
1

Deep Reinforcement Learning for Intelligent
Transportation Systems: A Survey

Ammar Haydari, Student Member, IEEE, Yasin Yilmaz, Member, IEEE

Abstract—Latest technological improvements increased the
quality of transportation. New data-driven approaches bring
out a new research direction for all control-based systems, e.g.,
in transportation, robotics, IoT and power systems. Combining
data-driven applications with transportation systems plays a key
role in recent transportation applications. In this paper, the
latest deep reinforcement learning (RL) based traffic control
applications are surveyed. Specifically, traffic signal control (TSC)
applications based on (deep) RL, which have been studied exten-
sively in the literature, are discussed in detail. Different problem
formulations, RL parameters, and simulation environments for
TSC are discussed comprehensively. In the literature, there are
also several autonomous driving applications studied with deep
RL models. Our survey extensively summarizes existing works
in this field by categorizing them with respect to application
types, control models and studied algorithms. In the end, we
discuss the challenges and open questions regarding deep RL-
based transportation applications.

Index Terms—Deep reinforcement learning, Intelligent trans-
portation systems, Traffic signal control, Autonomous driving,
Multi-agent systems.

I. INTRODUCTION

With increasing urbanization and latest advances in au-
tonomous technologies, transportation studies evolved to more
intelligent systems, called intelligent transportation systems
(ITS). Artificial intelligence (AI) tries to control systems with
minimal human intervention. Combination of ITS and AI
provides effective solutions for the 21st century transportation
studies. The main goal of ITS is providing safe, effective
and reliable transportation systems to participants. For this
purpose, optimal traffic signal control (TSC), autonomous
vehicle control, traffic flow control are some of the key
research areas.

The future transportation systems are expected to include
full autonomy such as autonomous traffic management and
autonomous driving. Even now, semi-autonomous vehicles
occupy the roads and the level of autonomy is likely to increase
in near future. There are several reasons why authorities want
autonomy in ITS such as time saving for drivers, energy saving
for environment, and safety for all participants. Travel time
savings can be provided by coordinated and connected traffic
systems that can be controlled more efficiently using self-
autonomous systems. When vehicles spend more times on traf-
fic, fuel consumption increases, which has environmental and
economic impacts. Another reason why human intervention is
tried to be minimized is the unpredictable nature of human
behavior. It is expected that autonomous driving will decrease
traffic accidents and increase the quality of transportation. For
all the reasons stated above, there is a high demand on various

aspects of autonomous controls in ITS. One popular approach
is to use experience-based learning models, similar to human
learning.

Growing population in urban areas causes a high volume of
traffic, supported by the fact that the annual congestion cost
for a driver in the US was 97 hours and $1,348 in 2018 [1].
Hence, controlling traffic lights with adaptive modules is a
recent research focus in ITS. Designing an adaptive traffic
management system through traffic signals is an effective
solution for reducing the traffic congestion. The best approach
for optimizing traffic lights is still an open question for
researchers, but one promising approach for optimum TSC
is to use learning-based AI techniques.

There are three main machine learning paradigms. Super-
vised learning makes decision based on the output labels
provided in training. Unsupervised learning works based on
pattern discovery without having the pre-knowledge of output
labels. The third machine learning paradigm is reinforcement
learning (RL), which takes sequential actions rooted in Markov
Decision Process (MDP) with a rewarding or penalizing cri-
terion. RL combined with deep learning, named deep RL, is
currently accepted as the state-of-the art learning framework
in control systems. While RL can solve complex control
problems, deep learning helps to approximate highly nonlinear
functions from complex dataset.

Recently, many deep RL based solution methods are pre-
sented for different ITS applications. There is an increasing
interest on RL based control mechanisms in ITS applications
such as traffic management systems and autonomous driving
applications. Gathering all the data-driven ITS studies related
to deep RL and discussing such applications together in a
paper is needed for informing ITS researchers on deep RL, as
well as deep RL researchers on ITS.

In this paper, we review the deep RL applications proposed
for ITS problems, predominantly for TSC. Different RL ap-
proaches from the literature are discussed. TSC solutions based
on standard RL techniques have already been studied before
the invention of deep RL. Hence, we believe standard RL
techniques also have high importance in reviewing the deep
RL solutions for ITS, in particular TSC. Since traffic inter-
section models are mainly connected and distributed, multi-
agent dynamic control techniques, which are also extensively
covered in this survey, play a key role in RL-based ITS
applications.

A. Contributions
This paper presents a comprehensive survey on deep RL

applications for ITS by discussing a theoretical overview of

ar
X

iv
:2

00
5.

00
93

5v
1

 [
cs

.L
G

]
 2

 M
ay

 2
02

0

2

deep RL, different problem formulations for TSC, various
deep RL applications for TSC and other ITS topics, and
finally challenges with future research directions. The targeted
audience are the ITS researchers who want to have a jump
start in learning deep RL techniques, and also deep RL
researchers who are interested in ITS applications. We also
believe that this survey will serve as “a compact handbook of
deep RL in ITS” for more experienced researchers to review
the existing methods and open challenges. Our contributions
can be summarized as follows.
• The first comprehensive survey of RL and deep RL based

applications in ITS is presented.
• From a broad concept, theoretical background of RL and

deep RL models, especially those which are used in the
ITS literature, are explained.

• Existing works in TSC that use RL and deep RL are dis-
cussed and clearly summarized in tables for appropriate
comparisons.

• Similarly, different deep RL applications in other ITS
areas, such as autonomous driving, are presented and
summarized in a table for comparison.

B. Organization

The paper organized as follows.
• Section II: Related Work
• Section III: Deep RL: An Overview

– Section III-A: Reinforcement Learning
– Section III-B: Deep Reinforcement Learning
– Section III-C: Summary of Deep RL

• Section IV: Deep RL Settings for TSC
– Section IV-A: State
– Section IV-B: Action
– Section IV-C: Reward
– Section IV-D: Neural Network Structure
– Section IV-E: Simulation Environments

• Section V: Deep RL Applications for TSC
– Section V-A: Standard RL Applications
– Section V-B: Deep RL Applications

• Section VI: Deep RL for Other ITS Applications
– Section VI-A: Autonomous Driving
– Section VI-B: Energy Management
– Section VI-C: Road Control
– Section VI-D: Various ITS Applications

• Section VII: Challenges and Open Research Questions

II. RELATED WORK

The earliest work summarizing AI models for TSC includ-
ing RL and other approaches dates back to 2007 [2]. At that
time, fuzzy logic, artificial neural networks and RL was three
main popular AI methods researchers applied on TSC. Due to
the connectedness of ITS components, such as intersections,
multi-agent models provide a more complete and realistic
solution than single-agent models. Hence, formulating the TSC
problem as a multi-agent system has a high research potential.
The opportunities and research directions of multi-agent RL

for TSC is studied in [3]. [4] discusses the popular RL methods
in the literature from an experimental perspective. Another
comprehensive TSC survey for RL methods is presented in
[5]. A recent survey presented in [6] studies AI methods in
ITS from a broad perspective. It considers applications of
supervised learning, unsupervised learning and RL for vehicle
to everything communications.

Abduljabbar et al. summarizes the literature of AI based
transportation applications in [7] with three main topics: trans-
portation management applications, public transportation, and
autonomous vehicles. In [8], authors discuss the TSC meth-
ods in general, including classical control methods, actuated
control, green-wave, max-band systems, and RL based control
methods. Veres et al. highlights the trends and challenges of
deep learning applications in ITS [9]. Deep learning models
play a significant role in deep RL. Nonlinear neural networks
overcome traditional challenges such as scalability in the
data-driven ITS applications. Lately, a survey of deep RL
applications for autonomous vehicles is presented in [10],
where authors discuss recent works with the challenges of
real-world deployment of such RL-based autonomous driving
methods. In addition to autonomous driving, in this survey we
discuss a broad class of ITS applications where deep RL is
gaining popularity, together with a comprehensive overview of
the deep RL concept.

There is no survey in the literature dedicated to the deep RL
applications for ITS, which we believe is a very timely topic
in the ITS research. Thus, this paper will fill an important
gap for ITS researchers and deep RL researchers interested in
ITS.

III. DEEP RL: AN OVERVIEW

Deep RL is one of the most successful AI models and
the closest machine learning paradigm to human learning. It
combines deep neural networks and RL for more efficient
and stabilized function approximations especially for high-
dimensional and infinite-state problems. This section describes
the theoretical background of traditional RL and major deep
RL algorithms implemented in ITS applications.

A. Reinforcement Learning

RL is a general learning tool where an agent interacts with
the environment to learn how to behave in an environment
without having any prior knowledge by learning to maximize
a numerically defined reward (or to minimize a penalty). After
taking an action, RL agent receives a feedback from the
environment at each time step t about the performance of its
action. Using this feedback (reward or penalty) it iteratively
updates its action policy to reach to an optimum control policy.
RL learns from experiences with the environment, exhibiting a
trial-and-error kind of learning, similar to human learning [11].
The fundamental trade-off between exploration and exploita-
tion in RL strikes a balance between new actions and learned
actions. From a computational perspective, RL is a data-driven
approach which iteratively computes an approximate solution
to the optimum control policy. Hence, it is also known as
approximate dynamic programming [11] which is one type

3

of sequential optimization problem for dynamic programming
(DP).

In a general RL model, an agent controlled with an algo-
rithm, observes the system state st at each time step t and
receives a reward rt from its environment/system after taking
the action at. After taking an action based on the current
policy π, the system transitions to the next state st+1. After
every interaction, RL agent updates its knowledge about the
environment. Fig 1 depicts the schematic of the RL process.

Action at

State st

Reward rt

Environment Agent

Fig. 1: Reinforcement learning control loop.

1) Markov Decision Process: RL methodology formally
comes from a Markov Decision Process (MDP), which is a
general mathematical framework sequential decision making
algorithms. MDP consist of 5 elements in a tuple:
• A set of states S,
• A set of actions A,
• Transition function T (st+1|st, at) which maps a state-

action pair for each time t to a distribution of next state
st+1,

• Reward function R(st, at, st+1) which gives the reward
for taking action at from state st when transitioning to
the next state st+1,

• Discount factor γ between 0 and 1 for future rewards.
The essential Markov property is that given the current state

st, the next state st+1 of system is independent from the
previous states (s0, s1, ..., st−1). In control systems including
transportation systems, MDP models are mostly episodic in
which the system has a terminal point for each episode based
on the end time T or the end state sT . The goal of an MDP
agent is to find the best policy π∗ that maximizes the expected
cumulative reward E[Rt|s, π] for each state s and cumulative
discounted reward (i.e., return)

Rt =

T−1∑
i=0

γirt+i, (1)

with the discount parameter γ which reflects the importance
of future rewards. Choosing a larger γ value between 0 and 1
means that agent’s actions have higher dependency on future
reward. Whereas, a smaller γ value results in actions that
mostly care about the instantaneous reward rt.

In general, RL agent can act in two ways: (i) by know-
ing/learning the transition probability T from state st to st+1,
which is called model-based RL, (ii) and by exploring the
environment without learning a transition model, which is
called model-free RL. Model-free RL algorithms are also
divided into two main groups as value-based and policy-based
methods. While in value-based RL, the agent at each iteration
updates a value function that maps each state-action pair to
a value, in policy-based methods, policy is updated at each
iteration using policy gradient [11]. We next explain the value-
based and policy-based RL methods in detail.

2) Value-based RL: Value function determines how good
a state is for the agent by estimating the value (i.e., expected
return) of being in a given state s under a policy π as

V π(s) = E[Rt|s, π]. (2)

The optimum value function V ∗(s) describes the maximized
state value function over the policy for all states:

V ∗(s) = max
π

V π(s),∀s ε S. (3)

Adding the effect of action, state-action value function
named as quality function (Q-function) is commonly used to
reflect the expected return in a state-action pair:

Qπ(s, a) = E[Rt|s, a, π]. (4)

Optimum action value function (Q-function) is calculated
similarly to the optimum state value function by maximizing
its expected return over all states. Relation between the opti-
mum state and action value functions is given by

V ∗(s) = max
a

Q∗(s, a),∀s ε S. (5)

Q-function Q∗(s, a) provides the optimum policy π∗ by
selecting the action a that maximizes the Q-value for the state
s:

π∗(s) = argmax
a

Q∗(s, a),∀s ε S. (6)

Based on the definitions above, there are two main value-
based RL algorithms: Q-learning [12] and SARSA [13], which
are classified as off-policy RL algorithm, and on-policy RL
algorithm, respectively. In both algorithms, the values of state-
action pairs (Q-value) are stored in a Q-table, and are learned
via the recursive nature of Bellman equations utilizing the
Markov property:

Qπ(st, at) = Eπ[rt + γQπ(st+1, π(st+1)]. (7)

In practice, Qπ estimates are updated with a learning rate
α to improve the estimation as follows

Qπ(st, at)← Qπ(st, at) + α(yt −Qπ(st, at)) (8)

where yt is the temporal difference (TD) target for Qπ(st, at).
The TD step size is a user-defined parameter and determines
how many experience steps (i.e., actions) to consider in
computing yt, the new instantaneous estimate for Qπ(st, at).
The rewards R(n)

t =
∑n−1
i=0 γ

irt+i in the predefined number of

4

n TD steps, together with the Q-value Qπ(st+n, at+n) after n
steps give yt. The difference between Q-learning and SARSA
becomes clear in this stage. Q-learning is an off-policy model,
in which actions of the agent are updated by maximizing Q-
values over the action, whereas SARSA is an on-policy model,
in which actions of the agent are updated according to the
policy π derived from the Q-function:

yQ−learningt = R
(n)
t + γnmax

at+n
Qπ(st+n, at+n), (9)

ySARSAt = R
(n)
t + γnQπ(st+n, at+n). (10)

While Q-learning follows a greedy approach to update its Q-
value estimates, SARSA follows the same policy for both
updating Q-values and taking actions. To encourage exploring
new states usually an ε-greedy policy is used for taking actions
in both Q-learning and SARSA. In the ε-greedy policy, a
random action is taken with probability ε, and the best action
with respect to the current policy defined by Q(s, a) is taken
with probability 1− ε.

In both Q-learning and SARSA, the case with maximum
TD steps, typically denoted with n = ∞ to express the end
of episode, corresponds to a fully experience-based technique
called Monte-Carlo RL, in which the Q-values are updated
only once at the end of each episode. This means the same
policy is used without any updates to take actions throughout
an episode. The TD(λ) technique generalizes TD learning
by averaging all TD targets with steps from 1 to ∞ with
exponentially decaying weights, where λ is the decay rate [11].

