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Abstract—When deployed as reflectors for existing wireless
base stations (BSs), reconfigurable intelligent surfaces (RISs) can
be a promising approach to achieve high spectrum and energy
efficiency. However, due to the large number of RIS elements,
the joint optimization of the BS and reflector RIS configuration
is challenging. In essence, the BS transmit power and RIS’s
reflecting configuration must be optimized so as to improve users’
data rates and reduce the BS power consumption. In this paper,
the problem of energy efficiency optimization is studied in an
RIS-assisted cellular network endowed with an RIS reflector
powered via energy harvesting technologies. The goal of this
proposed framework is to maximize the average energy efficiency
by enabling a BS to determine the transmit power and RIS
configuration, under uncertainty on the wireless channel and
harvested energy of the RIS system. To solve this problem, a
novel approach based on deep reinforcement learning is proposed,
in which the BS receives the state information, consisting of
the users’ channel state information feedback and the available
energy reported by the RIS. Then, the BS optimizes its action
composed of the BS transmit power allocation and RIS phase shift
configuration using a neural network. Due to the intractability
of the formulated problem under uncertainty, a case study is
conducted to analyze the performance of the studied RIS-assisted
downlink system by asymptotically deriving the upper bound of
the energy efficiency. Simulation results show that the proposed
framework improves energy efficiency up to 77.3% when the
number of RIS elements increases from 9 to 25.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs), mounted on walls

and buildings, have emerged as an effective approach to en-

hance the ever increasing need for capacity [1]. The advantage

using an RIS as a reflector that assists existing cellular base

stations (BSs) stems from the ability of RISs to provide

near-field communications while having a very low carbon

footprint relative to conventional BSs [2]. If properly deployed

in an urban environment, RISs can provide nearly line-of-

sight (LOS) communication channels [3]. Indeed, the users

in RIS environment will be able to maintain reliable wireless

connections and low-latency data transmission compared to

conventional antenna-array systems [4]. However, to reap the

benefits of RISs, architectural and operational challenges must

be addressed [5]–[10].

To develop RISs, the authors in [5] study the use of a

field programmable gate array (FPGA) made with tunable

metasurfaces electrically controllable via software. When using

an RIS in wireless communications, radio resource allocation

to optimize the network performance is a prime concern. For

instance, the work in [6] studies an RIS-assisted downlink
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system design that minimizes the BS transmit power by

optimizing the continuous transmit beamforming of the BS

and the discrete phase shifter of the RIS. Moreover, the authors

in [7] develop a joint active and passive beamforming design

to maximize the received signal power of RIS users. Also,

the authors in [8] investigate the problem of maximizing the

downlink capacity to design the optimal RIS phase shift by

exploiting statistical channel state information. In [9], a passive

beamformer is proposed to achieve an asymptotic optimal

performance by controlling the incident wave properties while

considering a limited RIS control link and practical reflection

coefficients. Moreover, the work in [10] studies the energy

efficiency maximization problem in an RIS environment when

all involved channels are perfectly known at BS to use zero

forcing transmission.

In all of these existing RIS works [5]–[10], it is generally

assumed that information on the environment such as wire-

less channels and power consumption is completely known.

However, in practice, the wireless channel gains change in a

fading environment, and the wireless channel can be uncer-

tain if the RIS configuration is dynamically updated. Hence,

the BS cannot know the exact channel gain. Indeed, it is

challenging for a cellular BS to perform precoding with

incomplete channel information. Thus, there exists an inherent

uncertainty stemming from the unknown RIS configuration

and the spatio-temporal dynamics of the channel. Further,

most of the existing works [5]–[10] typically assume that

an RIS system is operated by using a power grid. However,

in practice, the use of energy harvesting at an RIS can be

necessary to reduce the reliance on the conventional power

grid and enable the vision of green communications. Moreover,

since no amplifier is used in an RIS, it will consume very

low energy, and, therefore, it can be suitable for an RIS to

adopt energy harvesting technologies. Consequently, unlike

the existing literature [5]–[10] which assumes full knowledge

about the network environment, uses power grid as energy

source, and relies on model-based optimization techniques, our

goal is to design a deep reinforcement learning (RL) approach
to make a decision using on-the-fly information on the cellular

networks, under channel uncertainty and energy harvesting,

while maximizing the average energy efficiency.

