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ABSTRACT The rapid development of wireless communications brings a tremendous increase in the amount

number of data streams and poses significant challenges to the traditional routing protocols. In this paper,

we leverage deep reinforcement learning (DRL) for router selection in the network with heavy traffic,

aiming at reducing the network congestion and the length of the data transmission path. We first illustrate

the challenges of the existing routing protocols when the amount of the data explodes. We then utilize the

Markov decision process (RSMDP) to formulate the routing problem. Two novel deep Q network (DQN)-

based algorithms are designed to reduce the network congestion probability with a short transmission path:

one focusing on reducing the congestion probability; while the other focuses on shortening the transmission

path. The simulation results demonstrate that the proposed algorithms can achieve higher network throughput

comparing to existing routing algorithms in heavy network traffic scenarios.

INDEX TERMS Deep reinforcement learning, routing, network congestion, network throughput, deep

Q network.

I. INTRODUCTION

The fifth generation (5G) of cellular mobile communications

is coming [1], which targets high data rate [2], ultrashort

latency, high energy efficiency [3], and massive device con-

nectivity [4]. The number of devices has reached 8.4 billions

in 2017 and will further increase to 30 billions by 2020,

as predicted in [5]. Such massive amount devices would sig-

nificantly grow the network traffic data. As a result, the exist-

ing routing protocols would face tremendous pressure in

maintaining the users’ Quality of Experience.

Specifically, the existing routing protocols such as

OSPF [6], IS-IS [7], RIP [8], EIGRP gradually become

unsuitable for the network with big data, high data rate,

and low latency requirements. The key reason is that these

protocols rely on calculating the shortest path from a source

router to its destination [9] without considering the actual net-

work states such as the remaining buffer size of each router.

The associate editor coordinating the review of this manuscript and
approving it for publication was Longzhi Yang.

When the amount of data is small, these shortest-path based

protocols bring low latency to the network. However, when

the network data traffic volume dramatically increases, cer-

tain routers selected by multiple paths may suffer from ter-

rible traffic load. Especially, when the data volume exceeds

the buffer size of the selected routers, the network will

be congested, which decreases the network throughput and

increases the network delay. In other words, the existing

routing protocols are not intelligent enough to adjust their

transmission strategies according to actual network states.

On the other side, with the growth of computing capability

and the explosion of data, Artificial Intelligence (AI) is dras-

tically promoted in recent years, where the great computing

capability enables to imitate deeper neural network (DNN)

while the big data could provide sufficient training samples.

Probably the most successful example is the deep learn-

ing (DL) [10] that emerges from the artificial neural net-

work (ANN). DL could build DNN to simulate human brain

in order to learn and recognize abstract patterns [11] and

has been widely applied in image classification [12]–[14],
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object detection [15]–[19], communications [20]–[25], as

well as many other fields.

DL has also been adopted in routing problems. For

example, it could imitate the OSPF protocol [26] to reduce

the signaling overhead. However, the algorithm in [26] is

essentially an imitation of traditional protocols, and is insuf-

ficiently intelligent to deal with complicated network states.

Following [26], a deep convolutional neural network based

routing algorithm has been proposed in [27], which utilizes

the neural network to judge the network congestion caused by

the path combination. However, building a neural network for

each possible path combination would result in a large num-

ber of neural networks for training, and therefore increasing

the demand on computing resources.

However, DL generally requires label information for the

training data, which then demands formassivemanual efforts.

In addition, DL is inherently an approximation of certain

function and is not suitable for decision-making problems,

such as routing, energy allocation, and recommender sys-

tem. In this case, deep reinforcement learning (DRL) [28]

emerges as an alternative to solve decision-making type

problems. Compared with traditional reinforcement learning

methods1 [29], DRL takes advantage of function approxima-

tion ability of DL to solve practical problems with large-scale

state and action space [30]–[32]. For instance, DRL could

help the energy harvesting devices allocate the energy tomax-

imize the sum rate of the communications, predict the battery

power accurately [33], or guide the two-hop communications

to achieve high throughput [34]. Moreover, DRL has been

utilized to rank in E-commerce search engine for improving

the total transaction amount [35].

In this paper, we design two DRL-based online routing

algorithms to address the network congestion problem. The

proposed algorithms can reduce the probability of network

congestion and shorten the length of transmission paths,

i.e., the number of hops from the source router to the destina-

tion. The main contributions of this paper are summarized as

follows:

• We leverage router selection Markov decision process

(RSMDP) concepts to formulate the routing problem

and define the corresponding state space, action space,

reward function, and value function.

• We propose two online routing algorithms, i.e., source-

destination multi-task deep Q network (SDMT-DQN)

and destination-only multi-task deep Q network

(DOMT-DQN), which can learn from past experiences

and update routing policies in real time.

SDMT-DQN is able to significantly reduce the conges-

tion probability, while the corresponding path length

may occasionally be long. In comparison, DOMT-DQN

can significantly shorten the path length as well as

maintaining the congestion probability at an acceptably

lower level.

