + Z×
(

1− yijrtk

)
i = 1, 2, 3 . . . n; r = 1, 2, 3 . . . n; j = 1, 2, 3 . . . hi; t = 1, 2, 3 . . . hr; k = 1, 2, 3 . . . m; (4)

∑
mij
k=1 xijk = 1 i = 1, 2, 3 . . . n; j = 1, 2, 3 . . . hi; (5)

xijk =

{
1, I f Oij is assigned to Mk
0, else

(6)

yijrtk =

{
1, I f Oij is processed on Mk be f ore Ort
0, else

(7)

Di = Ai + fi ×∑hi
j=1 tij (8)

Equation (2) makes sure that a job can only be processed after its arrival time. Equation (3)
indicates that the order of precedence between the operations of each job must be followed.
Equation (4) ensures that a machine can only process one job at a time. Equation (5) ensures
that a job can only be processed by one machine at the same time.

3. Proposed DRL
3.1. DQN and DDQN

Deep Q-networks (DQN) combine reinforcement learning with non-linear value func-
tions for the first time, in which the neural network is trained through reinforcement
learning to have the ability to master difficult control and decision-making policies [23].
However, there is an incompatible gap between reinforcement learning and deep learning.
For example, most deep learning methods assume that the data samples are independent
of each other, with no sequence correlation and a fixed underlying distribution, while in
reinforcement learning, sequences of highly correlated states are typically encountered and
the data distribution is unstable under the influence of selective actions. Inspired by the
experience replay of the hippocampus [24] in a biological neural network, the state transi-
tion tuple (st, at, rt, st+1) generated at each time-step in reinforcement learning is stored in
a replay memory and the tuple data are randomly sampled to adjust the parameter θt of
the neural network (the iterative updating formula is shown in Equation (9)) by minibatch
updates. Therefore, the goal of maximizing the Q-value function of RL is realized and the
loss function of deep learning is minimized at the same time. The DQN is a milestone in
creating a general artificial intelligence to complete a varied range of challenging tasks with
a single algorithm.

θt+1 = θt + η × (yt −Q(st, at; θt)) ∗ ∇θt Q(st, at; θt) (9)

Processes 2022, 10, 760 6 of 20

where η is the learning rate used by the stochastic gradient descent algorithm. The target
yt must be designed in unsupervised learning, for which the iterative formula of each
time-step is shown in Equation (10), while the sample target yt is known in supervised
learning; γ is the discount factor in the Q-learning algorithm.

yDQN
t = rt + γ× argmaxa′Q

(
st+1, a′; θt

)
(10)

It can be seen from Equation (10) that selecting an action and evaluating an action use
the same values in the DQN. There is a neural network where the current parameter is θt,
the state st+1 is the input and the number of Q values at the output layer is |A|, so the set
expression is {Q(st+1, a1; θt), Q(st+1, a2; θt)Q

(
st+1, a|A|; θt

)
, where |A| is the number of

actions}. If the Q value of a′ is the largest, then action a′ is chosen via an ε− greedy behavior
policy, while the evaluation uses the value Q(st+1, a′; θt). This results in a large number of
overoptimistic value estimates.

The overoptimistic value estimates themselves are not necessarily a problem, but they
have a negative impact on the quality of the learned policy in some cases. If the Q value of
each action is overestimated evenly, the action selection will not be affected and the agent
learning will not be affected. On the contrary, if the overestimation of Q is uneven, the
action with the overestimated value will be preferred during action selection. The action
affects the environmental state distribution in RL, so the overestimation of Q affects the
state data’s distribution. If the agent learns less from those states, the learning quality
of the agent will be greatly reduced and overoptimism is not conducive to the stability
of learning.

In order to reduce overestimations, Hasselt et al. designed the DDQN [25] from
the idea of double Q-learning [26,27]. The online network and the target network are
designed to decouple the selection from the evaluation. The Q value from the online
network provides the basis on which the behavior policy can select an action and the target
network Q̂ value is used for evaluating the action. The iterative formula of yt is shown in
Equation (11). The update of the target network θ̂t remains a periodic copy of the online
network θt.

yDDQN
t = rt + γ× Q̂

(
st+1, argmaxa′Q

(
st+1, a′; θt

)
; θ̂t
)

(11)

3.2. Model Architecture

The general process of reinforcement learning to solve the production scheduling prob-
lem is as follows: Firstly, the scheduling problem type, constraint conditions and dynamic
attributes are defined according to the manufacturing environment, which generates the
production scheduling instance. Secondly, the instance is expressed as a MDP according to
the production state, scheduling action and reward. Lastly, the agent then continuously
interacts with the MDP to obtain production data samples and the reinforcement learning
algorithm is trained to learn the strategy.

The model of the proposed DRL is shown in Figure 1, including the flexible job shop
production environment, the agent and the reinforcement learning process. The architecture
of the online network and the target network in the agent is the same. Deep neural networks
are trained in the DDQN, which consists of five fully connected layers with one input layer,
one output layer and three hidden layers. The number of nodes in the input and output
layers is equal to the number of state features (four) and the number of actions is also
four. Each hidden layer consists of 30 nodes. The activation function is Relu. The learning
process is as follows.

(1) The agent obtains the current state of the flexible job shop environment st;
(2) The agent determines the scheduling rule at according to the Q value of the online

network and the behavior policy to select an operation Oij and select a feasible
machine Mk;

(3) The flexible production shop performs at: Oij is processed on Mk and the production
environment state is transferred to st+1;

Processes 2022, 10, 760 7 of 20

(4) The agent obtains the instant reward rt from the production environment and the
experience tuple (st, at, rt, st+1) is stored in the experience replay D;

(5) Randomization of the samples is performed in D and the target and the loss function
are calculated according to the target network and the online network to update the
parameters θt of the online network.

Figure 1. The model architecture of solving the DFJSP using the DDQN.