3) Policy-based RL: Policy-based RL algorithms treat the
policy πθ as a probability distribution over state-action pairs
parameterized by θ. Policy parameters θ are updated in order
to maximize an objective function J(θ), such as the expected
return Eπθ [Rt|θ] = Eπθ [Qπθ (st, at)|θ]. The performance of
policy-based methods are typically better than that of value-
based methods on continuous control problems with infinite-
dimensional action space or high-dimensional problems since
policy does not require to explore all the states in a large and
continuous space and store them in a table. Although there are
some effective gradient-free approaches in the literature for
optimizing policies in non-RL methods [14], gradient-based
methods are known to be more useful for policy optimization
in all types of RL algorithms.

Here, we briefly discuss the policy gradient-based RL
algorithms, which select actions using the gradient of objective
function J(θ) with respect to θ, called the policy gradient. In
the well-known policy gradient algorithm REINFORCE [15],
the objective function is the expected return, and using the log-
derivative trick ∇ log πθ =

∇πθ
πθ

the policy gradient is written
as

∇θJ(θ) = Eπθ [Qπθ (s, a)∇θ log πθ]. (11)

Since computing the entire gradient is not efficient, REIN-
FORCE uses the popular stochastic gradient descent technique
to approximate the gradient in updating the parameters θ.
Using the return Rt at time t as an estimator of Qπθ (st, at)
in each Monte-Carlo iteration it performs the update

θ ← θ + α∇θ log πθRt, (12)

where α is the learning rate. Specifically, θ is updated in the
∇θ log πθ direction with weight Rt. That is, if the approximate
policy gradient corresponds to a high reward Rt, this gradient
direction is reinforced by the algorithm while updating the
parameters.

One problem with the Monte-Carlo policy gradient is its
high variance. To reduce the variance in policy gradient
estimates Actor-Critic algorithms use the state value function
V πθ(s) as a baseline. Instead of Qπθ (s, a), the advantage
function [16] Aπθ (s, a) = Qπθ (s, a) − V πθ (s) is used in the
policy gradient

∇θJ(θ) = Eπθ [Aπθ (s, a)∇θ log πθ]. (13)

The advantage function, being positive or negative, determines
the update direction: go in the same/opposite direction of
actions yielding higher/lower reward than average. Actor-
Critic method is further discussed in Section III-B3 within
the Deep RL discussion.

4) Multi-Agent RL: Many real world problems require
interacting multiple agents to maximize the learning perfor-
mance. Learning with multiple agents is a challenging task
since each agent should consider other agents’ actions to
reach a globally optimum solution. Increasing the number
of agents also increases the state-action dimensions, thus
decomposing the tasks between agents is a scalable approach
for large control systems. There are two main issues with high-
dimensional systems in multi-agent RL in terms of state and
actions: stability and adaptation of agents to the environment
[17]. When each agent optimizes its action without considering
close agents, the optimal learning for overall system would be-
come non-stationary. There are several approaches to address
this problem in multi-agent RL systems such as distributed
learning, cooperative learning and competitive learning [17].

B. Deep Reinforcement Learning

In high-dimensional state spaces, standard RL algorithms
cannot efficiently compute the value functions or policy func-
tions for all states. Although some linear function approx-
imation methods are proposed for solving the large state
space problem in RL, their capabilities are still up to a
certain point. In high-dimensional and complex systems, stan-
dard RL approaches cannot learn informative features of the
environment for effective function approximation. However,
this problem can be easily handled by deep learning based
function approximators, in which deep neural networks are
trained to learn the optimal policy or value functions. Different
neural network structures such as convolutional neural network
(CNN) and recurrent neural network (RNN) are used for
training RL algorithms in large state spaces [18].

The main concept of deep learning is to extract useful
patterns from data. Deep learning models are roughly inspired
by the multi-layered structure of human neural system. Today,
deep learning has applications in a wide spectrum of areas, in-
cluding computer vision, speech recognition, natural language
processing, and the deep RL applications.

5

1) Deep Q-Network: Since value-based RL algorithms
learn the Q-function by populating a Q-table, it is not feasible
to visit all the states and actions in a large state space and con-
tinuous action problems. The leading approach to this problem,
called Deep Q-Network (DQN) [19], is to approximate the Q-
function with deep neural networks. Original DQN receives
raw input image as state, and estimates Q-values from them
using CNNs. Denoting the neural network parameters with
θ the Q-function approximation is written as Q(s, a; θ). The
output of neural network is the best action selected according
to (6) using a discrete set of approximate action values.

The major contribution of Mnih et al. [19] was two novel
techniques to stabilize learning with deep neural networks:
target network and experience replay. The original DQN
algorithm is shown to significantly outperform the expert
human performance on several classic Atari video games. The
complete DQN algorithm with experience replay and target
network is given by Algorithm 1.

Target Network: One of the main parts of DQN that stabilize
learning is the target network. DQN has two separate networks
denoted as the main network that approximates the Q-function,
and the target network that gives the TD target for updating the
main network. In the training phase, while the main network
parameters θ are updated after every action, target network
parameters θ– are updated after a certain period of time.
The reason why target network is not updated after every
iteration is that it adjusts the main network updates to keep
the value estimations in control. If both networks were updated
at the same time, the change in the main network would be
exaggerated due to the feedback loop by the target network,
resulting in an unstable network. Similar to (9), 1-step TD
target yt is written as

yDQNt = rt + γmax
at+1

Qπ(st+1, at+1; θ
–
t), (14)

where Qπ(st+1, at+1; θ
–
t) denotes the target network.

Experience Replay: DQN introduces another distinct fea-
ture called experience replay which stores recent experiences
(st, at, rt, st+1) in replay memory, and samples batches uni-
formly from the replay memory for training neural network.
There are two main reasons why experience replay is used in
DQN. Firstly, it prevents the agent from getting stuck into the
recent trajectories by doing random sampling since RL agents
are prone to temporal correlations in the consecutive samples.
Furthermore, instead of learning over full observations, DQN
agent learns over mini-batches that increases the efficiency
of the training. In a fixed-size memory defined for experience
replay, the memory stores only recent M samples by removing
the oldest experience for allocating a space to the latest sample.
The same technique is applied in other deep RL algorithms
[20], [21].

Prioritized Experience Replay: Experience replay technique
samples experiences uniformly from the memory, however,
some experiences has more impact on learning than the
others. A new approach prioritizing significant actions over
other actions is proposed in [22] by changing the sampling
distribution of DQN algorithm. The overall idea for prioritized
experience replay is that the samples with higher TD error,

yDQNt − Qπ(st, at; θ−t), receives higher ranking in terms of
probability than the other samples by applying a stochastic
sampling with proportional prioritization or rank-based prior-
itization. The experiences are sampled based on the assigned
probabilities.

Algorithm 1 DQN algorithm

1: Input Replay memory size M , batch size d, number of
episodes E, and number of time steps T

2: Inititalize Main network weights θ
3: Inititalize Target network weights θ−

4: Inititalize Replay memory
5: for e = 1, . . . , E do
6: Inititalize state s1, and action a1
7: for t = 1, . . . , T do
8: Take action at = argmaxaQ

π(st, a; θ) with prob-
ability 1 − ε or a random action with probability ε

9: Get reward rt and observe next state st+1

10: if Replay capacity M is full then
11: Delete the oldest tuple in memory
12: end if
13: Store the tuple (st, at, rt, st+1) to replay memory
14: Sample random d tuples from replay memory

15: yt =

{
rt, if t = T .

rt + γmaxaQ
π(st+1, at+1; θ

–
t), otherwise.

16: Perform policy gradient using yt for updating θ
17: Update target network every N step, θ– = θ
18: end for
19: end for

2) Double Dueling DQN: DQN is the improved version
of the standard Q-Learning algorithm with a single estimator.
Both DQN and Q-Learning overestimates some actions due
to having single Q function estimations. Authors in [23] pro-
poses doubling the estimators for action selection with main
network and action evaluation with target network separately
in loss minimization similar to the tabular double Q-learning
technique [24]. Instead of selecting the Q value that maximizes
future reward using the target network (see Eq. (14)), double
DQN network selects the action using the main network
and evaluates it using the target network. Action selection is
decoupled with target network for better Q-value estimation:

yDDQNt = rt + γQπ(st+1, argmax
at+1

Qπ(st+1, at+1; θ); θ
–
t).

(15)
Another improved version of DQN is a dueling network

architecture which estimates state value function V π(s) and
advantage function Aπ(s, a) separately for each action [25].
Output of the combination of these two networks is a Q-value
for a discrete set of actions through an aggregation layer. This
way dueling DQN learns the important state values without
their corresponding effects on the actions since state value
function V π(s) is an action-free estimation.

These two doubling and dueling models on DQN algorithm
with prioritized experience replay are accepted as the state-of-

6

the-art for discrete action-based deep RL.
3) Actor Critic Methods: Actor-critic RL models are in

between policy-based algorithms and value-based algorithms
due to having two estimators: actor using Q-value estimation
and critic using state value function estimation (see Fig. 2).
While actor controls the agent’s behaviors based on policy,
critic evaluates the taken action based on value function. There
are recent papers that deal with the variations of actor-critic
models using the deep RL approach [20], [21], [26], in which
function approximators for both actor and critic are based on
deep neural networks.

Environment

Value Function

Policy

Critic

Actor

State stAction at

Reward rt

TD Error

Agent

V π(s)

π(s)

Fig. 2: Actor Critic control loop.

Standard DQN techniques with single network estimator
are suitable for low-dimensional discrete action spaces. A
recent actor-critic algorithm called deep deterministic policy
gradient (DDPG) is introduced for solving high-dimensional
continuous control problems with deterministic policy gradient
approach estimating over state space instead of stochastic
policy gradient estimating over state and action spaces together
[20]. One of the differences of DDPG from standard DQN is
that it uses a new soft target update model doing frequent soft
updates.

4) Asynchronous Methods: Improvements in hardware
systems allowed RL researchers to perform parallel computing
with multiple CPUs or GPUs, which increases the learning
pace. First parallel models tested on DQNs advanced the agent
performance in terms of lower training time and higher conver-
gence results. For instance, the asynchronous multiple actor-
learner model proposed in [27] achieve very high performance
in both continuous and discrete action spaces. Multiple actor-
learners enable the RL agent to explore the environment with
different exploration rates. Furthermore, asynchronous updates
do not require replay memory, and learners use accumulated
multiple gradients of all experiments done in a predefined
update period T . Asynchronous advantage actor-critic (A3C),
a state-of-the-art deep RL algorithm, updates policy and value
networks asynchronously over parallel processors. Each net-

work is separately updated within the update period T , and the
shared main network is updated with respect to the parameters
θπ and θV . The synchronous and simpler version of A3C is
known as advantage actor-critic (A2C).

C. Summary of Deep RL

In this section, we discussed the background of deep RL,
including policy-based and value-based RL models. Before
discussing the details of deep RL applications in ITS, it
is worth mentioning that certain deep RL algorithms are
preferred in different applications depending on the specifi-
cations of application domain. While developing new deep
RL techniques is an active research area, Q-learning based
DQN and actor-critic based DDPG algorithms continue to
dominate the RL-based ITS controllers. For high-dimensional
state spaces, deep RL methods are preferred over standard
RL methods. With regard to action space, policy-based deep
RL methods are more suitable for continuous action spaces
than value-based deep RL methods. For discrete action spaces,
ITS controllers typically use DQN and its variants due to
their simpler structures compared to policy-based methods.
In general, we can say that Q-learning based DQN models
are typically used for less complicated systems which have
limited state and action spaces, whereas policy-based or actor-
critic algorithms are preferred mainly for large complicated
systems, including multi-agent control systems. We should
also note here that in many cases the designer can choose
between discrete and continuous state and action spaces while
setting up the problem. For instance, in TSC, as discussed
in the following section, some authors define a continuous
action as how much time to extend green light while some
other authors define a discrete action space as choosing the
green light direction.

IV. DEEP RL SETTINGS FOR TSC

Up to this point, we discussed the importance of AI in
traffic systems and theoretical background of RL, in particular
deep RL. One of the main application areas of deep RL
in ITS is controlling signalized intersections. Since most of
the existing works are application-oriented, proposed methods
differ from each other in various aspects – e.g., applying deep
RL to different intersection models with different technology
to monitor traffic, characterizing the RL model with different
state-action-reward representations, and using different neural
network structures. Hence, a direct performance comparison
between them is usually not possible.

In these applications, a learning algorithm (deep RL in
our case) is implemented in the TSC center to control traffic
signals adaptive to the traffic flow. First, the control unit
collects the state information, which can be in different formats
such as queue length, position of vehicles, speed of vehicles
etc., and then control unit takes an action based on the current
policy of proposed deep RL method. Finally, agent (control
unit) gets a reward with respect to the taken action. By
following these steps agent tries to find an optimal policy in
order to minimize the congestion on intersection.

7

Dealing with the TSC problem on simulators by using RL
algorithms requires a good problem formulation in several
parts: state, action, reward definitions and neural network
structure. In this section, we will discuss these main deep RL
configurations together with the traffic simulators used in the
literature.

A. State

The learning performance is highly dependent on an accu-
rate and concrete state definition. Therefore, there are many
different state representations used for RL applications on
traffic lights. Authors in [28] and [29] considered raw RGB
images as a state representation following the same approach
as the original DQN [19]. Another similar image-like state
representation takes the snapshot of the controlled intersec-
tion for forming position and speed of the vehicles [30].
Image-like representation format, called discrete traffic state
encoding (DTSE), is one of the most popular state definitions
in the TSC applications [29], [31]–[39]. The reason why
researchers prefer to use DTSE is that it acquires the highest
available resolution and a realistic set of information from
the intersection. Considering n lanes in an intersection, each
intersection is divided into cells whose size is on average one
vehicle starting from the stopping point of intersection to m
meters back. Speed and position of vehicles, signal phases, and
accelerations are shown in separate arrays in DTSE. Different
variations of those four input types are selected by different
researcher. For example, while some researchers select speed
and position together [31], [33], some others select only one
of the four input types for the state representation, such as the
position of vehicles [23], [29]. While DTSE considers the lane
characteristics only, [30] considers full camera view that also
includes road side information in the state definition. Today,
many intersections have high quality cameras monitoring the
traffic in intersection. To enable DTSE-type state representa-
tion, these equipment can be easily extended for monitoring
the roads connecting to intersections.