1Reinforcement learning (RL) is a learning technique that an agent learns
from the interaction with the environment via trial-and-error.

The rest of the paper is organized as follows. Section II

states the routing problem and outlines the system model.

In Section III, we introduce RSMDP in detail and analyze the

setting of some parameters. The proposed DRL algorithms

are detailed in Section IV. Section V provides the simulation

results while Section VI concludes the paper.

II. PROBLEM STATEMENT AND SYSTEM MODEL

A. PROBLEM STATEMENT

We assume that the network operates in a time-slotted fashion

with normalized time slot. Transmitting a data packet from

the source router to the destination is regarded as a data

transmission task. At each time slot, a task selects the next

hop router and the data packet is transferred to it. This process

is continued until the data packets arrive at the destination.

Network congestion happens when the size of the arriving

packet exceeds the remaining buffer size of the router.

The traditional routing protocols are formulated as a clas-

sical combinatorial optimization problem, where the data

packets are transmitted along the shortest path. Under such

shortest path principle, certain routers may be simultaneously

selected for multi-tasks, which then very likely leads to net-

work congestion due to the finite buffer size of the routers.

For example, as shown in Fig. 1, three packets

from L0, L1, L2 are transmitted to the destination L8. Based

on the shortest path principle, L4 would be chosen as the next

hop for the packets by the traditional protocols. When the

packets are relatively large, the remaining buffer size of L4
will be not sufficient and the network is prone to congestion.

Moreover, when the same or similar situation appears again,

traditional routing protocols would fall into the congestion

again. Even though the network congestion has occurred

many times before, the traditional routing protocols would

still select the same/similar routing path. Therefore, it is

necessary and important for the routing strategy to learn from

the past experience and make itself sufficiently intelligent to

choose optimal routing paths according to the network states.

B. SYSTEM MODEL

Consider a general backbone network with N routers in the

set L = {L1,L2, . . . ,LN }. Define Ls, Ld , and Lr as the

disjoint sets of source routers, destination routers, and regular

routers, respectively, withL = Ls∪Ld ∪Lr . Moreover, there

are |Ls| , Ns, |Ld | , Nd , |Lr | , Nr , andNs+Nd+Nr = N .

Let Di,t and Bi,t denote the total size of all packets and

the remaining buffer size in Li at time slot t , respectively.

Define Bt =
[

B1,t , · · · ,BN ,t

]

and Dt =
[

D1,t , · · · ,DN ,t

]

.

We denote the size of the packet newly generated by

data source i at time slot t by Vi,t and define V t =
[

V1,t , · · · ,VNs,t
]

as the size vector of all input packets. The

data generation is set as a Poisson process. The state of

the network at time slot t can be characterized by a tuple

(V t ,Dt ,Bt ).

During time slot t , the input packets are generated by data

sources, and then flow to the source routers and change the
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FIGURE 1. The network topology.

remaining buffer size of the source routers. We assume that

a packet can be completely transferred from one router to

another in one time slot and the values of Di,t and Bi,t would

change during the transmission process. For instance, if a data

packet of size f flows from Li to Lj at time slot t , then at

time slot t + 1, the tuple (Di,t+1,Dj,t+1,Bi,t+1,Bj,t+1) has 6

situations, as shown in (1), shown at the bottom of this page.

When Li or Lj is the source router, the newly generated

data should be considered. And if Lj is the destination router,

the data will be transferred to the terminals directly without

stored in the buffer.

Note that the current location and the size of data packets

would also affect the selection of the next hop router. We then

adopt modified one-hot encoding vector Ot of size N to rep-

resent these characteristics. When the packet is in router Li,

the ith element of Ot is the size of data packet, while the

other elements are all zeros. Such modified one-hot encoding

can help the computer understand the size and position of

the packet. Overall, we can denote the state of each task

by St = (V t ,Dt ,Bt ;Ot ).

Moreover, the network can be represented by a directed

graph G = {V, E}, where V is the set of all vertexes corre-

sponding to the routers and E is the set of edges corresponding

to the links between the routers. The data transmission task

chooses action according to the network state along with the

position and size of the packet, where action is defined as

the link between the current router and the next hop router.

For instance, the task whose packet in Li selects Lj as the

next router, which means that link(i, j) ∈ E is selected as the

action. Besides, the link between two routers is bidirectional,

i.e., a data packet can be transferred from Li to Lj or con-

versely, denoted by link(i, j) and link(j, i), respectively. LetA

denote the set of all possible actions, i.e. A = E , with

cardinality |A| = Na. Note that not all actions are valid

for a data transmission task, since the packet can only be

transferred to the router connecting to its current position.

Namely, the task can only choose the link starting from the

current position of its packet as the valid action. Therefore,

during the transmission process, the valid actions of the task

are always changing according to its current position.

III. ROUTER SELECTION MARKOV DECISION PROCESS

In this section, we formulate the routing process as a Markov

Decision Process (MDP), where the agent is the data trans-

mission task and the environment is the network.

