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Abstract

The ubiquitous diffusion of cloud computing requires suitable management policies to face the workload while guaranteeing

quality constraints and mitigating costs. The typical trade-off is between the used power and the adherence to a service-level

metric subscribed by customers. To this aim, a possible idea is to use an optimization-based placement mechanism to select the

servers where to deploy virtual machines. Unfortunately, high packing factors could lead to performance and security issues,

e.g., virtual machines can compete for hardware resources or collude to leak data. Therefore, we introduce a multi-objective

approach to compute optimal placement strategies considering different goals, such as the impact of hardware outages, the

power required by the datacenter, and the performance perceived by users. Placement strategies are found by using a deep

reinforcement learning framework to select the best placement heuristic for each virtual machine composing the workload.

Results indicate that our method outperforms bin packing heuristics widely used in the literature when considering either

synthetic or real workloads.

Keywords Deep reinforcement learning · Multi-objective optimization · Virtual machine placement

1 Introduction

The cloud paradigm was originally introduced to access com-

puting resources on demand, and nowadays it has become

the foundation of different services. Servers within a data-

center are used to deliver applications and stream contents
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to an Internet-wide user population, host and process big-

data-like information, or provide computational assets to

other layers located within telcos and industrial settings. This

trend culminates in the Everything-as-a-Service approach,

which continues to grow and also accounts for issues in

terms of security, privacy and confidentiality, economical

costs, energetic usages, and environmental footprints (Duan

et al. 2015; Gaggero and Caviglione 2019). As a conse-

quence, modern cloud datacenters should be able to satisfy

a variety of performance goals. For instance, users should

not perceive degradation of the subscribed service-level

agreement (SLA). At the same time, the owner of the comput-

ing infrastructure aims at minimizing capital and operating

expenditures, e.g., in terms of hardware and power usage.

Unfortunately, such goals are often conflicting, as costs are

primarily tamed by reducing the needed resources, which

could lead to overloaded servers or multiple processes shar-

ing the same hardware, thus reducing overall efficiency.

In this perspective, the literature abounds in works propos-

ing techniques for the optimization of cloud datacenters.

A possible approach exploits the ability of CPUs to vary

their working frequency at run-time to match the workload

(Guenter et al. 2011). However, this prevents from taking

advantage of the flexibility offered by cloud frameworks built
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on top of servers partitioned into virtual machines (VMs)

and from the use of middleware layers to control access to

resources (Ghobaei-Arani et al. 2019). Hence, to pursue the

vision of efficient cloud datacenters, the preferred solution

aims at finding the best mapping of VMs over servers or other

computing resources, referred to as physical machines (PMs)

in the following, according to some performance criteria. In

general, two approaches can be adopted (Gaggero and Cav-

iglione 2019). The first one is called consolidation and allows

to periodically rearrange VMs to match or compensate fluc-

tuations of the workload (see Xu et al. 2017 for a survey)

or to pursue a trade-off between energy and quality metrics

(Li et al. 2020). However, as detailed in Zhang et al. (2018),

live migration of VMs poses various technological and per-

formance challenges, and it requires non-negligible network

bandwidth and computing resources. For this reason, another

approach called placement has been developed to prevent

inefficient allocations when VMs are firstly created on PMs

to fulfill requests from users (Usmani and Singh 2016).

The use of optimized placement mechanisms proved to be

successful in a broad set of use cases, including production-

quality scenarios (Ahmad et al. 2015). A typical solution

exploits heuristics based on bin packing (Panigrahy et al.

2011). In fact, VM placement can be modeled as a bin pack-

ing problem, where VMs and PMs are objects and bins,

respectively. For instance, the first fit heuristic allows to

place VMs over PMs in an efficient manner, but at the price

of too aggressive packings causing VMs to interfere with

each others. More refined approaches like dot product and

norm2 can be used to reduce such a drawback, as they weight

different performance metrics when computing the VM-to-

PM mapping (e.g., the energetic footprints vs. the amount of

resources delivered to users) (Song et al. 2013; Srikantaiah

et al. 2008). Yet, in the presence of multiple and conflicting

goals, heuristics based on bin packing principles could be

inefficient. Thus, refinements have been proposed to endow

best-fit algorithms with prediction capabilities to explicitly

consider energy efficiency and SLA violations (Ghobaei-

Arani et al. 2017, 2018). Other solutions exploit optimization

to guarantee a more fine-grained control over the trade-off

between placement actions and performance objectives, e.g.,

used power, reliability of the hardware, and mitigation of

information leakage between VMs (Gaggero and Caviglione

2019; Caviglione and Gaggero 2021).

Summarizing, VM placement is an interplay of different

objectives, constraints, and technological domains. Machine

learning techniques can tame such a complexity, owing to

their capability of finding “hidden” relationships among the

available data and therefore generate placement actions that

may be difficult to be found using classical optimization tools

or heuristics based on common sense. Machine learning can

be used either to design new VM placement approaches or

to enhance the capabilities of existing heuristics. Toward this

end, in this paper we propose a mechanism for VM placement

based on deep reinforcement learning (DRL) (Arulkumaran

et al. 2017). Specifically, we consider a decision maker that,

after a proper training, is able to select the most suitable

heuristic to compute the placement for each VM requested

by end users.

To the best of our knowledge, this paper is the first one

using DRL to implement a decision maker solving a multi-

objective VM placement problem. This novel multi-objective

approach represents the main contribution of the paper.

To evaluate its effectiveness, comparisons against solutions

widely adopted in the literature and real-world scenarios are

presented, including the use of workload traces collected in

a production-quality cloud datacenter.

The rest of this paper is structured as follows. Section 2

reviews the literature on placement techniques with emphasis

on those leveraging machine learning. Section 3 formalizes

VM placement as a multi-objective combinatorial problem.

Section 4 discusses the proposed DRL-based approach. Sec-

tion 5 presents numerical results obtained via a simulation

campaign. Section 6 concludes the paper and showcases pos-

sible future research directions.

2 Related work

Despite using consolidation, placement, or a combina-

tion of both techniques to enforce the performances of

Infrastructure-as-a-Service (IaaS) cloud datacenters, earlier

works mainly focused on the search for a trade-off between

the power needed to operate the hardware and the qual-

ity perceived by users (Kaur and Chana 2015). However,

the complexity of virtualized environments and the pro-

gressive convergence of cloud with wireless and vehicular

networks, as well as the need of supporting an Internet-

wide user population while guaranteeing privacy and security

requirements, impose not to limit the scope of optimization

to energetic aspects, but also to jointly pursue several perfor-

mance goals (Caviglione et al. 2017; Gaggero and Caviglione

2019; Caviglione and Gaggero 2021). Large-scale installa-

tions could also require to explicitly consider the internal

network architecture, thus making the problem of finding

suitable mappings between VMs and PMs more complex

(Malekloo and Kara 2014).

Owing to the pervasive nature of IaaS technologies, many

approaches taking advantage of a variety of techniques

have been proposed in the last decade to address the VM

placement problem (Masdari et al. 2016). For instance, we

mention model predictive control to exploit future infor-

mation inferred from the incoming workload of requests

(Gaggero and Caviglione 2019), ant colony optimization to

obtain Pareto-optimal solutions of multi-objective problems

considering power, resource usage, and quality of service
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requirements (Malekloo and Kara 2014; Gao et al. 2013),

as well as bio-inspired methodologies (Masdari et al. 2019)

and ad hoc heuristics to prevent that an inefficient use of the

network bandwidth voids the applicability in real-world use

cases (Farzai et al. 2020).

A recent trend exploits machine learning to develop scal-

able, proactive, and efficient frameworks to optimize IaaS

deployments (Ismaeel et al. 2018). In this vein, Farahnakian

et al. (2014) exploit Q-learning, a reinforcement learning

(Sutton and Barto 2018) algorithm, to infer the power model

of a server that can be put in the sleep state prior migrating

the hosted VMs. Another effort to address the VM placement

problem with reinforcement learning has been carried out in

Qin et al. (2020), where Q-learning is used to optimize two

conflicting objectives, while finding an approximation of the

Pareto front. In more detail, the authors consider “continu-

ous” CPU and memory resources, as opposed to our work,

where we construct a framework based on the allocation of a

fixed, limited number of VM classes. Moreover, we consider

multiple conflicting objectives instead of only focusing on

energy requirements and resource wastage. Unfortunately,

this class of approaches is often affected by slow conver-

gence. To face such issue, Shaw et al. (2017) propose to

use an expert advice as part of the learning model to let the

agent learn in a more rapid manner. A limit of Q-learning

that prevents its adoption in large-scale IaaS deployments is

the “curse of dimensionality,” i.e., an exponential growth of

the complexity with the size of the datacenter.

Another technique widely used for the management of

complex computing and networking infrastructures is DRL,

which overcomes the curse of dimensionality by using

neural networks as function approximators. By enhancing

reinforcement learning techniques with deep learning capa-

bilities for representing the state of the datacenter, it is

possible to tackle large instances of the VM placement prob-

lem. A significant example is given in Liu et al. (2017), where

a method to schedule jobs while maximizing the number of

machines that can be shut down to save power is presented.