The main contribution of this paper is a novel framework for
RIS-assisted cellular communications using energy harvesting
technologies at the RIS. This framework allows a BS to

dynamically adapt to wireless environment in the presence of

uncertainty on the wireless channel gains and future available
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Fig. 1: System model of the RIS-assisted system powered by

energy harvesting.

energy of the RIS (acting as a reflector). Therefore, this

downlink system can jointly use both the direct and indirect

wireless paths between the BS and users. We formulate an

optimization problem whose objective is to maximize the

average energy efficiency of the BS by properly allocating the

downlink transmit power while also properly determining the

phase of the RIS elements. To solve this optimization problem,

we propose a novel approach based on deep RL by defining the

state, action, reward, and policy. In the proposed framework,

the BS decides the action about the power allocation, phase

shift, and RIS ON/OFF states. Then, the environment nodes

including the RIS and users send the feedback information

consisting of the state about the wireless channel and energy

and reward about energy efficiency. Throughout the proposed

learning process, the policy of the BS can select the best

possible actions depending on different states. Finally, a case

study is conducted to analyze the performance of the studied

RIS-assisted downlink system by asymptotically deriving an

upper bound of the energy efficiency. Simulation results show

that the energy efficiency can increase by up to 24.6% by

increasing RIS phase shifter resolution from 3 to 5 bits.

The rest of this paper is organized as follows. In Section II,

the system model is presented. In Section III-A, we formulate

the proposed problem. Section III-B presents our approach to

solve the problem, and Section III-C includes a case study

for a performance analysis. Simulation results are analyzed in

Section IV while conclusions are drawn in Section V.

II. SYSTEM MODEL

A. Wireless Network Model
We consider the downlink of a wireless network with a

single BS with M antennas. The BS is assisted by an RIS

reflecting surface that serves a set of K single-antenna user

devices, as shown in Fig. II. In this system model, the RIS

is a reflecting surface that includes an antenna array with N
passive phase shifters used to reflect the received signal while

changing the phase of the signal. Fig. 1 illustrates our model

in which one of the sides of a building is equipped with an

RIS having a large number of antennas, i.e., N > M .

A user can receive signal from the BS via direct and

reflected wireless links, respectively. The direct path between

the BS and the user is a non-LOS (NLOS) channel. The

channel of the direct link between the BS and user k is given by

hB
k = gBk[h

B
1k, . . . , h

B
Mk] ∈ C

1×M ,

where gBk = d
−αNL/2
Bk is the path loss between the BS and

user k at a distance dBk and path loss exponent αNL, and hB
mk

is the small-scale fading between BS antenna m and user k.

Therefore, the channel between the BS and the users will be:

HBU = [(hB
1 )

T , . . . , (hB
K)T ]T ∈ C

K×M .

The RIS-reflected path includes two links: an NLOS link

between the BS and the RIS and an LOS link between the

RIS and the users. The NLOS channel between the BS and

the RIS system is given by

HBL = gBL {hnm}n∈[1,N ],m∈[1,M ] ∈ C
N×M ,

where gBL is the path loss between the BS and the RIS system,

and hmn is the complex Gaussian random variable, CN (0, 1).
Therefore, HBL is a matrix where gBLhnm is the element at

row n and column m. When the BS transmits a signal to the

RIS through HBL, the RIS is used to reflect the signal to the

users with the following vector of phase shifts:

Φ = [φ1, . . . , φN ] ∈ C
1×N .

