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ABSTRACT Traffic congestion is a complex, vexing, and growing issue day by day in most urban

areas worldwide. The integration of the newly emerging deep learning approach and the traditional

reinforcement learning approach has created an advanced approach called deep reinforcement learning

(DRL) that has shown promising results in solving high-dimensional and complex problems, including

traffic congestion. This article presents a review of the attributes of traffic signal control (TSC), as well

as DRL architectures and methods applied to TSC, which helps to understand how DRL has been applied

to address traffic congestion and achieve performance enhancement. The review also covers simulation

platforms, a complexity analysis, as well as guidelines and design considerations for the application of DRL

to TSC. Finally, this article presents open issues and new research areas with the objective to spark new

interest in this research field. To the best of our knowledge, this is the first review article that focuses on the

application of DRL to TSC.

INDEX TERMS Artificial intelligence, deep learning, deep reinforcement learning, traffic signal control.

I. INTRODUCTION

W
ITH rapid population growth and urbanization, traffic

demand is steadily rising in metropolises worldwide.

Traffic signal controls (TSCs) are installed to monitor traffic

flows and alleviate traffic congestion at intersections [1]–[4].

During traffic congestion, vehicles move slowly or stop at

lanes, and the queue length of the vehicles increases [5].

Congestion that occurs in a single lane has a single-point-of-

failure effect as it can also affect the traffic conditions of the

other lanes at the same and neighboring intersections. There

are three main reasons that exacerbate congestion. Firstly,

traffic entering an intersection is greater than the traffic leav-

ing it. Secondly, cross-blocking occurs when vehicles cannot

cross an intersection despite a green signal being activated

as the respective lane of the downstream intersection has

become fully occupied. Thirdly, green idling occurs when no

vehicle is present at an intersection when a green signal is

activated.

TABLE 1: List of abbreviations.

Abbreviations

RL Reinforcement Learning

MARL Multi-agent Reinforcement Learning

DL Deep Learning

DRL Deep Reinforcement Learning

DQN Deep Q-network

DNN Deep Neural Network

CNN Convolutional Neural Network

SAE Stacked Auto Encoder

3DQN Double Dueling Deep Q-network

LSTM Long Short-term Memory

FC Fully-Connected

FCLN Fully-Connected Layer Network

PG Policy-gradient

A2C Advantage Actor Critic

TSC Traffic Signal Control
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TSCs have three traditional signal colors: red indicates a

stop, yellow indicates a slow down, and green indicates a

go. A cycle consists of a predetermined sequence of traffic

phases, and the cycle length is the time interval of a cycle.

A traffic phase consists of a combination of green signals

allocated to a set of lanes simultaneously for non-conflicting

movements at an intersection. A short moment of all red

signals is included in between traffic phases to provide safe

transition, causing some time loss. A traffic phase split (or

the green time) is the time interval, which is part of a cycle

length, allocated for a traffic phase.

Traditionally, TSCs determine the traffic phase splits to

manage traffic flows and alleviate traffic congestion using

three main approaches. Firstly, a deterministic TSC applies

a pretimed control system that uses the Webster formula

based on historical traffic data collected at different times [6].

Secondly, a semi-dynamic TSC applies an actuated control

system that uses current (or instantaneous) traffic conditions,

rather than longer-term traffic conditions. For example, green

signals are activated at lanes with vehicles [7]. Thirdly, a

fully-dynamic TSC applies an actuated control system that

uses longer-term traffic conditions. For example, a traffic

phase split is increased with the average waiting time and

queue length of vehicles at a lane. While the semi-dynamic

TSC approach uses a single inductive loop detector installed

at a lane to detect the presence of vehicles, the fully-dynamic

TSC uses at least two inductive detectors to measure the

queue length [8]–[12].

Research has been undertaken to investigate TSCs that can

optimize traffic signal scheduling and timing, such as ad-

justing traffic phase splits, in order to ameliorate traffic

congestions at moderately and heavily trafficked single or

multiple intersections. Reinforcement learning (RL) has been

the preferred unsupervised artificial intelligence technique

for accomplishing a fully-dynamic TSC [13]. RL possesses

the capability to learn the relationships between actions and

their effects on the operating environment (or states). Specif-

ically, RL adjusts traffic phase splits, or even skips traffic

phases, according to traffic conditions which are dynamic

and can be unpredictable. Nevertheless, RL is marred by

the curse of dimensionality, an issue whereby the number

of states (or the state space) becomes too large, leading to

two main shortcomings [14]. Firstly, a higher computational

cost must be incurred to explore all state-action pairs in

order to identify optimal actions, causing a longer learning

time. Secondly, a larger storage capacity is required to store

knowledge (or Q-values).

Recently, deep learning (DL), which is an advanced artificial

intelligence technique, has been successfully combined with

RL to provide deep reinforcement learning (DRL), and it has

shown to address the shortcomings of RL [15]. DRL has three

main advantages. Firstly, DRL enables a continuous state

space representation, so there can be a large number of states.

Secondly, DRL reduces the learning time required to explore

all state-action pairs and identify optimal actions. Thirdly,

DRL uses several layers of neurons to store the weights (or

network parameters) of the links connecting the neurons,

which are used to approximate the Q-values efficiently in

order to address the storage capacity issue in RL [16].

A. SIGNIFICANCE OF DEEP REINFORCEMENT

LEARNING FOR TRAFFIC SIGNAL CONTROL

Several success stories of the use of DRL over the years

have brought new and refreshed enthusiasm to the world of

artificial intelligence. In 2013, DeepMind introduces DRL

applied to playing a range of Atari 2600 games with super-

human performance [15]. Later in 2016, DRL is trained by

DeepMind to play the Alpha Go board game, which defeated

a host of world champions [17]. Subsequently, DRL has been

applied in many real-world applications, such as robotics

[18], natural language processing [19], health care [20],

business management [21], Industry 4.0 [22], smart grid [23],

computer vision [24], transportation, particularly TSC and

driver-less vehicles [25]. In view of these developments, this

article presents a comprehensive review of the limited work

on DRL applied to TSC, motivated by the goal of achieving

better-than-human intelligence solutions. In general, DRL

offers main advantages that are appealing to TSCs as follows:

• DRL enables an agent to adapt to the real-time traffic

condition that evolves in a complex and unpredictable

manner due to unexpected disturbances, such as bad

weather conditions and road accidents.

• DRL can be a model-based or model-free approach, and

it enables an agent to perform self-learning on the fly

without having prior knowledge about the operating en-

vironment, including traffic condition and network. The

model-based approach creates a model of the operating

environment, and then selects an action and observes

feedback from the model [26]. On the other hand, the

model-free approach does not create a model of the

operating environment. The model-free approach has

been chosen for TSC because it has lower complexity

and computational requirement compared to the model-

based approach.

• DRL represents reward with system goal(s) and perfor-

mance measure(s), which take account of multiple fac-

tors that affect system performance from the operating

environment. For instance, the reward changes with the

average waiting time, queue length, or throughput of

vehicles at an intersection (see Section IV).

• DRL addresses the curse of dimensionality, which ad-

versely affect the traditional RL approach, when applied

to TSC. This is because TSC has a large state space as

there are multiple factors affecting a traffic network.

Most importantly, DRL provides added advantages compared

to other approaches applied to TSC as shown in Table 2.
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FIGURE 1: The trend of related papers published in recent

years on the use of DRL to TSC.

Meanwhile, the trend of the number of papers published from

January 2016 to March 2020 on the use of DRL to TSC is

shown in Fig. 1. This study was conducted on three well-

known literature databases with scientific scope, namely Web

of Science, ScienceDirect, and IEEEXplore Digital Library.

B. OUR CONTRIBUTIONS

While general reviews of designing TSCs using RL [14],

[32]–[34], multi-agent systems [31], big data [36], DL [37],

and other artificial intelligence approaches, such as fuzzy

systems [35], have been presented, this article complements

their works by focusing on the DRL approach, particularly

on how DRL models can be applied to formulate the TSC

problem, and how the strengths of various DRL approaches

can provide added advantages in addressing the challenges

brought about by traffic management and control. To the

best of our knowledge, this is the first comprehensive article

that contributes to the body of knowledge by providing

systematic and extensive synthesis, analysis and summary of

limited DRL schemes applied to TSC, which helps to identify

research gaps in existing schemes and explore future research

directions. Various technical aspects of DRL-based TSCs,

including DRL models, DRL methods, DL architectures,

simulation platforms, complexity analysis and performance

measures, are covered to enhance the technicality of article.