3.3. State Features

In the field of reinforcement learning applications, the design quality of the environ-
mental state features plays a key role and influences the performance of an RL algorithm.
In a production scheduling method based on RL, the characteristics of the scheduling
attributes are defined as the production state characteristics, such as the number of jobs, the
number of operations, the number of machines, the remaining working hours, the number
of remaining operations, the load of machine tools, the total processing time and other
factors [1,17]. These characteristic attributes have an infinite range of values and the de-
composition and partition of the state space can easily be subjective and lack the guidance
of objective data [28]. In a flexible manufacturing environment, production information
is complex and constantly changing and excessive quantitative eigenvalues are prone to
overfitting [29]. In order to ensure that different actions are selected adaptively according to
the state of the production environment, most reinforcement learning algorithms solve the
production scheduling problem by establishing the relationship between the production

Processes 2022, 10, 760 8 of 20

features’ attributes and the production objectives. For these reasons, this study designed
four production state features with values of [0, 1], which are defined below:

(1) Average utilization rate Um(t)

The average utilization rate of the machines Um(t) is calculated by Equation (12).
CTk(t) is the completion time of the last operation on machine Mk at rescheduling point t
and OPi(t) is the current number of completed operations of job Ji at the current time t.

Um(t) =

∑m
k=1

(
∑n

i=1 ∑
OPi(t)
j=1 tijk×Xijk

CTk(t)

)
m

(12)

(2) Estimated earliness and tardiness rate ETe(t)

Tcur is the average completion time of the last operations on all machines at reschedul-
ing point t and Tle f t is the estimated remaining processing time of Ji. If Tcur + Tle f t > Di, Ji
is estimated to be delayed. If Tcur + Tle f t < Di, Ji is estimated to be completed in advance.
The number of estimated early and tardy jobs is equal to the number of estimated early
jobs NJearly plus the number of estimated tardy jobs NJtard. The estimated earliness and
tardiness rate ETe(t) is equal to the number of estimated early and tardy jobs divided by
the number of all jobs. The method of calculating this is given in Algorithm 1.

Algorithm 1 Procedure of calculating the estimated earliness and tardiness rate ETe(t)

Input: CTk(t), OPi(t), Di
Output: ETe(t)

1: Tcur ← ∑m
k=1 CTk(t)

m
2: NJtard ← 0
3: NJearly ← 0
4: for i = 1: n do
5: if OPi(t) < hi then
6: Tle f t ← 0
7: for j = OPi(t) + 1: hi do
8: tij = meank∈mij tijk

9: Tle f t ← Tle f t + ti,j
10: if Tcur + Tle f t > Di then
11: NJtard ← NJtard + 1
12: break
13: end if
14: end for
15: if Tcur + Tle f t < Di then
16: NJearly ← NJearly + 1
17: end if
18: end if
19: end for
18: ETe(t)← (NJtard + NJearly)/n
19: Return ETe(t)

(3) Actual earliness and tardiness rate ETa(t)

ETi(t) is the completion time of the completed operations of Ji at rescheduling point
t and thus ETi(t)[OPi(t)] represents the completion time of the last completed operation
of Ji. If ETi(t)[OPi(t)] > Di, Ji is delayed; if ETi(t)[OPi(t)] + Tle f t < Di, Ji is completed in
advance. The actual number of early and tardy jobs is equal to the actual number of early
jobs NJa_early plus the actual number of tardy jobs NJa_tard. The actual earliness and tardiness
rate ETe(t) is equal to the number of actual early and tardy jobs divided by the number of
all jobs. The method of calculating this is given in Algorithm 2.

Processes 2022, 10, 760 9 of 20

Algorithm 2 Procedure of calculating the actual earliness and tardiness rate ETa(t)

Input: OPi(t), Di, ETi(t)
Output: ETa(t)
1: NJa_tard ← 0
2: NJa_early ← 0
3: for i = 1: n do
4: if OPi(t) < hi then
5: Tle f t ← 0
6: if ETi(t)[OPi(t)]> Di then
7: NJa_tard ← NJa_tard + 1
8: continue
9: else
10: for j = OPi(t) + 1: hi do
11: tij = meank∈mij tijk

12: Tle f t ← Tle f t + ti,j
13: if ETi(t)[OPi(t)] + Tle f t > Di then
14: NJa_tard ← NJa_tard + 1
15: break
16: end if
17: end for
18: if ETi(t)[OPi(t)] + Tle f t < Di then
19: NJa_early ← NJa_early+ 1
20: end if
21: end if
22: end if
23: end for
24: ETa(t)← (NJa_tard+ NJa_early)/n
25: Return ETa(t)

(4) Actual earliness and tardiness penalty Pa(t)

P [i] is the actual earliness and tardiness penalty of Ji, and its value is equal to the unit
time penalty coefficient of Ji multiplied by the actual earliness/tardiness of Ji. The actual
earliness and tardiness penalty Pa(t) is normalized by [0,1). Its normalization equation

is Pa(t) = ∑n
i=1 P[i]

∑n
i=1 P′ [i] , where ∑n

i=1 P′[i] = ∑n
i=1 P[i] + Z and Z is a constant related to n,

Z∈[n,n*10]. If there are no early and tardy jobs at the rescheduling point t, ∑n
i=1 P[i] is equal

to 0 and the value of Pa(t) is also 0; otherwise, a large number of jobs are early or tardy, for
which the ∑n

i=1 P[i] is greater and Pa(t) is closer to 1. The specific calculation method is
shown in Algorithm 3.

Algorithm 3 Procedure of calculating the actual earliness and tardiness penalty cost Pa(t)

Input: OPi(t), Di, ETi(t)
Output: Pa(t)
1: P’← 1
2: P← 0
3: for i = 1: n do
4: if OPi(t) < hi then
5: Tle f t ← 0
6: for j = OPi(t) + 1: hi do
7: tij = meank∈mij tijk

8: Tle f t ← Tle f t + ti,j
9: end for
10: if ETi(t)[OPi(t)] > Di then
11: P[i]← wt

i ∗
(
ETi(t)[OPi(t)] + Tle f t − Di

)
12: P′[i]← wt

i ∗
(
ETi(t)[OPi(t) + Tle f t − Di

)
+ 10

13: end if
14: if ETi(t)[OPi(t)] + Tle f t < Di then
15: P[i]← we

i ∗
(

Di− ETi(t)[OPi(t)]− Tle f t
)

16: P′[i]← we
i ∗
(

Di− ETi(t)[OPi(t)]− Tle f t
)
+ 10

17: end if
18: end if
18: end for

19: Pa(t) =
∑n

i=1 P[i]
∑n

i=1 P′[i]
20: Return Pa(t)

Processes 2022, 10, 760 10 of 20

3.4. Action Set

The FJSP problem includes two subproblems: operation sequencing and machine
selection. Therefore, the four scheduling rules were designed to complete two tasks: first
selecting an operation and then selecting a machine from the set of feasible machines.
UCjob(t) is the set of unfinished jobs at rescheduling point t and Mij represents the set of
suitable machines for Oij. The four comprehensive dispatching rules are as follows.