However, it does not take advantage of VMs since it considers

the server as a monolithic entity handling a fixed amount of

jobs. A framework exploiting DRL to solve multi-objective

problems in large-scale datacenters is discussed in Wang et al.

(2019). In this case, the authors manage simultaneous work-

loads offered to an IaaS while pursuing time completion and

cost goals. Even if there are no prior works dealing with

DRL for the computation of VM placement strategies in dat-

acenters, the literature includes many works witnessing its

flexibility to support the use of cloud computing in many

emerging and challenging scenarios. Among the others, we

mention the dynamic activation of fog nodes in green radio

access networks (Sun et al. 2018), the offload of cloud devices

(Chen et al. 2018), and the task distribution in vehicular net-

works (Zhao et al. 2020).

The use of machine learning is not limited to the com-

putation of proper VM allocations to prevent wastage of

resources. For instance, Xu et al. (2012) propose a framework

for the autonomic configuration of servers and appliances to

find the best trade-off between utilization and SLA levels. A

further use of mechanisms based on artificial intelligence is

presented by Kumar and Singh (2018), where predictions of

the workload offered to the datacenter are carried out. This

information is critical for different aspects, ranging from

planning of resources and maintenance cycles, to feeding

frameworks for computing VM-to-PM mappings. Another

example can be found in Yuan et al. (2020), where future

predictions of requests are exploited to perform placement

in geographically distributed nodes, also by considering mul-

tiple levels of computation, i.e., cloud and edge. Moreover,

the authors take into account mobility of users by minimiz-

ing the impact of network-oriented metrics like the access

latency.

Another important tool to optimize the resource utiliza-

tion of datacenters exploits metaheuristic approaches (see,

e.g., Tsai and Rodrigues 2013 for a comprehensive survey on

their application to cloud scheduling and Donyagard Vahed

et al. 2019 for a review on multi-objective placement mech-

anisms). The work of Ferdaus et al. (2014) proposes an ant

colony optimization metaheuristic to solve VM consolida-

tion problems. We point out that, differently from our work,

the authors do not consider placement and they focus on the

allocation of RAM, CPU, and network I/O rather than pur-

suing more general goals.

3 Definition of the VM placement problem

Along the lines of Gaggero and Caviglione (2019), we con-

sider a datacenter running an IaaS made up of M PMs. Each

server is assumed to host at most N VMs, modeled as a bundle

of CPU, disk, and network resources (Ma et al. 2012; Bobroff

et al. 2007; Gaggero and Caviglione 2016). Their utilization

is quantized to certain values depending on predefined ser-

vice plans (Mills et al. 2011). This allows to partition VMs in

a number S of classes that differ in the amount of resources

available to users (Sugerman et al. 2001; Papadopoulos and

Maggio 2015; Gaggero and Caviglione 2016). According to

the IaaS paradigm, users request a desired number of VMs

with a given lifetime. A VM is said to be “deployed” if it has

been successfully created over a PM. As also done by Lango

(2014) and by Gaggero and Caviglione (2019), we assume

that the datacenter can always satisfy all incoming requests.

As previously pointed out, the goal of the placement pro-

cedure is to select the most suitable PMs where to deploy

VMs requested by users, in order to optimize one or multi-

ple, often conflicting, objectives. The mapping between PMs

and VMs influences performances. If too many VMs are
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Fig. 1 Reference scenario for the VM placement problem

deployed on the same PM, they may compete one with the

others, thus reducing the overall amount of resources made

available through virtualization. This is usually referred to

as co-location interference. Moreover, PMs could become

temporarily unavailable due to hardware or software issues.

For instance, a PM may experience local outages or requir-

ing a reboot for software rejuvenation (Pearce et al. 2013;

Machida et al. 2012). As a consequence, all the hosted VMs

become unavailable as well. An additional feature to take

into account is the possible presence of applications requir-

ing to run VMs in a secure environment (Caron and Cornabas

2014; Jhawar et al. 2012). This may prevent the coexistence

of VMs running on the same PM.

Figure 1 portraits the reference scenario considered in this

paper and the overall system architecture. In more detail,

users produce a workload composed of new VM requests,

which are collected by the “Admission & placement” mod-

ule. The latter is in charge of buffering all VM requests at

each time step, and it implements a sort of admission con-

trol module, i.e., users are not able to directly instantiate

VMs or interact with low-level hardware composing the dat-

acenter. Then, this module determines the best placement for

requested VMs in PMs of the IaaS cloud datacenter.

We now formalize the considered multi-objective place-

ment problem as a sequence of optimization problems to be

solved to satisfy VM requests at different time instants.

3.1 The sequence of optimization problems

We consider a discrete-time representation of the IaaS data-

center, where snapshots of how VMs are mapped over PMs

are taken at discrete-time instants t = 1, . . . , T , with T

denoting a given time frame. At each time step, we assume to

have a number of new VM requests given by L t ∈ N. Accord-

ing to the online nature of the VM placement problem, we

assume that at time t all VMs requested up to t −1 have been

already deployed and that the L t new requests at time t are

known. The r th new VM requested by users at time t , where

r = 1, . . . , L t and t = 1, . . . , T , is represented through the

following input quantities:

• ŷt
r ∈ {1, . . . , S} is the class of the VM;

• ĉt
r ∈ [0, 1], d̂ t

r ∈ [0, 1], and n̂t
r ∈ [0, 1] are the percent-

ages of requested CPU, disk, and network, respectively;

• ât
r ∈ N is the VM lifetime;

• ŝt
r ∈ {0, 1} denotes the presence or absence of security

requirements if equal to 1 or 0, respectively.

As previously pointed out, PMs may suffer from hardware

or software issues. To take this into account, we introduce

the quantity gt
i ∈ [0, 1] for the i th PM, i = 1, . . . , M ,

t = 1, . . . , T , which represents the probability of having

it correctly running. It accounts for both outages and tempo-

rary unavailability due to software rejuvenation. Moreover,

we consider the heterogeneity of PMs available in the data-

center through the parameters bc
i ∈ (0, 1], bd

i ∈ (0, 1], and

bn
i ∈ (0, 1], i = 1, . . . , M , representing the percentages of

CPU, disk, and network capacity, respectively, of the i th PM

with respect to the most powerful PM in the datacenter, for

which the parameters are equal to 1.

To determine the best PM where to deploy new VMs

requested by users at each time step t = 1, . . . , T , we apply

the placement method described in Sect. 4 according to a

sequential approach that consists in placing the L t new VM

requests one at a time. This sequential approach may lead

to suboptimal allocations depending on the chosen order of

VMs, but it allows a fine granularity since it is possible to

select the most suitable placement method for each new VM

rather than applying the same criterion for all VMs requested

at a certain time step.

From time 1 to T , a sequence of T multi-objective opti-

mization problems have to be solved, and the solution of a

given problem influences the following ones. The “connec-

tion” among the various problems is established by proper

constraints, as discussed below. In more detail, let us denote

by Problem-(t) the multi-objective optimization problem that

has to be solved at time t to find the best PMs where to

deploy all the L t new VMs requested by users at the same

time step. A possible model for Problem-(t) can be found

in Gaggero and Caviglione (2019). However, in this paper

we introduce a novel formulation for Problem-(t) that con-

siders the sequence of VM assignments at time t . In this

new approach, VMs are selected one at a time to determine

the most appropriate placement decision. Figure 2 sketches

a sequence of optimization problems that have to be solved

at three generic time steps t , t + 1, and t + 2, together with

the sequential placement of VM requests within each prob-

lem. The order in which VMs are placed is chosen within the

optimization problem through suitable decision variables, as

detailed below.
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Fig. 2 Example of the sequence of optimization problems to be solved

to place new VM requests at the generic time steps t , t +1, and t +2. The

various problems are connected one with the others, and the solution of

a given problem influences the solution of the following ones. Within a

given problem, VM requests are in turn placed sequentially

Let us now focus on Problem-(t), where t = 1, . . . , T .

We introduce the following variables to represent the VM-

to-PM mapping, where i = 1, . . . , M, j = 1, . . . , N , and

r = 1, . . . , L t . To account for the aforementioned sequential

deployment of VMs, we denote the lth placement within

the t th optimization problem, where l = 1, . . . , L t and t =

1, . . . , T , with the superscripts l and t .

• y
l,t
i j ∈ {1, . . . , S + 1} is a discrete variable representing

the class of the j th VM on the i th PM. If it is not deployed,

y
l,t
i j = S + 1, i.e., S + 1 is a fictitious class denoting

a non-deployed VM, introduced to reduce the notation

overhead;

• c
l,t
i j ∈ [0, 1], d

l,t
i j ∈ [0, 1], and n

l,t
i j ∈ [0, 1] are real

variables denoting the percentages of CPU, disk, and net-

work, respectively, used by the j th VM on the i th PM.