A. DEFINITION OF RSMDP

In the considered scenario, the tasks decide the next hop

routers, and the corresponding decision-making process can

be modeled as a MDP with rewards and actions. The MDP is

represented by a tuple (S,A,P,R, γ ), where

• The state space is denoted by S , which consists of

the terminal state and the nonterminal states. The ter-

minal state is a special state, which indicates that the







































(Di,t + Vi,t − f ,Dj,t ,Bi,t − Vi,t + f ,Bj,t ) i ∈ Ls, j ∈ Ld

(Di,t + Vi,t − f ,Dj,t + Vj,t + f ,Bi,t − Vi,t + f ,Bj,t − Vj,t − f ) i ∈ Ls, j ∈ Ls

(Di,t + Vi,t − f ,Dj,t + f ,Bi,t − Vi,t + f ,Bj,t − f ) i ∈ Ls, j ∈ Lr

(Di,t − f ,Dj,t ,Bi,t + f ,Bj,t ) i /∈ Ls, j ∈ Ld

(Di,t − f ,Dj,t + Vj,t + f ,Bi,t + f ,Bj,t − Vj,t − f ) i /∈ Ls, j ∈ Ls

(Di,t − f ,Dj,t + f ,Bi,t + f ,Bj,t − f ) i /∈ Ls, j ∈ Lr

(1)
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task terminates. If the action is invalid or causes the

network congestion, then the state turns into the terminal

state. Besides, if the data packet arrives at the destination

router, then the task also terminates. The nonterminal

states contain all continuing events, where the packets

are transferred to the next hop routers without conges-

tion, and have not reached the destination.

• The action space is denoted byA, which corresponds to

all the edges of the network topology graph. The actions

are divided into valid and invalid parts, depending on the

current location of its packet.

• The state transition probability function is denoted

byP(s, a, s′) = P[St+1 = s′|St = s,At = a]. In the con-

sidered scenario, the state transition probability function

is related to the probability distribution of the size of the

packets newly generated by the data sources. Because

in the state tuple, the vector of newly generated packet

size V t is random.

• The immediate reward on the transition from state s to s′

under action a is denoted byR(s, a, s′).

• The discount rate is denoted by γ ∈ [0, 1), which

determines the present value of future rewards [29].

FIGURE 2. Router selection Markov decision process.

As Fig. 2 shows, at each time slot, the task selects the next

hop router based on its current state, and the corresponding

reward is obtained. The above decision-making and reward

feedback process is repeated, which is named as the RSMDP.

A MDP should satisfy the Markov property, which means

the future state is independent of the past state given

the present state. Mathematically, the Markov property for

the MDP is defined as follows:

P(st+1|s0, a0, s1, · · · , st , at ) = P(st+1|st , at ). (2)

From (1), it is obvious that the next state is only related to the

current state and the current action. Hence the router selection

process satisfies Markov property.

B. REWARD FUNCTION

For any state s ∈ S , R(s, a, s′) is the immediate reward that

numerically characterizes the performance of action a taken

with the state transiting from s to s′.

For the problem defined in Section II-A, avoiding network

congestion is the prerequisite of seeking for the shortest path.

Thus, the reward should first punish the network congestion

and then minimize the path length. As described in Section II,

since each task can only choose the edge that starts from the

router where the packet currently stays, the reward function is

supposed to punish the invalid action. Moreover, the reward

function needs to consider the path length for the task. In sum-

mary, we set the reward function R(s, a, s′) as follows:

R(s, a, s′) =



















rc if network congestion occurs,

re if a is invalid,

0 if packet arrives destination,

−1 otherwise,

(3)

where the reward −1 helps record the number of hops the

data packet is transferred in the network. The constant rc
is the congestion reward that takes a negative value smaller

than −1 since the network congestion should be avoided,

while constant re is the error reward when an invalid action

is chosen, which is a negative value smaller than −1 too.

The network will feed back a non-negative reward only when

the packets arrive at the destination routers. As a result, to

avoid the network congestion/invalid action and reduce the

path length of each data transmission task, the objective of the

routing algorithm should be expressed as finding the optimal

policy to maximize the expected cumulative reward for each

task. The details will be described in the next subsection.

C. VALUE FUNCTION

From (3), the reward at time slot t can be denoted

by Rt = R(st , at , st+1). Assume the task turns into the termi-

nal state after T time slots. Then, the cumulative discounted

reward from time slot t can be expressed as

Gt = Rt+1 + γRt+2 + · · · + γ T−1Rt+T =

T
∑

k=1

γ k−1Rt+k .

(4)

Define policy π as a probability distribution over action a,

given state s as:

π (a|s) = P[At = a|St = s]. (5)

In the considered problem, policy π determines which router

should be chosen as the next hop router conditioned on the

current state of the transmission task.

Define

Qπ (s, a) = Eπ [Gt |St = s,At = a] (6)

as the action-value function based on policy π of

the MDP, i.e., the expectation of the cumulative discounted

reward starting from s, taking action a, and following

policy π .