(1) Dispatching Rule 1: Firstly, according to Equation (13), the job Ji with the minimum
redundancy time is selected from the uncompleted job set UCjob(t) and the operation
Oi(OPi(t)+1) is selected. The machine is then allocated for Oi(OPi(t)+1) and the minimum
completion time is the allocation principle. Selection of the machine considers not only
the available time of the machine but also the completion time of the prior Oi OPi(t) and
the processing time of Oi(OPi(t)+1). When Ji arrives dynamically at rescheduling time t,
if a feasible machine is idle, its available time is the rescheduling time t; otherwise, its
available time is the time when it completes the processing operation. Therefore, the
machine is selected according to Equation (14).

min
i∈UCjob(t)

{Di −
∑m

k=1 CTk(t)
m

} (13)

min{ max
k∈Mi(OPi(t)+1)

{CTk(t), CiOPi(t), Ai}+ ti(OPi(t)+1)k} (14)

(2) Dispatching Rule 2: Firstly, 2according to Equation (15), the job Ji with the largest
estimated remaining processing time is selected from the uncompleted jobs and its
operation Oi(OPi(t)+1) is selected. A suitable machine for Oi(OPi(t)+1) then is selected
according to Equation (14).

max
iεUCjob(t)

{∑ni
j=OPit+1 meankεMij

tijk} (15)

(3) Dispatching Rule 3: Firstly, according to Equation (16), the job Ji with the largest
penalty coefficient is selected from the uncompleted jobs and its operation Oi(OPi(t)+1)
is selected. The suitable machine with the smallest load for Oi(OPi(t)+1) is selected
according to Equation (17).

max
iεUCjob(t)

{
0.2× we

i + 0.8× wt
i
}

(16)

min
kεMi,OPi(t)+1

{∑n
i=1 ∑OPi(t)

j=1 tijkxijk} (17)

(4) Dispatching Rule 4: Firstly, according to Equation (18), the job Ji with the smallest
estimated remaining processing time is selected from the uncompleted jobs and its
process Oi(OPi(t)+1) is selected. A suitable machine for Oi(OPi(t)+1) is then selected
according to Equation (14).

min
iεUCjob(t)

{∑ni
j=OPit+1 meankεMij

tijk} (18)

3.5. Rewards

In this study, the goal of production scheduling was to minimize penalties for earliness
and tardiness, while the goal of the DDQN algorithm was to maximize the cumulative
reward. Therefore, the reward function keeps the increasing direction of the cumulative
reward consistent with the decreasing direction of the optimization goal. In order to

Processes 2022, 10, 760 11 of 20

improve the learning efficiency of agents, this study designed a heuristic immediate reward
function, which is calculated by Equation (19).

rt = Pa(t)− Pa(t + 1) (19)

If Pa(t + 1) < Pa(t), this indicates that the scheduling optimization objective is decreas-
ing, and if the immediate reward is rt > 0 according to Equation (19), this indicates that the
cumulative reward is increasing. Moreover, the more the optimization objective is reduced,
the greater the immediate reward in the iteration. If Pa(t + 1) = Pa(t), the scheduling
optimization objective changes to 0 and the immediate reward is also 0. If Pa(t + 1) > Pa(t),
the optimization goal is increasing and if the immediate reward is rt < 0, the cumulative
reward is decreasing. There is a negative correlation between the optimization goal and the
cumulative reward. Therefore, through the definition of the immediate reward function,
not only is the minimization objective of the scheduling problem transformed into the
maximization objective of the cumulative reward, but also the selected action at of each
decision point t is accurately evaluated, which improves the learning ability of the agent
regarding a complex control strategy.

3.6. Action Selection Strategy

In deep reinforcement learning, exploration means that every action has the same
probability of being randomly selected and exploitation involves selecting the action with
the largest Q value. Due to the limited learning time, exploration and exploitation are
contradictory. In order to maximize the cumulative reward, a compromise must be made
between exploration and exploitation.

The ε-greedy policy, with ε being annealed linearly, is one of the most commonly used
behavior policies. For example, ε with an initial value of 1, anneals linearly by 0.001 at
each step and is fixed at 0.1. Thereafter, the probability of exploration is 0.1 and that of
exploitation is 0.9 at each step. However, a fixed linear annealing rate is not reasonable for
all flexible scheduling problems. In order to improve the learning speed of the agent, there
is less exploration for scheduling problems with a small solution space, while exploration
should be strengthened for scheduling problems with a large solution space. Therefore,
in this study a soft ε-greedy behavior policy, which is calculated by Equation (20), was
designed to adapt to flexible scheduling problems with different scales, and the linear
annealing rate is 1

(OP_num)µ . The larger the total operation number OP_num and the larger

the solution space of the scheduling problem, the smaller the value of 1
(OP_num)µ , which

means that the linear decline of the exploration rate ε is slower, thus enhancing exploration
and weakening exploitation.

εso f t = max{0.1 , 1− step
(OP_num)µ } (µ > 0) (20)

3.7. Procedure of DDQN

By defining three key elements (state, action and reward), the DFJSP problem is
transformed into an RL problem. According to the algorithm model architecture described
in Section 3.2, the four production environment state characteristics in Section 3.3, the
four action scheduling rules in Section 3.4, the immediate reward in Section 3.5 and the
behavior policy in Section 3.6, the scheduling agent is trained to realize adaptive scheduling.
Algorithm 4 is the training method of the scheduling agent, where L is the training time, t
is the rescheduling time when an operation is completed or a new job arrives and T is the
sum of all the current operations.