For a non-deployed VM, such quantities are equal to 0;

• s
l,t
i j ∈ {0, 1} is a binary variable denoting the presence or

absence of security requirements for the j th VM on the

i th PM if equal to 1 or 0, respectively;

• a
l,t
i j ∈ N+ is an integer variable specifying the remaining

lifetime of the j th VM on the i th PM. When it is equal to

0, the VM is not deployed or it has completed its lifecycle;

• u
l,t
i j ∈ {0, 1} is a binary variable equal to 1 if a new VM is

deployed at time t as j th VM on the i th PM; otherwise,

it is equal to 0;

• v
l,t
r ∈ {0, 1} is a binary variable equal to 1 if the r th new

VM requested by users at time t is deployed. These vari-

ables implicitly determine the order in which requested

VMs are placed.

Since the various placement problems are solved sequen-

tially for each t = 1, . . . , T (see Fig. 2), when solving

Problem-(t) all the variables indexed by the superscript t −1

are fixed to the values obtained as solution of Problem-(t−1).

Problem-(t), t = 1, . . . , T , reads as follows.

max J t
α (1)

subject to

N
∑

j=1

c
l,t
i j ≤ bc

i , i = 1, . . . , M, l = 1, . . . , L t , (2)

N
∑

j=1

d
l,t
i j ≤ bd

i , i = 1, . . . , M, l = 1, . . . , L t , (3)

N
∑

j=1

n
l,t
i j ≤ bn

i , i = 1, . . . , M, l = 1, . . . , L t , (4)

N
∑

j=1

s
l,t
i j ≤ 1, i = 1, . . . , M, l = 1, . . . , L t , (5)

u
l,t
i j ≥ χ(a

l−1,t
i j ) − 1, i = 1, . . . , M,

j = 1, . . . , N , l = 1, . . . , L t , (6)

u
l,t
i j ≤ 1 − χ(a

l−1,t
i j ), i = 1, . . . , M,

j = 1, . . . , N , l = 1, . . . , L t , (7)

M
∑

i=1

N
∑

j=1

u
l,t
i j = 1, l = 1, . . . , L t , (8)

vl,t
r − vl−1,t

r ≥ 0, r = 1, . . . , L t , l = 1, . . . , L t , (9)

L t
∑

r=1

(

vl,t
r − vl−1,t

r

)

= 1, l = 1, . . . , L t , (10)

y
l,t
i j = y

l−1,t
i j + u

l,t
i j

L t
∑

r=1

ŷt
r

(

vl,t
r − vl−1,t

r

)

,

i = 1, . . . , M, j = 1, . . . , N , l = 1, . . . , L t , (11)

c
l,t
i j = c

l−1,t
i j + u

l,t
i j

L t
∑

r=1

ĉt
r

(

vl,t
r − vl−1,t

r

)

,

i = 1, . . . , M, j = 1, . . . , N , l = 1, . . . , L t , (12)

d
l,t
i j = d

l−1,t
i j + u

l,t
i j

L t
∑

r=1

d̂ t
r

(

vl,t
r − vl−1,t

r

)

,

i = 1, . . . , M, j = 1, . . . , N , l = 1, . . . , L t , (13)

n
l,t
i j = n

l−1,t
i j + u

l,t
i j

L t
∑

r=1

n̂t
r

(

vl,t
r − vl−1,t

r

)

,

i = 1, . . . , M, j = 1, . . . , N , l = 1, . . . , L t , (14)

s
l,t
i j = s

l−1,t
i j + u

l,t
i j

L t
∑

r=1

ŝt
r

(

vl,t
r − vl−1,t

r

)

,

i = 1, . . . , M, j = 1, . . . , N , l = 1, . . . , L t , (15)
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a
l,t
i j = a

l−1,t
i j + u

l,t
i j

L t
∑

r=1

ât
r

(

vl,t
r − vl−1,t

r

)

,

i = 1, . . . , M, j = 1, . . . , N , l = 1, . . . , L t , (16)

where J t
α is a suitable cost function that will be defined in

Sect. 3.2 and the function χ(·) is such that χ(z) = 1 if

z �= 0 and χ(z) = 0 otherwise. The solution of Problem-(t)

determines the allocation of all VMs requested by users at the

time step t . At time t + 1, a new optimization problem, i.e.,

Problem-(t + 1), has to be solved to find the best placement

of the VM requests at the same instant, and so on up to a

given decision horizon.

Let us now describe in detail the various constraints of

Problem-(t). Constraints (2), (3), and (4) ensure that the

amount of resources (in terms of CPU, disk, and network,

respectively) of each PMs is not exceeded. Equation (5)

accounts for the need of enforcing security requirements.

As said, VMs may need to run in a secured or isolated envi-

ronment to avoid information leakage or prevent attacks. In

other words, (5) guarantees that VMs with security require-

ments cannot be mixed on the same PM. Equations (6) and

(7) guarantee that only one VM of index j exists on the i th

PM. They are equality constraints of the kind u
l,t
i j = 0 if

χ(a
l−1,t
i j ) = 1, i.e., if another VM with the same pair (i, j)

is deployed; otherwise, they are trivially satisfied. Constraint

(8) ensures that, for a given l, a new VM requested at time

t is placed on one, and only one, PM. Equations (9) and

(10) guarantee that only one new VM is chosen to be placed

among those that have not yet been deployed for each value

of l, where l = 1, . . . , L t . Lastly, constraints (11)–(16) set

the values of the variables y
l,t
i j , c

l,t
i j , d

l,t
i j , n

l,t
i j , s

l,t
i j , and a

l,t
i j

according to the corresponding input quantities of the VM

chosen to be placed among those that are not yet deployed at

time t depending on the decision variables u
l,t
i j and v

l,t
r . The

variables y
l,t
i j , c

l,t
i j , d

l,t
i j , n

l,t
i j , s

l,t
i j , and a

l,t
i j represent a snapshot

of the VM-to-PM mapping after the placement of l VMs at

time t , which is related to the value after the placement of

l − 1 VMs through constraints (11)–(16).

Clearly, if l = 1 we have to define v
0,t
r in (9), (10) together

with y
0,t
i j , c

0,t
i j , d

0,t
i j , n

0,t
i j , s

0,t
i j , and a

0,t
i j in (6), (7), (11)–(16).

Concerning the former, we let v
0,t
r = 0 for all r = 1, . . . , L t ,

while the latter are equal to the values of the correspond-

ing variables obtained after the placement of all new VMs

requested by users at the previous time step, i.e., they are

obtained from the solution of Problem-(t −1), as follows for

t = 2, . . . , T :

y
0,t
i j = χ

(

a
L t−1,t−1
i j

)

y
L t−1,t−1
i j ,

i = 1, . . . , M, j = 1, . . . , N , (17)

c
0,t
i j = χ

(

a
L t−1,t−1
i j

)

c
L t−1,t−1
i j ,

i = 1, . . . , M, j = 1, . . . , N , (18)

d
0,t
i j = χ

(

a
L t−1,t−1
i j

)

d
L t−1,t−1
i j ,

i = 1, . . . , M, j = 1, . . . , N , (19)

n
0,t
i j = χ

(

a
L t−1,t−1
i j

)

n
L t−1,t−1
i j ,

i = 1, . . . , M, j = 1, . . . , N , (20)

s
0,t
i j = χ

(

a
L t−1,t−1
i j

)

s
L t−1,t−1
i j ,

i = 1, . . . , M, j = 1, . . . , N , (21)

a
0,t
i j = max

(

0, a
L t−1,t−1
i j − 1

)

,

i = 1, . . . , M, j = 1, . . . , N . (22)

According to the definition of the function χ(·), the right-

hand side of (17)–(21) is equal to 0 if a
L t−1,t−1
i j = 0, i.e., if

the j th VM on the i th PM has concluded its lifecycle or is not

deployed. Equation (22) accounts for the remaining lifetime

of VMs, which is decreased of one unit from time t − 1 to t .

The values of y
0,0
i j , c

0,0
i j , d

0,0
i j , n

0,0
i j , s

0,0
i j , and a

0,0
i j are given

initial conditions representing the initial state of the datacen-

ter.

For t = 1, . . . , T , Problem-(t) is a mixed-integer nonlin-

ear one with several unknowns and constraints even for small

production-quality datacenters. Therefore, finding a solution

is very computationally expensive, especially when comply-

ing with real-time requirements. The approach presented in

Sect. 4 uses a heuristic method based on DRL to obtain a

good approximate solution to the problem.

3.2 Goals of the placement procedure

In this section, we define the cost function J t
α of Problem-(t),

t = 1, . . . , T . Toward this end, the following three compet-

ing objectives may be identified for the considered placement

procedure: (i) minimize the effects of hardware/software

outages, (ii) minimize co-location interference, and (iii) min-

imize power consumption. A suitable trade-off among the

aforementioned goals has to be searched for, as pursuing

goals (i) and (ii) may lead to a placement of VMs requiring a

large amount of power due to the “spread” of VMs over PMs

needed to mitigate the effects of resources becoming unavail-

able due to malfunctions and co-location interference. On the

contrary, the search for an energy-aware placement through

goal (iii) may cause too aggressive packings of VMs over

PMs, with the consequence of poor fault tolerance proper-

ties in case of outages or many VMs aggressively competing

and wasting resources due to co-location interference.