The objective of the routing algorithm is to find a policy to

maximize the action-value function, i.e.,

Q∗(s, a) = max
π

Qπ (s, a). (7)
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The optimal policy can be found by maximizing over the

optimal action-value function Q∗(s, a) as

π∗(a|s) =

{

1 if a = argmax
a∈A

Q∗(s, a)

0 otherwise.
(8)

From (8), if the optimal action-value function Q∗(s, a) can

be obtained, we can input (V t ,Dt ,Bt ;Ot ) to compute the

value of each action, and then choose the action that max-

imizes Q∗(s, a). As Section III-B mentioned, the optimal

policy obtained from (8) could reduce the path length while

avoid network congestion.

One possible way to obtain the optimal action-value

function Q∗(s, a) is Q-learning, which can be iteratively

implemented as

Q(St ,At )← Q(St ,At )

+ α

[

Rt+1 + γ max
a

Q(St+1, a)− Q(St ,At )
]

(9)

during the training process, where α is the learning rate.

Iteration (9) updates estimates of the values of states based

on values of successor states, which is called bootstrapping.

In this case, the learned action-value function will converge

to the optimal action-value function Q∗ [29].

To obtain the value of every action, the reinforcement

learning algorithm must try every possible action. However,

if the task only chooses the action that maximizes Q(s, a)

during the training, then the actions that have not been tried

before will be barely chosen, which makes the action-value

function fall into the local optimum. Therefore, the algorithm

should not only exploit the actions that have been tried before,

but also explore new actions. Hence, the ǫ-greedy method is

usually applied as

a =

{

argmax
a

Q(s, a), with probability 1− ǫ

random action, with probability ǫ,
(10)

where ǫ is the probability of randomly choosing actions.

D. DISCOUNT RATE

In this subsection, we consider the influence of discount

rate γ in RSMDP. From (4), we know the cumulative dis-

counted reward leads to ‘‘myopic’’ or ‘‘far-sighted’’ evalu-

ation when γ is close to 0 or 1, respectively. Specifically,

when γ is close to 0, the future rewards are hardly considered,

while when γ is close to 1, the future rewards are taken into

account with heavier weight. The value of the discount rate γ

will affect the DRL-based routing algorithm mainly in two

aspects:

• How does the objective balance the congestion

reward rc, the error reward re, and the remaining cumu-

lative reward?

• What is the relationship between the cumulative reward

and the hops of the packet to arrive its destination?

1) REWARDS OF DIFFERENT TYPES

In RSMDP, there are three situations that can terminate the

tasks: (i) the packet has reached its destination; (ii) the trans-

mission of the packet results in the congestion in the next hop

router; (iii) the action chosen by the task is invalid for trans-

mission. The latter two situations should be averted, which is

the prerequisite before shortening the length of transmission

paths. Therefore, we should guarantee that the congestion

reward and error reward are smaller than the cumulative

reward starting from current state. According to the reasons

for the termination of the task, there are three cases of the

cumulative reward:

• The task reaches the destination router at time slot T .

In this case, Rt = −1 for (t = 1, · · · ,T ). Then the

cumulative reward for the whole transmission process

of the task equals to

Gt =

T
∑

t=1

γ t−1Rt = −

T
∑

t=1

γ t−1 = −
1− γ T

1− γ
. (11)

• The task chooses the action that leads to the network

congestion at time slot T . In this case, RT = rc, while

Rt = −1 for (t = 1, · · · ,T − 1). Then the cumulative

reward for the whole transmission process of the task

equals to

Gt =

T
∑

t=1

γ t−1Rt = −

T−1
∑

t=1

γ t−1 + γ T−1rc

= −
1− γ T−1

1− γ
+ γ T−1rc. (12)

• The task chooses the invalid action at time slot T . In this

case, RT = re, while Rt = −1 for (t = 1, · · · ,T − 1).

Then the cumulative reward for the whole transmission

process of the task equals to

Gt =

T
∑

t=1

γ t−1Rt = −

T−1
∑

t=1

γ t−1 + γ T−1re

= −
1− γ T−1

1− γ
+ γ T−1re. (13)

Then, we should set rc and re as

rc, re < min{−
1− γ T

1− γ
,−

1− γ T−1

1− γ
+ γ T−1rc,

−
1− γ T−1

1− γ
+ γ T−1re} (14)

As we mentioned in Section III-B, both rc and re are less

than −1, therefore

−
1− γ T

1− γ
> −

1− γ T−1

1− γ
+ γ T−1rc, (15)

and

−
1− γ T

1− γ
> −

1− γ T−1

1− γ
+ γ T−1re. (16)
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As a result, (14) can be transformed into

rc, re < min{−
1− γ T−1

1− γ
+γ T−1rc,−

1− γ T−1

1− γ
+γ T−1re}.