Another common approach for state representations is form-
ing a feature-based value vector. Instead of vehicle-based state
representation, in feature-based state form, average or total
value of specific information for each lane is represented on
a vector. Queue length, cumulative waiting time in a phase
cycle, average speed on a lane, phase duration (green, red,
yellow), and number of vehicles in each lane are some of the
common features used for state representation. Typically, a
combination of such information is collected from intersection
[40]–[43]. One advantage of such information is that they can
be easily collected by road sensors or loop detectors. There are
also some other unique traffic features that are not commonly
used by researchers such as scoring based on the max speed
on lane detectors [41], signal control threshold metrics [44],
and left turn occupations [45]. Two common forms of state
representations, DTSE and feature vector, are shown in Fig 3.

For TSC models with multiple intersections, state definitions
also include neighboring traffic light information such as
signal phase, number of vehicles, and average speed [34], [44],
[46].

B. Action

The action taken by the RL algorithm from a set of possible
actions after receiving the state has a critical impact on
learning. In a single four-way intersection, each direction is
controlled with green, red and yellow phases. There are several
common action selections for a single intersection. The most
common one is choosing one of the possible green phases.
Another one is the binary action selection keeping the same
phase or changing the direction. Third and relatively less
common action model is updating the phase duration with a
predefined length.

For a single intersection, mostly there are 4 possible green
phases; North-South Green (NSG), East-West Green (EWG),
North-South Advance Left Green (NSLG), East-West Advance
Left Green (EWLG). During the green phase for a direction,
vehicles proceed through the intersection to the allowed direc-
tion. When the action selection setting is to select one of the
possible green phases, deep RL agent selects an action from
these four green phases at each time t. After following the
yellow and red transitions, the chosen action is performed on
traffic lights. Successful agent learning and safety traffic also
depend on right red and yellow phase definitions. The early
applications simplify the phase definitions to two green phases
only, North-South Green (NSG) and East-West Green (EWG)
[32], [40] ignoring the left turns. Another action selection
model is binary action, in which green phase interval length is
defined beforehand, and at each time t, agent decides to either
maintain the same phase or proceed to the next phase in a
predefined cycle, e.g., NSG → EWG → NSLG → EWLG.
When agent selects the action to change the phase, before
executing the next green phase, yellow and red transition
phases are executed first to have a safe traffic flow [33], [37],
[38], [42], [47].

Most of the applications consider discrete action selection
from a set of actions, however there are also a few applications
that consider continuous outputs [20], that only controls the
duration of the next phase. This type of action definition
mostly suitable for multiple intersections. Based on the prede-
fined min and max phase duration, algorithm predicts a time
length for the current phase [41], [48].

C. Reward

States in RL can be a feature vector or a high-dimensional
matrix, and similarly actions can be a continuous value or
a vector of discrete choices. However, reward is always a
scalar value which is a function of the traffic data. The role
of reward in RL is analyzing the quality of taken action with
respect to the state, i.e., penalizing or awarding the agent for
the corresponding action. Waiting time, cumulative delay, and
queue length are the most common reward definitions in TSC.
Waiting time is given by the sum of the times that vehicles
are stopped. Delay is the difference between the waiting times
of continuous green phases. Queue length is calculated for
each lane in an intersection. A special congestion function
in transportation planning defined by U.S. Bureau of Public
Roads (BPR) is used in some works for the reward definition
[34], [47]. While in some works absolute value of the traffic

8

Image-like representation of one
intersection with 4 incoming roads

Vehicle-based state array for one
road in a 4-way intersection

Feature-based state
vector for one

intersection

Road 1

Road 2

Road 3

Road 4

Fig. 3: Two popular types of state representation: DTSE matrix (middle) and feature-based vector (right). Left figure shows
the traffic model with the corresponding vehicle-based state array. In each cell, one vehicle is represented. The matrix in the
middle shows a full matrix for one intersection with each road in different colors. Right figure is a feature-based state vector,
where each cell represents a lane.

data is used as a reward, in some others negative value or
average value are also used.

D. Neural Network Structure

The structure of deep neural networks has a high impact on
learning in deep RL. Thus, different neural network structures
are proposed for TSC in the literature. Multi-layer perceptron
(MP), i.e., the standard fully connected neural network model,
is a useful tool for classic data classification. An extension
of multi-layer perceptron with kernel filters is convolutional
neural network (CNN), which provide high performance on
mapping image to an output. Standard DQN considers CNN
that uses consecutive raw pixel frames for state definition.
There are many TSC papers that use CNNs for DTSE state
definitions (see Fig. 3), e.g., [31], [33], [49]. Residual networks
(ResNet) are used to deal with the overfitting problem in CNN-
based deep network structures [34]. Another convolution-
based network structure for operations in graphs is graph
convolutional networks (GCN). Recurrent neural networks
(RNN), e.g., Long Short-Term Memory (LSTM), are designed
to work with sequential data. Since in TSC controlling is done
sequentially, RNN is also used in deep RL settings [35], [37].
Another type of neural network model is autoencoder that
learns an encoding for high-dimensional input data in a lower-
dimensional subspace. The encoded input can be decoded to
reconstruct the input, which is commonly used for clearing
the noise on input data [40].

E. Simulation environments

RL and deep RL applications for TSC are mostly performed
on traffic simulators due to life-threatening conditions in real-
world experiments. Some authors also use real datasets for ex-
perimental study, but still they create a simulation environment
based on the real data [50]. Microscopic individual vehicle-
based simulators have been used throughout the years for ITS

applications. The earliest available traffic simulator is the Java-
based Green Light District (GLD) traffic simulator [51], that
was initially proposed for an RL-based TSC problem. Many
RL papers perform their experiments on the GLD simulator
(see Table II), however the most popular open source traffic
simulator is Simulation Urban Mobility (SUMO) [52]. Open
source platforms allow users to modify the simulator for their
purposes freely. SUMO enables users to interact with the
environment using Python through the traffic control interface
(TraCI) library. Different traffic models can be dynamically
simulated, including personal vehicles, public vehicles and
pedestrians. AIMSUN is a commercial traffic simulator de-
signed and marketed by Transport Simulation Systems (Spain)
[53]. Paramics is one of the well-known traffic simulators
distributed by Quadstone Paramics (UK) [54]. VISSIM [55]
is a simulator preferred by researchers due to its interaction
with MATLAB, similar to AIMSUN.

V. DEEP RL APPLICATIONS FOR TSC

This section focuses on (deep) RL studies for adaptive
TSC. Summary of the works are shown in separate tables for
both RL and deep RL models. We can classify learning-based
models into two groups in terms of the number of agents:
single agent RL which learns the optimal policy with one agent
for the entire TSC network, and multi-agent RL which uses
multiple agents in the network for acquiring optimal policy.
For both standard RL and deep RL-based TSC works, we
will discuss the proposed models based on their characteristic
features such as state, action, reward definitions, and neural
network structure.

A. Standard RL applications

1) Single agent RL: Optimizing intersections with a learn-
ing agent receives high attention from researchers since the
second half of 1990s. The agent interacts with a simulation

9

TABLE I: Outline of Single Agent RL approaches for TSC

Work RL method State Action Reward Result comparison

Thorpe et al. [56] SARSA
Vehicle count

Fixed vehicle distance
Variable vehicle distance

Binary phase Fixed penalty (-1) Fixed-time
Different states

Abudlhai et al. [57] Q-learning Queue length Binary phase Total delay Fixed-time

Camponogara et al. [58] Q-learning Position & # vehicles Green & Red phases # waiting vehicles Random policy
Longest queue first

Wen et al. [59] SARSA # vehicles Binary phase Coefficients of state Fixed-time
Actuated control

El-Tantawy et al. [60] Q-learning
vehicles / Queue length

Queue length
Cumulative delay

Green phases Change in cum. delay Fixed-time

El-Tantawy et al. [61]
Q-learning

SARSA
TD error

vehicles / Queue length
Queue length

Cumulative delay

Binary phase
Green phases

Immediate delay
Cumulative delay

Queue length
stops

Fixed-time
Actuated control

Shoufeng et al. [62] Q-learning Total delay Time change in green phase Total delay Fixed-time

Toubhi et al. [63] Q-learning Max. residual queue Green phase duration
Queue length

Cumulative delay
Throughput

Vehicle demand

environment to learn an optimum control policy for traffic
intersection using an RL algorithm. The ultimate goal is
mostly controlling a network of coordinated intersections, but
the initial step of this research is targeting how to control a
single intersection with RL. Now we present some RL-based
single intersection studies with their distinct features.

Traffic signal control with RL-based machine learning is
pioneered by the work [56], which applies the model-free
SARSA algorithm on a single intersection. In this work,
Thorpe and Anderson considered two scenarios: a four-lane
intersection without yellow transition phase, and a 4× 4 grid
style connected intersections where each intersection learns
its own Q values separately. After this initial research, sev-
eral solutions are proposed for single-intersection and multi-
intersection traffic networks, where coordinated multi-agent
and multi-objective RL dominate the RL research for adap-
tive TSC. Another SARSA-based TSC method for a single
intersection is proposed by Wen et al. [59] with a stochastic
control mechanism considering more realistic traffic situations.
A specific state space is introduced in this work by partitioning
the number of vehicles into sparse discrete values. Authors
showed that their proposed model outperforms the fixed-time
controller and actuated controller with respect to number of
vehicles in queue.

In [57], authors proposed a model-free Q-learning algorithm
for a single intersection with queue length as the state repre-
sentation and total delay between two action cycles as the
reward function. This is the first paper that proposes a simple
binary action model that switches the phase direction only.
The results of this work are compared with the fixed-time
signal controller in different traffic flow patterns in terms of
average vehicle delay. A similar Q-learning based RL model
is proposed by Camponogara and Kraus Jr. [58] based on
a distributed Q-learning technique on two intersections by
assigning separate Q values for each individual agent.

Abdulhai et al. [60], proposed the first RL-based real
intersection scenario in Toronto, Canada by using Q-learning
with three different state definitions. First state definition is
a two-valued function: number of arriving vehicles to the

current green direction and number of queued vehicles in
the red direction. Other states are defined as queue length
and cumulative delay regardless of traffic light. The variable-
phase action model in this work selects a green phase among
four possible phases defined for a single intersection (NSG,
EWG, NSLG, EWLG) instead of a binary action model in
a fixed cycle. The same work is extended to a more general
concept discussing several on-policy, off-policy RL algorithms
on various state, action, reward definitions in an experimental
view [61]. Along with the three state representations and
the variable-phase action model in [60], authors tested their
models with also the binary action model in a fixed green-
phase cycle, and four reward functions, which are immediate
delay, cumulative delay, queue length and the number of stops.
Different RL algorithms, namely Q-learning, SARSA, and TD
error are tested in different state, action, and reward settings on
a single intersection. Further, two different multi-intersection
configurations, 5 intersections in Toronto downtown and a
large-scale network of Toronto downtown, are considered for
comparison with fixed-time signal control, and actuated signal
control models on Paramics simulator. Toubhi et al. [63],
assessed three reward definitions, queue length, cumulative
delay, and throughput, with Q-learning on a single intersection.
The performance of each reward definition is explored on
high demand and low demand traffic patterns. There are
some other works that also deal with the single intersection
control problem using the Q-learning approach [62], [64]. The
summary of the presented works are given in Table I.

2) Multi-agent RL: Applying single agent RL algorithms
individually on different intersections can be a good solution
up to a certain point, however large intersection networks
suffer from this approach. A cooperative learning approach
is needed to reach an optimum policy over all network. Sev-
eral multi-agent learning models are proposed for controlling
multiple intersections cooperatively.

While most of the RL applications for single intersec-
tion consider model-free algorithms, such as Q-learning and
SARSA, early multi-agent papers proposed model-based RL
algorithms that form a transition probability distribution. A

10

TABLE II: Overview of Multi-agent RL approaches for TSC

Work RL method Solution approach Scenario Simulator Result comparison

Wiering [65] Model-based RL Waiting time sharing 3 by 2 grid Not specified
Fixed-time controller
Random controller
Largest queue first

Steingrover et al. [66] Model-based RL Congestion value
sharing

12 mixed
intersections GDL TC-1 [65]

Iša et al. [67] Model-based RL Congestion & accident
value sharing

12 mixed
intersections GDL

TC-1 [65]
TC-most

Accident car removing

Kuyer et al. [68] Model-based RL Coordination graph based
max plus

3 intersections
4 intersections

15 mixed intersections
GDL

TC-1 [65]
TC-SBC [66]

Max-plus

Bakker et al. [69] Model-based RL Partially observed MDP 15 mixed intersections GDL
TC-1 [65]

Diff. partial
observation techniques

Houli et al. [70] Model-based RL Multi-objective learning Real road map
in Beijing Paramics

Fixed controller
Actuated control
Single agent RL

Brys et al. [71] SARSA Multi-objective learning
Tile coding 2 by 2 grid AIM Actuated control

Distributed learning [72]

Khamis et al. [73] Model-based RL
with Bayesian trans. func. Multi-objective learning 12 mixed

intersections GLD TC-1 [65]

Khamis et al. [74] Model-based RL
with Bayesian trans. func.

Multi-objective learning
Agent Cooperation

12 mixed
intersections GLD TC-1 [65]

Khamis et al. [75]
Model-based RL

with Bayesian trans. func.
Hybrid exploration

Multi-objective learning
Agent Cooperation

22 mixed
intersections GLD TC-1 [65]

SOTL [76]

Jin et al. [77] SARSA with
function approximators

Multi-objective learning
Threshold lexicographic

ordering

3 intersections
in Stockholm SUMO

Comparison between
multiple function

approximators

Prashanth et al. [78] Q-learning
Actor-critic Function approximation 2 by 2 grid

5 intersectins GLD Fixed-time control
No function approx.