Processes 2022, 10, 760 12 of 20

Algorithm 4 The DDQN-based training method

1: Initialize replay memory D to capacity N
2: Initialize online network action-value Q with random weights θ

3: Initialize target network action-value Q̂ with weights θ̂ = θ
4: for episode = 1: L do
5: Initialize production state s1 =

{
Um(1), ETe(1), ETa(1), Pa(1)

}
= {0, 0, 0, 0}

6: for t = 1: T do
7: With probability εso f t, select a random action at
8: Otherwise, select action at = argmaxaQ(st, a; θ)
9: Execute action at, calculate the immediate reward rt by Equation (19) and observe the next state st+1
10: Set production state st+1 =

{
Um(t + 1), ETe(t + 1), ETa(t + 1), Pa(t + 1)

}
11: Store transition (st, at, rt, st+1) in D
12: Sample a random minibatch of transitions

(
sj, aj, rj, sj+1

)
from D

13: Set targetyj =

{
rj i f episode terminates at step j + 1

rj + γQ̂
(
st+1, argmaxa′Q(st+1, a′; θ); θ̂

)
otherwise

14: Calculate the loss function
(
yj −Q

(
sj, aj; θ

))2 and perform a stochastic gradient descent step with
respect to the parameters θ of online network Q
15: Every C steps, reset θ̂ = θ
16: end for
17: end for

4. Numerical Experiments

In this section, a correlation analysis between the state features and the process of
training the scheduling agent are provided, followed by a sensitivity study on the control
parameter µ of the soft ε-greedy action selection policy. To confirm reasonable exploration
of the soft ε-greedy strategy, the learning rate between the flexible ε-greedy strategy and
the fixed linearly decreasing ε-greedy strategy was compared. To show the superiority
and generality of the DDQN, we compared it with DQN; SARSA; a well-known heuristic
algorithm, first in first out (FIFO); a traditional metaheuristic algorithm, genetic algorithm
(GA); and a random action strategy (RA) with different production configurations. The
training and test results, and the video of solving the DFJSP using the trained DDQN are
uploaded as Supplementary Materials.

The problem instances were generated by simulating a dynamic production environ-
ment of a flexible job shop. A new job arrival or an operation completion is defined as
the system event that triggers rescheduling. It is assumed that several jobs exist on the
flexible shop floor at the very beginning. The arrival of subsequent new jobs follows a
Poisson distribution, whereas the arrival interval obeys a negative exponential distribution
with an average rate Eave. For Ji, the delivery relaxation factor fi, the operation number hi,
the process time tij of the jth operation Oij, and wi

e and wi
t are satisfied with a uniform

distribution [29]. The parameter settings are shown in Table 2.

Table 2. Parameter settings of different production configurations.

Parameter Value

Number of machines (m) {5, 10, 30}
Number of initial jobs (nini) 10

Number of newly added jobs (nadd) {20, 30, 50, 100}
Delivery relaxation factor (fi) U [0.5, 2]

Average value of exponential distribution
between two successive job arrivals (Eave) {30, 50, 100}

Number of operations in a job (hi) U [1, 30]
Processing time of an operation on a machine (tij) U [0, 100]

Unit (per day) of earliness cost(wi
e) U [1, 1.5]

Unit (per day) of tardiness cost(wi
t) U [1, 2]

The algorithm proposed in this study and the flexible workshop production environ-
ments were coded with Python 3.8.3. The training and test experiments were performed on
a PC with an Intel(R) Core(TM) i7-6700 CPU and a 3.40 GHz CPU and 16 GB RAM.

Processes 2022, 10, 760 13 of 20

4.1. Training Details

The values of all the hyperparameters were selected by performing an informal search
on the instances that were generated for the DFJSP, with random job arrival using different
parameter settings of Eave, nadd and m. In line with the literature [24], a systematic grid
search was not performed owing to the high computational cost, although it is conceivable
that even better results could be obtained by systematically tuning the hyperparameter
values. The list of hyperparameters and their values are shown in Table 3.

Table 3. List of hyperparameters and their values.

Hyperparameter Value

Replay memory size (N) 2000
Minibatch size 32

Behavior policy (εso f t) Decreasing linearly from 1 to 0.1
Discount factor (γ) 0.95
Learning rate (η) 0.00025

Update step of the target network (C) 100
Replay start size 100

4.1.1. Correlations between States

In order to collect a set of states completely and fully, multiple problem instances
were generated according to different production configurations. In order to avoid se-
quences of highly correlated states, a set of states was collected from different instances
by running a random policy before the training started [23], so as to objectively evalu-
ate the correlation between the state features. The correlation coefficient ρX,Y between
the state features is calculated according to the following equation:

ρX,Y =
∑n

i=1(Xi−X)(Yi−Y)√
∑n

i=1(Xi−X)
2
√

∑n
i=1(Yi−Y)

2 (X : x1, x2, . . . , xn; Y : y1, y2, . . . , yn). The experimental

results are shown in Table 4 below. ETe is moderately correlated with ETa, U is less corre-
lated with ETe and U is less correlated with ETa as well, while the other state characteristics
have extremely low correlations.

Table 4. Correlation coefficients between state features.

¯
Um ETe ETa Pa

Um 1 −0.27118903 0.20070019 −0.03637265
ETe - 1 −0.54936787 0.06982738
ETa - - 1 0.1090457
Pa - - - 1

4.1.2. Training and Stability

The DDQN was trained for a simulated flexible job shop with 10 machines and
20 dynamic new job arrivals, and the average value of exponential distribution between
two successive job arrivals (Eave) was 30. The earliness and tardiness penalties of the first
4000 epochs calculated by the proposed DDQN algorithm are shown in Figure 2. It can be
seen from the curve that the target value drops smoothly and that the volatility decreases
gradually with an increase in the training steps. The learning curve remains relatively
stable after the 2500th epoch. This shows that the scheduling agent learns the appropriate
dispatching rules according to the changes in the production states and this self-learning
ability improves the adaptability for solving the DFJSP.

Processes 2022, 10, 760 14 of 20

Figure 2. Average earliness and tardiness penalty at each training epoch.