C. ORGANIZATION OF THIS ARTICLE

The rest of this article is organized as shown in Fig. 2.

Section II presents an overview of DL, RL, and DRL, as

well as various DL architectures with RL methods. The

simulation platforms are also presented. Section III presents

the attributes of TSC systems. Section IV presents the repre-

sentations of DRL models and complexity analysis for TSC.

Section V presents the application of DRL to TSC. Section

VI presents the guidelines and design considerations for the

application of DRL to TSC. Section VII presents open issues.

Finally, Section VIII concludes this article.

II. BACKGROUND

This section presents an overview of DL, RL, and DRL,

as well as various DL architectures with RL methods. In

addition, simulation platforms are presented.

A. DEEP LEARNING

Deep learning (DL) is an advanced artificial intelligence

approach that consists of a deep neural network (DNN), such

as a fully-connected layer network (FCLN) [38], [39]. The

term “deep" indicates that the neural network consists of a

large number of hidden layers (e.g., up to 150 layers [40]),

which may be fully-connected (FC) with each other, while a

traditional neural network generally consists of a much lower

number of hidden layers (e.g., two or three layers [41]). Fig. 3

shows a FCLN architecture that consists of three main types

of layers, namely the input, hidden, and output layers, and

it is an interconnected assembly of neurons (i.e., process-

ing elements) that are capable of learning unstructured and

complex data [42]. During training, data flows from the input

layer to the output layer. The output yk of a neuron k in the

hidden and output layers is as follows [43]:

yk = ϕ

(

∑

j=0

wkj .xj

)

(1)

where wkj represents the weight (or network parameter),

which is assigned on the basis of the relative importance of

input xj compared to other inputs, and ϕ(.) represents the

activation function at neuron k.

There are various kinds of DL architectures applied to TSC,

including the traditional FCLN, convolutional neural network

(CNN), stacked auto encoder (SAE), dueling network, and

long short-term memory (LSTM) (see Section II-D for more

details).

B. REINFORCEMENT LEARNING

Reinforcement learning (RL) is the third paradigm of ar-

tificial intelligence, which is different from the supervised

learning and unsupervised learning approaches. It enables an

agent to explore and exploit different state-action pairs so

that it achieves the best possible positive reward (or negative

cost) for system performance enhancement as time goes by

t = 1, 2, 3, . . . [44]–[47]. Algorithm 1 presents the traditional

RL algorithm [44]. At time instant t ∈ T , an agent observes

its Markovian (or memoryless) decision-making factors (or

state st ∈ S) in the dynamic and stochastic operating

environment, and selects and performs an action at ∈ A

[48]–[51]. Subsequently, the agent observes the next state

st+1 and receives an immediate reward (or cost) rt+1(st+1),
which depends on the next state st+1 for the state-action

pair (st, at). Then, it updates Q-value Qt(st, at), which
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TABLE 2: Comparison of DRL with other approaches applied to TSC.

Approach Description Limitation Solution

Fuzzy Logic

[27]

Defines membership functions

that map inputs to outputs, tak-

ing analog (or continuous) val-

ues between 0 and 1. It pro-

vides partially true and false

values, instead of absolute val-

ues.

Larger values may fall outside

the range of 0 and 1 due to the

effects of disturbances, such

as bad weather conditions and

road accidents, to TSC.

DRL has the ability to approxi-

mate the Q-value of a given state

due to the spatial correlation na-

ture between neurons [15], which

helps DRL to better deal with the

effects of disturbances.

Genetic Al-

gorithm [28]

Defines a set of parameters

or variables, namely genes,

which are joined to form a

string of genes called chromo-

some. The algorithm creates an

initial population of multiple

genes and chromosomes ran-

domly, and then runs itself for

a predefined time period.

Larger number of chromo-

somes and complicated repre-

sentations are needed as the

problem expands and becomes

more complex, such as a large

traffic network with multiple

intersections.

DRL has the ability to approx-

imate the Q-values for a larger

number of state-action pairs for

solving complex and large prob-

lems.

Dynamic

Program-

ming [29]

Breaks a complex problem

into a collection of simpler

sub-problems. Subsequently,

the sub-problems are solved

separately. The solutions are

stored in a memory-based data

structure.

Longer time is needed to com-

pute multiple solutions (e.g.,

change traffic phase and adjust

traffic phase split) for multi-

ple sub-problems as a result of

multiple simultaneous changes

(e.g., queue length and waiting

time) to a traffic network.

DRL uses experience replay and

target network to reduce the time

required to train the main net-

work while improving the stabil-

ity of training. This helps DRL

to provide multiple solutions (e.g.,

change of traffic phase and ad-

justment of traffic phase split) for

addressing multiple simultaneous

changes (e.g., queue length and

waiting time) to a traffic network

with reduced training time.

RL [30] Explores and exploits differ-

ent state-action pairs so that

the highest possible rewards

are achieved and accumulated

over time for system perfor-

mance enhancement.

Large number of states (or a

large state space) is needed

to provide abstract representa-

tions of high-dimensional and

complex inputs as a result of

the curse of dimensionality.

DRL has the ability to deal with

high dimensional state space, and

so it addresses the curse of dimen-

sionality.

represents knowledge, for the state-action pair. The Q-value

Qt(st, at) represents the appropriateness of taking action at
under state st, and it is updated using Q-function as follows

[52]:

Qt+1(st, at)← Qt(st, at) + αδt(st, at) (2)

where 0 ≤ α ≤ 1 is the learning rate, and δt(st, at)
is the temporal difference, which is based on the Bellman

equation that represents the difference between immediate

and discounted rewards for two successive estimations as

follows [53]:

δt(st, at) = rt+1(st+1) + γmax
a∈A

Qt(st+1, a)−Qt(st, at)

(3)

where γmax
a∈A

Qt(st+1, a) represents the discounted reward,

which is the expected maximum Q-value at time t + 1 and

so on, and 0 ≤ γ ≤ 1 represents a discount factor that shows

the preference for the discounted reward. In other words, the

immediate reward rt+1(st+1) represents a short-term reward,

while the discounted reward γmax
a∈A

Qt(st+1, a) represents a

long-term reward. As time goes by t = 1, 2, 3, . . ., the agent

explores, updates, and stores the Q-values Qt(st+1, a) of all

the state-action pairs (st, at) in a two-dimensional Q-table.

During action selection, an agent selects either exploration

or exploitation. Exploration selects a random action with a

small probability ε to update its Q-value so that better actions

can be identified in a dynamic and stochastic operating envi-

ronment as time progresses. On the other hand, exploitation

selects the best-known (or greedy) action with probability

1 − ε to maximize the state value using the value function

4 VOLUME 4, 2016
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FIGURE 2: Organization of this article.

FIGURE 3: FCLN architecture.

as follows [54]:

vπt (st) = max
a∈A

Qt(st, a) (4)

where π is the policy, which is applied by the agent to decide

the next action at+1 based on the current state st, and it is

defined as follows [55]:

π(st) = argmax
a∈A

Qt(st, a) (5)

Hence, an agent selects an action with the maximum Q-value.
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FIGURE 4: DQN architecture

For simplicity, only exploitation is shown in algorithms pre-

sented in this article.

Algorithm 1 RL algorithm embedded in an agent

1: Procedure

2: observe current state st ∈ S

3: for t = 1 : T do

4: select action at ∈ A using Equation (5)

5: perform action at ∈ A

6: receive reward rt+1(st+1) and next state st+1

7: update Q-value Qt+1(st, at) using Equation (2)

8: end for

9: End Procedure

C. DEEP REINFORCEMENT LEARNING

Deep reinforcement learning (DRL) is the combination of

two artificial intelligence approaches (i.e., DL and RL). Deep

Q-network (DQN) is the first DRL method proposed by

DeepMind [15], and it has been widely used in TSC. DQN

has two main features, namely experience replay and target

network [56]–[59]. Using experience replay, an agent stores

an experience in a replay memory, and subsequently trains

itself using experiences randomly selected from the replay

memory [60]. Using target network, an agent utilizes a du-

plicate of the main network, and uses its weights to calculate

target Q-values subsequently used to calculate a loss function

minimized using gradient descent [61]. The weights of the

target networks are fixed (or updated after a certain number of

iterations) to improve training stability. During training, the

target Q-value is used to compute the loss of a selected action

in order to stabilize training, and it is updated every certain

number of iterations [62]–[66]. The main network enables an

agent to select an action after observing its state from the

environment, and subsequently updates its main Q-values.