Prashanth et al. [79] Q-learning Function approximation

2 by 2 grid
3 by 3 grid

5 intersections
9 intersections

GLD
Fixed-time control

No function approx.
SOTL [76]

Pham et al. [80] SARSA Tile coding 2 by 2 grid AIM Random RL
Distributed learning [72]

Abdoos et al. [81] Q-learning 2-level hierarchical
control 3 by 3 grid AIMSUN 1-level Q-learning

Arel et al. [82] Q-learning Neural networks
Hierarchical control 5 intersections MATLAB Longest queue first

El-Tantawy et al. [83] Q-learning Indirect coordination
Direct coordination 5 intersections Paramics Comp. between

proposed models

El-Tantawy et al. [84] Q-learning Indirect coordination
Direct coordination

Real road map
in downtown Toronto Paramics

Fixed-time control
Semi-actuated control
Full actuated control

Salkham et al. [85] Q-learning Adaptive round robin
based collaboration

Real road map in
Dublin City UTC

Independent RL
Fixed-time

SAT-like [86]

Aziz et al. [87] Av. expected reward Multi-reward structure 8 intersections
11 intersections VISSIM

Q-learning
SARSA

Fixed-time control
Adaptive control

Aslani et al. [88] Actor-critic Tile coding
Radial basis functions

Real road map
in downtown Tehran AIMSUN

Q-learning
Fixed-time control
Actuated control

Xu et al. [89] Q-learning Non-zero sum based
Markov game 3 by 3 grid MATLAB

Ind. Q-learning
Fixed-time control
Longest queue first

Abdoos et al. [90] Q-learning State discretization 50 intersections AIMSUN Fixed-time control

Balaji et al. [91] Q-learning Neighboor cooperation Real road map
in Singapore Paramics

Hierarchical MS [92]
Cooperative ensemble

Actuated control

Cahill et al. [93] Q-learning CUSUM-based
pattern change detection

Real road map in
Dublin City UTC SAT-like [86]

Araghi et al. [94] Q-learning Distributed learning 3 by 3 grid Paramics Fixed-time control

11

prominent multi-agent RL work for large traffic networks is
[65] by Wiering, in which three algorithms were proposed,
namely TC-1, TC-2, TC-3, based on the coordination be-
tween vehicles and intersections considering local and global
information for the state function. States are formed based
on the traffic light configuration of intersections, position
of the vehicles and the destination of the vehicles at each
intersection. The approach for creating a state representation
in this early work is not realistic due to unknown destination
for each vehicle. The proposed models iteratively update value
functions to minimize the waiting times of vehicles. The
results are compared with four standard TSC models: fixed-
time control, random control, longest queue first, and most-car
model. Several works extended the Wiering’s approach in dif-
ferent perspectives. For example, Steingrover et al. proposed
an extension to the TC-1 method by including congestion in-
formation on other intersections [66]. Two different extensions,
called TC-SBC and TC-GAC, are proposed by the authors. The
former increases the state size by adding congestion values to
the state space, whereas the latter uses a congestion factor
while computing the value function instead of increasing the
state space. Isa et al. [67] proposed a further improvement
to the TC-1 method by including congestion and accident
information in the state representation, which further increases
the state representation. While the works presented until now
does not consider coordination between agents for joint action
selection, Kuyer et al. introduces a new approach that enables
coordination between agents by using the max-plus algorithm
[68]. In this model, agents coordinate with each other to reach
optimum joint actions in finite iterations. Another multi-agent
RL model is proposed by Bakker et al. [69] with partial
observations for the state spaces of connected intersections.
This case is of interest when the system cannot access the full
state information due to some reasons such as faulty sensors.
All these works [66]–[69] use Wiering’s approach [65] as a
benchmark.

Multi-objectivity is gaining popularity in RL [95] due
to its capabilities in complex environments. When a single
objective is selected for the overall traffic system, such as
the Wiering’s objective which aims to decrease the waiting
time of all vehicles, it may not serve well the needs of
different traffic conditions. Authors in [70] consider a multi-
objective approach in their multi-agent RL work for TSC. In
particular, vehicle stops, average waiting time, and maximum
queue length are targeted as objectives for low, medium,
and high traffic volume, respectively. Different Q functions
are updated with appropriate reward functions in these three
traffic conditions. Taylor et al. proposes a non-RL based
basic learning algorithm called Distributed Coordination of
Exploration and Exploitation (DCEE) [72] to tackle the TSC
problem. Authors in [71] and [80] consider a multi-agent RL-
based SARSA algorithm with tile coding and compare it with
DCEE under different traffic conditions.

Khamis et al. studied multi-objective RL control for traffic
signals in three papers [73]–[75]. In the first paper [73],
authors considered Bayesian transition probability for model-
based RL using several objectives for forming the reward
function. The second paper followed the same approach [74]

with more specific objectives. The third paper [75] extends
the previous works to a total of seven objectives with a novel
cooperative exploration function and experiments in several
road conditions and vehicle demands. The paper also improves
the practicality of GLD traffic simulator from different per-
spectives, e.g., continuous control, probabilistic travel demand.
The results of these three papers are compared with TC-1
proposed by Wiering [65] and the adaptive SOTL method
[76]. The latest and most compact RL-based multi-objective
multi-agent TSC study is presented in [77]. In this work,
travel delay and fuel consumption are defined as learning
objectives for the RL agents, and a specific technique called
threshold lexicographic ordering is used for online multi-
objective adaptation. SARSA is experimented in this work
with several function approximators, one of which is based
on neural networks. It is worth noting that SARSA with Q-
value estimation is not considered a deep RL approach since
it does not include experience replay and target network tricks
discussed in III-B1.

Before DQN was introduced, function approximators were
popular for Q-functions with large state space. For instance,
authors in [78], [79] proposed two RL models for TSC using
function approximation-based Q-learning and actor-critic pol-
icy iteration. The proposed Q-learning method outperforms
standard Q-learning with full state representation. A novel
neural network-based multi-agent RL for TSC is proposed
in [82], which uses local agents and global agents. While
local agent controls the traffic lights via the longest queue first
algorithm, global agent controls the traffic lights with a neural
network-based Q-learning approach, which is very similar to
DQN discussed in III-B.

Actor-critic-based multi-agent RL is an emerging field that
uses continuous state representation. Discretizing the state
space is prone to missing information about the state. Aslani
et al. proposed a continuous space actor-critic control model
for multiple intersections [88], in which tile coding and radial
basis-based function approximators are presented. Although
state space is continuous, action space to determine the du-
ration of the next green phase is discrete. In experiments,
discrete and continuous state space based actor-critic models
are tested in the city of Tehran. In another work, two-layer
hierarchical multi-agent RL method is studied [81], which
implements a single agent for each intersection using Q-
learning, and controls a wide area network with function
approximator based on tile coding on second layer.

There are several studies offering coordination between the
neighbor agents for reaching a joint optimum performance. To
this end, Tantawy et al. proposed a Q-learning based multi-
agent RL approach for road network coordination [83], [84].
RL agents learn the coordination directly or indirectly, called
MARLIN-DC and MARLIN-IC. While a small-scale road
network is presented in [83], in the extended paper [84] authors
investigate a large network of 59 intersections in downtown
Toronto. [91] presents another coordination-based TSC model
implementing distributed Q-learning agents for a large network
where neighbour agents share congestion values with each
other. Experiments are performed on the Paramics simulation
environment using a real traffic network in Singapore with

12

different travel demand configurations. Xu et al. [89] proposed
a coordination module based on nonzero-sum Markov game
for the multi-agent RL environment. Q-learning is used on
each intersection as a single agent, and their coordination is
controlled with a Markov game-based mathematical model.

A new technique for multiple intersection environments
is proposed in [87] using the R-Markov Average Reward
technique and a multi-objective reward definition for RL. The
result of this work is compared with fixed-time controller,
actuated controller, Q-learning and SARSA on the Param-
ics simulation environment by simulating an 18-intersection
network. Chu et al. [96], proposed a regional to central
multi-agent RL model for large-scale traffic networks. In low
traffic density, authors claim that for large-scale networks
collaboration is not needed between regions, i.e., learning the
traffic model in local region is enough to attain a globally
appropriate learning. Araghi et al., [94] presents a distributed
Q-learning based multi-agent RL controller that predicts the
green phase duration on the next phase cycle. Other multi-
agent RL applications are studied in [85], [90], [93]. Table II
gives an overview of the multi-agent RL works.

B. Deep RL applications

Here we discuss deep RL-based TSC applications consider-
ing. A summary of the discussed works is provided in Table III
considering the used deep RL algorithms, network structures,
simulation environments, and comparison with benchmarks.

1) Single agent deep RL: In recent years, deep RL based
learning tools for adaptive intersection controls gained a great
attention from transportation researchers. After researchers
proposed several architectures for different traffic scenarios
using standard RL in the last two decades, invention of deep
RL made a huge impact on the ITS research, in particular
TSC. Due to its capability of dealing with large state space, a
number of deep RL models have been proposed for controlling
traffic lights. The deep RL paradigm is basically based on
approximating Q-functions with deep neural networks. The
earliest work using this approach is [82]. Although a neural
network-based RL model is proposed in this paper, it is not
a full DQN algorithm due to lack of experience replay and
target network, which are essential components of DQN [19].

The initial work on controlling traffic signals with a deep
RL approach is [31] by Genders et al.. In this work, authors
use discrete traffic state encoding model, called DTSE, to
form an image-like state representation based on detailed
information from the traffic environment. The proposed state
model is an input to CNN for approximating the Q-values of
discrete actions. The experiments are performed on the SUMO
simulation environment with a single intersection where 4
green phases are selected as actions. In order to show the
power of CNN on the DTSE state form, the results are
compared with Q-learning using a single layer neural network.
In [98], the same authors studied the effects of different state
representations for intersection optimization using the A3C
algorithm. Three separate state definitions are experimented
on a single intersection using a dynamic traffic environment.
The first form of state definition considered in the paper

is given by the occupancy and average speed of each lane.
The second state definition is the queue length and vehicle
density for each lane. The third state form is the image like
representation, DTSE, with Boolean position information in
which the existence of vehicle is represented with 1. The
results show that the resolution of state representation does not
effect the performance of RL agent in terms of delay and queue
length. The same authors, in a recent paper [103], studied
asynchronous deep RL model for TSC. In asynchronous n-step
Q-learning [27], the main job is divided to multiple processors,
and each processor learns its local optimal parameters individ-
ually. Global parameters for the general network is updated
after every n-step. The proposed architecture in [103] improves
the performance almost 40% compared to the fixed-time and
actuated traffic controllers.

Authors in [40], proposed an autoencoder-based deep RL
algorithm for a single intersection with dynamic traffic flow.
Autoencoders are considered for action selection by mapping
input queue length to a low-dimensional action set. Bottleneck
layer, which is the output of decoding part, is used for
Q-function approximation. The results are compared with
standard Q-learning using the Paramics simulator. Currently,
this is the only work in the literature that uses autoencoders to
approximate action values. In [33], Gao et al. proposed a new
neural network architecture in which state is a combination of
the speed and position of vehicles based on DTSE. The output
of neural network is binary action whether to keep the same
action or change the action in a predefined phase cycle. The
proposed model is compared with the fixed-time controller and
the longest queue first controller.

The authors in [28], presented two deep RL algorithms
for controlling isolated intersections: value-based DQN, and
policy-based actor critic. The state for both agents is raw
consecutive image frames following exactly the same approach
with original DQN. As stated in the original paper [19], DQN
algorithm suffers from instability issues. [28] shows that the
policy-based deep RL technique solves this issue by having
a smooth convergence and a stable trend after convergence.
Shabestary et al. [36] proposed a DQN-based solution for
adaptive traffic signal control on an isolated intersection using
a new reward definition. The reward and action defined in this
paper are change in the cumulative delay and 8 different green
phases, as opposed to the commonly used binary action set or
4 green phases for a single intersection.

Choe et al. proposed a RNN-based DQN model in a single
intersection TSC scenario [37]. It is shown that the perfor-
mance of RNN-based DQN decreased the travel time com-
pared to the popular CNN structure. A policy gradient-based
deep RL method is proposed for adaptive traffic intersection
control in [29], which presents experiments on a novel realistic
traffic environment called Unity3D by using raw pixels as an
input state to policy-based DQN. The proposed model has
similar results with the fixed-time intersection control model.
An action value-based DQN with a novel discount factor
is proposed by C. Wan et al. [45]. The proposed dynamic
discount factor takes execution time into account with the help
of infinite geometric series. The proposed model is tested on
a single intersection using the SUMO simulator by comparing

13

TABLE III: Outline of Deep RL approaches for TSC.

Work Deep RL
neural network structure Multi-agent State - DTSE Scenario Simulator Result comparison

Genders et al. [31] DQN - CNN No Yes Single int. SUMO MP(64) DQN

Van der Pool et al. [49] DQN - CNN Max-plus
Transfer planning Yes

Single int.
2 intersections
3 intersections

2 by 2 grid

SUMO Model based RL

Van der Pool et al. [32] DQN - CNN Max-plus
Transfer planning Yes

2 intersections
3 intersections

2 by 2 grid
SUMO Model based RL

Li et al. [40] DQN - Autoencoder No No Single int. Paramics Q-learning

Gao et al. [33] DQN - CNN No Yes Single int. SUMO Fixed-time control
Longest queue first

Liu et al. [34] DQN-ResNeT [97] Policy sharing Yes 2 by 2 grid SUMO
SOTL

DQN without CNN
Q-learning

Casas [41] DDPG Multiple actor-
critic learner No

Single int.,
6 intersections,
Real map from

Barcelona

Aumsim Q-learning
Random

Shi et al. [35] DQN-RNN Max-plus
Transfer planning Yes 2 by 2 grid USTCMTS2.1 Fixed-time control

Q-learning

Mousavi et al. [28] DQN-CNN
A2C-CNN No Real image Single int. SUMO Fixed-time control

Lin et al. [42] A2C-CNN Multiple actor-
critic learners No 3 by 3 grid SUMO Fixed-time control

Actuated control
Genders et al. [98] A3C-MP No Yes Single int. SUMO Actuated control

Shabestary et al. [36] DQN-CNN No Yes Single int. Paramics Different rewards
Q-learning

Choe et al. [37] DQN-RNN No Yes Single int. SUMO CNN-DQN

Garg et al. [29] DQN-CNN
(Policy based) No Yes Single int. Unity3d Fixed-time control

No traffic light

Coskun et al. [99] DQN-CNN
Actor-Critic Joint learning No 4 intersections SUMO DQN(Policy based)

Wei et al. [38] DQN-CNN No Yes Single int. SUMO
Real dataset

Fixed-time
SOTL

Natafgi et al. [50] DQN-CNN No No Single int. SUMO Fixed tim

Nishi et al. [100] NFQI-Graph CNN [101] No No 6 intersections SUMO Fixed-time
CNN-DQN

Wan et al. [45] Modified DQN No No Single int. VISSIM DQN
Fixed-time control

Calvo et al. [39] DQN-CNN Independent DQN
fingerprints Yes 3 intersections SUMO Fixed-time control

Genders [48] DDPG Multiple learners No Real map from
Luxemburg SUMO Fixed-time control

Chu et al. [102] A2C-RNN Policy sharing No 5 by 5 grid
Monaco city map SUMO

Ind-Q-learning
Ind-DQN
Ind-A2C

Liang et al. [30] Double Dueling
DQN-CNN No Yes Single int. SUMO

Fixed-time control
Actuated control

DQN

Genders et al. [103] Asynchronous n-step
Q-learning No No Single int. SUMO

Linear learning
Actuated control
Random control

Zhou et al. [44] DQN-MP Threshold based No Real map from
New york city SUMO Diff veh. demands

Xu et al. [47] DQN-RNN Critical node
discovery No

20 intersections
50 intersections

100 intersections
SUMO

Fixed-time
SOTL

Q-learning
DQN

Tan et al. [104] DQN (Value based)
DDPG (Wolpertinger)

Hierarchical
cooperation No

6 intersections
12 intersections
24 intersections

SUMO
Fixed-time control

Q-learning
DQN

Ge et al. [46] DQN-CNN Q value transfer Yes Heterogeneous 4 int.
2 by 3 grid SUMO Dist. Q-learning

DQN

Liu et al. [105] DQN-MP No No Single int.
4 intersections Python No comparison

Zhang et al. [106] DQN No No Arterial topology
4 by 4 grid SUMO Partially Observable

states

14

it with the fixed-time controller and the standard DQN-based
controller.