The first goal regards the minimization of the effects of

hardware/software outages. Usually, they generate the so-

called churning behavior of PMs, which causes PMs entering

and leaving the pool of available servers due to hardware
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or network issues and software rejuvenation. Thus, for the

placement procedure, it is convenient to avoid deploying

VMs over unreliable PMs (i.e., any server i with a small gt
i )

as much as possible. In fact, if a PM becomes unavailable,

all the hosted VMs will become unavailable as well, thus

degrading the quality perceived by users or the subscribed

SLA. To minimize the effect of churn, the following quantity

has to be maximized:

ρ
l,t
i :=

N
∏

j=1

(

χ(a
l,t
i j ) gt

i + 1 − χ(a
l,t
i j )

)

,

i = 1, . . . , M, l = 1, . . . , L t , t = 1, . . . , T .

Of course, ρ
l,t
i ∈ [0, 1] for all i , l, and t . The rationale is

that the more VMs are deployed on the same PM, the higher

is the impact of churn. Therefore, ρ
l,t
i is low if the number

of VMs deployed over an unreliable PM is large. Instead, if

gt
i is close to 1 (i.e., the i th PM is more reliable), also ρ

l,t
i

approaches 1.

Concerning reduction of co-location interference, it is

known that the deployment of too many VMs over the same

PM may lead to contentions of the underlying resources, thus

reducing overall performances. To take this into account,

along the lines of Gaggero and Caviglione (2019) and

Caviglione and Gaggero (2021), we define an interference

matrix � ∈ [0, 1](S+1)×(S+1), whose elements θhk measure

the interference between the classes h and k of two VMs

deployed on the same PM. A value close to 0 models a large

interference between the classes h and k, while a number

close to 1 denotes a small interference. The overall inter-

ference experienced by the i th PM is measured through the

following quantity to be maximized:

η
l,t
i :=

1

N

N
∑

j=1

N
∏

z=1,z �= j

θ
y

l,t
i j y

l,t
i z

,

i = 1, . . . , M, l = 1, . . . , L t , t = 1, . . . , T .

We have η
l,t
i ∈ [0, 1], and the larger the interference, the

smaller the η
l,t
i .

Concerning minimization of power consumption, we

point out that the power required to operate a datacenter is

proportional to the number of active PMs, i.e., servers with

at least one running VM. In fact, a PM without active VMs

can be put in the sleep state to save power. We introduce

the following quantity measuring the number of PMs in the

datacenter with no running VMs:

ωl,t := M −

M
∑

i=1

χ

⎛

⎝

N
∑

j=1

a
l,t
i j

⎞

⎠ ,

l = 1, . . . , L t , t = 1, . . . , T .

Large values of ωl,t indicate a reduced power consumption.

Overall, the cost function J t
α to be maximized in Problem-

(t), accounting for the placement of all VMs requested by

users at time t , is the weighted sum of the previously defined

quantities, i.e.,

J t
α := α1

M
∑

i=1

ρ
L t ,t
i + α2

M
∑

i=1

η
L t ,t
i + α3 ωL t ,t ,

t = 1, . . . , T , (23)

where α1, α2, and α3 are given positive coefficients. The

subscript α denotes the parameterization of the cost function

with respect to such coefficients.

4 Multi-objective placement using deep
reinforcement learning

In this section, we describe the proposed heuristic approach

based on DRL to solve the VM placement problem stated in

Sect. 3. The goal of this method is the choice of the most

appropriate heuristic, among a set of possible alternatives, to

place each VM requested by users at the various time steps.

In the following, we refer to this approach as “DRL-based

VM placement,” or DRL-VMP for short.

As pointed out also in Sect. 2, DRL belongs to the fam-

ily of reinforcement learning methods, which are well suited

to dealing with sequential decision making problems like

the one introduced in Sect. 3. In more detail, they are based

on an agent interacting with an environment in discrete steps

through actions taken according to an observation of the state

of the environment. As the result of an action, the environ-

ment returns a reward, which is a scalar value measuring the

effectiveness of the action. The goal is the maximization of

the total reward computed as the sum of rewards obtained

at each iteration. Unlike supervised learning, rewards do not

provide a label for a correct or incorrect answer. Instead, they

only consist of a measure of the behavior of the agent, which

has to gain insight into the environment through exploration

in order to take better actions iteration after iteration. Usually,

reinforcement learning approaches model the environment

as a Markov decision process (MDP) M = (X ,A, p, x0)

(Szepesvári 2010), where X is the observation space, A is

the action space, p is the distribution describing the MDP

dynamics, and x0 is the observation of the state at t = 0.

If the dynamics p is known and X , A are finite, countable

sets with low cardinality, then value iteration or policy itera-

tion methods (Pashenkova et al. 1996) can be used as tabular

approaches to solve the MDP, i.e., to find an optimal policy

for the agent. However, if one or more of such assumptions

do not hold, we have to resort to approximate techniques such

as deep Q-learning or policy gradient-based methods (Ivanov
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Fig. 3 Toy example illustrating the placement of VMs via the selection

of the various heuristics

and D’yakonov 2019), which can deal with large state and

action spaces.

In Sect. 4.1, we detail how we modeled the VM placement

problem as an MDP by describing our implementation of

actions, observations, and rewards. In Sect. 4.2, we describe

the algorithm used to find an approximate solution, i.e., the

rainbow deep Q-network (DQN) algorithm (Hessel et al.

2018), which employs neural networks to generalize obser-

vations and is well suited to dealing with an action space

characterized by low cardinality, as in our application.

4.1 Actions, observations, and reward for VM
placement

As previously pointed out, the proposed approach based on

DRL selects, at each time step and for each VM requested by

users, the “best” method to place VMs among a set of avail-

able heuristics (the actions), according to a representation

(an observation) of the state of the datacenter. The place-

ment problem (the environment) returns a scalar value (the

reward) that depends on the performance indices introduced

in Sect. 3.2. As detailed in the following, the proposed DRL

approach chooses among the available actions in order to

maximize the total reward, i.e., to achieve an optimal policy.

In more detail, we focus on six different VM placement

heuristics. Three of them are novel and introduced in this

paper. They aim at optimizing a single component of the

cost function J t
α in (23) in a greedy way. For this reason, we

refer to them as ρ-greedy, η-greedy, and ω-greedy depend-

ing on whether they focus on the first, second, and third term

in (23), respectively. The other three heuristics are reimple-

mentations (with some minor adaptations to our application)

of techniques drawn from the literature on bin packing, i.e.,

first fit, dot product, and norm2 (Panigrahy et al. 2011).

Figure 3 depicts a toy example illustrating the charac-

teristics of the proposed approach. In more detail, for each

requested VM, the “Admission & placement” block selects

the best heuristic looking for a trade-off among the vari-

ous goals defined in Sect. 3.2. For the sake of simplicity, in

the figure we limit the selection among first fit, norm2, and

η-greedy, neglecting dot product, ρ-greedy, and ω-greedy.

Concerning the first VM request, first fit is selected to save

energy: In fact, the VM is placed in the first available PM

ignoring co-location interference. The second and third VMs

are placed with η-greedy and norm2 heuristics to prevent

performance decays and balance power and resource require-

ments, respectively.

The simplest heuristic is first fit, in which the deployment

of a VM is performed on the first available PMs satisfying

capacity constraints. Instead, both the dot product and norm2

techniques exploit more elaborated criteria to place VMs.

They also consider PMs until a VM placement is possible;

however, for the i th PM, dot product sorts VMs that are not

yet deployed at time t according to the projection of the

used resources over the capacity of the PM. Formally, for

all l = 1, . . . , L t and t = 1, . . . , T , VMs are sorted in non-

ascending order by computing the quantity

ĉt
r

N
∑

j=1

c
l−1,t
i j + d̂ t

r

N
∑

j=1

d
l−1,t
i j + n̂t

r

N
∑

j=1

n
l−1,t
i j + ŝt

r

N
∑

j=1

s
l−1,t
i j

for each requested VM r at time t that can be deployed in

the lth placement. Then, VMs are considered in the afore-

mentioned sorted order until a placement is performed. The

norm2 heuristic is similar to dot product, but sorting of

VMs is performed in non-descending order according to the

squared norm of the difference between resources required

by new VMs and the sum of utilization of PMs. Formally,

for the i th PM at given l and t , such norm is computed as

⎛

⎝ĉt
r −

N
∑

j=1

c
l−1,t
i j

⎞

⎠

2

+

⎛

⎝d̂ t
r −

N
∑

j=1

d
l−1,t
i j

⎞

⎠

2

+

⎛

⎝n̂t
r −

N
∑

j=1

n
l−1,t
i j

⎞

⎠

2

+

⎛

⎝ŝt
r −

N
∑

j=1

s
l−1,t
i j

⎞

⎠

2

for each requested VM r at time t that can be deployed in the

lth placement.