The rest of this section presents the DQN architecture and

algorithm, respectively.

1) DQN Architecture

DQN possesses one of the different kinds of DL archi-

tectures, such as FCLN, CNN, SAE, 3DQN, and LSTM.

FCLN has been widely used with DQN. Fig. 4 presents the

architecture of DQN. An agent has three main components,

namely the replay memory, the main network, and the target

network. The replay memory is a dataset of an agent’s

experiences Dt = (e1, e2, . . . , et, . . . ), which are gathered

when the agent interact with the environment as time goes

by t = 1, 2, 3, . . . . Subsequently, the experiences Dt are

used during the training process. The main network consists

of a FCLN, and the weight θk of the FCLN is used to

approximate its Q-values Q(s, a; θk) at iteration k. The main

network is used to select an action at for a particular state st
observed from the environment in order to achieve the best

possible reward rt+1(st+1) and next state st+1 at the next

time instant t + 1. The target network is a duplicate of the

main network, and the weight θ− of the FCLN is used to

approximate its Q-values Q(s, a; θ−k ) after the kth iteration.

There are two main differences between the Q-values of the
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main and target networks. Firstly, the main network is used

during action selection and training, while the target network

is used during training only. The target network improves

the training stability, without which the policy may oscillate

between the main and target Q-values in a single network.

Secondly, the Q-values Q(s, a; θk) of the main network are

updated in every iteration k, while the weights θ−j of the

target network are updated by copying the weights θj of

the main network at every C steps, which is equivalent to

k iterations.

2) DQN Algorithm

Algorithm 2 shows the algorithm for DQN. At episode

m ∈ M , an agent observes the current state sm ∈ S. At

time instant t ∈ T , the agent selects an action at ∈ A using

Equation (5), which is given by the Q-value of the main

network; subsequently it receives the reward rt+1(st+1)
and observes the next state st+1, and stores its experience

et = (st, at, rt, st+1, at+1) in the replay memory Dt =
(e1, e2, . . . , et, . . . ). Subsequently, the agent samples a mini-

batch of experiences from the replay memory Dt in a random

manner to learn the weights θj . At iteration j ∈ J , the agent

updates the target Q-values of the target network, specifically

Qj(sj , a
∗

j ; θ
−

j ) ≈ Q∗(sj , aj). The weights θ−j of the target

network is replaced with the weights θj of the main network

in order to provide updated Q-values Q(s, a; θ−k ) of the

target network as time goes by. The weights θ−j of the target

network is fixed to minimize the loss between the Q-values

of the main and target networks, which helps to stabilize Q-

values. The loss function at iteration j is minimized to train

the main network as follows [67]:

Lj(θj) = Esj ,aj∼p(.)

[(

yj −Qj(sj , aj ; θj)
)2]

(7)

where p(s, a) represents the probability distribution of a

state-action pair (s, a), and yj represents the target given by

θ−j−1 in the previous iteration j − 1. The gradient of the loss

function∇θLj(θj) is given as follows [68]:

∇θLj(θj) =Esj ,aj∼p(.)

[(

yj −Qj(sj , aj ; θj)
)

∇θjQj(sj , aj ; θj)
] (8)

During backpropagation, a backward pass uses gradient de-

scent, whereby the weights θj of the main network are

updated in the opposite direction, to achieve the minimum

value of∇θLj(θj).

D. DEEP LEARNING ARCHITECTURES WITH

REINFORCEMENT LEARNING METHODS

This section presents DL architectures used with RL methods

applied to different types of traffic network models, including

single intersection [69]–[75], [102], multi intersections [77],

FIGURE 5: An example of a CNN architecture [42].

real world [80]–[82], and grid [79]. Fig. 12 presents the DRL

attributes for TSC.

1) DL Architectures

The DL architectures used with RL methods for TSCs are as

follows:

N.1 The traditional FCLN has been adopted in [73], [75] to

approximate the Q-values of TSCs (see Section II-A).

N.2 Convolutional neural network (CNN) has been widely

adopted in [69], [72], [77], [79], [81] to approximate the

Q-values of TSCs. While the traditional DL approach

consists of fully connected (FC) layers, CNN has two

main types of layers, namely the convolutional layer,

and as well as the traditional FC layer (see Fig. 5 for

an example of a CNN architecture [72]). In Fig. 5, CNN

has one input layer, two convolutional layers, two FC

layers, and one output layer. Each convolutional layer

consists of three parts, namely convolution, pooling, and

activation. The data flows from the input layer to the

output layer. The layers are as follows:

• The input layer represents the state sit, such as the po-

sition (S.5) and speed (S.6) of a vehicle. For instance,

at an intersection, with a grid size of 60×60, the input

state sit represents the position and speed of a vehicle,

and it has a size of 60× 60× 2.

• Two convolutional layers consist of k filters (or ker-

nels), in which each filter consists of a set of weights.

Each weight aggregates local patches (e.g., the pixels

of an image) from the previous layer and shifts the

aggregated local patches for a fixed number of steps

defined by the stride each time. By pooling, the salient

values from the local patches replace the whole patch

in order to remove the less important information and

reduce the dimensionality of the input state sit. Next,

the activation function (i.e., ReLU) activates the units

of patches.

• Two FC layers.

• The output layer provides the Q-values Qi
t(s

i
t, a

i
t) of

all possible actions ait.
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Algorithm 2 Traditional DQN algorithm

1: Procedure

2: for episode = 1 : M do

{Observation process}

3: observe current state st ∈ S

4: for t = 1 : T do

{Action selection process}

5: select action at ∈ A using Equation (5)

6: receive reward rt+1(st+1) and next state st+1

7: store experience (st, at, rt+1(st+1), st+1) in replay memory Dt

{Training process}

8: sample a random minibatch of experiences (st, at, rt+1(st+1), st+1) from replay memory Dt

9: for j = 1 : N do

10: set target

yj =

{

rj+1(sj+1), if episodes terminate at sj+1

rj+1(sj+1) + γmaxa Q(sj+1, a; θj), otherwise
(6)

11: perform a gradient descent optimization on (yj −Q(sj , aj ; θj))
2 with respect to θj using Equation (8)

12: reset θ− = θ in every C steps

13: end for

14: end for

15: end for

16: End Procedure

N.3 Stacked auto encoder (SAE) neural network, which

performs encoding and decoding functions, has been

adopted in [70] to approximate the Q-values of TSCs.

Fig. 6 shows an example of a SAE architecture. The data

flows from the input layer to the output layer. The layers

are as follows:

• The input layer represents the state sit.

• The encoder maps the input data into hidden represen-

tations (i.e., feature extraction). The encoding process

is given by:

E(x) = f(W1x+ b) (9)

where f(.) is the encoding function, W1 is a weight

matrix used to reduce the number of parameters to

learn, and b is the bias vector, which stores the value

of 1 in order to produce an output for the next layer

that differs from 0 whenever the a feature value is 0.

• The decoder reconstructs the input data from the

hidden representations. The decoding process is given

by:

D(x) = g(W2E(x) + b) (10)

where g(.) is the decoding function, and W2 is a trans-

pose matrix of the weight matrix W1. Subsequently,

the reconstruction error, which is a measure of the

FIGURE 6: An example of a SAE architecture [40]. The

encoder is enclosed with a dotted line, and the decoder is

enclosed with a dashed line.

discrepancy between input and its reconstruction by

decoding, of the obtained parameters θae is mini-

mized as follows:

θae = argmin
θae

L(x,D) = argmin
θae

1

2

∑

||x−D(x)||2

(11)

• The output layer provides the Q-values Qi
t(s

i
t, a

i
t) of

all possible actions ait ∈ Ai.

N.4 Double dueling deep Q-network (3DQN), with its FC

layer split into two separate streams, has been adopted

in [74], [76], [80] to approximate the Q-values of TSCs.
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FIGURE 7: An example of a 3DQN architecture [44].

FIGURE 8: Traditional LSTM neural network architecture.

The 3DQN architecture consists of double Q-learning

[88] and a dueling network [89] as shown in an example

of a 3DQN architecture in Fig. 7. In double Q-learning,

a max operator decouples the selection of an action

from the evaluation of an action; while in traditional

Q-learning, a max operator uses the same value for

both selection and evaluation of an action. The dueling

network has two separate streams to estimate the state

value and the advantage of each action separately. The

data flows from the input layer to the output layer. The

layers are as follows:

• The input layer represents the state sit.