A new DQN-based controller, called IntelliLight, with a new
network architecture is described in [38]. The reward function
consist of multiple components: sum of the queue length over
all lanes, sum of delay, sum of waiting time, traffic light state
indicator, number of vehicles that passed the intersection since
the last action, and sum of travel times since the last action.
The proposed method is experimented on SUMO using a sin-
gle intersection. A real dataset collected from real cameras in
China is used as an input to SUMO. IntelliLight is selected as a
benchmark in [107], which introduces a new transfer learning
model with a batch learning framework. The same real-world
data and a synthetic simulation data which generates traffic
with uniform distribution is used on an isolated intersection
for experiments. Another DQN-based study for traffic light
control with a real dataset is presented in [50]. Data from a
three-way non-homogeneous real intersection in Lebanon is
used. The experimental results are compared with the real-
world fixed-time controller that is in use at the intersection in
terms of queue length and delay.

A different deep RL model in terms of action set and the
deep RL algorithm is studied by Liang et al., [30]. This work
updates the next phase duration in the phase cycle instead of
choosing an action from a green phase set. Considering a 4-
phase single intersection, phase change duration is defined.
The selected phase duration can be added or subtracted from
the duration of the next cycle phase. In this model, for
a four-way intersection the action set includes 9 discrete
actions. The proposed algorithm in this paper considers new
DQN techniques, namely double dueling DQN and prioritized
experience replay, to improve the performance. In another
paper, Jang et al. [43], discusses how to integrate a DQN agent
with a traffic simulator through the Java-based AnyLogic mul-
tipurpose simulator. A different approach for state definitions
is proposed by Liu et al. [105] for examining the impacts
of DQN on green-wave patterns in a linear road topology.
The experiments are performed only on a Python environ-
ment that creates traffic data from a probability distribution
without using any traffic simulator. Moreover, considering the
Dedicated Short-Range Communication (DSRC) technology
for vehicle-to-infrastructure (V2I) communication, Zhang et
al. [106] addresses TSC under partial detection of vehicles at
an intersection. Their motivation to study TSC with undetected
vehicles comes from the case where not all vehicles use DSRC.

2) Multi-agent deep RL: The first deep RL-based multiple
intersection control mechanism is presented in [32], which
defines a new reward function and proposes a coordination tool
for multiple traffic lights. The reward definition in this paper
considers a combination of specific traffic conditions, namely
accidents or jam, emergency stops, and traffic light changes,
and the waiting time of all vehicles. The reward function prop-
erly penalizes each specific traffic situation. For coordination
of multiple intersections to have a high traffic flow rate, this
paper uses a transfer planning technique for a smaller set
of intersections and links the learning results to a larger set
of intersections with the max-plus coordination algorithm. In
this work, the benchmark is one of the early coordination-

based RL methods proposed in [65]. As expected, the DQN-
based coordination method outperforms the earlier standard
RL-based method. This paper is expanded to a master thesis
[23] by presenting the results for single agent scenario and
different multi-agent scenarios. In [35], similar to [32], a multi-
agent deep RL approach on a 2-by-2 intersection grid model is
proposed, in which max-plus and transfer learning are used for
reaching the global optimal learning with coordination. This
paper differs from [32] mainly by using RNN, in particular
LSTM, layers instead of fully connected layers for Q-function
approximation. Deep RL approach with RNN structure is
shown to result in lower average delay compared to Q-learning
and fixed-time control in both low and high traffic demand
scenarios.

Liu et al. [34] introduced a cooperative deep RL model for
controlling multiple intersections with multiple agents. The
presented algorithm is DQN with a ResNet structure used to
form the state space. The reward function penalizes the system
based on the driver behavior and waiting time with a BPR
function (see Section IV-C). Cooperation between agents is
assured by sharing the policy with other agents every n-step.
Experiments for this study are done using a 2-by-2 intersection
model on SUMO. SOTL, Q-learning and DQN are selected as
reference points for validating the proposed model.

Multiple traffic intersections can be represented as a network
graph in which lane connections between roads form a directed
graph. Nish et al. [100] presented a GCN-based neural network
structure for the RL agent. GCN is combined with a specific
RL algorithm called k-step neural fitted Q-iteration [101] that
updates the agent in a distributed manner by assigning one
agent for each intersection considering the whole network to
form the state space. The experiment results show that the
GCN-based algorithm decreases the waiting time on all 6 in-
tersections compared to the fixed-time controller and standard
CNN-based RL controller. A hierarchical control structure is
presented in [44] for TSC. The lower layer optimizes the local
area traffic via intersection control while the top layer opti-
mizes the city-level traffic by tuning the degree of optimization
of local areas in the lower layer. In this research, multi-
intersection learning is built on threshold values collected
from individual intersections. The action set of higher level
controller is increasing or decreasing the threshold values that
change the sensitivity of each intersection to the neighbor
intersections. The learning model in this paper is different
from the other deep RL-based intersection controllers such
that the model decreases the algorithm complexity in higher
level control through a threshold-based mechanism instead of
setting the phase cycles or phase duration.

Cooperative multi-agent deep RL model is investigated in
[39]. Here, an agent with an independent double dueling DQN
model supported with prioritized experience replay is assigned
to each intersection. In order to improve the coordination per-
formance, a special sampling technique, fingerprint, is used in
experience replay. Fingerprint technique estimates Q-functions
with neighbor agent’s policy via Bayesian inference [108].
The proposed model is tested on SUMO with heterogeneous
multiple intersections. The results show that the proposed
algorithm outperforms the fixed-time controller and the DQN

15

controller without experience replay on several travel demand
scenarios.

One of the approaches in multi-agent systems is updating
only the critical edges to increase the efficiency. [47] first iden-
tifies important nodes based on multiple criteria with a specific
ranking algorithm, CRRank, that creates a trip network using
a bidirectional tripartite graph. Based on data and tripartite
graph, system ranks the edges based on assigned scores. Once
critical intersections are identified, RNN structured DQN agent
learns the optimal policy. The model is tested with 20, 50 and
100 intersections on SUMO comparing its results with fixed-
time, SOTL, Q-learning and DQN controllers. Recently, a
cooperative deep RL method with Q-value transfer is proposed
in [46]. At each intersection, a DQN agent controls the traffic
light by receiving Q-values from other agents for learning
the optimal policy. The proposed algorithm is supported with
extensive experiments on homogeneous and heterogeneous
intersections. It is important to have a heterogeneous traffic
scenario because all the intersections do not have the same
characteristics such as the number of roads and number of
lanes. The authors compared their results with two benchmark
papers: coordinated Q-learning [32] and distributed Q-learning
[94] approaches.

The work in [41] investigates applying the deep deter-
ministic policy gradient (DDPG) algorithm to a city-scale
traffic network. The author formulated the TSC problem with
DDPG by controlling the phase duration continuously. The
model updates phase duration of all network at once by
keeping the total phase cycle constant in order to control
the synchronization throughout the network. In this work, a
specific information called speed score, calculated using the
maximum speed on each detector, is considered for forming
the state vector. Three traffic scenarios are tested from small to
large networks: isolated intersection, 2-by-3 grid intersections,
and a Barcelona city-scale map with 43 intersections. The
proposed approach achieves higher reward performance than
multi-agent Q-learning controller. It is remarkable that actor
critic models can be applied large intersection models without
any extra multi-agent control technique. Another DDPG-based
deep RL controller for large-scale network is studied by
Genders in his PhD thesis [48]. The system model consists
of a parallel architecture with decentralized actors for each
intersection and central learners each of which cover a subset
of the intersections. The policy determines the duration of the
green phase in each intersection. To test the performance of
the model, Luxembourg city map is used on SUMO with 196
intersections, which is the largest test environment for RL-
based TSC up to now.

A multiple actor-learner architecture considering the A2C
algorithm is presented for multiple intersections by Lin et al.
in [42]. Multiple actors observe different states, and follow
different exploration policies in parallel. Since actor-critic
approaches are built on advantage functions, authors consider
a technique called general advantage estimation function in
the learning process [109]. The presented experiments are
performed on a 3-by-3 intersection grid on SUMO, and
the results are compared with the fixed-time controller and
actuated controller.

Independent Q-learning is one of the popular multi-agent
RL approaches in literature. Chu et al. [102] recently expanded
this approach to independent A2C for multi-agent TSC. The
stability problem is addressed with two methods, fingerprints
of neighbor intersections and a spatial discount factor. While
the former provides each agent with information regarding
the local policies and traffic distributions of neighbor agents,
the latter enables each agent to focus on improving the local
traffic. The network structure in the A2C algorithm is an
LSTM-based RNN model. Both synthetic traffic network with
a 5-by-5 grid and a real network from Monaco City with 30
intersections are used for performance evaluation.

Systematic learning for large-scale traffic networks is
achieved with cooperation in [104]. A large system is divided
into subsets in which each local region is controlled with
an RL agent. Global learning is achieved by transferring
learning policies to the global agent. For local controllers,
authors investigated two deep RL algorithms: value based per-
action DQN and actor-critic based Wolpertinger-DDPG [110].
Per-action DQN is similar to the standard DQN algorithm,
but differs from DQN by considering state-action pair as an
input and generating a single Q value. Wolpertinger-DDPG
provides a new policy method based on the k-nearest-neighbor
approach using DDPG for large-scale discrete action spaces.
In experiments, three different traffic networks are used, and
the results are compared with a decentralized Q-learning
algorithm with linear function approximators, and two rule-
based baselines (fixed-time and random-time controllers).

Coskun et al. [99] expands [28], which use value-based
DQN and policy-based standard actor-critic, to multiple inter-
sections using value-based DQN and policy-based A2C. The
results of both algorithms following deep learning is consistent
with the results of standard RL approaches in terms of average
reward per episode, where DQN hits higher average reward
than A2C.

VI. DEEP RL FOR OTHER ITS APPLICATIONS

Several useful deep RL mechanisms have been introduced
for various other applications in ITS. One of the major
application areas of AI techniques in ITS is autonomous
vehicles, where deep RL occupies a great place in this context.
Autonomous controlling is studied from various aspects using
deep RL approaches. Ramp metering, lane changing, speed
acceleration/deceleration, maneuvering on intersections are
some of the various examples studied with deep RL (see Table
IV).

A. Autonomous Driving

Initial papers presenting deep RL-based control for au-
tonomous vehicles experiment their models on the TORCS
game environment [151]. A control framework proposed by
Sallab et al. [111] uses two types of deep RL methods,
DQN approach with RNNs for discrete action set, and actor-
critic based DDPG approach for continuous action domain.
The authors experimented the algorithms without using replay
memory on TORCS, which led to a faster convergence. Xia
et al. [112] studied a control strategy called deep Q-learning

16

TABLE IV: Outline of deep RL approaches for other ITS applications

Case Study Deep RL method Target application Solution Test Result comparison

Sallab et al. [111] DQN
DDPG Autonomous driving

Spatial aggregation,
Recurrent temporal

aggregation
TORCH game RNN-LSTM

Kalman-GRNN

Xia et al. [112] DQN with filtered
experience replay Autonomous driving Optimum control TORCH game NFQ [101]

Xiong et al. [113] DDPG Autonomous driving Collision avoidance TORCH game -

Sharifzadeh et al. [114] DQN Autonomous driving Lane changing Personal simulator Expert driver

Hoel et al. [115] AlphaGo Zero Autonomous driving Decision planning with
Monte carlo tree search Personal simulator MCTS

IDM/MOBIL

Hoel et al. [116] DQN Autonomous driving Speed change
Lane change Personal simulator CNN-FCNN

IDM

Chae et al. [117] DQN Autonomous breaking Pedestrian detection PreScan
vehicle simulator

Without
Trauma memory

Shi et al. [118] Hierarchical DQN Autonomous driving Safe gap adjustment
Lane changing Personal simulator -

Wang et al. [119] Rule-based DQN Autonomous driving Lane changing Udacity simulator Different policy
structures

Ye et al. [120] DDPG Autonomous driving Lane changing
Car following VISSIM IDM

Makansis et al. [121] DDQN Autonomous driving Optimum
highway control SUMO DP

Yu et al. [122] Multi-agent
Q-learning Autonomous driving Coordination graphs Personal simulator

Expert driver
Independent
Q-learning

Qian et al. [123] Twin delay DDPG Autonomous driving Path planning Personal simulator Expert driver
DQN

Zhou et al. [124] DDPG Autonomus driving Optimum control in
TSC intersections Personal simulator

Human driver
Policy gradient

DQN

Osinski et al. [125] PPO2 [126] Autonomous driving Optimum control Real world
CARLA

Continuous
driving model

Huang et al. [127] DDPG Autonomous driving Human in the loop
training IPG CarMker Imitation learning

Isele et al. [128] DQN Autonomous driving Navigating in
occluded intersections SUMO TTC [129]

Kreidieh et al. [130] TRPO [131] Stop-and-go
wave dissipation Transfer learning Flow Human driver

Random policy

Chalaki et al. [132] TRPO Ramp metering
Policy transfer

to city scale map
Adversarial noise injection

Scaled smart city Human Driver

Jang et al. [133] TRPO Ramp metering Policy transfer
to city scale map Scaled smart city IDM controller

Belletti et al. [134] TRPO Ramp metering Multi-task conrol Personal simulator REINFORCE
PPO [135]

Chaoui et al. [136] DQN Electric vehicle Energy management with
multiple batteries Personal simulator -

Wu et al. [137] DDPG Hybrid electric bus Adaptive energy management
to road conditions Personal simulator DQN

DP

Hu et al. [138] DQN Hybrid electric vehicle Energy management MATLAB
ADVISOR [139]

Different training
models

Wu et al. [140] DDPG Freeway control Variable speed limit SUMO Q-learning
DQN

Wu et al. [141] ES [142] Freeway control
Ramp meter
Speed limit
Lane change

SUMO

No control
DQN-RM
TRPO-RM

DDPG-DVSL

Pandey et al. [143] Sparce cooperative
Q-learning [144] Toll roads Dynamic lane management Personal simulator

Density based
Ratio based

Random search

Pandey et al. [145] Vanilla PG
Proximal PG [126] Express lane pricing Multi-objective opt.