Let us now focus on the ρ-greedy, η-greedy, and ω-greedy

heuristics. As said, they aim at minimizing the effect of churn,

co-location interference, and power consumption, respec-

tively. Their pseudo-code is reported in Algorithm 1. In

more detail, Algorithm 1 refers to a generic heuristic named

β-greedy, which represents either ρ-greedy, η-greedy, or ω-

greedy depending on the value of the quantity β
r ,l,t
i , where

i = 1, . . . , M , t = 1, . . . , T , l = 1, . . . , L t , and r is such
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that

1 ≤ r ≤ L t , (24)

vl−1,t
r = 0, (25)

ĉt
r +

N
∑

j=1

c
l−1,t
i j ≤ bc

i , (26)

d̂ t
r +

N
∑

j=1

d
l−1,t
i j ≤ bd

i , (27)

n̂t
r +

N
∑

j=1

n
l−1,t
i j ≤ bn

i , (28)

ŝt
r +

N
∑

j=1

s
l−1,t
i j ≤ 1. (29)

Equations (24)–(29) are satisfied by any VM r that can be

allocated on the i th PM in the lth placement at time t .

In particular, Algorithm 1 corresponds to the ρ-greedy

heuristic if

β
r ,l,t
i = K

l,t
i gt

i ρ
l−1,t
i . (30)

Instead, it corresponds to the η-greedy heuristic if

β
r ,l,t
i = K

l,t
i

(

η
l−1,t
i −

1

N

(

1 −

N
∏

z=1

θ
ŷt

r y
l−1,t
i z

))

. (31)

Lastly, it corresponds to the ω-greedy heuristic if

β
r ,l,t
i = K

l,t
i

(

gt
i ρ

l−1,t
i

)

(

η
l−1,t
i −

1

N

(

1 −

N
∏

z=1

θ
ŷt

r y
l−1,t
i z

))

⎛

⎝min

⎛

⎝ĉt
r +

N
∑

j=1

c
l−1,t
i j , d̂ t

r +

N
∑

j=1

d
l−1,t

i j , n̂t
r +

N
∑

j=1

n
l−1,t
i j

⎞

⎠

⎞

⎠

2

.

(32)

The quantities in (30), (31), or (32) are used in Algorithm 1

to evaluate the impact of deploying the r th VM on the i th PM

in the lth placement at time t , and they have to be maximized.

The term (30) measures the effect of churn resulting from the

allocation of the r th VM on the i th PM. Instead, (31) eval-

uates the updated value of co-location interference after the

placement of the r th VM on the i th PM, i.e., a fictitious VM

of class S + 1 denoting a non-deployed machine is replaced

by the r th VM in the computation of the index accounting for

co-location interference. Lastly, (32) considers the impact of

the deployment of the r th VM on the i th PM by computing

the square of the minimum used capacity among CPU, disk,

and network of the i th PM, weighted by the factors in (30)

Algorithm 1 β-greedy heuristic

1: procedure β- greedy(l, t)

2: βmax ← −∞

3: r⋆, i⋆ ← 0

4: for i = 1, . . . , M do

5: ξ
l,t
i ← {ŷt

r ′ : r ′ ∈ L t , satisfying (24)–(29)}

6: for each ŷ ∈ ξ
l,t
i do

7: let r : ŷt
r = ŷ, satisfying (24)–(29)

8: if β
r ,l,t
i > βmax then

9: βmax ← β
r ,l,t
i

10: r⋆ ← r

11: i⋆ ← i

12: end if

13: end for

14: end for

15: place the r⋆th VM at time t on the i⋆th PM

16: end procedure

and (31) in order to avoid too power-efficient deployments,

which may degrade user experience.

The quantity K
l,t
i in (30), (31), and (32) is defined as

follows:

K
l,t
i :=

ωl,t

M

(

bc
i + bd

i + bn
i

)

+ 3

(

1 −
ωl,t

M

)

,

i = 1, . . . , M, l = 1, . . . , L t , t = 1, . . . , T .

This term is the convex combination of bc
i + bd

i + bn
i and 3

(note that bc
i +bd

i +bn
i ≤ 3 for all i = 1, . . . , M) and acts as

a weighting factor in (30), (31), and (32). In particular, if the

datacenter is characterized by few deployed VMs, 1 − ωl,t

M

approaches 0, and therefore, K
l,t
i is close to bc

i +bd
i +bn

i . On

the contrary, if many VMs are deployed, 1 − ωl,t

M
approaches

1; hence, K
l,t
i is close to 3. Therefore, the smaller is the

number of active PMs in the datacenter, the larger is the

influence of the capacities of the i th PM on β
r ,l,t
i . As the

number of active PMs grows, the capacities of PMs are less

relevant for an effective deployment of VMs. This is taken

into account by K
l,t
i , which is progressively less dependent

on the capacities of the i th PM. Thus, as 1− ωl,t

M
approaches 1,

β
r ,l,t
i is more dependent on the other factors in (30), (31), and

(32), which consider the quality of the VM-to-PM mapping,

expressed in terms of churn, co-location interference, and

power consumption, respectively.

Let us now describe in detail the steps of Algorithm 1. The

goal is to select, among the L t new VMs requested at time t

and that can be deployed in the lth placement, the best one

and the PM where to deploy it. In other words, we have to

select the best pair (r⋆, i⋆), denoting that the lth placement

at time t consists in deploying the r th VM request on the i th

PM. The algorithm iterates over PMs searching for the pair

(r⋆, i⋆) yielding the optimal value β
r⋆,l,t
i⋆ . In particular, for

the i th PM, we consider all VMs requested at time t that can
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be deployed in the lth placement on the i th PM, i.e., such

that conditions in (24)–(29) are satisfied.

As regards computational complexity of Algorithm 1, a

crucial aspect is related to step 5. This statement retrieves

the class of VMs since there may be up to Y
l,t
i ≤ L t , where

Y
l,t
i := |ξ

l,t
i |, VM classes for any i , l, t . Afterward, Algo-

rithm 1 iterates over them (steps 6–13) by evaluating the

allocation of any requested, not yet deployed VMs of the

considered class (step 7). Since the for cycle starting at step

4 is executed M times and the one starting at step 6 is executed

O(Y l,t ) times, where Y l,t = maxi=1,...,M {Y
l,t
i }, Algorithm

1 has a complexity equal to O(M Y l,t ). Note that a further

speedup consists in performing the iteration at steps 4–14

over a set initially containing M PMs, and progressively

removing from such set any PM that cannot host further VMs

requested at time t still to be deployed after the placement of

the r th VM at step 15. We denote such PMs as (l, t)-full. An

(l, t)-full PM can be identified in O(1) whenever the com-

putation of ξ
l,t
i yields |ξ

l,t
i | = 0. This allows to progressively

reduce the number of iterations of the for cycle at steps 4–

14. Finally, we point out that Algorithm 1 does not consider

the case when a VM placement fails since the datacenter can

always satisfy incoming requests, as discussed in Sect. 3.

Concerning state observations adopted in the proposed

DRL-VMP approach, they represent a snapshot of the

resources used by PMs available in the datacenter for l =

1, . . . , L t and t = 1, . . . , T . Since any fixed ordering of

PMs does not impact the information contained in the obser-

vation, the way data are provided to the DQN (e.g., through

a vector or matrix) does not affect the information content.

Thus, we aggregate information in a 4M-dimensional vector,

where, for i = 1, . . . , M , elements indexed by 4i −3, 4i −2,

4i − 1, and 4i are given by
∑N

j=1 c
l,t
i j ,

∑N
j=1 d

l,t
i j ,

∑N
j=1 n

l,t
i j ,

and
∑N

j=1 s
l,t
i j , respectively. In other words, the observation

contains aggregate information on VMs deployed on the var-

ious PMs, providing a compact representation of the state of

the datacenter, as well as a measure of the impact of new

deployments. Such information is represented by juxtaposing

used CPU, disk, network, and security requirements for each

PM in the observation vector. This representation enables to

use a feed-forward neural network architecture, disregarding

the convolutional layers typical of DQN applications. This

unburdens the hyper-parameter tuning and the overall com-

putational cost.

For the lth placement at time t , the reward signal is the

following:

Rl,t := α1

M
∑

i=1

(

ρ
l,t
i − ρ

l−1,t
i

)

+ α2

M
∑

i=1

(

η
l,t
i − η

l−1,t
i

)

+ α3

M
∑

i=1

ζ
l,t
i , l = 1, . . . , L t , t = 1, . . . , T ,

where the only element different from zero in the sums over i

is the one related to the PM chosen for the lth VM placement

at time t . The coefficients α1, α2, and α3 are the same of the

cost function J l,t
α introduced in Sect. 3.2, and

ζ
l,t
i :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1 if
∑N

j=1 χ

(

a
l,t
i j

)

= 1

and
∑N

j=1 χ

(

a
l−1,t
i j

)

= 0,

0 otherwise,

i = 1, . . . , M, l = 1, . . . , L t , t = 1, . . . , T . (33)

The quantity ζ
l,t
i is equal to −1 if the i th PM was in the sleep

state before the lth placement since it was hosting no VMs

and a new one is deployed on it, i.e., if the PM needs to be

waken up to receive a new VM. Otherwise, if the PM was

not in the sleep state, it is equal to 0.