• Three convolutional layers consist of k filters (or

kernels), in which each filter consists of a set of

weights.

• Two FC layers, in which the second FC layer is

split into two separate streams: a) the state value

V (sit) provides an estimate of the value function that

measures the absolute value of a state sit; and b) the

advantage A(sit, a
i
t) of performing an action ait under

a state sit that represents the contribution of the action

to the value function compared to all possible actions.

The 3DQN architecture uses a FC layer that splits

into two separate streams, while the CNN architecture

uses the traditional FC layers.

• The output layer provides the Q-values Qi
t(s

i
t, a

i
t) of

all possible actions ait ∈ A as follows:

Qi
t(s

i
t, a

i
t) = V (sit)

+
(

A(sit, a
i
t)−

1

|A|

∑

ai
t+1

A(sit, a
i
t+1)

)

(12)

where a positive value of A(sit, a
i
t) indicates that

the action ait has a better reward (or performance)

compared to the average performance of all possible

actions, and vice-versa.

The 3DQN architecture uses the double DQN (DDQN)

algorithm. While the traditional DQN algorithm uses the

same max operator and values for both selection and

evaluation of an action, the DDQN algorithm uses the

target as follows:

y
DDQN
j = rj+1(sj+1)

+ γQ(sj+1, argmax
a

Q(sj+1, a; θj); θ
−

j )
(13)

N.5 The traditional long short-term memory (LSTM) neural

network, which is based on a recurrent neural network,

consists of a memory cell; and it has been adopted in

[82] to approximate the Q-values of TSCs. Fig. 8 shows

an example of a LSTM architecture. The data flows from

the input layer to the output layer. The layers are as

follows:

• The input layer represents the state sit.

• The LSTM layer consists of a memory cell that

maintains a time window of states [90]. In Fig. 8, the

memory cell has an input gate g, and an output gate h.

In addition, there are two nodes for multiplication ×,

one node for summation +, and two gate activation

functions δ that transform data into a value between 0
and 1.

• The output layer provides the Q-values Qi
t(s

i
t, a

i
t) of

all possible actions ait ∈ Ai.
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2) DRL Methods

There are three DRL methods applied to DL architectures for

TSCs as follows:

E.1 Value-based method. The value-based method is the

traditional DQN method (see Sections II-B and II-C),

which has been adopted in [69]–[77], [79]–[81], [102].

The value-based DQN maps each state-action pair

(st, at) to a state value Vt(st) learned using value func-

tion (see Equation (4)) in order to identify the best

possible action for each state.

E.2 Policy-gradient (PG)-based method. DQN with the PG-

based method selects an action at ∈ A based on a

policy with probability distribution π(at|st; θ) given a

state st ∈ S, where the probability distribution is learned

by performing gradient descent on the policy parameter

(i.e., the weight θ of DQN). Equation (8) is revised as

follows:

∇θLj(θj) = Esj ,aj∼p(.)

[

∑

t

∇θlogπθ(at | st)Rt

]

(14)

where Rt =
∑

t γrt represents the reward function. PG-

based DQN has been adopted in [71].

E.3 Advantage actor critic (A2C)-based method. DQN with

the A2C-based method is a hybrid approach that com-

bines both value-based and PG-based DQN methods.

Each agent has an actor that controls how it behaves

(i.e., PG-based), and a critic that measures the suitability

of the selected action (i.e., value-based). Equation (8) is

revised as follows:

∇θLj(θj)

= Esj ,aj∼p(.)

[

∑

t

∇θlogπθ(at | st)At(st, at)
]

(15)

where At(st, at) = Qt(st, at)− Vt(st) is the advantage

function. A2C-based DQN has been adopted in [82].

E. SIMULATION PLATFORMS

Traffic simulators are simulation platforms that evaluate,

compare, and optimize DRL-based TSCs. In general, a traffic

simulator provides a graphical user interface and essential

features to simulate TSCs, vehicles, and roads in order to

gather: a) local statistics, such as the queue length of the

vehicles at an intersection; and b) global statistics, such as

the queue length of the vehicles at all intersections in a

traffic network. There are two approaches for investigation:

a) the macroscopic approach that focuses on traffic flows,

such as traffic density, the speed limit of the lanes, and the

vehicle distributions [104]; and b) the microscopic approach

that focuses on the mobility characteristics of an individual

vehicle, such as the driving speed and direction [105]. In

most investigations in the application of DRL to TSCs, traffic

simulators are based on the microscopic approach [69], [70],

[73], [80], including SUMO [106], [107], Paramics [108],

[109], VISSIM [110], [111], and Aimsun Next [112], [113].

Some schemes have considered real world traffic network in

simulations, including real world traffic network based on

Florida designed in Aimsun Next [80], as well as Jinan [81]

and Monaco [82] designed in SUMO.

III. ATTRIBUTES OF TRAFFIC SIGNAL CONTROL

SYSTEMS

The attributes of the intersections, traffic, and TSCs have

brought about challenges to traffic management. This section

presents these attributes to provide a better understanding

about the TSC problem, which is solved using DRL as

presented in Section IV. Figure 9 presents various aspects

of the TSC attributes. In addition, performance measures are

presented.

A. CHALLENGES

DRL addresses the following two main challenges of TSC

that causes congestion, green idling, and cross-blocking:

C.1 Inappropriate traffic phase sequence: A traffic phase

consists of a combination of green signals allocated to

a set of lanes simultaneously for non-conflicting and

safe traffic flows at an intersection. TSC has different

kinds of traffic phases (see Section III-C2 for more

details) characterized by: a) with opposing through traf-

fic (T.2.1); b) without opposing through traffic (T.2.2);

and c) with group-based individual traffic (T.2.3). These

traffic phases can be activated in an in-order (i.e., round-

robin) or out-of-order manner.

C.2 Inappropriate traffic phase split: A traffic phase split

represents the time interval allocated for a traffic phase.

For simplicity, we can focus on the green time of the

traffic phase with green signals, in which the rest of the

traffic phases receive red signals. Too long of a green

time can cause cross-blocking and green idling when the

traffic volume is high and low, respectively. Too short of

a green time can increase the queue length of a lane,

resulting in congestion. The maximum and minimum

durations of a traffic phase split can be imposed. The

maximum duration prevents a long waiting time for

vehicles at other lanes, while the minimum duration

ensures that at least a single waiting vehicle can cross

an intersection.

B. TRAFFIC NETWORK MODELS

The traffic network models reflect the traffic conditions,

which can be characterized by their architectures and traffic

arrival rates.
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FIGURE 9: TSC attributes.

1) Traffic Network Architectures

A traffic network consists of a single or multiple intersec-

tions and edge nodes. Each intersection has multiple legs in

different directions, and each leg has a single or multiple

lanes so that a vehicle can either turn right, turn left, or go

straight. A vehicle enters a traffic network through an edge

node, traverses from one intersection to another, and leaves

through another edge node in a closed traffic environment. A

left-hand traffic network is considered throughout the article,

even though a similar description can be applied to a right-

hand traffic network.

M.1.1 Single intersection traffic network represents a traffic

network with a single intersection [69]–[75].

M.1.2 Multi intersection traffic network represents a traffic

network with multiple intersections, such as two in-

tersections with a single closed link in between the

intersections (see Fig. 10a) and three intersections

with a central intersection and two outbound intersec-

tions (see Fig. 10b) [77]. Each vehicle can cross one

intersection (e.g., west), two intersections (e.g., west-

central) or three intersections (e.g., west-central-east).

M.1.3 Real world traffic network represents a traffic network

based on the layout of a city, and so a larger number of

intersections are considered. For instance, investiga-

tions are conducted based on 8 intersections in Florida

(United States) [80], 24 intersections in Jinan (China)

[81], and 30 intersections in Monaco [82].

M.1.4 Grid traffic network represents a traffic network based

on a grid topology, such as 2 × 2 (see Fig. 10c) and

3× 3 traffic networks [79].

An intersection i has l legs. Each leg li ∈ Li has d lanes,

whereby each lane is represented by dl
i

∈ Dli . The number

of lanes is ignored when a leg has a single lane d = 1.