Transfer learning Personal simulator Feedback Control

Gunarathna et al. [146] Multi-agent
Q-learning

Lane direction
change

Dynamic
coordination graphs

New york real
taxi trips

Different lane
changing models

Min et al. [147] QR-DQN Driver assistant
Lane keeping
Lane change

Acceleration control
Unity [148] DQN

DDQN

Schults et al. [149] DQN Traffic simulator Calibrating traffic
models - -

Bacchiani et al. [150] A3C Traffic simulator Calibrating traffic
models - -

17

with filtered experiences (DQFE) for teaching autonomous
vehicle how to drive. The learning performance is shown
to outperform the neural fitted Q-learning technique on the
TORCS game simulator.

A continuous control strategy proposed in [113] combines
the DDPG algorithm for continuous actions with a safety
control strategy. The combination is needed because only re-
lying on past experiences does not provide a safe autonomous
vehicle control. Hoel et al. [115] introduced an autonomous
driving model including planning and learning with Monte
Carlo tree search and deep RL. Driving planning is done with
Monte Carlo tree search and learning how to drive is done
with deep RL agent using the AlphaGO Zero algorithm [152].
In that work, the proposed method is compared with a baseline
called IDM/MOBIL agent for expert driver behaviours [153],
[154].

Authors in [120] studied car following and lane changing
behaviours of autonomous vehicles using DDDP method on
VISSIM. Another RL-based autonomous driving policy is
described by Makantasis et al. [121] using DDQN with
prioritized experience replay in mixed autonomy scenarios.
Proposed deep RL-based driving policy is compared with
DP-based optimal policy in different traffic densities using
SUMO. Deep RL autonomous driving research generally tar-
gets individual agents in a mixed autonomy environment or
a fully autonomous environment for finding the best driving
strategy. However, authors in [122] proposed a multi-agent
deep RL approach with dynamic coordination graph. In this
study, autonomous vehicles in coordination learn how to
behave in a highway scenario. Two distinct coordination graph
models, identity-based dynamic coordination and position-
based dynamic coordination, are studied in that work. Qian
et al. [123] described autonomous driving from a different
perspective using twin delayed DDPG [155]. They proposed a
two-level strategy to fill the gap between decision making and
future planning of autonomous vehicle. Autonomous driving
in a signalized traffic intersection using DDPG method is
proposed by Zhou et al. [124]. In a recent autonomous driving
study [125], RL methods are analyzed on the traffic simulator
CARLA [156] using RGB image inputs collected from a
camera. A different training and test strategy is experimented
by authors in [127] for DDPG-based autonomous driving
using a human-in-the-loop dynamical simulator called IPG
CarMaker. While a human driver controls the vehicle on this
software, the DDPG agent learns how to drive in two distinct
scenarios, forward driving and stopping.

In transportation research, controlling stop-and-go waves
with autonomous vehicles is a new approach for which a
deep RL-based solution is suggested in [130]. The authors
implemented multiple autonomous vehicles controlled by in-
dividual deep RL agents to increase the flow of traffic. Isele
et al. [128] using the DQN approach studied a special case
for self-driving vehicles, maneuvering in intersections when
driver have partial knowledge about the intersection. In this
paper, three action selection modes are tested. First action
mode is stop or go, the second mode is having sequential
actions, accelerate, decelerate or keep constant velocity, and
the last action mode is the combination of first two action

modes, wait, move slowly or go. All three action modes are
tested on 5 different cases.

The authors in [116] proposed a speed and lane changing
framework for autonomous truck-trailer with surrounded ve-
hicles using double DQN. This work considers several traffic
situations including a highway traffic and a two-way traffic
scenario called overtaking in order to generalize the proposed
algorithm. Using an inverse deep RL approach, Sharifzadeh
et al. [114] presented a driving model for collision-free
lane changing on a self-programmed traffic simulator with
continuous trajectories. The investigated model includes two
separate agents. One agent controls only lane changing without
speed adjustment, and the other agent controls lane changing
actions with acceleration. Another lane changing application
for autonomous vehicles is presented in [118] considering
DQN with quadratic Q-function approximator. A hierarchical
control technique is implemented as a lane changing module
in discrete domain, and a gap adjusting module in continuous
domain with separate deep RL agents. Similar to the other
papers, authors in [119] proposed a rule-based DQN approach
for the lane changing problem for autonomous vehicles.

Most of the learning based control models in ITS test the
proposed work on simulators such as autonomous vehicle
control, traffic signal control, traffic flow control. The first
learned policy transfer from simulator to real world experi-
ments is studied by Chalaki et al. [132]. Experiment platform
for this research is a scaled city map from University of
Delaware, in which behaviors of multiple autonomous vehicles
in a roundabout is observed with deep RL control techniques.
In order to transfer policies efficiently, adversarial noise is
injected into the state and action spaces. The initial results of
the same work for single agents with Gaussian noise is studied
in [133].

B. Energy Management

Energy management systems are a crucial part of future
transportation. There are different resource allocation schemes
for electric vehicles. Power consumption varies in different
units of vehicle that highly effects the performance of batteries.
Chaoui et al. proposed a deep RL-based energy management
solution to increase the life cycle of parallel batteries [136].
Authors in [138] suggest an optimization model for energy
consumption in hybrid vehicles using the DQN formulation.
Proposed adaptive learning model provides a better fuel con-
sumption through deep RL-based energy management scheme.
Wu et al. [137] proposed an energy management solution
for hybrid electric buses using an actor-critic based DDPG
algorithm. Considering two parameters, number of passengers
and traffic information, deep RL agent can optimize the energy
consumption with continuous controlling.

C. Road Control

Road controllers are an essential part of traffic control in
ITS. There are several works which use deep RL methods
for speed limit control, toll road pricing, ramp metering,
etc.Dynamic speed limit control among lanes is a challenging
task in transportation. We et al. [140] studies a dynamic

18

solution method with actor-critic continuous control scheme
for variable speed limits control, that increases the flow rate
and decreases the emission rate. Deep RL-based lane pricing
model for toll roads is proposed in [143] to maximize the total
revenue with multiple entrance and exits. Another dynamic
lane pricing model for express lanes is proposed in [145],
where authors used multi-objective RL and multi-class cell
transmission models to enhance the performance of deep RL
agent.Highway connections from side roads are controlled
with signalized ramp meters. In order to increase the efficiency
of the main road flow, a new multi-agent deep RL technique
is proposed in [134] for traffic models based on discretized
partial differential equations. The control model is tested on
a simulated highway scenario with multiple ramp meters. Wu
et al. [141] proposed a freeway control model using deep RL
with various agents for different parts of freeway. Authors’
proposal is to use an inflow ramp meter control agent, a
dynamic lane speed limit control agent, and a dynamic lane
change controller agent in coordination. Traditional roads have
fixed number of lanes for incoming and outgoing directions.
Lane direction change is studied for improving the traffic flow
with multi-agent deep RL and dynamic graph configuration in
[146].Autonomous braking system via DQN is proposed in
[117], which provides traffic safety in cases where immediate
action is required.

D. Various ITS Applications

Recently a new tool for optimizing traffic simulators is
proposed by Schultz at al. [149]. The input, (traffic character-
istics) and output (traffic congestion) of traffic simulators are
correlated with an adaptive learning technique using DQN.
Another computational interface, named Flow, enables easy
integration of the deep RL library RLlib [157] with SUMO and
Aimsun for various control problems in ITS [158]. Flow users
can create a custom network via Python to test complex control
problems such as ramp meter control, adaptive traffic signal-
ization and flow control with autonomous vehicles. Authors
in [150] introduces a traffic simulator which provides a new
environment with cooperative multi-agent learning approach
for analyzing the behaviours of autonomous vehicles. It is
capable of testing various traffic scenarios. Min et al. [147]
proposed a driver assistant system using quantile regression
DQN for various controls such as lane keeping, lane changing,
and acceleration control.

VII. CHALLENGES AND OPEN RESEARCH QUESTIONS

Despite the significant interest and effort, and the promising
results so far in deep RL-based ITS solutions, there are still
many major challenges to address before the proposed research
can yield real-world products. In this section, we will discuss
the major challenges and open research questions of deep RL
for ITS.

All the research outcomes for RL-based ITS controls are ex-
perimented on simulators due to life threatening consequences
of real-world applications. Recently, authors in [132] presented
a policy transfer application from simulation to a city-scale
test environment for autonomous driving, but still this line

of research is in its infancy. There is a huge gap between
real-world deployment and simulator-based applications using
learning algorithms. For TSC and other controlling applica-
tions in ITS, a real-world deployment is needed in order to
prove the applicability of deep RL-based automated control.

Specifically for TSC, simulation-based applications have
two approaches in literature, first, simulating an artificial road
network with artificial data, second, simulating a road network
based on a real dataset. While the second one is close to a
realistic test, it only considers the traffic demand in various
times of the day without realistic challenges. Another point
that researchers need to consider for TSC is increasing the
realism of simulation environments, such as including the
human intervention scenarios. In order to decrease human
intervention in TSC, the control system should be adaptable
to unstable traffic situations in the worst case scenarios. To
do that, instead of standard traffic models, urban networks
with some predictable extreme scenarios should be studied in
order to see the consequences of deep RL implementations. We
expect that implementing pedestrians and public transportation
to the simulation environments will have a high impact on
learning performance.

There are so many proposed deep RL models in the liter-
ature for controlling traffic lights. While standard RL models
have comparisons between each other for validating their
proposals, deep RL models on TSC do not have satisfactory
comparisons with existing works. For multiple intersections,
researchers mostly selected DQN, standard RL, and fixed-time
controllers as benchmark. However, they should be especially
compared with other multi-agent approaches in the literature,
such as distributed control, coordinated control, etc. Another
challenge with results is that very few papers compare their
performance with actuated controller, which is the most pop-
ular real-world TSC implementation.

State definition is a crucial point in deep RL applications.
Thus, researchers pay attention to different state forms with
different hardware systems such as cameras, loop detectors,
and sensors, but still there is no clear agreement on the form
of state in deep RL-based TSC applications. State definition
highly depends on static devices, hence all of them should
always collect data properly. A new research direction could
be studying partially observable and noisy state definitions in
which some of the devices do not work properly. When RL-
based adaptive traffic signals are implemented on intersections,
the system must be protected and stable (i.e., robust and
resilient) against such kind of failures.

Regarding autonomous vehicles, researchers have been
proposing solutions to very specific subsystems without con-
sidering the interaction between such subsystems. For more
realistic solutions, a unified management and adaptive control
strategy is required for several components. For example, an
impactful deep RL application should control lane changing,
breaking, flow arranging, and energy management components
all together. Implementing different learning algorithms for
different autonomous vehicle subsystems may cause interop-
erability issues.

19

VIII. CONCLUSION

Considering the increasing world population and urban-
ization, researchers have been conducting research on ITS
applications using learning-based AI techniques. Dynamic
nature of traffic systems does not allow a clear easy control
mechanism for all ITS applications. Controlling transportation
systems through reinforcement learning (RL) approaches is
gaining popularity in both industry and academia. There
are various research outcomes in recent years for solving
automated control problems in ITS, such as traffic lights, au-
tonomous driving, autonomous break, and energy management
of vehicles. The most popular deep RL application in ITS
is adaptive traffic signal control (TSC) at intersections. We
presented a comprehensive review for the deep RL applications
in ITS. Key concepts of RL and deep RL, and the settings in
which they are applied to TSC were discussed to provide a
smooth introduction to the literature. Characteristic details of
existing works in several categories were compared in separate
tables in order to enable clear comparison. Finally, we also
discussed the open research directions and the gap between
the existing works and the real-world usage. This survey
showed that there are different single agent and multi-agent
RL solutions for TSC that outperform the standard control
methods in simulation environments. However, existing works
have still not been tested in real-world environments except
for an autonomous vehicle application for a specific scenario.

REFERENCES

[1] G. Cookson, “Inrix global traffic scorecard,” INRIX research, 2018.
[2] Z. Liu, “A survey of intelligence methods in urban traffic signal con-

trol,” IJCSNS International Journal of Computer Science and Network
Security, vol. 7, no. 7, pp. 105–112, 2007.

[3] A. L. Bazzan, “Opportunities for multiagent systems and multiagent
reinforcement learning in traffic control,” Autonomous Agents and
Multi-Agent Systems, vol. 18, no. 3, p. 342, 2009.

[4] P. Mannion, J. Duggan, and E. Howley, “An experimental review of
reinforcement learning algorithms for adaptive traffic signal control,”
in Autonomic Road Transport Support Systems. Springer, 2016, pp.
47–66.

[5] K.-L. A. Yau, J. Qadir, H. L. Khoo, M. H. Ling, and P. Komisarczuk,
“A survey on reinforcement learning models and algorithms for traffic
signal control,” ACM Computing Surveys (CSUR), vol. 50, no. 3, p. 34,
2017.

[6] W. Tong, A. Hussain, W. X. Bo, and S. Maharjan, “Artificial intelli-
gence for vehicle-to-everything: A survey,” IEEE Access, vol. 7, pp.
10 823–10 843, 2019.

[7] R. Abduljabbar, H. Dia, S. Liyanage, and S. Bagloee, “Applications of
artificial intelligence in transport: An overview,” Sustainability, vol. 11,
no. 1, p. 189, 2019.

[8] H. Wei, G. Zheng, V. Gayah, and Z. Li, “A survey on traffic signal
control methods,” arXiv preprint arXiv:1904.08117, 2019.

[9] M. Veres and M. Moussa, “Deep learning for intelligent transportation
systems: A survey of emerging trends,” IEEE Transactions on Intelli-
gent Transportation Systems, 2019.

[10] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” arXiv preprint arXiv:2002.00444, 2020.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[12] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[13] G. A. Rummery and M. Niranjan, On-line Q-learning using connec-
tionist systems. University of Cambridge, Department of Engineering
Cambridge, England, 1994, vol. 37.

[14] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review
of algorithms and comparison of software implementations,” Journal
of Global Optimization, vol. 56, no. 3, pp. 1247–1293, 2013.

[15] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no.
3-4, pp. 229–256, 1992.

[16] L. C. Baird, “Reinforcement learning in continuous time: Advantage
updating,” in Proceedings of 1994 IEEE International Conference on
Neural Networks (ICNN’94), vol. 4. IEEE, 1994, pp. 2448–2453.