The maximization of the total reward aims at maximizing

the decrease of the weighted sum of the performance indices

ρ
l,t
i , η

l,t
i , and ζ l,t , for i = 1, . . . , M . In more detail, let us

consider the placement of all the L t new VM requests at

time t . The total reward
∑L t

l=1 Rl,t obtained at the end of

such placement is given by

α1

L t
∑

l=1

M
∑

i=1

(ρ
l,t
i − ρ

l−1,t
i ) + α2

L t
∑

l=1

M
∑

i=1

(η
l,t
i − η

l−1,t
i )

+ α3

L t
∑

l=1

M
∑

i=1

ζ
l,t
i , t = 1, . . . , T .

The previous expression can be further simplified by cancel-

ing out the terms for l from 1 to L t − 1 in the outer sums,

yielding

L t
∑

l=1

Rl,t = α1

M
∑

i=1

(ρ
L t ,t
i − ρ

0,t
i ) + α2

M
∑

i=1

(η
L t ,t
i − η

0,t
i )

+ α3(ω
L t ,t − ω0,t ), t = 1, . . . , T . (34)

Equation (34) expresses the differences between the per-

formance indices introduced in Sect. 3.2 computed in l = L t

and l = 0 at time t . As regards the factor of α3 in (34), for a

fixed t , the difference between the number of active PMs in

l = 0 and l = L t is given by (M − ω0,t ) − (M − ωL t ,t ) =

ωL t ,t − ω0,t . According to (33), ζ
l,t
i = −1 if the i th PM is

activated in the lth placement at time t . Therefore, since each

PM can be activated at most once at t , ωL t ,t − ω0,t equals
∑L t

l=1

∑M
i=1 ζ

l,t
i . We conclude that maximization of the total

reward entails minimization of the decrease of such indices.
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4.2 Rainbow DQN

We focus on a DQN-based algorithm to find an approximate

solution of the considered decision making problem. Such

algorithms, first introduced in the seminal work of Mnih et al.

(2013), are a family of off-policy, model-free reinforcement

learning methods based on Q-learning (Kaelbling et al. 1996)

that exploit neural networks to approximate the Q-function

(Szepesvári 2010).

The original DQN algorithm has been highly improved

during the past decade. Among the others, we mention

the introduction of the prioritized experience replay buffer

(Schaul et al. 2016), i.e., a multi-step learning (Sutton and

Barto 2018) and double Q-learning adaptation (van Hasselt

2010; van Hasselt et al. 2016), dueling architectures (Wang

et al. 2016), and noisy networks (Fortunato et al. 2018) for

exploration. Put briefly, the replay buffer allows the decorre-

lation of samples used for optimization of the loss function.

The insertion of a priority in the buffer allows to sample the

transitions that contain more information to learn. Moreover,

noisy networks overcome limitations of classical ε-greedy

exploration policies. In fact, they allow to act according to

the policy learned in the most visited states, while ensuring a

high level of exploration in the most unvisited ones. Lastly,

double Q-learning reduces the overestimation bias of tradi-

tional deep Q-learning, while multi-step learning speeds up

the learning process by bootstrapping, i.e., approximating

Bellman optimality equation using one or more estimated

values.

To have an accurate combination of the aforementioned

improvements to the original algorithm, in this paper we

focus on the Rainbow DQN (see, e.g., Hessel et al. 2018

for a detailed explanation of the approach).

5 Numerical results

To showcase the effectiveness of the proposed approach,

we considered a datacenter composed of M = 500 PMs,

each one able to host up to N = 5 VMs. Six classes of

VMs were considered alongside the fictitious one introduced

in Sect. 3.2. Each class primarily uses only one type of

resource among CPU, disk, and network according to two

different usage levels: small and large. The resources used

by the fictitious class are set to 0. The considered percent-

ages of resource utilization and the interference matrix �

are reported in Table 1. This matrix was fixed by taking into

account that, in general, the more a resource is used by VMs,

the larger is the interference. Moreover, two VMs primarily

using disk or network resources suffer from a larger inter-

ference if compared to a pair of machines predominantly

exploiting CPU. The fictitious class 7 does not interfere with

other classes.

Concerning the workload, we focused on four scenarios,

named A, B, C, and D, capturing specific traits of real-

world infrastructures and taken from Gaggero and Caviglione

(2019). In particular, Scenario A relies on synthetic data and

accounts for a datacenter characterized by a flow of VM

requests with a nearly constant mean over time. At each time

step, the number of new VMs requested by users was drawn

from uniform distributions in the ranges [0, 12] for class-1

and class-2 VMs, [0, 20] for class-3 and class-4 VMs, and [0,

25] for class-5 and class-6 VMs. Scenario B is still based on

synthetic data and presents a peak of VM requests triggered

by certain events (e.g., the release of a software update). At

each time instant, the number of new VM requested by users

was taken from uniform distributions in the ranges [0, 19] for

class-1 and class-2 VMs, [0, 22] for class-3 and class-4 VMs,

and [0, 24] for class-5 and class-6 VMs, with a peak from

t = 40 to t = 120. Scenario C relies again on synthetic data

and is characterized by an increase of VM requests around

t = 50 and a reduction around t = 100. Such a workload

emulates, for instance, day/night cycles of the IaaS. At each

time instant, the number of new VM requested by users was

taken from uniform distributions in the ranges [0, 19] for

class-1 and class-2 VMs, [0, 22] for class-3 and class-4 VMs,

and [0, 24] for class-5 and class-6 VMs. Lastly, Scenario D

is based on the workload of a real datacenter properly scaled

to match the size of our simulated environment.

In all scenarios, the amount of VMs characterized by secu-

rity requirements was taken equal to 15% of the total number

of requests, while the time frame T was fixed to 168, i.e., we

considered 1 week with sampling time equal to 1 h. More-

over, each VM was assumed to be requested by users for

a period randomly chosen according to a uniform distribu-

tion in the range [5, 20] hours. Following again Gaggero

and Caviglione (2019), we focused on datacenters having

different hardware equipment in the various scenarios. In

particular, Scenario A is characterized by identical PMs, i.e.,

bc
i = bd

i = bn
i = 1.0 for all i = 1, . . . , 500. Instead, Scenar-

ios B, C, and D are based on PMs with different computing

capabilities but identical storage and networking capacities,

i.e., we chose bc
i = 0.8 for i = 1, . . . , 166, bc

i = 0.9 for

i = 167, . . . , 333, bc
i = 1.0 for i = 334, . . . , 500, and

bd
i = bn

i = 1.0 for i = 1, . . . , 500. Lastly, all scenarios are

characterized by the same quantity gt
i defining the probabil-

ity that the i th PM is correctly running. Since the literature

lacks of a common model to account for all possible causes

of hardware or software outages (Gaggero and Caviglione

2019), we randomly extracted the values of gt
i from a uni-

form distribution in the range [0.8, 1]. The datacenter was

initially considered empty, i.e., we fixed all the quantities

y
0,0
i j , c

0,0
i j , d

0,0
i j , n

0,0
i j , s

0,0
i j , and a

0,0
i j defined in Sect. 3.1 equal

to zero.

All the numerical results presented in the following were

obtained with a simulator written in Python 3 exploiting
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Table 1 Interference matrix and percentage of used resources for the considered VM classes

VM class 1 2 3 4 5 6 7 CPU Disk Network

1 0.9 0.8 1.0 1.0 1.0 1.0 1.0 0.23 0.05 0.05

2 0.8 0.7 1.0 1.0 1.0 1.0 1.0 0.46 0.05 0.05

3 1.0 1.0 0.7 0.6 1.0 1.0 1.0 0.05 0.20 0.05

4 1.0 1.0 0.6 0.5 1.0 1.0 1.0 0.05 0.40 0.05

5 1.0 1.0 1.0 1.0 0.7 0.6 1.0 0.05 0.05 0.17

6 1.0 1.0 1.0 1.0 0.6 0.5 1.0 0.05 0.05 0.34

7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 0 0

NumPy and PyTorch libraries, using a PC equipped with

a 3.6 GHz Intel i9 CPU with 64 GB of RAM and a GeForce

GTX 1060 graphics card with 6 GB of RAM.

5.1 Training of the DRL-VMP approach

The training of the DRL-VMP approach was performed by

selecting the following coefficients for the cost function J t
α

in (23): α1 = 0.2, α2 = 0.2, and α3 = 1.0. Such a choice

reflects the preference of primarily penalizing power require-

ments of the datacenter while preserving the goals related

to mitigation of hardware/software outages and co-location

interference. The duration of the training was almost one full

day of computing time.