(17)

We can observe the symmetry of rc and re, therefore,

let rc = re, then we get

rc = re < −
1− γ T−1

1− γ
+ γ T−1re. (18)

Then we get:

rc = re < −
1

1− γ
. (19)

2) TRANSMISSION PATH LENGTH

(19) guarantees that the invalid actions and the actions caus-

ing network congestion are rarely chosen. When γ equals

to 1, the cumulative reward becomes the opposite number

of actual hops of the whole transmission process. Then,

maximizing the cumulative reward directly leads to the min-

imization of the path length. However, this property does not

hold when γ < 1. Therefore, considering future rewards in

a router selection MDP, we ought to set γ as close to 1 as

possible.

IV. DRL BASED ROUTING ALGORITHM

In this section, we design two online routing algorithms with

the aid of DQN to handle large-scale state space of RSMDP.

A. DEEP Q NETWORK FOR RSMDP

In the considered scenario, the state includes the size of newly

generated data V t , the total data packet size of all routers Dt ,

the remaining buffer size of all routers Bt , and the position

and size of the current data packet Ot . Therefore, the number

of the states is huge and we resort to DQN that could utilize

DNN to represent the action-value function and tackle the

large-scale state space.

As shown in Fig. 3, the input of the neural network is

state St , while the output is the value of each action. Let θ

denote the neural network parameters. Then, the action-value

function under θ can be represented by Q(s, a; θ ). DQN tries

to minimize the loss function defined as

L(θ ) =

[

r + γ max
a′

Q(s, a′; θ )− Q(s, a; θ )

]2

, (20)

i.e., the square of temporal-difference error (TD error). Dif-

ferentiating the loss function with respect to θ , we get the

following update:

θ ← θ+α

[

r+γ max
a′

Q(s′, a′; θ )−Q(s, a; θ )

]

∇Q(s, a; θ )

(21)

A general assumption for training the deep neural net-

work is that the input data is independently and identically

distributed. However, if we utilize the data generated in

chronological order < s0, a0, r1, s1, · · · , st , at , rt+1, st+1 >,

FIGURE 3. Neural network in DQN.

FIGURE 4. Experience replay memory.

the correlation among input data is quite high, which would

affect the performance of neural network. In this case, we can

use experience replay to break the correlation among data.

The router selection can be divided into the experience

tuples (s, a, r, s′) as shown in Fig. 4, and the experience

tuples are stored in the replay memory, denoted by D. Then,

the training data of the neural network is sampled uniformly

and randomly fromD. Normally,D can only store the lastM

experience tuples.

In order to further reduce the correlation among input data,

a target network is built to deal with the TD error. As shown

in (21), the network parameter θ used to compute the tar-

get r + γ maxa′ Q(s
′, a′; θ ) is the same as that of the action-

value function Q(s, a; θ ). An update that increases Q(s, a; θ )

would also increase Q(s′, a′; θ ), and therefore bringing cor-

relation and possibly leading to oscillations or divergence

of the policy [30]. To further reduce the correlation, DQN

uses a separate network to generate the target, whose network

parameters are denoted by θ−. More precisely, network Q is

cloned to obtain a target network Q̂ everyNu steps. Therefore,

the network parameters update to:

θ←θ+α

[

r+γ max
a′

Q̂(s′, a′; θ−)−Q(s, a; θ )

]

∇Q(s, a; θ ).

(22)
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FIGURE 5. SDMT-DQN algorithm.

B. THE PROPOSED SDMT-DQN AND

DOMT-DQN ALGORITHMS

Originally, DQN is designed for single agent which cannot

help the multi-tasks choose the next hop routers. To tackle

this issue, we assume there is a centralized controller with

sufficient computation ability that can collect information

about the input packets and instruct the router to send the data

packets to the next hop router.

We are interested in a distributed solution to find the rout-

ing policies of the tasks. Even if the data packets of different

tasks are currently in the same router, the tasks may choose

different actions, due to their different goals. Hence, the cen-

tralized controller needs multiple neural networks to instruct

every router for delivering the packets properly. Furthermore,

we should categorize the tasks into different classes and apply

one uniform neural network for each class. In this paper,

we adopt two criteria to classify the tasks, which yields two

different algorithms, respectively:

1) THE SDMT-DQN ALGORITHM

In SDMT-DQN algorithm, we classify all the data transmis-

sion tasks into Ns × Nd categories based on their source

routers and destination routers. Specifically, all data tasks

with the same source router and the same destination router

can be considered as the same type of tasks, to share the same

neural network. As a result, Ns × Nd neural networks are

needed to represent the action-value functions of all kinds

of tasks. For those tasks from source router i to destination

router j, there is a corresponding replay memory Di,j with

capacity C to store the experience tuples for training. More-

over, there is a target network to reduce the correlation among

input data. The algorithm can be illustrated in Fig. 5.

At the centralized controller, we set a task queueZ to store

the information of the tasks, e.g., the source, and destination

router of the task, the packet size and the current position.

The centralized controller selects the task in Z one by one.