A traffic network also consists of hardware devices (e.g.,

video-based traffic detectors, inductive loop detectors, and

camera sensors) installed at intersections to gather local

statistics (e.g., traffic arrival and departure rates, the occu-

pancy of a lane, as well as the queue length and waiting

time of vehicles) over time. The hardware devices pro-

cess (e.g., aggregate) and send the statistics to agents (or

TSCs) in order to estimate longer-term information (e.g., the

average queue length). Alternatively, the hardware devices

can gather shorter-term information (e.g., the instantaneous

queue length) at intersections at any time instant. The TSCs

can communicate among themselves using wired connec-

tions, and can communicate with vehicles using wireless

communication.

2) Traffic Arrival Rate

Traffic arrival rate characterizes: a) the number of vehicles

entering a traffic network through edge nodes; or b) arriving

at an intersection within a time duration (e.g., 2,000 vehicles

per hour) [70]. The traffic arrival rate affects the traffic

volume leading to a crowded or sparse traffic network. When

a vehicle arrives, it is placed at the end of a queue at one

of the lanes of the legs at an intersection. Each lane can

accommodate a certain number of vehicles. Traffic models

and statistical distributions can be used to characterize the

steady-state dynamics of the traffic arrival rate as follows:

M.2.1 Poisson-based traffic arrival rate determines the

probability of the number of vehicles n arriving at an
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(a) Two intersections. (b) Three intersections.

(c) 2 x 2 Grid.

FIGURE 10: Traffic network architectures.

intersection i within a time period tp based on [83]:

P
i,n
tp

=
(µitp)

n

n!
e−µitp (16)

where µ is the arrival rate of vehicles. Using the

Poisson process, there are three main properties that

attribute to a realistic traffic model [72]: a) the inter-

arrival time is exponentially distributed; b) the inter-

arrival time is memoryless; and c) the number of

incoming vehicles at different lanes are independent

of each other.

M.2.2 Real world-based traffic arrival rate determines the

probability of the number of vehicles arriving at an in-

tersection within a time period based on the traversing

properties of vehicles (e.g., lane switching, vehicle

overtaking, driving direction, driving speed, and the

physical position of the destination). Some real world-

based traffic models are the car-following model [74]

and the Nagel-Schereckenberg model [84].

C. TRAFFIC SIGNAL CONTROL MODELS

TSCs can be characterized by their architectures (e.g., TSCs

and their relationship) and traffic phases. While the architec-

ture characterizes the operation at the global level (or multi-

ple intersections), the traffic phase characterize operation at

the local level (or a single intersection).

1) TSC Architectures

In the context of DRL, the TSC architecture is as follows:

T.1.1 Centralized model enables a centralized agent to gather

local statistics (e.g., the queue length (S.1) of the lanes)

from all or neighboring agents, and selects an action

(e.g., the type of traffic phase (A.1)), which optimizes

the system-wide performance. Subsequently, the cen-

tralized agent either executes the action or sends the

action or knowledge to distributed agents (e.g., all or

neighboring agents). The distributed agents may either

execute the action or use the knowledge to select their

respective actions. A centralized model has three main

issues with regard to efficiency, scalability, and robust-

ness. Firstly, the centralized model has a single point of

failure whereby the malfunctioning of the centralized

agent can affect the traffic condition of the entire traffic

network. Secondly, the centralized agent experiences

the curse of dimensionality. Thirdly, the centralized

agent incurs significant communication overhead for

information exchange. This model has been widely

adopted by traditional TSCs, including GLIDE [85],

SCOOT [86], and SCAT [87].

T.1.2 Distributed model enables multiple distributed agents

to gather local statistics and select their respective

actions. Hence, a complex problem is segregated into

sub-problems solved by the distributed agents, con-

tributing to higher efficiency and robustness. In the

context of DRL, the distributed model enables the

agents to optimize a global Q-value in a traffic network

in order to achieve the global objective of a traffic

network. To provide a global view of the operating

environment, the distributed agents observe their re-

spective local operating environment and learn about

their neighboring agents’ information (e.g., rewards
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(a) With opposing through traffic.

(b) Without opposing through traffic.

FIGURE 11: Traffic phases.

and Q-values). The agents select their respective ac-

tions, and the global Q-value converges to an optimal

equilibrium in order to achieve an optimal joint action

as time goes by.

2) Traffic Phases

The traffic phases can be characterized as follows:

T.2.1 With opposing through traffic is a traffic phase, which

incorporates a four-phase traffic sequence, in which

traffic travels through two opposing lanes simultane-

ously as shown in Fig. 11a. It is preferred at intersec-

tions where: a) either through or turning traffic volume

is significantly higher; and b) the through and turning

traffic use separate lanes [70].

T.2.2 Without opposing through traffic is a traffic phase,

which incorporates a four-phase traffic sequence, in

which traffic travels through two lanes without oppos-

ing each other simultaneously as shown in Fig. 11b. It

is preferred at intersections where: a) the through and

turning traffic volumes are equal, and b) the through

and turning traffic share a single lane [73].

T.2.3 With grouped individual traffic is a traffic phase in

which green signals are individually allocated to lanes

for a particular time period as long as the selected

combination of traffic movements are non-conflicting

at an intersection [69].

D. PERFORMANCE MEASURES

There are four performance measures achieved by DRL

models as follows:

P.1 Lower average delay reduces the average time required

by vehicles to cross an intersection or to traverse from a

source to a destination. The average time also includes

the average waiting and travelling times during cross-

blocking and congestion.

P.2 Lower average waiting time reduces the average waiting

time of the vehicles (see (R.1) in Section IV-C).

P.3 Smaller queue length reduces the queue length of the

vehicles (see (S.1) in Section IV-A and (R.2) in Section

IV-C).

P.4 Higher throughput increases the number of vehicles

crossing an intersection, or reaching their destinations,

within a certain time period (e.g., a single cycle).

IV. REPRESENTATIONS OF DEEP REINFORCEMENT

LEARNING MODELS AND COMPLEXITY ANALYSIS FOR

TRAFFIC SIGNAL CONTROL

The traditional DRL approach for TSC has been widely used

in the literature [69] [72] [77]. Extension to the traditional

DRL approach with enhanced features has also been inves-

tigated as presented in Section II-D. The DRL agent can

be embedded in TSC to coordinate vehicles [78] [79]. The

rest of this section presents the attributes of DRL for TSC

systems. Fig. 12 presents the DRL attributes for TSC. In

addition, complexity analysis is presented.

A. STATES

The state sit ∈ Si of an agent i represents its decision-

making factors. Each state can consist of j sub-states s
i,j
t =

(si,1t , s
i,2
t , s

i,3
t , . . . , s

i,j
t ), in which the sub-states have differ-

ent representations at intersection i. In the context of DRL,

there are six main representations for a state sit:

S.1 Queue length represents the number of waiting vehicles

at a lane or a leg, and so it changes with the traffic arrival

and departure rates. A waiting vehicle has a speed of 0

km/h. The state sit can represent the maximum queue

length among the lanes, in which the number of states

is given by the maximum queue length. As an example,

suppose there are three waiting vehicles at the leg l of

intersection i, so the states are s
i,l
t = 1 for the three

waiting vehicles and s
i,l
t = 0 for the moving vehicles

[70].
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S.2 Red timing represents the time elapsed since the traffic

signal of a lane turned into red at an intersection. The

state is reset to a zero value s
i,l
t = 0 whenever green

and yellow signals are activated, and s
i,l
t = 1 whenever

a red signal is activated, at the lane dl
i

of a leg li at an

intersection i [73]. The state s
i,li

t can also represent the

red timing t
i,li

r,t of the lanes dl
i

∈ Dli of a leg li at an

intersection i.

S.3 Green timing represents the time elapsed since the traffic

signal of a lane turned into green at an intersection. The

state is reset to a zero value s
i,l
t = 0 whenever red

and yellow signals are activated, and s
i,l
t = 1 whenever

green signal is activated, at the lane dl
i

of a leg li at

an intersection i. The state s
i,li

t can also represent the

green timing t
i,li

g,t of the lanes dl
i

∈ Dli of a leg li at an

intersection i [73].

S.4 Current traffic phase represents the traffic phase being

activated at the time of decision making. At time t, the

state sit can represent the traffic phase at an intersection i,

in which the number of substates is given by the number

of candidate traffic phases. As an example, the state

sit = (si,1t , s
i,2
t , s

i,3
t , . . . , s

i,8
t ) = (1, 0, 0, 0, 0, 0, 0, 0)

represents that only traffic phase 1 is activated at time

t [72].