Each RIS element n can select a phase shift value φn from

the feasible set of phase shifting values:

φn ∈ FRIS �
{
exp

(
j2πm

2b

)}2b−1

m=0

,

where b is the resolution of the RIS element’s phase

shifter [10]. Also, the ON or OFF state of RIS element n
is denoted by σn and defined as follows:

σn =

{
1, if RIS element n is turned ON,

0, otherwise.
(1)

Then, the vector of the ON/OFF states of the RIS elements is

defined as σ = [σ1, . . . , σN ] ∈ R
1×N If an RIS element n is

turned OFF, the signal from the BS will not be reflected by

this RIS element n. Therefore, considering the ON/OFF states

of the RIS elements, the phase shifting matrix can be defined

as:
Λ = diag(Φ� σ) ∈ C

N×N ,

where diag(·) is a block-diagonal matrix, and notation � is an

element-wise vector multiplication.

When the BS’s signals are reflected to the users, the channel

between the RIS and user k becomes

hL
k = [g1kh

L
1k, . . . , gNkh

L
Nk] ∈ C

1×N ,

where gnk = 1/
√
4πd2nk is a free space path loss attenuation

between RIS element n and user k, and hL
nk is the LOS channel

state between RIS element n and user k. In Fig. 1, the users are

located in front of the RIS within a two-dimensional space in

the xy-plane at z = 0 in Cartesian coordinates. We define the

location of user k ∈ [1,K] as (xk, yk, zk). The RIS element

n ∈ [1, N ] is located at (xn, yn, 0). Then, the channels between

the RIS system and user k are assumed to be LOS links as in

[4], and, thus, channel hL
nk becomes:

hL
nk = exp

(−j2πdnk
λ

)
, ∀n ∈ [1, N ],

where λ is the signal wavelength, and dnk is the dis-

tance between user k and RIS element n given by dnk =√
(xk − xn)2 + (yk − yn)2 + z2k. Therefore, the channel be-

tween the RIS and its K users is given by



HLU = [(hL
1)

T , . . . , (hL
K)T ]T ∈ C

K×N .

Thus, through the channels HBL and HLU, the reflected path

is used to transmit a signal from the BS to the users.

Given the wireless channel model, the downlink signal

received by user k is expressed by:

yk =
(
hL
kΛHBL + hB

k

)
x+ nk,

where nk ∼ CN (0, σ2
n) is the zero-mean complex white

Gaussian noise with variance σ2
n. The BS transmits the signal

x =
∑K

k=1

√
pkf

H
k sk ∈ C

M×1,

where pk is the transmit power of user k’s signal, fH
k is

the precoding vector for user k, and sk is the unit power

information symbol. The sum of the transmit power of all

users is smaller than the BS maximum transmit power Pmax.

The transmit power for the users are captured by the vector

p = [p1, . . . , pK ]. At the BS, precoding fk is applied to

obtain the transmitted signal xk. Particularly, each user selects

a precoding vector from a pre-defined codebook that is known

to both the users and the BS [11]. Then, the user sends the

precoding matrix indicator (PMI) of the selected precoding

vector to the BS. When selecting a precoding vector, the users

decide the precoding vector that is most suitable to maximize

their data rate after measuring their channel state [11]. Since

hk � hL
kΛHBL +hB

k ∈ C
1×M is the effective channel of user

k, user k selects its channel direction ĥk to the closest wi

according to
ĥk = argmax

wn∈CBS

∣∣hkw
H
n

∣∣ ,
where wn is a precoding vector. The BS uses a discrete Fourier

transform (DFT)-based codebook [12] given as:

CBS =

{
exp

(
j2πn

2c

)}2c−1

n=0

,

where c is the number of feedback bits for PMI. Based on the

feedback information from user k, the BS selects the precoding

vector fk = ĥk, and, therefore, the received SINR at user k
becomes:

γk =
pk|hkĥ

H

k |2∑K
j=1
j �=k

pj |hkĥ
H

j |2 + σ2
n

. (2)

The achievable sum rate of the RIS-assisted multi-user MISO

system is given by R =
∑K

k=1 log2(1 + γk).