Then the neural network corresponding to the source router

and destination router of the selected task takes the state

of the selected task as input, and outputs the value of each

action. Afterwards, the centralized controller chooses action

for the data packet based on ǫ-greedy method. If the selected

action is invalid, then the centralized controller: (i) regards

the task as termination and stores the corresponding state,

action, reward re and terminate state in corresponding expe-

rience memory; (ii) re-chooses the action whose value is the

largest among the valid actions and continues the transmis-

sion. Therefore, the invalid action will lead to two experi-

ence tuples. This procedure can guarantee the validity of the

selected action while storing the invalid action with re in

the memory, therefore reducing the probability of choosing

invalid action afterwards. Then, according to the selected

action, the centralized controller can know the next hop router

and determine the next state of the task. The possible situa-

tions can be listed as follows.

• If the next router is the destination router, then the data

transmission task is complete and the state turns into

terminal state. The corresponding reward is 0 in this

case.

• If the action causes congestion, then the task is termi-

nated and the reward is rc.

• Otherwise, the centralized controller updates the state of

the task and re-appends it to the end of Z . Moreover,

the network will return a reward −1.

Then, the centralized controller stores the experience

tuples in the corresponding experience memory D, and the

neural network samples data from D for training. Repeat the

above procedures until each task in the queue has selected

an action. Finally, the centralized controller sends the action
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commands of each task to the routers, and the routers send

their packets to the next hop routers in accordance with

these commands. With such an online algorithm, the neu-

ral networks can utilize the latest experiences to improve

the performance. The overall algorithm is summarized

in Algorithm 1.

2) THE DOMT-DQN ALGORITHM

The DOMT-DQN algorithm can reduce the number of

the required neural networks, which differs from the

SDMT-DQN algorithm mainly in that the data transmission

tasks are classified into Nd categories that only correspond

to their destination routers. Hence, the corresponding neural

network and the replay memory only depend on the desti-

nation of the task. As the number of categories is reduced,

the number of tasks for each category increases. Therefore,

there is more sufficient training data for each corresponding

neural network, which leads to faster convergence.

Note that DOMT-DQN can be demonstrated by modi-

fying Algorithm 1. Specifically, the replay memory D1,1,

D2,1, · · · ,DNs,Nd are changed into D1,D1, · · · ,DNd , and

the parameters of the neural networks θ1,1, θ2,1 · · · , θNs,Nd
are substituted with θ1, θ2 · · · , θNd . The remaining proce-

dures are very similar to Algorithm 1, and the overall steps

of DOMT-DQN are summarized in Algorithm 2.

V. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the

performance of SDMT-DQN and DOMT-DQN. The proba-

bility of randomly choosing action ǫ is set to 0.9. We use

Python and the deep learning framework Pytorch for coding

and the program is executed on a computer with an Intel

Core i7-8700k CPU, 32GB random access memory (RAM),

and Nvidia GTX 1070 GPU. The operating system is

Ubuntu 16.04.

We compare the performance of the proposed algo-

rithms with the deep learning based algorithm [27] and the

traditional routing protocol OSPF. To better demonstrate the

performance comparison, we consider the simple network

with topology depicted in Fig. 1. Each node is deemed as

a router and each edge is deemed as a transmission link.

The routers L0, L1, L2 are set as source routers that receive

input packets from the data sources and transmit them to

the destination router L8. All the routers in the network can

receive and send the data packets. We assume that no matter

how big the data packets are, they can be transferred from

one router to another in one time slot. If the network congests

in a time slot, we will mark it, then compute the network

congestion probability by calculating the proportion of time

slots that are congested in every 1000 time slots. The buffer

size of each router is set to 45 MB, and the packet generation

process is set as Poisson.

A. COMPLEXITY ANALYSIS

Based on the definition of the input state in Section II, there

are 3 × N + Ns = 30 units in the input layer of the neural

Algorithm 1 Source-Destination Multi-Task Deep Q Net-

work (SDMT-DQN)

1: Initialize the task queue Z , the reply memories

with capacity C for every source-destination pair

D1,1, D2,1, · · · ,DNs,Nd , action-value functions Q with

random parameters θ for every source-destination pair

θ1,1, θ2,1, · · · , θNs,Nd , the corresponding target action-

value functions Q̂ with parameters θ−1,1 = θ1,1, · · · ,

θ−Ns,Nd = θNs,Nd , the buffer size of all the routers, and

the network state.

2: for t = 1, 2 . . . ,T do

3: The sources generate data tasks and append them toZ .

4: The controller obtains the information of the new gen-

erated tasks and computes the network state.

5: for n = 1, . . . ,Nt (Nt is the number of tasks in Z) do

6: Pop a task n from Z , combine the current network

state and the position and size of task n to get

state st,n.

7: Select neural network based on source router i and

destination router j with parameters θi,j.

8: Choose a random action â with probability ǫ, other-

wise selecting â = argmaxa Q(st,n, a; θi,j).

9: if â is invalid then

10: Store the experience tuple

(st,n, â, rt,n, terminal state) in Di,j.

11: Re-choose a valid action at,n with the largest

value.

12: else

13: at,n = â.

14: end if

15: Simulate execution action at,n in the controller, get

reward rt,n and next state s′t,n, then update the net-

work state.

16: Store the experience tuple (st,n, at,n, rt,n, s
′
t,n)

in Di,j.