Synthetic data generated starting from the same proba-

bility distributions used for Scenario B were used for the

training. In fact, this scenario contains a mixed workload

with both “steady” and “peaky” behaviors, and therefore, it

can be considered as representative of many different use

cases.

The parameters of the training were fixed starting from

the results reported by van Hasselt et al. (2019), and a suit-

able tuning was performed to adapt them to our setting.

In more detail, the adopted feed-forward network architec-

ture is based on a fully connected hidden layer with 288

units employing rectifier activation functions. This value was

determined with a trial-and-error procedure aimed at find-

ing a compromise between effectiveness and computational

efficiency. We chose an overall number of iterations equal

to 1,000,000, as we observed that a larger number did not

improve the quality of the learned policy. Moreover, the agent

performs 100,000 iterations before starting backpropagation

training with mini-batches of 32 transitions at each step. The

multi-step return length was fixed to 3, and the learning rate

of the employed loss function optimization algorithm, i.e.,

Adam (Kingma and Ba 2015), was set to 0.0001. Lastly,

the prioritized replay buffer contained the 100,000 last tran-

sitions, while the target network was updated every 8000

steps. We found that smaller periods only allowed to achieve

suboptimal policies.

Fig. 4 Total reward obtained during the training of the DRL-VMP

approach

Figure 4 shows the total reward for a full training cycle,

where the DQN is evaluated every 50,000 steps. The instance

used for evaluation was created with the same criteria

adopted for generating the training scenarios. The total

reward reveals good training properties, as it reaches its

maximum after 550,000 iterations, without any significant

performance drops throughout the training.

5.2 Performancemetrics

In this section, we discuss the main indices adopted to evalu-

ate performance. Such indices, borrowed from Gaggero and

Caviglione (2019), are summarized in the following.

The first index quantifies adherence of the IaaS to the

subscribed SLA, which depends on how churn of PMs and

co-location interference of VMs influence the amount of

resource effectively available to users. For the purpose of

providing such a measure, we define the following quality of

experience (QoE) metric at each time step:

QoEt :=

∑M
i=1 ρ

L t ,t
i

∑N
j=1 λ

L t ,t
i j

∏N
r=1,r �= j θ

y
Lt ,t
i j y

Lt ,t
ir

∑M
i=1

∑N
j=1 λ

L t ,t
i j

,

t = 1, . . . , T , (35)
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Simulation results in Scenario A: number of VM requests (a), QoE delivered by the datacenter (b), consumed power (c), density of quality

with respect to the required power (d), cost function (e), and number of VMs placed with a given heuristic by the DRL-VMP approach (f)

where λ
L t ,t
i j := c

L t ,t
i j + d

L t ,t
i j + n

L t ,t
i j is the sum of the used

CPU, disk, and network capacity of the i th PM at time t after

the allocation of all VMs requested at the same step. The

numerator of (35) reflects the reduction of resources due to

co-location interference and churn, while the denominator is

the overall number of requested resources.

The second index measures the power required by the

datacenter to operate, which is equal to the sum of the power

consumed by PMs. For the sake of simplicity, we assumed

that a PM in the sleep state demands a negligible amount

of power. Following the reference literature (Gaggero and

Caviglione 2016; Kusic et al. 2009; Beloglazov and Buyya

2010), we modeled the power required by a PM as the sum of

a constant contribution and a term proportional to the number

of deployed VMs, i.e., the following quantity is used:

pt
i :=

{

Pmax

(

0.7 + 0.3
N

nt
i

)

if nt
i > 0,

0 otherwise,

i = 1, . . . , M, t = 1, . . . , T , (36)

where Pmax is the power required by a PM when N VMs are

deployed (this value was chosen equal to 250 W) and nt
i :=

∑M
i=1 χ

(

a
L t ,t
i j

)

is the number of VMs that are deployed on

the i th PM. Thus, the overall power required by the datacenter

is given by the following index:

P t :=

M
∑

i=1

pt
i , t = 1, . . . , T .

As previously pointed out, the goals of minimizing the

effects of churn and co-location interference (measured by

QoEt ) and the overall power consumption (captured by P t )

are conflicting. Thus, we introduce a third index quantify-

ing the trade-off between such goals. More specifically, we

consider how a variation of the QoE impacts on the power

required by the datacenter and vice versa (see Zhang et al.

2013 for a use case in wireless networks) by introducing the

“density” of quality with respect to the required power, as

follows:

Dt :=
QoEt

P t
, t = 1, . . . , T .
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Simulation results in Scenario B: number of VM requests (a), QoE delivered by the datacenter (b), consumed power (c), density of quality

with respect to the required power (d), cost function (e), and number of VMs placed with a given heuristic by the DRL-VMP approach (f)

Another index measuring the trade-off among the various

goals is given by the cost function J t
α introduced in Sect. 3.2

for Problem-(t) (see Eq. (23)).

5.3 Simulation results

In this section, we report the results obtained in all the con-

sidered scenarios by the proposed DRL-VMP approach in

comparison with the first fit, dot product, and norm2 heuris-

tics for VM placement. This analysis allows one to evaluate

the behavior of the proposed approach with respect to differ-

ent workloads.

Figure 5 depicts the results obtained in Scenario A. For all

the used heuristics, the performance metrics are influenced by

the workload offered by the datacenter. Worst performances

characterize first fit, as it simply aims at packing VMs over

PMs as much as possible without exploiting “structural”

information on PMs at the basis of the cloud service. The

other considered heuristics have a similar behavior in terms

of consumed power and density. Instead, DRL-VMP guar-

antees better performance as regards QoE. On the one hand,

this could be ascribed to the possibility of switching among

different heuristics to better handle the workload and the cur-

rent VM-to-PM mapping. On the other hand, its optimized

behavior mitigates the impact of bin packing algorithms in

terms of too aggressive packing or inefficient allocations as

regards utilization of the hardware of PMs. In more detail,

it turns out that the most frequently used heuristic by DRL-

VMP is dot product. In fact, if we exclude a sort of transient

period, DRL-VMP prefers to face fluctuations of the work-

load by selecting dot product, which is able to account for

the various performance goals in a more effective manner

owing to its greater sensibility to the multiple criteria used

for placement, as detailed in Sect. 4.1.

Different considerations can be done for the case of a peak

of VM requests, which characterizes Scenario B. Results

are collected in Fig. 6. Specifically, first fit is confirmed as

too simple to successfully handle variations in the workload

while adhering to multiple, competing performance metrics.

Its nature, which is inclined to pack VMs on PMs as much as

possible disregarding other objectives, results in higher val-

ues for the used power and poorer density (see also the lowest

values of the cost when the maximum utilization of the data-

center is reached in the interval from t = 72 to t = 96). In this
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Simulation results in Scenario C: number of VM requests (a), QoE delivered by the datacenter (b), consumed power (c), density of quality

with respect to the required power (d), cost function (e), and number of VMs placed with a given heuristic by the DRL-VMP approach (f)

perspective, DRL-VMP proves to be effective in selecting the

most suitable heuristics to face the workload of VMs. First fit

is seldom used, and dot product is preferred during the peak

since it offers a finer control over the trade-off between QoE

and consumed power. This also leads to a minor utilization

of the ρ-greedy, η-greedy, and ω-greedy heuristics, as they

are specialized to optimize only one metric at a time.

The effectiveness of DRL-VMP is better highlighted in

Fig. 7. In this case, the datacenter experiences a peak of

requests and then an underutilization epoch. To face such

a mixed behavior, DRL-VMP is expected to adapt by chang-

ing the heuristics to be used to place the incoming flow of

VMs. As shown in the figure, when the workload increases,

DRL-VMP privileges again dot product. Instead, when the

datacenter is progressively offloaded, DRL-VMP selects the

most suitable heuristics to pursue the different performance

metrics. A noticeable example of the effectiveness of the

approach is the delivered QoE from t = 96 to t = 120, which

is significantly higher if compared to the results provided by

the other heuristics. As it can be observed in Fig. 7f, during

the aforementioned time interval, the DRL-VMP approach

successfully employs many of the available heuristics at its

disposal to achieve these results.

Lastly, Fig. 8 portraits results obtained when the consid-

ered datacenter has to serve the real workload of Scenario D.

As shown, all heuristics try to place VMs over PMs accord-

ing to the load of requests with different levels of efficiency.

Specifically, first fit confirms its insensitivity to the degree

of utilization of PMs, causing poor performance in terms

of power and density. Instead, dot product and norm2 can

effectively match the workload. However, without a closer

inspection of the cost function J t
α , which is a condensed indi-

cator of the various goals, such results could be misleading. In

fact, even if performances of dot product, norm2, and DRL-

VMP are similar, the QoE delivered by the cloud datacenter

is higher when using machine-learning-enhanced heuristics.

In fact, as shown in Fig. 8f, DRL-VMP is capable of decom-

posing the workload in “slices” (see Fig. 6 for a comparison)

and handling them accordingly. Thus, the core of requests

is still managed with the dot product placement method, as

it is considered able to take into account different goals by

exploring the various components of the cost, whereas the

beginning and the end of an utilization period are handled by
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Simulation results in Scenario D: number of VM requests (a), QoE delivered by the datacenter (b), consumed power (c), density of quality

with respect to the required power (d), cost function (e), and number of VMs placed with a given heuristic by the DRL-VMP approach (f)

applying the most suitable placement heuristics to incoming

VMs on a case by case basis.