B. Energy Consumption Model

In our considered system, the RIS reflector is self-powered

and relies exclusively on energy harvesting sources. For ex-

ample, the RIS reflector can be equipped with solar panels to

procure energy for its operation. Since the characteristics of the

harvested energy can be highly dynamic, we do not make any

specific assumption on the energy harvesting process. Thus,

our model can accommodate any type of energy harvesting

mechanism. To enhance the overall energy efficiency of the

system, the RIS elements can be turned ON or OFF, depending

on the network performance and harvested energy status.

Therefore, the RIS system is equipped with a battery or

energy storage systems (ESS) to manage the intermittent and

uncertain energy harvesting process. Also, the RIS system can

harvest energy irrespective of the ON or OFF status of its RIS

elements. Moreover, when the RIS elements are turned ON,

the RIS system can still store the excess of harvested energy

if the instantaneous harvested energy is enough to operate the

RIS elements.

When the transmission power of the BS for user k at

time t is pk(t), the power consumption for the wireless

communication link between the BS and K users becomes

P (t) =
∑K

k=1 μpk(t) where 1/μ is the efficiency of the

transmit power amplifier [10]. When σ(t) is the vector of

the ON/OFF states of the RIS elements at time t, the power

consumption of the RIS system at time t is modeled as

PRIS(t) =
∑N

n=1 σ(t)Pb where Pb is the power consumption

of a phase shifter with b-bit resolution. When all RIS elements

are configured to use b-bit resolution, the power consumption

to turn an RIS element ON will be identical.

We consider a time-slotted system with a time slot dura-

tion Δ. The energy consumption of the RIS system during

time slot t becomes S(t) = PRIS(t)Δ. When the RIS elements

consume the harvested energy, the available amount of energy

stored in the ESS at time t is given by

E(t) = min (E(t− 1)− S(t− 1) + Ω(t− 1), Emax) , (3)

where E(t− 1) ≥ 0 is the stored energy of the RIS system at

time t−1, S(t−1) is the energy used by the RIS elements, Ω(t)
is the amount of harvested energy at the RIS system, and Emax

is the maximum energy storage capacity of the ESS [13]. Since

Ω(t) is randomly generated because the RIS system is unable

to know the harvested energy in the future, and, therefore,

randomness captures the uncertainty of the energy harvesting

process over time. When the RIS reflectors are turned ON

by only using the harvested energy, all RIS elements can be

turned OFF at time t if E(t) becomes zero at a certain time t.
In this case, the users will only receive the signal from the BS

without any reflected signal from the RIS. Also, if the RIS

system does not have enough energy to all of its RIS elements

ON at time t, i.e., S(t) > E(t), then, a partial set of RIS

elements must be turned OFF, and the users’ data rate can

change over the ON/OFF configuration of the RIS elements,

i.e., σ(t).

III. MACHINE LEARNING FRAMEWORK FOR

ENERGY-EFFICIENT NETWORKING

Given the defined system model, our goal is to analyze the

joint problem for allocating transmit power to the BS antennas

and optimizing the operation of the RIS elements by deciding

the ON/OFF status and phase shifting. Particularly, since the

future energy status of the RIS system is unpredictable, the

ON/OFF states of the RIS elements dynamically change. Also,

when the ON/OFF status of the RIS elements is determined

depending on the harvested energy at the RIS system, the

wireless channel can dynamically change over time. Therefore,

there is uncertainty on wireless channels when a self-powered

RIS is used. Thus, it is highly challenging for the BS to

optimize the transmit power each time the ON/OFF status

of the RIS elements is updated. In fact, even if turning ON



more RIS elements can improve the data rate, it may have a

detrimental effect on future data rates due to the lack of the

stored energy at an RIS. To cope with the uncertainty of the

harvested energy and channel states, we introduce an artificial

intelligence framework that uses machine learning techniques

to maximize the energy efficiency of the cellular system while

properly managing the harvested energy at the RIS.