[17] L. Busoniu, R. Babuska, and B. De Schutter, “Multi-agent reinforce-
ment learning: A survey,” in 2006 9th International Conference on
Control, Automation, Robotics and Vision. IEEE, 2006, pp. 1–6.

[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[21] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv preprint arXiv:1611.01224, 2016.

[22] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[23] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[24] H. V. Hasselt, “Double q-learning,” in Advances in Neural Information
Processing Systems, 2010, pp. 2613–2621.

[25] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” arXiv preprint arXiv:1511.06581, 2015.

[26] B. O’Donoghue, R. Munos, K. Kavukcuoglu, and V. Mnih, “Combining
policy gradient and q-learning,” arXiv preprint arXiv:1611.01626,
2016.

[27] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[28] S. S. Mousavi, M. Schukat, and E. Howley, “Traffic light control using
deep policy-gradient and value-function-based reinforcement learning,”
IET Intelligent Transport Systems, vol. 11, no. 7, pp. 417–423, 2017.

[29] D. Garg, M. Chli, and G. Vogiatzis, “Deep reinforcement learning
for autonomous traffic light control,” in 2018 3rd IEEE International
Conference on Intelligent Transportation Engineering (ICITE). IEEE,
2018, pp. 214–218.

[30] X. Liang, X. Du, G. Wang, and Z. Han, “A deep reinforcement learning
network for traffic light cycle control,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 2, pp. 1243–1253, 2019.

[31] W. Genders and S. Razavi, “Using a deep reinforcement learning agent
for traffic signal control,” arXiv preprint arXiv:1611.01142, 2016.

[32] E. Van der Pol and F. A. Oliehoek, “Coordinated deep reinforcement
learners for traffic light control,” Proceedings of Learning, Inference
and Control of Multi-Agent Systems (at NIPS 2016), 2016.

[33] J. Gao, Y. Shen, J. Liu, M. Ito, and N. Shiratori, “Adaptive traffic signal
control: Deep reinforcement learning algorithm with experience replay
and target network,” arXiv preprint arXiv:1705.02755, 2017.

[34] M. LIU, J. DENG, M. XU, X. ZHANG, and W. WANG, “Cooperative
deep reinforcement learning for tra ic signal control,” 2017.

[35] S. Shi and F. Chen, “Deep recurrent q-learning method for area
traffic coordination control,” Journal of Advances in Mathematics and
Computer Science, pp. 1–11, 2018.

[36] S. M. A. Shabestary and B. Abdulhai, “Deep learning vs. discrete
reinforcement learning for adaptive traffic signal control,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 286–293.

[37] C.-J. Choe, S. Baek, B. Woon, and S.-H. Kong, “Deep q learning with
lstm for traffic light control,” in 2018 24th Asia-Pacific Conference on
Communications (APCC). IEEE, 2018, pp. 331–336.

[38] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement
learning approach for intelligent traffic light control,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 2018, pp. 2496–2505.

[39] J. J. A. Calvo and I. Dusparic, “Heterogeneous multi-agent deep
reinforcement learning for traffic lights control,” in The 26th Irish
Conference on Artificial Intelligence and Cognitive Science, 2018, pp.
1–12.

20

[40] L. Li, Y. Lv, and F.-Y. Wang, “Traffic signal timing via deep reinforce-
ment learning,” IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 3,
pp. 247–254, 2016.

[41] N. Casas, “Deep deterministic policy gradient for urban traffic light
control,” arXiv preprint arXiv:1703.09035, 2017.

[42] Y. Lin, X. Dai, L. Li, and F.-Y. Wang, “An efficient deep rein-
forcement learning model for urban traffic control,” arXiv preprint
arXiv:1808.01876, 2018.

[43] I. Jang, D. Kim, D. Lee, and Y. Son, “An agent-based simulation mod-
eling with deep reinforcement learning for smart traffic signal control,”
in 2018 International Conference on Information and Communication
Technology Convergence (ICTC). IEEE, 2018, pp. 1028–1030.

[44] P. Zhou, T. Braud, A. Alhilal, P. Hui, and J. Kangasharju, “Erl: Edge
based reinforcement learning for optimized urban traffic light control.”

[45] C.-H. Wan and M.-C. Hwang, “Value-based deep reinforcement learn-
ing for adaptive isolated intersection signal control,” IET Intelligent
Transport Systems, vol. 12, no. 9, pp. 1005–1010, 2018.

[46] H. Ge, Y. Song, C. Wu, J. Ren, and G. Tan, “Cooperative deep q-
learning with q-value transfer for multi-intersection signal control,”
IEEE Access, 2019.

[47] M. Xu, J. Wu, L. Huang, R. Zhou, T. Wang, and D. Hu, “Network-wide
traffic signal control based on the discovery of critical nodes and deep
reinforcement learning,” Journal of Intelligent Transportation Systems,
pp. 1–10, 2018.

[48] W. Genders, “Deep reinforcement learning adaptive traffic signal
control,” Ph.D. dissertation, 2018.

[49] E. van der Pol, “Deep reinforcement learning for coordination in traffic
light control,” Master’s thesis, University of Amsterdam, 2016.

[50] M. B. Natafgi, M. Osman, A. S. Haidar, and L. Hamandi, “Smart traffic
light system using machine learning,” in 2018 IEEE International
Multidisciplinary Conference on Engineering Technology (IMCET).
IEEE, 2018, pp. 1–6.

[51] M. Wiering, J. Vreeken, J. Van Veenen, and A. Koopman, “Simulation
and optimization of traffic in a city,” in IEEE Intelligent Vehicles
Symposium, 2004. IEEE, 2004, pp. 453–458.

[52] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–
simulation of urban mobility: an overview,” in Proceedings of SIMUL
2011, The Third International Conference on Advances in System
Simulation. ThinkMind, 2011.

[53] J. Casas, J. L. Ferrer, D. Garcia, J. Perarnau, and A. Torday, “Traf-
fic simulation with aimsun,” in Fundamentals of traffic simulation.
Springer, 2010, pp. 173–232.

[54] G. D. Cameron and G. I. Duncan, “Paramicsparallel microscopic
simulation of road traffic,” The Journal of Supercomputing, vol. 10,
no. 1, pp. 25–53, 1996.

[55] M. Fellendorf and P. Vortisch, “Microscopic traffic flow simulator
vissim,” in Fundamentals of traffic simulation. Springer, 2010, pp.
63–93.

[56] T. L. Thorpe and C. W. Anderson, “Traffic light control using sarsa
with three state representations,” Citeseer, Tech. Rep., 1996.

[57] B. Abdulhai, R. Pringle, and G. J. Karakoulas, “Reinforcement learning
for true adaptive traffic signal control,” Journal of Transportation
Engineering, vol. 129, no. 3, pp. 278–285, 2003.

[58] E. Camponogara and W. Kraus, “Distributed learning agents in urban
traffic control,” in Portuguese Conference on Artificial Intelligence.
Springer, 2003, pp. 324–335.

[59] K. Wen, S. Qu, and Y. Zhang, “A stochastic adaptive control model
for isolated intersections,” in 2007 IEEE International Conference on
Robotics and Biomimetics (ROBIO). IEEE, 2007, pp. 2256–2260.

[60] S. El-Tantawy and B. Abdulhai, “An agent-based learning towards de-
centralized and coordinated traffic signal control,” in 13th International
IEEE Conference on Intelligent Transportation Systems. IEEE, 2010,
pp. 665–670.

[61] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Design of reinforce-
ment learning parameters for seamless application of adaptive traffic
signal control,” Journal of Intelligent Transportation Systems, vol. 18,
no. 3, pp. 227–245, 2014.

[62] L. Shoufeng, L. Ximin, and D. Shiqiang, “Q-learning for adaptive
traffic signal control based on delay minimization strategy,” in 2008
IEEE International Conference on Networking, Sensing and Control.
IEEE, 2008, pp. 687–691.

[63] S. Touhbi, M. A. Babram, T. Nguyen-Huu, N. Marilleau, M. L. Hbid,
C. Cambier, and S. Stinckwich, “Adaptive traffic signal control: Explor-
ing reward definition for reinforcement learning,” Procedia Computer
Science, vol. 109, pp. 513–520, 2017.

[64] Y. K. Chin, L. K. Lee, N. Bolong, S. S. Yang, and K. T. K. Teo,
“Exploring q-learning optimization in traffic signal timing plan man-
agement,” in 2011 Third International Conference on Computational
Intelligence, Communication Systems and Networks. IEEE, 2011, pp.
269–274.

[65] M. Wiering, “Multi-agent reinforcement learning for traffic light con-
trol,” in Machine Learning: Proceedings of the Seventeenth Interna-
tional Conference (ICML’2000), 2000, pp. 1151–1158.

[66] M. Steingrover, R. Schouten, S. Peelen, E. Nijhuis, B. Bakker et al.,
“Reinforcement learning of traffic light controllers adapting to traffic
congestion.” in BNAIC. Citeseer, 2005, pp. 216–223.

[67] J. Iša, J. Kooij, R. Koppejan, and L. Kuijer, “Reinforcement learning of
traffic light controllers adapting to accidents,” Design and Organisation
of Autonomous Systems, pp. 1–14, 2006.

[68] L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis, “Multiagent rein-
forcement learning for urban traffic control using coordination graphs,”
in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2008, pp. 656–671.

[69] B. Bakker, S. Whiteson, L. Kester, and F. C. Groen, “Traffic light
control by multiagent reinforcement learning systems,” in Interactive
Collaborative Information Systems. Springer, 2010, pp. 475–510.

[70] D. Houli, L. Zhiheng, and Z. Yi, “Multiobjective reinforcement learning
for traffic signal control using vehicular ad hoc network,” EURASIP
journal on advances in signal processing, vol. 2010, no. 1, p. 724035,
2010.

[71] T. Brys, T. T. Pham, and M. E. Taylor, “Distributed learning and multi-
objectivity in traffic light control,” Connection Science, vol. 26, no. 1,
pp. 65–83, 2014.

[72] M. E. Taylor, M. Jain, P. Tandon, M. Yokoo, and M. Tambe, “Dis-
tributed on-line multi-agent optimization under uncertainty: Balancing
exploration and exploitation,” Advances in Complex Systems, vol. 14,
no. 03, pp. 471–528, 2011.

[73] M. A. Khamis, W. Gomaa, and H. El-Shishiny, “Multi-objective traffic
light control system based on bayesian probability interpretation,” in
2012 15th International IEEE Conference on Intelligent Transportation
Systems. IEEE, 2012, pp. 995–1000.

[74] M. A. Khamis and W. Gomaa, “Enhanced multiagent multi-objective
reinforcement learning for urban traffic light control,” in 2012 11th In-
ternational Conference on Machine Learning and Applications, vol. 1.
IEEE, 2012, pp. 586–591.

[75] G. W. Khamis, Mohamed A, “Adaptive multi-objective reinforcement
learning with hybrid exploration for traffic signal control based on
cooperative multi-agent framework,” Engineering Applications of Ar-
tificial Intelligence, vol. 29, pp. 134–151, 2014.

[76] S.-B. Cools, C. Gershenson, and B. DHooghe, “Self-organizing traffic
lights: A realistic simulation,” in Advances in applied self-organizing
systems. Springer, 2013, pp. 45–55.

[77] J. Jin and X. Ma, “A multi-objective agent-based control approach with
application in intelligent traffic signal system,” IEEE Transactions on
Intelligent Transportation Systems, 2019.

[78] B. S. Prashanth, LA, “Reinforcement learning with average cost
for adaptive control of traffic lights at intersections,” in 2011 14th
International IEEE Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2011, pp. 1640–1645.

[79] L. Prashanth and S. Bhatnagar, “Reinforcement learning with function
approximation for traffic signal control,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 12, no. 2, pp. 412–421, 2011.

[80] T. T. Pham, T. Brys, and M. E. Taylor, “Learning coordinated traffic
light control,” in Proceedings of the Adaptive and Learning Agents
workshop (at AAMAS-13), vol. 10. IEEE, 2013, pp. 1196–1201.

[81] M. Abdoos, N. Mozayani, and A. L. Bazzan, “Hierarchical control of
traffic signals using q-learning with tile coding,” Applied intelligence,
vol. 40, no. 2, pp. 201–213, 2014.

[82] I. Arel, C. Liu, T. Urbanik, and A. Kohls, “Reinforcement learning-
based multi-agent system for network traffic signal control,” IET
Intelligent Transport Systems, vol. 4, no. 2, pp. 128–135, 2010.

[83] S. El-Tantawy and B. Abdulhai, “Multi-agent reinforcement learning
for integrated network of adaptive traffic signal controllers (marlin-
atsc),” in 2012 15th International IEEE Conference on Intelligent
Transportation Systems. IEEE, 2012, pp. 319–326.

[84] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent rein-
forcement learning for integrated network of adaptive traffic signal
controllers (marlin-atsc): methodology and large-scale application on
downtown toronto,” IEEE Transactions on Intelligent Transportation
Systems, vol. 14, no. 3, pp. 1140–1150, 2013.

21

[85] A. a. Salkham, R. Cunningham, A. Garg, and V. Cahill, “A collab-
orative reinforcement learning approach to urban traffic control opti-
mization,” in Proceedings of the 2008 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology-
Volume 02. IEEE Computer Society, 2008, pp. 560–566.

[86] S. Richter et al., “Learning road traffic control: towards practical traffic
control using policy gradients,” 2006.

[87] H. A. Aziz, F. Zhu, and S. V. Ukkusuri, “Learning-based traffic signal
control algorithms with neighborhood information sharing: An appli-
cation for sustainable mobility,” Journal of Intelligent Transportation
Systems, vol. 22, no. 1, pp. 40–52, 2018.

[88] M. Aslani, M. S. Mesgari, and M. Wiering, “Adaptive traffic signal
control with actor-critic methods in a real-world traffic network with
different traffic disruption events,” Transportation Research Part C:
Emerging Technologies, vol. 85, pp. 732–752, 2017.

[89] L.-H. Xu, X.-H. Xia, and Q. Luo, “The study of reinforcement
learning for traffic self-adaptive control under multiagent markov game
environment,” Mathematical Problems in Engineering, vol. 2013, 2013.

[90] M. Abdoos, N. Mozayani, and A. L. Bazzan, “Traffic light control
in non-stationary environments based on multi agent q-learning,” in
2011 14th International IEEE conference on intelligent transportation
systems (ITSC). IEEE, 2011, pp. 1580–1585.

[91] P. Balaji, X. German, and D. Srinivasan, “Urban traffic signal control
using reinforcement learning agents,” IET Intelligent Transport Sys-
tems, vol. 4, no. 3, pp. 177–188, 2010.