4.2. Comparison between the Soft ε-greedy and ε-greedy Behavior Policies
4.2.1. Sensitivity of the Control Parameter µ

The control parameter µ in Equation (20) affects the performance of the algorithm
proposed in this article. The larger the µ, the slower the linear decline in ε, which enhances
exploration. On the contrary, the smaller the µ, the faster the linear decline in ε, which
weakens exploration. To determine the appropriate value of µ, it was increased from 0.4 to
2.4 in steps of 0.2. At each parameter level, the trained deep reinforcement learning model
was independently tested 30 times on an instance with 10 machines, 20 new job arrivals
and Eave set to 30. Figure 3 shows the box plots of the earliness and tardiness penalties
for 30 trials with different values of µ, with the mean values marked by green triangles. It
can be observed in the figure that µ = 1.8 achieved the lowest degree in terms of both the
distribution range and the mean value of earliness and tardiness penalties. Therefore, the
recommended value for µ is 1.8.

Figure 3. Box plots of earliness and tardiness penalties at different values of µ.

Processes 2022, 10, 760 15 of 20

4.2.2. Comparison of Learning Rates

To demonstrate that the soft ε-greedy behavior policy can reasonably balance explo-
ration and exploitation depending on the problem size, the DDQN was trained for an
instance with 10 machines, 50 new job arrivals and Eave set to 50. For the soft ε-greedy and
ε-greedy behavior policy, ε anneals linearly from 1 to 0.1. The linear annealing rate of ε is

1
(OP_num)1.8 for the soft ε-greedy policy, whereas the value is 0.001 for the ε-greedy policy.

During training, the parameter µwas set to 1.8; the values of the other hyperparameters
are listed in Table 3. Through a method from the DQN literature [23], a fixed set of states
was collected by running a random policy before the training started and the average of the
maximum predicted Q for these states was tracked. In Figure 4, the average predicted Q
of the soft ε-greedy behavior policy is significantly higher than that of the ε-greedy policy,
indicating that the linearly decreasing rate of ε was adjusted according to the problem size,
thus achieving a better compromise between exploration and exploitation and maximizing
the cumulative reward.

Figure 4. Average maximum predicted action value Q for each training epoch.

4.3. Comparison of DDQN with Other Methods

To verify the effectiveness and generalization of the proposed DDQN, the DFJSP
was classified according to different parameter settings for Eave, m and nadd. To simulate
a real production environment, the number of operations, delivery factors and penalty
coefficients were distributed randomly for each job, so 30 independent instances were
generated for each type of DFJSP. The DDQN was compared with two other RL algorithms,
DQN and SARSA; one of the most commonly used heuristics algorithms, FIFO; and a
famous metaheuristic algorithm, GA. Moreover, the random action selection policy RA
was designed to prove the learning ability of the agent. In each instance, the DDQN and
the other algorithms were repeated independently 20 times. The mean values of the total
earliness and tardiness penalty obtained by each method are shown in Table 5 and the best
results are highlighted in bold font.

Processes 2022, 10, 760 16 of 20

Table 5. Average total earliness and tardiness penalties of the different algorithms for each type of
test (the best results are highlighted in bold font).