A. Problem Formulation
First, we formulate the following optimization problem

whose goal is to maximize the energy efficiency of the RIS-

assisted communication system:

max
σ(t),Φ(t),p(t)

lim
T→∞

1

T

T∑
t=0

R(t)

P (t)
, (4)

s.t. S(t) ≤ E(t), ∀t, (4a)∑K
k=1 pk(t) ≤ Pmax, ∀t. (4b)

The objective function (4) is the average energy efficiency

achieved by the decision of the BS. Constraint (4a) is an

energy causality condition. Constraint (4b) means that the sum

of transmit power is smaller than or equal to the maximum

transmit power. In the formulated problem, the BS is assumed

to optimize the transmit power, RIS phase shifts, and ON/OFF

states. To determine the transmit power and RIS phase shifts,

the BS needs to calculate the objective function (4). However,

since the channel information required to calculate the SINR

in (2) is unknown to the BS, the value of (4) is not directly

known by the BS. In particular, when the users observe the

channel through pilot signaling from the BS, the users send

channel feedback information to the BS by using the PMI, thus

resulting in quantization errors. Therefore, the BS can only

know the estimated channel [14]. Due to the uncertainty on the

channel between the BS and users, the BS is unable to calculate

the data rate function that includes both original channel and

estimated channel term. Thus, when the estimation error is

unknown to the BS, conventional optimization techniques such

as convex and combinatorial programming cannot be applied

to solve problem (4) [15]. To this end, a deep RL technique

can be used to solve problem (4) by using a deep neural

network function to approximate the relationship between the

optimization variables and achieved performance. Next, we

propose an RL-based framework used to seek a solution to

maximize the time-averaged energy efficiency of the system

when the performance metric is not directly accessible for the

optimization algorithm running on the BS.

B. Deep Reinforcement Learning Approach
As aforementioned, the BS is unable to directly evaluate the

objective function with under channel uncertainty. Also, the

wireless resource optimization and RIS ON/OFF scheduling

problem in (4) involves a large state space, i.e., O(2N ).
Therefore, a closed-form solution does not exist without any

knowledge about the state transition probabilities, and an

exhaustive search, i.e., a brute-force algorithm, is impractical.

Thus, we propose a deep RL framework to seek a solution

that maximizes the energy efficiency so that the data rate
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Fig. 2: Machine learning framework for energy-efficient net-

working of an RIS-assisted cellular system.

of the users are improved while consuming a lower energy.

A deep RL framework can handle a control problem with a

large state space since deep RL uses a deep neural network

for approximation of the RL’s action-value function for a

RIS system [16]. Beyond being able to maximize the energy

efficiency, the key advantage of the deep RL framework is

that the BS can learn the performance outcome of the system

through a trial-and-error process while updating the weights

of a deep neural network [17]. In doing so, the BS can make

an immediate decision to allocate the radio resource while

knowing only estimated channel without having a knowledge

of the exact information on channel.

The proposed framework includes the agent implemented

on the BS and the rest of environment nodes including an RIS

and the users as shown in Fig. 2. To develop an RL framework,

we must define the state, action, policy, and reward. For our

model, the states consist of the precoding vectors ĥk from the

users and the energy level of our RIS E(t). Meanwhile, the

actions are the optimization variables in (4) such as transmit

power p(t), phase shifting Φ(t), and ON/OFF status σ(t).
The policy denotes the strategy that maps a state to an action.

Therefore, the policy is used to determine the values of the

optimization variables. Since the actions are state-dependent,

similar actions can yield different outcomes contingent upon

the current states.

The goal of RL is to pick the best known action for any

given state. To this end, the BS will observe and use feedback.

Particularly, in Fig. 2, when the BS decides the action, the

environment nodes send a feedback to the BS. The feedback

message includes the current state and reward. In the proposed

framework, the reward returned by the environment is defined

as:
r(t) =

∑K
k=1 R(t)/P (t). (5)

When the users send feedback about the data rate R(t), the BS

knows its energy consumption P (t). Therefore, the definition

of the reward in (5) can be readily calculated by the BS. The

reward value can be affected by various unknown aspects such

as uncertainty on exact channel of the users. Therefore, by

using the feedback returned from the uncertain environment,

the deep neural network uses the difference between the

expected reward and the actual reward, and the BS improves

the weights of the deep neural network that shows the expected

reward of state-action pairs. In Fig. 2, the decision making



block can be implemented by using different deep RL methods

such as deep Q-network [17]. Thus, throughout the learning

process, the BS is able to learn the policy that is used to

select the best possible actions depending on different states.