S.5 Vehicle position represents the physical position of a

waiting vehicle at the lane dl
i

of a leg li at an intersection

i. Consider a lane segmented into small cells from the

intersection i, in which each cell can accommodate a

single vehicle. The state sit = (si,1t , s
i,2
t , s

i,3
t , . . . , s

i,j
t )

represents the position of a cell, with the cell s
i,1
t being

the nearest to the intersection i, and the cell s
i,j
t being

the maximum queue length [77].

S.6 Vehicle speed represents the speed of a moving vehicle

at the lane dl
i

of a leg li at an intersection i. Consider

a lane segmented into small cells, in which each cell

can measure the speed of a single vehicle. At time t,

the state sit = (si,1t , s
i,2
t , s

i,3
t , . . . , s

i,j
t ) represents the

speed of a vehicle from the intersection i, whereby

s
i,∗
t = {0, 0.1, 0.2, . . . , 0.9, 1}, si1 = 1 represents the

maximum legal speed of a vehicle (e.g., 90 km/h), and

si1 = 0 represents the minimum speed (i.e., 0 km/h) [69].

B. ACTIONS

The action ait ∈ Ai of an agent i represents its selected

action. In the context of DRL, there are two main representa-

tions for an action ait:

A.1 Traffic phase type represents the selection of a combina-

tion of green signals allocated simultaneously for non-

conflicting traffic flows at an intersection. The traffic

phases can be activated in one of these manners: a) in-

order (i.e., round-robin with certain periods of traffic

phase splits); and b) out-of-order. At time t, an action

ait = {a
i
1, a

i
2, a

i
3, . . . , a

i
n} at an intersection i represents

one of the activated traffic phases. The number of candi-

date actions is equal to the number of traffic phases [69]

[70].

A.2 Traffic phase split represents the selection of a time

interval for a traffic phase at an intersection i. The action

ait = {ai1, a
i
2} represents whether agent i keeps the

current traffic phase (ai1), or switches to another traffic

phase (ai2) which normally happens when the current

traffic phase does not receive the best possible reward

[74].

C. REWARDS

The reward rit+1(s
i
t+1) ∈ Ri of an agent i represents its

feedback from the operating environment, where Ri is a set

of potential rewards at agent i. The reward value can be

fixed, such as rit+1(s
i
t+1) = 1 that represents a reward and

rit+1(s
i
t+1) = 0 that represents a cost (or penalty). In the

context of DRL, there are three main representations for a

reward rit+1(s
i
t+1) as follows:

R.1 Relative waiting time. In this representation, an agent

receives rewards (or costs) that change with the average

waiting time of the vehicles at an intersection. The

average waiting time of the vehicles at an intersection

can increase due to cross-blocking, congestion, or red

signal. The reward rit+1(s
i
t+1) is a relative value. As

an example, rit+1(s
i
t+1) = W i

t − W i
t+1 represents

the difference of the average total waiting time of all

vehicles at intersection i at time t and time t + 1 (or

between traffic phases) [72] [74] [69] [71].

R.2 Relative queue length. In this representation, an agent

receives rewards (or costs) that change with the incre-

ment/ decrement of the queue length of the vehicles at an

intersection. The reward rit+1(s
i
t+1) is a relative value.

As an example, rit+1(s
i
t+1) = ni

c,t+1−n
i
q,t+1 represents

the difference between the number of vehicles crossing

an intersection ni
c,t+1 and the queue length ni

q,t+1, and

it indicates whether the green time is sufficient or not at

an intersection i [82].

R.3 Phase transition represents the cost of a traffic phase

transition, such as the time delay incurred during the

transition of a traffic phase [77].

D. COMPLEXITY ANALYSIS

In this section, the computational, sample, and message com-

plexities of DRL models for TSCs are estimated. The com-

plexity analysis conducted in this section is inspired by sim-

ilar investigation performed in [114], [115]. The complexity

analysis has two levels: a) agent-wise that considers all the

state-action pairs (st, at) of an agent, and b) network-wide

that considers all agents in a network. Note that, we focus

on exploitation actions while analyzing the DRL algorithm.

The parameters for complexity analysis are shown in Table

3. The agent-wise and network-wide complexities of DRL for
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FIGURE 12: DRL attributes for TSC.

TABLE 3: Parameters for complexity analysis.

Parameter Description

|S| Number of sub-states

|A| Number of sub-actions for each sub-state.

|R| Number of rewards for each state-action pair

(st, at).
|I| Number of agents in a network.

|J | Number of neighboring agents of an agent in

a network.

TSCs are presented in Table 4. In the table, it should be noted

that: a) an agent-wise complexity is shown without |I|, and

a network-wide complexity is shown with |I|; and b) DRL

models with a single agent show agent-wise complexities,

and DRL models with multiple agents show network-wide

complexities. The three types of complexities of DRL models

for TSC is presented in the rest of this section.

1) Computational Complexity

Computational complexity estimates the number of times the

DRL algorithm is being executed in order to calculate the

Q-values for all actions of the agents, and it also refers to

the complexity of action selection. For the agent-wise com-

putational complexity, there are |S| states, and |A| actions,

and so the complexity is O(|S||A|) and the network-wide

complexity is O(|I||S||A|). As an example, in Gong’s DRL

model, where the traditional MARL algorithm (see Algo-

rithm 3) is used, an agent i calculates the reward and updates

its Q-value (Step 9), so the agent-wise complexity is O|S|+
O(|S||A|), which can be simplified as O(|S||A|). Therefore,

the network-wide complexity is O(|I||S|) + O(|I||S||A|),
which can be simplified as O(|I||S||A|).

For estimating the agent-wise and network-wide computa-

tional complexities of the A2C-based method, which con-

sists of actor and critic networks, the number of neurons

in each layer as well as the number of layers in the net-

work are considered. For the actor network, the number

of neurons in the mth layer is Um, and the number of

layers in the actor network is M . So, the computational

complexity of the mth layer is O(Um−1Um + UmUm+1),
and the computational complexity of the actor network is

O(
∑M−1

m=2 (Um−1Um + UmUm+1)). For the critic network,

the number of neurons in the nth layer of the critic network

is Cn, and the number of layers in the critic network is

N . So, the computational complexity of the nth layer is

O(Cn−1Cn + CnCn+1), and the computational complexity

of critic network is O(
∑N−1

n=2 (Cn−1Cn+CnCn+1)). During

execution, both actor and critic networks are used, so the

agent-wise computational complexity of A2C-based method

is O(
∑M−1

m=2 (Um−1Um + UmUm+1) +
∑N−1

n=2 (Cn−1Cn +
CnCn+1)), and it is O(|Um, Cn|) for simplicity. So, the

network-wide computational complexity is O(|I||Um, Cn|).

2) Sample Complexity

Sample complexity estimates the number of experiences an

agent takes to learn in order to behave well during and after

training, and it also refers to the complexity of the training

process. As an example, in the traditional DRL algorithm (see

Algorithm 2), an agent gains an experience after interacting

with the environment, which is stored in its replay memory

(see Step 7 of Algorithm 2), so the agent-wise complexity is

O(|S||A||R|) given that there are |R| rewards. Therefore, the

network-wide complexity is O(|I||S||A||R|).
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TABLE 4: Agent-wise and network-wide complexities of DRL for TSCs.

DRL Model Complexities

Computational Sample Message

Traditional FCLN with value-based method O(|S||A|) O(|S||A||R|)
CNN with value-based method O(|I||S||A|) O(|I||S||A||R|) ≤ |I||J |
CNN with PG-based method O(|S||A|) O(|S||A||R|)
SAE with value-based method O(|S||A|) O(|S||A||R|)
3DQN with value-based method O(|I||S||A|) O(|I||S||A||R|) ≤ |I||J |
LSTM with A2C-based method O(|I||Um, Cn|) O(|I||S||A||R|) ≤ |I||J |

3) Message Complexity

Message complexity is the number of messages exchanged

among the agents in order to update a Q-value. As an ex-

ample, in Gong’s MARL algorithm for DRL (see Algorithm

3), each agent i exchanges its traffic network condition (i.e.,

queue length) with its neighboring agents J (see Step 4 and 5

of Algorithm 3), so the agent-wise complexity is ≤ |J |, and

the network-wide complexity is ≤ |I||J |.