Eave m nadd DDQN DQN SARSA FIFO GA RA

30

5

20 5.17 × 103 6.63 × 103 7.27 × 103 1.35 × 104 1.07 × 104 1.41 × 104

30 1.38 × 104 1.93 × 104 2.02 × 104 3.10 × 104 1.29 × 104 2.18 × 104

50 3.68 × 104 4.42 × 104 4.64 × 104 7.02 × 104 4.97 × 104 5.55 × 104

100 1.62 × 105 1.61 × 105 1.98 × 105 2.57 × 105 3.15 × 105 2.18 × 105

10

20 1.48 × 103 2.26 × 103 3.02 × 103 4.42 × 103 3.53 × 103 4.08 × 103

30 3.43 × 103 4.20 × 103 5.06 × 103 7.14 × 103 6.98 × 103 8.24 × 103

50 9.26 × 103 1.12 × 104 1.15 × 104 1.78 × 104 1.38 × 104 1.90 × 104

100 4.57 × 104 4.95 × 104 8.22 × 104 7.81 × 104 6.60 × 104 8.74 × 104

30

20 5.31 × 103 6.10 × 103 6.29 × 103 6.11 × 103 6.41 × 103 6.40 × 103

30 8.18 × 103 1.08 × 104 1.13 × 104 1.09 × 104 8.07 × 103 1.14 × 104

50 8.03 × 103 1.31 × 104 1.43 × 104 1.35 × 104 1.09 × 104 1.52 × 104

100 1.63 × 104 1.90 × 104 2.08 × 104 2.12 × 104 2.21 × 104 2.17 × 104

50

5

20 1.06 × 104 1.38 × 104 9.78 × 103 2.04 × 104 1.66 × 104 1.81 × 104

30 1.94 × 104 2.34 × 104 2.91 × 104 3.69 × 104 2.65 × 104 3.07 × 104

50 5.50 × 104 5.00 × 104 7.02 × 104 8.33 × 104 6.92 × 104 8.00 × 104

100 1.61 × 105 1.86 × 105 2.26 × 105 2.88 × 105 2.64 × 105 2.27 × 105

10

20 1.67 × 103 2.38 × 103 3.96 × 103 4.76 × 103 3.99 × 103 4.46 × 103

30 3.29 × 103 4.22 × 103 8.13 × 103 7.61 × 103 7.46 × 103 9.18 × 103

50 1.40 × 104 1.35 × 104 2.25 × 104 2.33 × 104 1.79 × 104 2.47 × 104

100 5.88 × 104 6.46 × 104 7.24 × 104 9.64 × 104 7.72 × 104 9.18 × 104

30

20 7.42 × 103 9.82 × 103 1.03 × 104 7.30 × 103 1.05 × 104 1.04 × 104

30 9.06 × 103 1.20 × 104 1.25 × 104 1.23 × 104 1.20 × 104 1.26 × 104

50 1.27 × 104 1.52 × 104 1.63 × 104 1.66 × 104 1.64 × 104 1.67 × 104

100 1.85 × 104 2.22 × 104 2.29 × 104 2.33 × 104 2.15 × 104 2.47 × 104

100

5

20 9.10 × 103 1.20 × 104 1.38 × 104 2.12 × 104 1.47 × 104 1.95 × 104

30 2.21 × 104 2.09 × 104 2.59 × 104 3.35 × 104 2.60 × 104 2.94 × 104

50 5.11 × 104 5.50 × 104 5.80 × 104 9.16 × 104 6.72 × 104 7.46 × 104

100 1.88 × 105 2.14 × 105 2.17 × 105 3.61 × 105 2.64 × 105 2.77 × 105

10

20 3.68 × 103 4.42 × 103 4.98 × 103 6.67 × 103 6.35 × 103 6.95 × 103

30 4.14 × 103 5.28 × 103 8.79 × 103 9.40 × 103 6.53 × 103 1.05 × 104

50 1.19 × 104 1.62 × 104 1.17 × 104 2.35 × 104 1.84 × 104 2.71 × 104

100 6.03 × 104 6.58 × 104 6.74 × 104 9.72 × 104 7.55 × 104 9.50 × 104

30

20 8.58 × 103 8.49 × 103 1.12 × 104 1.18 × 104 1.14 × 104 1.17 × 104

30 1.10 × 104 1.40 × 104 1.43 × 104 1.47 × 104 1.50 × 104 1.44 × 104

50 1.34 × 104 1.83 × 104 1.87 × 104 2.02 × 104 2.02 × 104 1.98 × 104

100 2.24 × 104 2.66 × 104 2.71 × 104 2.91 × 104 2.84 × 104 3.07 × 104

In this study, the only difference between the DQN and the DDQN was the target yi.
Moreover, during training, ε decreased linearly from 1 to 0.1 in the DQN, while ε decreased
from 1 to 0.01 in the DDQN. During testing, ε was fixed at 0.001.

In SARSA, in order to discretize the production state space reasonably, the neural
network with a self-organizing mapping layer (SOM) from [19] was used to divide the state
features into nine discrete states. The SARSA agent had the same action set of dispatching
rules used in this study at each discrete state. A Q table was maintained that contained
9 × 6 Q-values for the state–action pairs and the SARSA agent was trained to learn the
policies linearly.

In GA [30], the chromosomes of the FJSP were encoded in the form of operation
sequence (OS) and machine assignment (MS). In order to improve the response speed of
production events, every individual of the initial population was randomly generated. The
selection operation adopted a combination of the roulette wheel and the elite retention

Processes 2022, 10, 760 17 of 20

strategy. In the crossover operation, a uniform crossover was applied for MS and a prece-
dence preserving order-based crossover (POX) was used for OS. The MS of the mutation
operator adopted a multi-round single point exchange mutation and the OS part adopted
a neighborhood search mutation. The hyperparameter settings were the population size
N = 100, the number of iterations I = 200, the crossover probability pc = 0.8 and the mutation
probability pm = 0.01.

FIFO choses the next operation of the earliest arriving job from among the unfinished
jobs and the selected operation was assigned to the machine with the smallest sum of
available time and processing time among the suitable machines. The RA was used to
randomly select a dispatching rule at each rescheduling point.

In order to show the solution quality of the DDQN designed in this study, the average
earliness and tardiness penalties of all the algorithms compared for all test instances were
calculated according to Table 5, as shown in Figure 5. As can be seen in Figure 5, the
DDQN outperformed the competing methods. The performance in terms of solution
quality was normalized with respect to the average penalty of RA (that is, 100%). Note that
the normalized performance of other algorithms, expressed as a percentage, was calculated
as 100% * (algorithm penalty—RA penalty)/RA penalty. The normalized performance of
the other algorithms was 33.80% (DDQN), 25.75% (DQN), 16.60% (SARSA), 1.68% (GA)
and −13.32% (FIFO). It can also be seen that reinforcement learning (DDQN, DQN and
SARSA) outperformed the competing methods (GA, RA and FIFO) in almost all instances,
whereas deep reinforcement learning (DDQN and DQN) obtained a better solution quality
than standard reinforcement learning with linear function approximation (SARSA).

Figure 5. Average total earliness and tardiness penalties of the algorithms compared for all
test instances.

To verify the generalization ability of DRL, the winning rate was defined, which was
calculated as the number of instances in which the method achieved the best result divided
by the number of all instances. Figure 6 presents the winning rate of all the algorithms
calculated according to Table 4. Of the 36 test instances, the DDQN had the best results in
28 kinds of instances and the winning rate was 72.22%. The DQN has the smallest penalty
for five scheduling problems and the winning rate was 13.89%. Both SARSA and GA had
the minimum target value for two instances and the winning rate was 5.56%. The target
value of FIFO was the smallest for one scheduling problem, with a winning rate of 2.78%.
The winning rate of the random action strategy was 0%. The DDQN proposed in this study
had the highest winning rate and performed at a level that was superior to the compared
algorithms in general. Compared with RA, the DDQN obtained a lower total penalty in all

Processes 2022, 10, 760 18 of 20

test instances, demonstrating its ability to master difficult control policies for solving the
DFJSP, to determine the proper dispatching rule at each rescheduling point.

Figure 6. Winning rate of the DDQN and other algorithms, calculated according to Table 5.

It can be seen that on the whole, the DDQN clearly outperformed the other five
methods in terms of solution quality and generalization. It is competent for solving
the DFJSP with random job arrival to minimize penalties for earliness and tardiness.
Reinforcement learning solves the scheduling problem as a Markov decision-making
process and determines the ongoing action according to the production state to optimize
the scheduling objectives.

5. Discussion

In this study, the DDQN was developed for the dynamic flexible job shop scheduling
problem with random job arrival, aiming at optimizing the penalties for earliness and
tardiness. In contrast to previous work [15–20], our approach provides DRL for the DFJSP
in handling ongoing and weak correlation production states. Moreover, the soft ε-greedy
strategy is designed to balance exploration and exploitation according to the problem scale,
which improves the self-learning speed of the scheduling agent.