17: Sample random minibatch of experience tuples

(sk , ak , rk , s
′
k ) from Di,j.

18: Set yk =

{

rk 1©

rk + γ maxa′ Q̂(s
′
k , a
′; θ−i,j) 2©

.

19: 1©: if the task terminates.

20: 1©: otherwise.

21: Perform a gradient descent step with a learning

rate α on
(

yk − Q
(

sk , ak ; θi,j
))2

with respect to the

network parameters θi,j.

22: Reset Q̂i,j = Qi,j every Nu steps.

23: end for

24: The controller sends Nt commands to all routers, and

the routers send packets according the commands.

25: end for

network, while the number of units in the output layer

is Na = 32 since the output represents the value of each

action. The controller should choose the next hop router
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Algorithm 2 Destination-Only Multi-Task Deep Q Network

(DOMT-DQN)

1: Initialize the whole system, including the buffer

size of all the routers, the network state, the task

queue Z , the replay memory D1,D1, · · · ,DNd ,

the action-value functions with random parameters

θ1, θ2, · · · , θNd , and the corresponding target network

θ−1 = θ1, · · · , θ
−
Nd
= θNd

2: for t = 1, 2 . . . ,T do

3: The sources generate data tasks and append them toZ .

4: for n = 1, . . . ,Nt (Nt is the number of tasks in Z) do

5: Select the corresponding neural network based on

the destination router i of task n, θi.

6: Choose action with ǫ-greedy, obtain the next state,

and store the experience tuples.

7: Sample random minibatch of experience tuples

(sk , ak , rk , s
′
k ) from Di and update the correspond-

ing parameters θi with gradient descent method.

8: Reset Q̂i = Qi every Nu steps.

9: end for

10: The controller sends Nt commands to all routers, and

the routers execute these actions.

11: end for

for each task in a very short time, therefore light-weight

neural networks ought to be used. The specific neural network

architectures for SDMT-DQN and DOMT-DQN are shown

in Table 1.

TABLE 1. The neural network architecture.

The number of the required neural networks for our algo-

rithms is significantly reduced compared with DL-based

method in [27]. To be specific, Ns × Nd and Nd neural

networks are required for SDMT-DQN and DOMT-DQN,

respectively. For example, considering the network topology

of Fig. 1, SDMT-DQN requires three neural networks while

DOMT-DQN only needs one neural network.

In addition, the required number of floating point opera-

tions (FLOPs) is used as the metric of computational com-

plexity. For convolutional layers, the number of FLOPs is:

FLOPs = 2HinWin(CinK
2 + 1)Cout , (23)

whereHin,Win andCin are height, width and number of chan-

nels of the input feature map, K is the kernel size, and Cout is

the number of output channels.

For fully connected layers, FLOPs is computed as:

FLOPs = (2Nin − 1)Nout , (24)

where Nin is the number of input neurons and Nout is the

number of output neurons [36].

The total computational complexity can be summarized

in Table 2. Compared with the DL-based method, the pro-

posed algorithms has much fewer FLOPs for each neural

network and number of neural networks. Therefore, the total

computational complexity of the two proposed algorithms are

extremely lower.

FIGURE 6. The performance comparison between our proposed
algorithms and tradition protocol as well as DL based algorithm in terms
of congestion probability.

B. PERFORMANCE COMPARISON

In Fig. 6, we compare congestion probabilities of

SDMT-DQN, DOMT-DQN, DL based algorithm and OSPF

versus the number of training steps. The discount rate γ

is set to 0.9, and the mean of Poisson data generation

process is set to 15 MB per time slot. The congestion

probabilities of OSPF stays at a high level due to the lack

of intelligence. In contrast, the congestion probabilities of

SDMT-DQN and DOMT-DQN significantly decrease with

the increase of training steps because the network has learned

from the past congestion and then generates a policy to reduce

congestion probability. Moreover, both two proposed algo-

rithms can achieve lower congestion probability compared

with the DL based algorithm [27]. This is because the DL

based algorithm can only choose from the pre-defined path

combinations, instead of exploring the best possible paths

from the instantaneous states. We see that the training process

of DOMT-DQN converges faster than that of SDMT-DQN.

The reason can be explained as follows: The training data of

SDMT-DQN is divided into Ns×Nd categories, while that of

DOMT-DQN is only divided into Nd categories. Therefore,

at the beginning of the training process, the training data

for each neural network in DOMT-DQN is more sufficient

than that in SDMT-DQN. It is also seen that with the process

of training, the congestion probability of SDMT-DQN can

reduce to almost zero, while that of DOMT-DQN maintain

at an acceptably low level, because adopting more neural

networks of SDMT-DQN could provide better learning abil-

ity than DOMT-DQN. Besides, since further classifying the

data transmission tasks based on the source routers makes the
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TABLE 2. The total complexity comparison of the three algorithms for the network topology in Fig. 1.

FIGURE 7. Network congestion probability comparison for various packet
generation rates.

learning process easier for each neural network, SDMT-DQN

would yield lower congestion probability than DOMT-DQN.