As a result, the proposed framework shown in Fig. 2 has

key benefits. First, the agent running on the BS only need

to interact with the environment by exchanging a small size of

bits. Also, any prior information on the environment is not

required to deploy the proposed framework. Moreover, the

proposed framework is compatible with the existing cellular

standard in that PMI and reward in (5) are calculated by the

users and those parameters can be reported to the BS through

PUCCH on the control plane.

C. Performance Analysis: Case Study
Due to the uncertainty on the wireless channels and har-

vested energy of the studied system, the energy efficiency

and data rate are not deterministic, and the exact outcomes

of an algorithmic solution become mathematically intractable.

Therefore, a case study is carried out to examine and analyze

the performance of an RIS-assisted downlink system. To this

end, we asymptotically analyze the data rate and energy

efficiency. This analysis will provide the upper bound of the

data rate and energy efficiency that can be asymptotically

achieved by using the RL methods.

Theorem 1. For the studied RIS-assisted downlink system,
the upper bound of energy efficiency is given by 1

ln 2N
2 when

N,K → ∞, and pk = Pmax/K, ∀k.

Proof. We derive the upper bound of the given system model’s

energy efficiency. The SINR of user k, γk, has an upper bound

given by γSNR
k � pk|hkĥ

H
k |2

σ2
n

that is the SNR of the single user

case without inter-user interference. Also, γSNR
k increases with

O(N2) as N → ∞, as proved in [7]. Therefore, we have the

following relationship:

γk ≤ γSNR
k ∼ O(N2). (6)

From (6), an upper bound of the sum data rate can be derived

as:
K∑

k=1

log2(1 + γk) ≤
K∑

k=1

log2(1 + γSNR
k ),

where
∑K

k=1 log2(1+γSNR
k ) ∼ ∑K

k=1 O
(
log2

(
1 + Pmax

K N2
))

.

Now, when K → ∞ and the transmit power is equally

allocated to each user, the sum rate can be written as:

lim
K→∞

∑
k

log2(1 + γSNR
k ) ∼ O

(
K log2

(
1 +

Pmax

K
N2

))
.

Thus, we have the result:

lim
K→∞

K log2

(
1 +

PmaxN
2

K

)
(a)
=

1

ln 2
PmaxN

2,

where (a) results from the exponential definition ex =
limn→∞(1 + x/n)n. Hence, by dividing the derived upper

bound of the sum rate by the total transmit power Pmax, the

upper bound of EE is given by 1
ln 2N

2.

In the single user case, the user’s SNR increases with

O(N2), and, thus, the data rate will asymptotically follow

O (log2(N)), as N → ∞. However, in a multi-user case, we

can observe from Theorem 1 that the derived upper bound of

multi-user sum rate increases with O(N2), as N,K → ∞.

In a multi-user case, since the upper bound of the sum rate

is finite, i.e., 1
ln 2PmaxN

2, the data rate per user approaches

zero as K → ∞. Therefore, it is beneficial to schedule a finite

number of users in an RIS-assisted cellular network. From

Theorem 1, for a finite K, the upper bound of multi-user sum

rate is asymptotically derived as O (
K log2

(
1 + Pmax

K N2
)) ∼

O (log2 (N)). Therefore, we conclude that the data rate of a

single user case asymptotically achieves the upper bound of

the multi-users’ sum rate. Next, we evaluate the performance

of the proposed framework throughout simulation experiments

in Section IV

IV. SIMULATION RESULTS

For our simulations, we consider an RIS-assisted downlink

system where the distance between the BS and the RIS is

300 m. The width and height of an RIS are 30 m, respectively.