Because of the weak correlation between state features, the suitable number of dis-
patching actions and the DDQN architecture, the scheduling agent can achieve stable
learning and convergence through training. Therefore, the training curve shows that the
average penalties for earliness and tardiness drops smoothly with increasing training
epochs. The proposed DRL allows the scheduling agent to learn the action–value function
efficiently, to learn the optimal scheduling rules from the different production states. These
comparison experiments show the DDQN-based scheduling agent outperforms the five
compared methods in terms of solution quality and generalization.

The real-time optimization and decision-making of the DFJSP makes rapid and scien-
tific response to customer orders and production emergencies and realizes intelligent match-
ing between dispersed resources such as manpower, materials and machines. It improves
the on-time delivery rate and reduces inventory and costs of enterprises. The proposed
DRL provides reliable and robust scheduling schemes and meets customized production
requirements according to dynamic changes in the production process. Cost, inventory,

Processes 2022, 10, 760 19 of 20

procurement, sales and transportation plans are automatically generated, which drives
various management modules of enterprises around production. Therefore, the factory has
the capabilities of self-learning and self-adaptation to realize intelligent decision-making.

For future work, more dynamic events like rush order insertions, stochastic processing
time and machine breakdowns are worthy of investigation. Other objectives, such as
machine utilization rate, energy consumption and makespan, will be considered to validate
the generality of the proposed DDQN over different objectives. Meanwhile, there is not
a single dispatching rule that performs well for all production environments [20], so the
number of actions should be increased for a more general agent. However, a general state
value that is shared across many similar actions is learned in many control tasks with
large action spaces [31] and, consequently, introducing the dueling architecture [31] can be
useful to improve the performance of the DDQN. In addition, since the DDQN is based on
experience replay, which limits the methods to off-policy learning algorithms, we will apply
state-of-the-art on-policy RL algorithms, such as an asynchronous advantage actor-critic
algorithm (A3C) [32,33] and proximal policy optimization for solving the DFJSP.

6. Conclusions

This study introduced deep reinforcement learning for solving the DFJSP with random
job arrival, to achieve the production goal of minimizing the penalties for earliness and
tardiness. On the basis of constructing a mathematical model, the DDQN architecture of the
DFJSP was constructed and the state features, the actions, the reward and the soft ε-greedy
behavior policy were designed accordingly. Our approach indicated that the proposed
DRL gave state-of-the-art results in 28 out of 36 production instances, compared with DQN,
SARSA, FIFO, GA and RA, without changing the architecture or hyperparameters of the
deep network.

Supplementary Materials: The training and test results, and the video of solving the DFJSP using
the trained agent can be downloaded at: www.mdpi.com/2227-9717/10/4/760.

Author Contributions: Conceptualization, J.C. and D.Y.; methodology, J.C.; software, J.C.; validation,
J.C., Y.H.; formal analysis, J.C. and D.Y.; investigation, W.H. and H.Y.; resources, J.C.; data curation,
J.C.; writing—original draft preparation, J.C.; writing—review and editing, J.C., W.H. and H.Y.;
visualization, J.C. and W.H.; supervision, J.C. and D.Y.; project administration, D.Y. and Y.H.; funding
acquisition, D.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science and Technology Special Project of China
[2018ZX04032002], the Scientific Research Project of Fujian Province [JAT210946], and the General
Scientific Research Project of Liaoning Province [LJKZ1414].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All experiment datasets and the video of solving DFJSP using the
trained agent are available at https://github.com/changjingru/DDQN-for-DFJSP (accessed on 11
March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bouazza, W.; Sallez, Y.; Beldjilali, B. A distributed approach solving partially flexible job-shop scheduling problem with a

Q-learning effect. IFAC Pap. 2017, 50, 15890–15895. [CrossRef]
2. Gao, K.Z.; Suganthan, P.; Chua, T.J.; Chong, C.S.; Cai, T.X.; Pan, Q.-K. A two-stage artificial bee colony algorithm scheduling

flexible job-shop scheduling problem with new job insertion. Expert Syst. Appl. 2015, 42, 7652–7663. [CrossRef]
3. Wang, S.; Wan, J.; Li, D.; Zhang, C. Implementing Smart Factory of Industrie 4.0: An Outlook. Int. J. Distrib. Sens. Netw. 2016,

12, 3159805. [CrossRef]
4. Brucker, P.; Schlie, R. Job-shop scheduling with multi-purpose machines. Computing 1990, 45, 369–375. [CrossRef]
5. Garey, M.R.; Johnson, D.S.; Sethi, R. The Complexity of Flowshop and Jobshop Scheduling. Math. Oper. Res. 1976, 1, 117–129.

[CrossRef]

www.mdpi.com/2227-9717/10/4/760
https://github.com/changjingru/DDQN-for-DFJSP
http://doi.org/10.1016/j.ifacol.2017.08.2354
http://doi.org/10.1016/j.eswa.2015.06.004
http://doi.org/10.1155/2016/3159805
http://doi.org/10.1007/BF02238804
http://doi.org/10.1287/moor.1.2.117

Processes 2022, 10, 760 20 of 20

6. Gao, K.; Yang, F.; Zhou, M.; Pan, Q.; Suganthan, P.N. Flexible Job-Shop Rescheduling for New Job Insertion by Using Discrete
Jaya Algorithm. IEEE Trans. Cybern. 2018, 49, 1944–1955. [CrossRef] [PubMed]

7. Wang, H.; Sarker, B.R.; Li, J.; Li, J. Adaptive scheduling for assembly job shop with uncertain assembly times based on dual
Q-learning. Int. J. Prod. Res. 2020, 59, 5867–5883. [CrossRef]

8. Jain, V.; Raj, T. An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly
shop: A case study. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 1302–1314. [CrossRef]

9. Lawrence, S.R.; Sewell, E.C. Heuristic, optimal, static, and dynamic schedules when processing times are uncertain. J. Oper.
Manag. 1997, 15, 71–82. [CrossRef]

10. Ning, T.; Jin, H.; Song, X.; Li, B. An improved quantum genetic algorithm based on MAGTD for dynamic FJSP. J. Ambient Intell.
Humaniz. Comput. 2017, 9, 931–940. [CrossRef]

11. Nouiri, M.; Bekrar, A.; Trentesaux, D. Towards Energy Efficient Scheduling and Rescheduling for Dynamic Flexible Job Shop
Problem. IFAC Pap. 2018, 51, 1275–1280. [CrossRef]