V. APPLICATION OF DEEP REINFORCEMENT

LEARNING FOR TRAFFIC SIGNAL CONTROL SYSTEMS

This section presents the limited application of the traditional

and enhanced DRL models to TSCs. There are five main

DL architectures, namely the traditional FCLN (N.1), CNN

(N.2), SAE (N.3), 3DQN (N.4), and LSTM (N.5), which

are applied to TSC in the literature. The DL architectures

are essential to cater for the high-dimensional state space in

order to address the curse of dimensionality in TSCs. Hence,

this section is presented from the DRL perspective, rather

than TSCs, and so the categorization is based on the DL

architectures. Nevertheless, the TSC attributes are captured

by the state representations, such as queue length (S.1), red

timing (S.2), green timing (S.3), current traffic phase (S.4),

vehicle position (S.5), and vehicle speed (S.6). A summary

of the various DRL models and their descriptions applied

to TSCs is presented in Table 5. Each DRL model has its

strength. For instance, while 3DQN has been widely used

to increase the learning speed, CNN has been widely used

to analyze visual imagery. Table 7 presents a summary of

the DRL attributes of the DRL-based TSCs proposed in the

literature. In the literature, all DRL models are embedded

in TSCs, and so the agent is TSC (G.1). A summary of the

TSC attributes applied in the investigations of DRL-based

TSCs is presented in Table 6. Table 8 presents a summary

of key contributions, quantitative results/findings, and future

directions of DRL-based TSC investigations. Subsequently,

Section VI makes use of Tables 5-8 to provide guidelines

and design considerations for identifying DRL solutions for

different TSC problems. Table 9 presents a summary of the

performance measures and simulation platforms applied to

the DRL-based TSC investigations.

A. ENHANCEMENT OF THE DRL MODELS WITH

TRADITIONAL FCLN ARCHITECTURE

The enhancement of various DRL models based on the

traditional FCLN architecture and the value-based approach

for TSCs are presented.

1) Wan’s Enhancement with Dynamic Discount Factor

Wan et al. [73] incorporate a dynamic discount factor, which

is an enhancement to the discount factor γ in Equation (6), to

the traditional FCLN architecture (N.1) and the value-based

approach (E.1). The combination of the traditional FCLN ar-

chitecture and the value-based approach allows this approach

to use FC layers (see Fig. 3) to provide efficient storage

while mapping each state-action pair to a state value (see

Table 5 for more details). The DRL model optimizes the Q-

values to address the challenge of inappropriate traffic phase

sequence (C.1) using a centralized model (T.1.1) in a single

intersection traffic network (M.1.1) with (T.2.1) and without

opposing through traffic (T.2.2). The traffic is characterized

by Poisson process (M.2.1). This model is embedded in the

TSC of the intersection (G.1). The state st represents the

queue length (S.1), the red (S.2) and green (S.3) timings,

and the current traffic phase (S.4). The action at represents

the type of traffic phase to be activated in the next time

instant (A.1). The reward rt+1(st+1) represents the relative

waiting time (R.1) of the vehicles. In the proposed scheme,

the dynamic discount factor takes account of the time delay

between action selection and action execution. When the

next action (i.e., a traffic phase) is selected, it may not be

executed immediately since a traffic phase can only change

every predefined time period (i.e., five seconds). Hence, the

discount factor reduces when the time delay increases so

that the expected Q-value varies accurately. Equation (6) is

revised as follows:

yj =

{

rj+1(sj+1), if an episode terminates with sj+1

rj+1(sj+1) + Γmaxa Q(sj+1, a; θj), otherwise

(17)

where Γ = 1 − τ(1 − γ) represents the dynamic discount

factor, and τ represents the time interval between two con-

secutive actions. Higher τ represents a longer time delay

between action selection and action execution, and vice-
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versa.

The proposed scheme has been shown to increase the

throughput (P.4) and reduce the average delay (P.1) of the

vehicles.

2) Tan’s Enhancement with Reward Function for Achieving

Multiple Goals

Tan et al. [75] incorporate a novel reward function, which

is an enhancement to the reward function rit+1(s
i
t+1) =

W i
t −W i

t+1 (R.1), to the traditional FCLN architecture (N.1)

and the value-based approach (E.1). The combination of the

traditional FCLN architecture and the value-based approach

allows this approach to use FC layers (see Fig. 3) to provide

efficient storage while mapping each state-action pair to a

state value (see Table 5 for more details). The DRL model

optimizes the Q-values to address the challenge of inappro-

priate traffic phase sequence (C.1) using a centralized model

(T.1.1) in a single intersection traffic network (M.1.1) with

opposing through traffic (T.2.1). The traffic is characterized

by Poisson process (M.2.1). This model is embedded in the

TSC of the intersection (G.1). The state st represents the

queue length (S.1) of the vehicles. The action at represents

the type of traffic phase to be activated in the next time instant

(A.1). In the proposed scheme, a novel reward function is

defined to achieve multiple goals as follows:

rt+1(st+1) = (ni
q,t − ni

q,t+1) + (ni
c,t − ni

c,t+1)

+(W i
t −W i

t+1)
(18)

where, with reference to an intersection i at time t and t+ 1,

the ni
q,t−ni

q,t+1 represents the difference in the total number

of waiting vehicles, ni
c,t−ni

c,t+1 represents the difference in

the number of crossing vehicles, and W i
t −W i

t+1 represents

the difference in the total waiting time of all vehicles.

The proposed scheme has been shown to reduce the queue

length (P.3) of the vehicles.

B. DRL MODELS WITH CNN ARCHITECTURE

The application of various DRL models with the traditional

CNN architecture, as well as value-based and PG-based

approaches, for TSCs are presented.

1) Investigations of the Effects of Large State Space

Genders et al. [69] investigate the use of a large state space

to incorporate more information about the traffic. This is

because some popular state representations, such as queue

length (S.1) [75], [82], ignore the current traffic phase and

moving vehicles, including the position (S.5) and speed

(S.6) of vehicles. The DRL model is based on the CNN

architecture (N.2) and the value-based approach (E.1). The

combination of the CNN architecture and the value-based

approach allows this approach to the convolutional architec-

ture (see Fig. 5) to analyze visual imagery while mapping

each state-action pair to a state value (see Table 5 for more

details). This model optimizes the Q-values to address the

challenge of inappropriate traffic phase sequence (C.1) using

a centralized model (T.1.1) in a single intersection traffic

network (M.1.1) with grouped individual traffic (T.2.3). The

traffic is characterized by Poisson process (M.2.1). This

model is embedded in the TSC of the intersection (G.1).

The state st represents the current traffic phase (S.4), the

vehicle position (S.5), and the vehicle speed (S.6), and they

are fed to the input layer of the CNN architecture. The action

at represents the type of traffic phase to be activated in the

next time instant (A.1). The reward rt+1(st+1) represents the

relative waiting time (R.1) of the vehicles. In this model, the

traditional DQN algorithm (see Algorithm 2) is used, which

is based on the value-based method. This value-based method

identifies the best possible action (i.e., A.1) for the states (i.e.,

S.4, S.5, and S.6). The use of a large state space allows agents

to incorporate more relevant information about the traffic,

and it has shown to increase the computational and storage

complexities, and reduce the learning rate. Nevertheless, the

proposed scheme has shown to increase throughput (P.4) and

reduces the average delay (P.1) and queue length (P.3) of the

vehicles.

Similar model and approach has been adopted by Gao et al.

[72]. There are two main differences. Firstly, the action at
represents the choice to either keep the current traffic phase or

switch to the next traffic phase in a predetermined sequence

of traffic phases at the next time instant (A.2), which helps

to address the challenge of inappropriate traffic phase split

(C.2). Secondly, it uses the centralized model (T.1.1) with

(T.2.1) and without opposing through traffic (T.2.2). The

proposed scheme has shown to reduce the average delay (P.1)

and waiting time (P.2).

2) Van der Pol’s Enhancement with Max-plus Coordination

and Transfer Planning

Van der Pol et al. [77], [79] incorporate max-plus coordina-

tion [91] and transfer planning [92] into the traditional DQN

algorithm (see Algorithm 2) in order to enable coordination

among multiple agents. The DRL model is based on the

CNN architecture (N.2) and the value-based approach (E.1).

The combination of the CNN architecture and the value-

based approach allows this approach to use the convolutional

architecture (see Fig. 5) to analyze visual imagery while

mapping each state-action pair to a state value (see Table 5 for

more details). This model optimizes the Q-values to address

the challenge of inappropriate traffic phase sequence (C.1)

using a distributed model (T.1.2) in a multi intersection traffic

network (M.1.2) and a grid traffic network (M.1.4) with

opposing through traffic (T.2.1). The traffic is characterized

by a real world traffic model (M.2.2), specifically the Krauß

car-following model [93]. This model is embedded in each

intersection (G.1), where the state st represents the current

traffic phase (S.4), the vehicle position (S.5), and the vehicle

speed (S.6). The action at represents the type of traffic phase
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TABLE 5: Summary of DRL models to address the challenges of TSC.