As regards computational requirements, in all the scenar-

ios the time needed to compute the VM-to-PM mapping at a

given instant is equal 1.2×10−3, 8.3×10−3, and 8.3×10−3 s

on the average for the first fit, dot product, and norm2 heuris-

tics, respectively. The DRL-VMP approach requires about

1.0 × 10−1 s on the average. This amount of time is neg-

ligible if compared to the dynamics of an IaaS application,

which typically evolves in hours or days. Thus, we conclude

that the proposed approach can be effectively used to sup-

port managing frameworks and virtualization middlewares

commonly used in production-quality datacenters.

5.4 Statistical analysis

To fully evaluate the effectiveness of DRL-VMP in compar-

ison with dot product, norm2, and first fit heuristics for VM

placement, we performed the statistical analysis described in

the following.

We compared the time series plotted in Figs. 5, 6, 7, and 8

obtained for Scenarios A, B, C, and D, collecting the results

in Tables 2, 3, 4, and 5. These tables report the considered

performance metrics, i.e., QoEt , P t , Dt , and the cost function

J t
α in (23). The columns “Avg” and “SD” contain the aver-

age and standard deviation computed over time, respectively.

The columns “AvgDev” denote the percentage deviation of

the average of the heuristic in the row with respect to the aver-

age of DRL-VMP. The columns p show the p-value returned

by the nonparametric Friedman’s test (Friedman 1937) that

we used to assess the statistical significance of the difference

between the average values of DRL-VMP with respect to

the one of each competitor heuristic. More specifically, we

assume that, if p is smaller than 5%, we can reject the null

hypothesis that DRL-VMP and the heuristic generate not sig-

nificantly different results. We adopted a nonparametric test

since we verified that the compared samples are not normally

distributed.

Tables 2–5 highlight the best average values for each sce-

nario and metric in bold, as well as the p-values denoting a

statistical equivalence between DRL-VMP and the compared

heuristics in bold and italic. From Tables 2–5, we can observe

the effectiveness of DRL-VMP. In more detail, it is the best

heuristic for the QoEt and Dt metrics in all the scenarios,
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Table 2 Results of the statistical analysis for performance evaluation in Scenario A

A

QoEt P t

Avg AvgDev SD p Avg AvgDev SD p

DRL-VMP 0.416 0.026 34,797.202 5466.138

dot product 0.405 − 2.62% 0.018 1.13E−08 34,748.095 − 0.14% 5639.489 0.5807

norm2 0.409 − 1.78% 0.019 0.0001 34,678.303 − 0.34% 5617.250 0.0004

first fit 0.378 − 9.28% 0.019 7.60E−36 39,267.886 12.84% 6857.868 1.08E−36

Dt J t
α

Avg AvgDev SD p Avg AvgDev SD p

DRL-VMP 1.340E−05 1.167E−05 539.458 25.262

dot product 1.314E−05 − 1.92% 1.204E−05 3.67E−06 539.505 0.01% 26.192 0.0206

norm2 1.326E−05 − 1.06% 1.200E−05 0.0055 540.026 0.10% 26.022 0.0136

first fit 1.073E−05 − 19.91% 8.365E−06 2.02E−38 512.076 − 5.07% 33.505 1.08E−36

Table 3 Results of the statistical analysis for performance evaluation in Scenario B

B

QoEt P t

Avg AvgDev SD p Avg AvgDev SD p

DRL-VMP 0.456 0.055 35,169.047 17,598.026

dot product 0.422 − 7.42% 0.019 1.10E−17 35,054.047 − 0.32% 18,620.489 0.9368

norm2 0.422 − 7.41% 0.020 2.08E−16 35,156.131 − 0.03% 18,710.500 0.8131

first fit 0.407 − 10.69% 0.022 7.60E−32 37,238.422 5.88% 19,418.526 7.22E−17

Dt J t
α

Avg AvgDev SD p Avg AvgDev SD p

DRL-VMP 1.905E−05 2.5025E−0 537.192 80.289

dot product 1.811E−05 − 4.93% 2.284E−05 1.30E−09 537.409 0.04% 86.121 0.8774

norm2 1.805E−05 − 5.26% 2.282E−05 7.92E−13 536.839 − 0.06% 86.569 0.6434

first fit 1.608E−05 − 15.58% 1.954E−05 2.02E−34 524.031 − 2.45% 90.932 2.45E−18

Table 4 Results of the statistical analysis for performance evaluation in Scenario C

C

QoEt P t

Avg AvgDev SD p Avg AvgDev SD p

DRL-VMP 0.454 0.047 29,814.970 10,734.515

dot product 0.425 − 6.32% 0.016 1.13E−04 31,501.815 5.65% 10,132.402 2.31E−08

norm2 0.423 − 6.68% 0.016 3.24E−07 31,661.190 6.19% 10,286.562 7.53E−10

first fit 0.408 − 10.10% 0.022 3.40E−23 33,227.261 11.44% 10,222.868 1.97E−25

Dt J t
α

Avg AvgDev SD p Avg AvgDev SD p

DRL-VMP 1.899E−05 1.616E-05 561.740 48.771

dot product 1.603E−05 − 15.58% 1.395E−05 3.57E−15 554.214 − 1.34% 47.253 1.13E−07

norm2 1.592E−05 − 16.17% 1.379E−05 5.32E−19 553.205 − 1.51% 48.189 1.13E−07

first fit 1.449E−05 − 23.67% 1.255E−05 2.02E−34 543.437 − 3.25% 47.806 3.38E−26
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Table 5 Results of the statistical analysis for performance evaluation in Scenario D

D

QoEt P t

Avg AvgDev SD p Avg AvgDev SD p

DRL-VMP 0.430 0.040 34,620.654 10,368.102

dot product 0.410 − 4.75% 0.032 4.00E−10 34,494.434 − 0.36% 10,514.905 0.6219

norm2 0.409 − 4.86% 0.030 1.21E−10 34,532.976 − 0.25% 10,438.395 0.0645

first fit 0.395 − 8.08% 0.032 6.25E−24 36,462.142 5.31% 11,677.249 4.99E−16

Dt J t
α

Avg AvgDev SD p Avg AvgDev SD p

DRL-VMP 1.496E−05 1.423E−05 537.765 48.953

dot product 1.414E−05 − 5.45% 1.248E−05 1.27E−08 538.428 0.12% 49.559 0.6434

norm2 1.416E−05 − 5.37% 1.323E−05 1.30E−09 538.190 0.07% 49.107 0.0896

first fit 1.307E−05 − 12.65% 1.199E−05 1.48E−28 526.328 − 2.12% 56.982 4.84E−17

and for all the metrics in Scenario C. We can note from the

p-values that the prevalence of DRL-VMP in all these cases

is statistically significant. For Scenarios B and D, the best

average values for P t and the cost function J t
α were obtained

by dot product. However, this method is statistically equiva-

lent to DRL-VMP. The only cases in which DRL-VMP is not

the best method, or it is not statistically equivalent to the best

heuristic, were in Scenario A for P t and J t
α , where norm2

obtained the best average results. However, this is not a lim-

itation since the workload in this scenario is characterized

by an almost constant mean. In this case, simpler heuris-

tics could be used instead of our approach, which should be

deployed when in the presence of aggressively varying loads

or flash crowds, such as in Scenarios B, C, and D.

6 Conclusions

In this paper, we have presented a DRL-based approach for

the placement of VMs in a cloud datacenter that is able to

satisfy different and conflicting performance goals (e.g., the

used power and the quality perceived by end users). We have

formulated the VM placement problem as a multi-objective,

mixed-integer mathematical programming problem, which

is very difficult to be solved. Thus, we have developed an

approximate approach based on DRL to select, among a set

of possible alternatives, the most suitable placement heuris-

tics for each VM, in order to guarantee a trade-off between

the performances of the datacenter, its security requirements,

and the costs (mainly in terms of used power and required

amount of PMs). Results have showcased the effectiveness of

the proposed approach, especially when used to handle work-

loads with major fluctuations. In fact, the agent implementing

the selection policy has proved its ability to switch among

different heuristics (e.g., those considering a given perfor-

mance metric versus resource-insensitive ones) to guarantee

the desired performance criteria.

Future works will be devoted to refining the proposed

method, for instance by considering a larger set of heuris-

tics or a policy gradient algorithm. Moreover, another subject

of investigation will be the use of Monte Carlo tree search

(Browne et al. 2012). With this methodology, optimization

could be completely in charge of the agent: the optimiza-

tion problem could be tackled directly by defining each

VM deployment, instead of indirectly acting by means of

heuristics. Another prospect of future investigation will aim

at considering user mobility. For instance, our approach

could be used to place VMs in additional computing layers

deployed at the border of the network.
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