Next, we compare the congestion probability versus dif-

ferent data generation rates in Fig. 7, where the curves of

SDMT-DQN, DOMT-DQN, and the DL based algorithm are

calculated by the network parameters after sufficient rounds

of training. We can see that when the data generation rate is

slow, i.e., the network is idle, the data packets are unimpeded

in the network. In this case, none of the four compared

methods would cause congestion. However, when the amount

of data in the network increases, the congestion probability

of OSPF increases significantly. In contrast, the congestion

probabilities of SDMT-DQN and DOMT-DQN stay at a low

level, which indicates that OSPF can only perform well when

the network is idle, while the proposed ones can deal with

large amount of data. In addition, the proposed algorithms

outperform the DL based algorithm.

Fig. 8 plots network throughput versus packet generation

rates for different algorithms. Similar to Fig. 7, when the

network is idle, the performance of OSPF performs similarly

to the other three algorithms. However, when the network

traffic becomes heavier, OSPF drops a larger number of

packets due to the increasing congestion probability. This in

turn leads to a decrease in the network throughput. On the

contrary, the proposed algorithms can improve the network

throughput when the data generation rate increases because

the congestion probability can always be maintained at a

very low level. Due to the lower congestion probability,

SDMT-DQN performs better than DOMT-DQN in terms of

the network throughput.

FIGURE 8. Network throughput comparison for various packet generation
rates.

FIGURE 9. The probability of choosing the invalid actions.

Fig. 9 plots the probability of choosing valid actions in the

first trial versus the number of training steps for the proposed

SDMT-DQN and DOMT-DQN algorithms. We see that the

invalid actions are rarely chosen after very few training steps.

Therefore, SDMT-DQN and DOMT-DQN will not require

much additional computation to re-choose valid actions.

In Fig. 10, we compare the path length of 1000 transmis-

sion tasks under different discount rates of SDMT-DQN and

DOMT-DQN. It is seen that the closer γ is to 1, the shorter

the path length will be, which is consistent with the analysis

in Section III-D. When γ = 1, (19) seems impossible to

satisfy. But in fact, as long as rc and re are smaller than −1,
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FIGURE 10. The comparison of different discount rates γ in terms of path length. (a) Path length under different
discount rates γ based on SDMT-DQN. (b) Path length under different discount rates γ based on DOMT-DQN.

the task tends to choose the actions which would not cause

congestion or be invalid along with the training. As a result,

when γ = 1, our algorithms can also reduce the congestion

probability, just slightly slower. In addition, DOMT-DQN

performs better than SDMT-DQN. Specially, for SDMT-

DQN, there are very few paths that are longer than 10, which

never happens for DOMT-DQN. This is because when we use

SDMT-DQN, the task from one source router may choose

another source router as hop router occasionally. Since the

probability of this behavior is very low, the training data

that guides the network to handle this situation cannot be

sufficient. Then, the data packets may be repeatedly trans-

ferred between two source routers, and the path length of

the corresponding task then becomes very long. On the other

hand, DOMT-DQN does not differentiate the tasks according

to their source routers. Hence, no matter which router the data

packet is transferred to, there can always be sufficient training

samples.

In the last example, we demonstrate the scalability of

SDMT-DQN and DOMT-DQN in a more complicated net-

work as shown in Fig. 11. In Fig. 12, we compare the

proposed algorithms with OSPF in terms of congestion

probability.2 Both the proposed algorithms can significantly

2The DL based algorithm [27] cannot be implemented in the current
computer configuration, since the number of the possible path combinations
is too large.

FIGURE 11. A more complicated network topology.

reduce the congestion probability. Similar to Fig. 6,

SDMT-DQN performs better than DOMT-DQN in terms

of the congestion probability while DOMT-DQN con-

verges faster than SDMT-DQN. Both SDMT-DQN and

DOMT-DQN converge slower when being applied in a

more complicated network, and the corresponding congestion

probability after training will be slightly increased. This is

because when the number of routers in the network increases,

VOLUME 7, 2019 37119



R. Ding et al.: DRL for Router Selection in Network With Heavy Traffic

FIGURE 12. The performance comparison of our proposals and tradition
protocol OSPF in terms of congestion probability in a more complicated
network.

the proportion of valid actions for each task decreases signif-

icantly, making it more difficult to learn a good policy for the

task.

VI. CONCLUSIONS

In this paper, we have proposed two DRL-based online algo-

rithms to reduce the congestion probability and shorten the

transmission path when the network traffic is quite heavy. The

simulation results demonstrate that the two algorithms can

achieve high throughput in contrast with the traditional rout-

ing protocols due to the low congestion probability. Besides,

the proposed algorithms have lower computational complex-

ity compared with the DL-based method. It is worth noting

that in this article, we only consider the update of the parame-

ters of the neural networks. In the future, we will consider the

neural network with dynamic architecture to achieve better

performance. Nevertheless, our study demonstrates that DRL

is feasible to be applied to routing problem.
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