When four users are located in front of the RIS, the distance

between each user and the RIS surface follows a uniform

distribution in range between 0 and 30 m. The BS has 16

antennas while each user has a single antenna. The bandwidth

is 10 MHz, and the power spectral density of the noise is

-174 dBm/Hz. We use 1/μ = 22.6 and Pmax = 43 dBm.

Also, the NLOS path loss exponent αNL is 3.7. We assume

that energy arrivals per second follow a Poisson process with

an energy arrival rate of 10. The RIS energy consumption is

modeled with Δ = 1 and PbΔ/Emax = 100. Finally, deep Q-

network method is implemented as the decision making block

in Fig. 2 where the action space includes the discrete transmit

power levels quantized with an interval of 1 W. Thus, the

performance of the proposed framework is evaluated in the

defined environment.

In Fig. 3, we show the energy efficiency and the sum rate

of the users for different numbers of RIS elements. Fig. 3

first shows that the sum rate of the users also increases when

the number of RIS elements increases. This is due to the fact

each user’s data rate increases with respect to the number of

RIS elements N as shown in Theorem 1. At the same time, in

Fig. 3, we can see that the energy efficiency increases when the

number of RIS elements increases since the energy efficiency is

proportional to the sum rate. From these observations, a larger

number of RIS elements can be deployed to maximize the sum

rate and energy efficiency of an RIS-assisted downlink system.

For instance, if the number of RIS elements N increases from

9 to 25, then the energy efficiency can be improved by 77.3%,

and the sum rate can increase up to 2.4 times.

Fig. 4 shows the energy efficiency and sum rate for different

energy arrival rates when the resolution of RIS elements

changes from 3 to 5 bits. We can first see that the energy

efficiency and sum rate increase with respect to the resolution

bits. As the RIS uses phase shifters with a higher resolution,

it is possible to precisely control the RIS beamformer, thus

improving the wireless channel gains. For instance, by increas-

ing the resolution from 3 bits to 5 bits, the energy efficiency



Fig. 3: Energy efficiency and sum rate for
different number of RIS elements.

Fig. 4: Energy efficiency and sum rate for
different RIS phase shifter’s resolution bits.

Fig. 5: The cumulative average of energy
efficiency over episodes.

can increase up to 24.6% when the energy arrival rate is 20.

Also, Fig. 4 shows that the energy efficiency and sum rate

increase when more energy is harvested at an RIS. Since the

RIS phase shifters are solely operated by harvested energy,

harvesting more energy enable the RIS to turn on additional

RIS phase shifters. Therefore, additional harvested energy will

reduce the impact of the energy harvesting constraint when

determining the ON/OFF states of the RIS elements. For

example, if the energy arrival rate increases from 10 to 20 with

an RIS resolution of 5 bits, then the energy efficiency and sum

rate are improved up to 21.1% and 32.1%, respectively.

Fig. 5 shows the cumulative average energy efficiency

defined in (4) over episodes. If the energy efficiency reaches

or is greater than 106, a current episode is assumed to be

done. Then, the environment is reset to generate new wireless

channels gains and user locations so that a new episode is

started. From Fig. 5, we can see that, as the number of episodes

increases, the cumulative average of final energy efficiency at

each episode tends to converge in a certain range. For instance,

when the number of episodes is 150, the value of cumulative

average energy efficiency becomes at least 2.5×106, achieving

a higher value than the preset threshold of 106.

V. CONCLUSION

In this paper, we have proposed a novel framework to

optimize the energy efficiency of the BS assisted by an RIS

using energy harvesting. We have formulated the problem of

maximizing the average energy efficiency which enables the

BS to jointly optimize the transmit power allocation, RIS phase

shifter, and RIS reflector’s ON/OFF state effectively in the

presence of uncertainty about wireless channel and available

energy of an RIS. We have shown that by using the deep RL

approach, the network parameters are suitably determined by

the BS without knowing any prior information on wireless

environment. The simulation results show that having two

times of the harvested energy improves energy efficiency up

to 21.1%.
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