[92] C. K. Keong, “The glide systemsingapore’s urban traffic control
system,” Transport reviews, vol. 13, no. 4, pp. 295–305, 1993.

[93] V. Cahill et al., “Soilse: A decentralized approach to optimization
of fluctuating urban traffic using reinforcement learning,” in 13th
International IEEE Conference on Intelligent Transportation Systems.
IEEE, 2010, pp. 531–538.

[94] S. Araghi, A. Khosravi, and D. Creighton, “Distributed q-learning
controller for a multi-intersection traffic network,” in International
Conference on Neural Information Processing. Springer, 2015, pp.
337–344.

[95] C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement learning: A
comprehensive overview,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 45, no. 3, pp. 385–398, 2015.

[96] T. Chu, S. Qu, and J. Wang, “Large-scale traffic grid signal control with
regional reinforcement learning,” in 2016 American Control Conference
(ACC). IEEE, 2016, pp. 815–820.

[97] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[98] W. Genders and S. Razavi, “Evaluating reinforcement learning state
representations for adaptive traffic signal control,” Procedia computer
science, vol. 130, pp. 26–33, 2018.

[99] M. Coşkun, A. Baggag, and S. Chawla, “Deep reinforcement learning
for traffic light optimization,” in 2018 IEEE International Conference
on Data Mining Workshops (ICDMW). IEEE, 2018, pp. 564–571.

[100] T. Nishi, K. Otaki, K. Hayakawa, and T. Yoshimura, “Traffic signal
control based on reinforcement learning with graph convolutional
neural nets,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2018, pp. 877–883.

[101] M. Riedmiller, “Neural fitted q iteration–first experiences with a data
efficient neural reinforcement learning method,” in European Confer-
ence on Machine Learning. Springer, 2005, pp. 317–328.

[102] T. Chu, J. Wang, L. Codecà, and Z. Li, “Multi-agent deep reinforcement
learning for large-scale traffic signal control,” IEEE Transactions on
Intelligent Transportation Systems, 2019.

[103] W. Genders and S. Razavi, “Asynchronous n-step q-learning adaptive
traffic signal control,” Journal of Intelligent Transportation Systems,
vol. 23, no. 4, pp. 319–331, 2019.

[104] T. Tan, F. Bao, Y. Deng, A. Jin, Q. Dai, and J. Wang, “Cooperative
deep reinforcement learning for large-scale traffic grid signal control,”
IEEE transactions on cybernetics, 2019.

[105] X.-Y. Liu, Z. Ding, S. Borst, and A. Walid, “Deep reinforcement learn-
ing for intelligent transportation systems,” 32nd Conference on Neural
Information Processing Systems (NIPS 2018), Montreal, Canada.,
2018.

[106] R. Zhang, A. Ishikawa, W. Wang, B. Striner, and O. Tonguz, “Intel-
ligent traffic signal control: Using reinforcement learning with partial
detection,” arXiv preprint arXiv:1807.01628, 2018.

[107] N. Xu, G. Zheng, K. Xu, Y. Zhu, and Z. Li, “Targeted knowledge
transfer for learning traffic signal plans,” in Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer, 2019, pp. 175–
187.

[108] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. Torr, P. Kohli,
and S. Whiteson, “Stabilising experience replay for deep multi-agent
reinforcement learning,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
1146–1155.

[109] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” arXiv preprint arXiv:1506.02438, 2015.

[110] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-
inforcement learning in large discrete action spaces,” arXiv preprint
arXiv:1512.07679, 2015.

[111] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforce-
ment learning framework for autonomous driving,” Electronic Imaging,
vol. 2017, no. 19, pp. 70–76, 2017.

[112] W. Xia, H. Li, and B. Li, “A control strategy of autonomous vehicles
based on deep reinforcement learning,” in 2016 9th International
Symposium on Computational Intelligence and Design (ISCID), vol. 2.
IEEE, 2016, pp. 198–201.

[113] X. Xiong, J. Wang, F. Zhang, and K. Li, “Combining deep reinforce-
ment learning and safety based control for autonomous driving,” arXiv
preprint arXiv:1612.00147, 2016.

[114] S. Sharifzadeh, I. Chiotellis, R. Triebel, and D. Cremers, “Learning to
drive using inverse reinforcement learning and deep q-networks,” arXiv
preprint arXiv:1612.03653, 2016.

[115] C.-J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J.
Kochenderfer, “Combining planning and deep reinforcement learning
in tactical decision making for autonomous driving,” arXiv preprint
arXiv:1905.02680, 2019.

[116] C.-J. Hoel, K. Wolff, and L. Laine, “Automated speed and lane change
decision making using deep reinforcement learning,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 2148–2155.

[117] H. Chae, C. M. Kang, B. Kim, J. Kim, C. C. Chung, and J. W. Choi,
“Autonomous braking system via deep reinforcement learning,” in
2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2017, pp. 1–6.

[118] T. Shi, P. Wang, X. Cheng, and C.-Y. Chan, “Driving decision and
control for autonomous lane change based on deep reinforcement
learning,” arXiv preprint arXiv:1904.10171, 2019.

[119] J. Wang, Q. Zhang, D. Zhao, and Y. Chen, “Lane change decision-
making through deep reinforcement learning with rule-based con-
straints,” arXiv preprint arXiv:1904.00231, 2019.

[120] Y. Ye, X. Zhang, and J. Sun, “Automated vehicles behavior decision
making using deep reinforcement learning and high-fidelity simulation
environment,” Transportation Research Part C: Emerging Technolo-
gies, vol. 107, pp. 155–170, 2019.

[121] K. Makantasis, M. Kontorinaki, and I. Nikolos, “Deep reinforcement-
learning-based driving policy for autonomous road vehicles,” IET
Intelligent Transport Systems, 2019.

[122] C. Yu, X. Wang, X. Xu, M. Zhang, H. Ge, J. Ren, L. Sun, B. Chen, and
G. Tan, “Distributed multiagent coordinated learning for autonomous
driving in highways based on dynamic coordination graphs,” IEEE
Transactions on Intelligent Transportation Systems, 2019.

[123] L. Qian, X. Xu, Y. Zeng, and J. Huang, “Deep, consistent behavioral
decision making with planning features for autonomous vehicles,”
Electronics, vol. 8, no. 12, p. 1492, 2019.

[124] M. Zhou, Y. Yu, and X. Qu, “Development of an efficient driving strat-
egy for connected and automated vehicles at signalized intersections:
A reinforcement learning approach,” IEEE Transactions on Intelligent
Transportation Systems, 2019.

[125] B. Osiński, A. Jakubowski, P. Miłoś, P. Zikecina, C. Galias, and
H. Michalewski, “Simulation-based reinforcement learning for real-
world autonomous driving,” arXiv preprint arXiv:1911.12905, 2019.

[126] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[127] W. Huang, F. Braghin, and S. Arrigoni, “Autonomous vehicle driving
via deep deterministic policy gradient,” in ASME 2019 International
Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference. American Society of Mechanical
Engineers Digital Collection, 2019.

[128] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 2034–2039.

22

[129] M. M. Minderhoud and P. H. Bovy, “Extended time-to-collision
measures for road traffic safety assessment,” Accident Analysis &
Prevention, vol. 33, no. 1, pp. 89–97, 2001.

[130] A. R. Kreidieh, C. Wu, and A. M. Bayen, “Dissipating stop-and-go
waves in closed and open networks via deep reinforcement learning,”
in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2018, pp. 1475–1480.

[131] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning, 2015, pp. 1889–1897.

[132] B. Chalaki, L. Beaver, B. Remer, K. Jang, E. Vinitsky, A. Bayen, and
A. A. Malikopoulos, “Zero-shot autonomous vehicle policy transfer:
From simulation to real-world via adversarial learning,” arXiv preprint
arXiv:1903.05252, 2019.

[133] K. Jang, E. Vinitsky, B. Chalaki, B. Remer, L. Beaver, A. A. Ma-
likopoulos, and A. Bayen, “Simulation to scaled city: zero-shot policy
transfer for traffic control via autonomous vehicles,” in Proceedings
of the 10th ACM/IEEE International Conference on Cyber-Physical
Systems. ACM, 2019, pp. 291–300.

[134] F. Belletti, D. Haziza, G. Gomes, and A. M. Bayen, “Expert level
control of ramp metering based on multi-task deep reinforcement
learning,” IEEE Transactions on Intelligent Transportation Systems,
vol. 19, no. 4, pp. 1198–1207, 2018.

[135] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous control,”
in International Conference on Machine Learning, 2016, pp. 1329–
1338.

[136] H. Chaoui, H. Gualous, L. Boulon, and S. Kelouwani, “Deep rein-
forcement learning energy management system for multiple battery
based electric vehicles,” in 2018 IEEE Vehicle Power and Propulsion
Conference (VPPC). IEEE, 2018, pp. 1–6.

[137] Y. Wu, H. Tan, J. Peng, H. Zhang, and H. He, “Deep reinforcement
learning of energy management with continuous control strategy and
traffic information for a series-parallel plug-in hybrid electric bus,”
Applied Energy, vol. 247, pp. 454–466, 2019.

[138] Y. Hu, W. Li, K. Xu, T. Zahid, F. Qin, and C. Li, “Energy management
strategy for a hybrid electric vehicle based on deep reinforcement
learning,” Applied Sciences, vol. 8, no. 2, p. 187, 2018.

[139] T. Markel, A. Brooker, T. Hendricks, V. Johnson, K. Kelly, B. Kramer,
M. OKeefe, S. Sprik, and K. Wipke, “Advisor: a systems analysis tool
for advanced vehicle modeling,” Journal of power sources, vol. 110,
no. 2, pp. 255–266, 2002.

[140] Y. Wu, H. Tan, and B. Ran, “Differential variable speed limits control
for freeway recurrent bottlenecks via deep reinforcement learning,”
arXiv preprint arXiv:1810.10952, 2018.

[141] Y. Wu, H. Tan, Z. Jiang, and B. Ran, “Es-ctc: A deep neuroevolution
model for cooperative intelligent freeway traffic control,” arXiv preprint
arXiv:1905.04083, 2019.

[142] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv
preprint arXiv:1703.03864, 2017.

[143] V. Pandey and S. D. Boyles, “Multiagent reinforcement learning
algorithm for distributed dynamic pricing of managed lanes,” in 2018
21st International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2018, pp. 2346–2351.

[144] J. R. Kok and N. Vlassis, “Collaborative multiagent reinforcement
learning by payoff propagation,” Journal of Machine Learning Re-
search, vol. 7, no. Sep, pp. 1789–1828, 2006.

[145] V. Pandey, E. Wang, and S. D. Boyles, “Deep reinforcement learning
algorithm for dynamic pricing of express lanes with multiple access
locations,” arXiv preprint arXiv:1909.04760, 2019.

[146] U. Gunarathna, H. Xie, E. Tanin, S. Karunasekara, and R. Borovica-
Gajic, “Dynamic graph configuration with reinforcement learn-
ing for connected autonomous vehicle trajectories,” arXiv preprint
arXiv:1910.06788, 2019.

[147] K. Min, H. Kim, and K. Huh, “Deep distributional reinforcement learn-
ing based high-level driving policy determination,” IEEE Transactions
on Intelligent Vehicles, vol. 4, no. 3, pp. 416–424, 2019.

[148] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and
D. Lange, “Unity: A general platform for intelligent agents,” arXiv
preprint arXiv:1809.02627, 2018.

[149] L. Schultz and V. Sokolov, “Deep reinforcement learning for dynamic
urban transportation problems,” arXiv preprint arXiv:1806.05310,
2018.

[150] G. Bacchiani, D. Molinari, and M. Patander, “Microscopic traffic
simulation by cooperative multi-agent deep reinforcement learning,”
arXiv preprint arXiv:1903.01365, 2019.

[151] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner, “Torcs, the open racing car simulator,” Software available
at http://torcs. sourceforge. net, vol. 4, no. 6, 2000.

[152] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of go without human knowledge,” Nature, vol. 550, no. 7676, p.
354, 2017.

[153] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review
E, vol. 62, no. 2, p. 1805, 2000.

[154] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model
mobil for car-following models,” Transportation Research Record, vol.
1999, no. 1, pp. 86–94, 2007.

[155] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing func-
tion approximation error in actor-critic methods,” arXiv preprint
arXiv:1802.09477, 2018.

[156] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” arXiv preprint arXiv:1711.03938,
2017.

[157] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. E. Gonzalez, M. I. Jordan, and I. Stoica, “RLlib: Abstractions for
distributed reinforcement learning,” in International Conference on
Machine Learning (ICML), 2018.

[158] C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow:
A modular learning framework for autonomy in traffic,” arXiv preprint
arXiv:1710.05465, 2017.

Ammar Haydari received the B.Sc. degree in Elec-
trical Engineering from Uludag University, Istanbul,
Turkey, in 2014. He is currently a M.Sc. student
at the Electrical Engineering Department at the
University of South Florida, Tampa. His research
interests include intelligent transportation systems
and machine learning.

Yasin Yılmaz (S’11-M’14) received the Ph.D. de-
gree in Electrical Engineering from Columbia Uni-
versity, New York, NY, in 2014. He is currently
an Assistant Professor of Electrical Engineering at
the University of South Florida, Tampa. He received
the Collaborative Research Award from Columbia
University in 2015. His research interests include
statistical signal processing, machine learning, and
their applications to cybersecurity, cyber-physical
systems, IoT networks, transportation systems, en-
ergy systems, and communication systems.

	I Introduction
	I-A Contributions
	I-B Organization

	II Related Work
	III Deep RL: An Overview
	III-A Reinforcement Learning
	III-A1 Markov Decision Process
	III-A2 Value-based RL
	III-A3 Policy-based RL
	III-A4 Multi-Agent RL

	III-B Deep Reinforcement Learning
	III-B1 Deep Q-Network
	III-B2 Double Dueling DQN
	III-B3 Actor Critic Methods
	III-B4 Asynchronous Methods

	III-C Summary of Deep RL

	IV Deep RL Settings for TSC
	IV-A State
	IV-B Action
	IV-C Reward
	IV-D Neural Network Structure
	IV-E Simulation environments

	V Deep RL Applications for TSC
	V-A Standard RL applications
	V-A1 Single agent RL
	V-A2 Multi-agent RL

	V-B Deep RL applications
	V-B1 Single agent deep RL
	V-B2 Multi-agent deep RL

	VI Deep RL for Other ITS Applications
	VI-A Autonomous Driving
	VI-B Energy Management
	VI-C Road Control
	VI-D Various ITS Applications

	VII Challenges and Open Research questions
	VIII Conclusion
	References
	Biographies
	Ammar Haydari
	Yasin Yılmaz