12. Wu, X.; Li, J.; Shen, X.; Zhao, N. NSGA-III for solving dynamic flexible job shop scheduling problem considering deterioration
effect. IET Collab. Intell. Manuf. 2020, 2, 22–33. [CrossRef]

13. Cai, J.; Peng, Z.; Ding, S.; Sun, J. Problem-specific multi-objective invasive weed optimization algorithm for reconnaissance
mission scheduling problem. Comput. Ind. Eng. 2021, 157, 107345. [CrossRef]

14. Staddon, J.E.R. The dynamics of behavior: Review of Sutton and Barto: Reinforcement Learning: An Introduction (2nd ed.).
J. Exp. Anal. Behav. 2020, 113, 485–491. [CrossRef]

15. Wang, S.; Sun, S.; Zhou, B.; Xi, L.F. Q-Learning Based Dynamic Singe Machine Scheduling. J. Shang Hai Jiao Tong Univ. 2007, 47,
1227–1232.

16. Fonseca-Reyna, Y.C.; Martinez, Y.; Rodríguez-Sánchez, E.; Méndez-Hernández, B.; Coto-Palacio, L.J. An Improvement of
Reinforcement Learning Approach to Permutational Flow Shop Scheduling Problem. In Proceedings of the 13th International
Conference on Operations Research (ICOR 2018), Beijing, China, 7–9 July 2018.

17. Shahrabi, J.; Adibi, M.A.; Mahootchi, M. A reinforcement learning approach to parameter estimation in dynamic job shop
scheduling. Comput. Ind. Eng. 2017, 110, 75–82. [CrossRef]

18. Wang, Y.-F. Adaptive job shop scheduling strategy based on weighted Q-learning algorithm. J. Intell. Manuf. 2018, 31, 417–432.
[CrossRef]

19. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 2020,
91, 106208. [CrossRef]

20. Luo, S.; Zhang, L.; Fan, Y. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning. Comput. Ind.
Eng. 2021, 159, 107489. [CrossRef]

21. Rosa, B.; Souza, M.; De Souza, S. Algorithms based on VNS for solving the Single Machine Scheduling Problem with Earliness
and Tardiness Penalties. Electron. Notes Discret. Math. 2018, 66, 47–54. [CrossRef]

22. Jing, X.-L.; Pan, Q.-K.; Gao, L.; Wang, Y.-L. An effective Iterated Greedy algorithm for the distributed permutation flowshop
scheduling with due windows. Appl. Soft Comput. 2020, 96, 106629. [CrossRef]

23. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:1312.5602.

24. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

25. Hasselt, H.V.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-learning. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence (AAAI-16), Phoenix, AZ, USA, 12–17 February 2016.

26. van Hasselt, H. Double Q-learning. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY,
USA, 2010; Volume 23, pp. 2613–2621.

27. Vera, F. Performing Deep Recurrent Double Q-Learning for Atari Games. arXiv 2019, arXiv:1908.06040.
28. Shi, D.; Fan, W.; Xiao, Y.; Lin, T.; Xing, C. Intelligent scheduling of discrete automated production line via deep reinforcement

learning. Int. J. Prod. Res. 2020, 58, 3362–3380. [CrossRef]
29. Shiue, Y.-R.; Lee, K.-C.; Su, C.-T. Real-time scheduling for a smart factory using a reinforcement learning approach. Comput. Ind.

Eng. 2018, 125, 604–614. [CrossRef]
30. Yang, S.; Xu, Z.; Wang, J. Intelligent Decision-Making of Scheduling for Dynamic Permutation Flowshop via Deep Reinforcement

Learning. Sensors 2021, 21, 1019. [CrossRef]
31. Wang, Z.Y.; Schaul, T.; Hessel, M.; Hasselt, H.V.; Lanctot, M.; Freitas, N.D. Dueling Network Architectures for Deep Reinforcement

Learning. arXiv 2016, arXiv:1511.06581.
32. Chen, T.; Liu, J.-Q.; Li, H.; Wang, S.-R.; Niu, W.-J.; Tong, E.-D.; Chang, L.; Chen, Q.A.; Li, G. Robustness Assessment of

Asynchronous Advantage Actor-Critic Based on Dynamic Skewness and Sparseness Computation: A Parallel Computing View. J.
Comput. Sci. Technol. 2021, 36, 1002–1021. [CrossRef]

33. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods
for Deep Reinforcement Learning. arXiv 2016, arXiv:1602.01783.

http://doi.org/10.1109/TCYB.2018.2817240
http://www.ncbi.nlm.nih.gov/pubmed/29993706
http://doi.org/10.1080/00207543.2020.1794075
http://doi.org/10.1007/s13198-018-0729-6
http://doi.org/10.1016/S0272-6963(96)00090-3
http://doi.org/10.1007/s12652-017-0486-4
http://doi.org/10.1016/j.ifacol.2018.08.357
http://doi.org/10.1049/iet-cim.2019.0056
http://doi.org/10.1016/j.cie.2021.107345
http://doi.org/10.1002/jeab.587
http://doi.org/10.1016/j.cie.2017.05.026
http://doi.org/10.1007/s10845-018-1454-3
http://doi.org/10.1016/j.asoc.2020.106208
http://doi.org/10.1016/j.cie.2021.107489
http://doi.org/10.1016/j.endm.2018.03.007
http://doi.org/10.1016/j.asoc.2020.106629
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1080/00207543.2020.1717008
http://doi.org/10.1016/j.cie.2018.03.039
http://doi.org/10.3390/s21031019
http://doi.org/10.1007/s11390-021-1217-z

	Introduction
	Problem Formulation
	Problem Description
	Mathematical Model

	Proposed DRL
	DQN and DDQN
	Model Architecture
	State Features
	Action Set
	Rewards
	Action Selection Strategy
	Procedure of DDQN

	Numerical Experiments
	Training Details
	Correlations between States
	Training and Stability

	Comparison between the Soft -greedy and -greedy Behavior Policies
	Sensitivity of the Control Parameter
	Comparison of Learning Rates

	Comparison of DDQN with Other Methods

	Discussion
	Conclusions
	References