DRL Model Description Strength

Traditional FCLN with value-

based method

Enables an agent to map each state-action pair to

a value in order to identify the best possible action

for each state.

Provides storage efficiently.

CNN with value-based method Enables an agent with convolutional layers to map

each state-action pair to a value in order to identify

the best possible action for each state.

Analyzes visual imagery effi-

ciently.

CNN with PG-based method Enables an agent with convolutional layers to se-

lect an action following a policy based on proba-

bility distribution learned by gradient descent on

the policy parameters.

Analyzes visual imagery effi-

ciently.

SAE with value-based method Enables an agent to perform encoding and decod-

ing functions, while mapping each state-action pair

to a value, in order to identify the best possible

action for each state.

Compresses data efficiently.

3DQN with value-based method Enables an agent to split the FC layer into two

separate streams, while mapping each state-action

pair to a value, in order to identify the best possible

action for each state.

Increases learning speed.

LSTM with A2C-based method Enables an agent to use an actor to control its

behavior and a critic to measure the suitability of

the selected action.

Provides memory to memorize

previous inputs efficiently.

to be activated in the next time instant (A.1). The reward

rt+1(st+1) represents the relative waiting time (R.1) of the

vehicles, and the phase transition (R.3) of the traffic phases.

The max-plus coordination algorithm, which serves as the en-

hancement for multi-agent reinforcement learning (MARL)

[94]–[98], enables an agent to learn about its neighboring

agents’ information, such as locally optimized payoff values

(e.g., reward achieved by an individual agent). The proposed

scheme maximizes a global Q-function, which is the linear

combination of the local Q-values, as follows:

Qi
Gt

(sit, a
i
t) =

∑

n

Qi
nt∈Nt

(sint
, aint

) (19)

where N corresponds to a set of all agents in the network.

The transfer planning approach enables agents to learn a large

problem by decomposing it into smaller source problems.

The term ‘transfer’ refers to the transferring of learning

among multiple agents. The max-plus coordination algorithm

and the transfer planning approach compute the global Q-

value in order to achieve the global objective of a traffic

network.

The proposed scheme has been shown to reduce the average

delay (P.1) of the vehicles.

3) Investigation of the Effects of Real World Traffic Dataset

Wei et al. [81] investigate the use of a real world traffic

dataset consisting of data of more than 405 million vehi-

cles recorded by using 1,704 surveillance cameras in Jinan,

China covering 935 locations, out of which 43 of them are

four-way intersections. The data is collected within a time

period from 1st to 31st August 2016. The DRL model is

based on the CNN architecture (N.2) and the value-based

approach (E.1). The combination of the CNN architecture

and the value-based approach allows this approach to use

the convolutional architecture (see Fig. 5) to analyze visual

imagery while mapping each state-action pair to a state value

(see Table 5 for more details). This model optimizes the Q-

values to address the challenge of inappropriate traffic phase

sequence (C.1) using a centralized model (T.1.1) in a real

world traffic network (M.1.3), which is based on an urban

traffic network in Jinan, China, with opposing through traffic

(T.2.1). The traffic is characterized by a real world traffic

model (M.2.2). This model is embedded in each intersection

(G.1), where the state st represents the queue length (S.1), the

current traffic phase (S.4), and the vehicle position (S.5). The

proposed scheme is applied to 24 intersections. The action

at represents the type of traffic phase to be activated in the

next time instant (A.1). The reward rt+1(st+1) represents the

relative waiting time (R.1), the relative queue length (R.2)

of the vehicles, and the phase transition (R.3) of the traffic

phases. In the proposed scheme, the recorded data consists

of the timing information (i.e., peak hours 7-9 A.M. and 5-

7 P.M., and non-peak hours), the ID of each surveillance

camera, and vehicular data (i.e., the position (S.5) of each

vehicle). The recorded real world traffic data is fed to the

input layer of the CNN architecture, and the output layer

provides the Q-value of each possible action, which is the

type of traffic phase to be activated in the next time instant
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(A.1).

The proposed scheme has been shown to increase throughput

(P.4) and reduce the average delay (P.1) and the queue length

(P.3) of the vehicles.

4) Comparison of Value-based and PG-based Methods

Mousavi et al. [71] compare the two different types of DRL

methods, namely the value-based method (E.1) and the PG-

based method (E.2), in TSCs. The DRL model is based on

the CNN architecture (N.2). The combination of the CNN

architecture and both value-based and PG-based methods

allows this approach to use the convolutional architecture

(see Fig. 5) to analyze visual imagery while mapping each

state-action pair to a state value and selecting an action for

a particular state (i.e., image) (see Table 5 for more details).

This model optimizes the Q-values to address the challenge

of inappropriate traffic phase sequence (C.1) using a central-

ized model (T.1.1) in a single intersection traffic network

(M.1.1) with opposing through traffic (T.2.1). The traffic

is characterized by Poisson process (M.2.1). This model is

embedded in the TSC of the intersection (G.1). The state

st represents the current traffic phase (S.4), and the queue

length (S.1) of the vehicles. The action at represents the

type of traffic phase to be activated in the next time instant

(A.1). The reward rt+1(st+1) represents the relative waiting

time (R.1) of the vehicles. The value-based method maps

each state-action pair to a value Vt(st) in order to identify

the best possible action for each state, and the PG-based

method selects an action for a certain state based on a policy.

The value-based method achieves a slightly higher value of

reward and outperforms the PG-based method.

The proposed scheme has been shown to reduce the average

delay (P.1) and the queue length (P.3) of the vehicles, and

so both value-based and PG-based methods are suitable for

TSC.

C. DRL MODEL WITH SAE NEURAL NETWORK

ARCHITECTURE

The application of DRL model based on the traditional SAE

neural network architecture and the value-based approach for

TSC is presented.

1) Investigation of the Effects of SAE Neural Network

Architecture

Li et al. [70] investigate the use of the SAE neural network

architecture that performs encoding and decoding functions

to TSC. The DRL model is based on the SAE neural net-

work architecture (N.3) and the value-based approach (E.1).

The combination of the SAE architecture and the value-

based approach allows this approach to use the encoding

and decoding functions (see Fig. 6) to compress data while

mapping each state-action pair to a state value (see Table

5 for more details). This model optimizes the Q-values to

address the challenge of inappropriate traffic phase split (C.2)

using a centralized model (T.1.1) in a single intersection

traffic network (M.1.1) with opposing through traffic (T.2.1).

This model is embedded in each intersection (G.1), where

the state st represents the queue length (S.1) of the vehi-

cles. The action at represents the choice to either keep the

current traffic phase or switch to the next traffic phase in

a predetermined sequence of traffic phases at the next time

instant (A.2). The reward rt+1(st+1) represents the relative

waiting time (R.1) and the relative queue length (R.2) of the

vehicles. In the proposed scheme, the SAE neural network

architecture consists of one input, two hidden, and one output

layers. The input layer encodes the input data, such as the

queue length (S.1) of the vehicles, using an encoding function

(see Equation (10)), to provide compressed data. The second

hidden layer reconstructs the data using a decoding function

(see Equation (10)). Finally, the output layer provides the Q-

value of each possible action.

The proposed scheme has been shown to reduce the average

delay (P.1) and the queue length (P.3) of the vehicles.

D. DRL MODELS WITH 3DQN ARCHITECTURE

The application of various DRL models with the traditional

3DQN architecture and the value-based approach for TSCs is

presented.

1) Liang’s Enhancement with Prioritized Experience Replay

Liang et al. [74] incorporate a prioritized experience re-

play approach [99] to the traditional 3DQN architecture

(N.4), which consists of double Q-learning and a dueling

network, and the value-based approach (E.1), running the

DQN algorithm (see Algorithm 2). The combination of the

3DQN architecture and the value-based approach allows this

approach to use double Q-learning and a dueling network

to increase the learning speed (see Fig. 7) while mapping

each state-action pair to a state value (see Table 5 for more

details). This model optimizes the Q-values to address the

challenge of inappropriate traffic phase split (C.2) using

a centralized model (T.1.1) in a single intersection traffic

network (M.1.1) with (T.2.1) and without opposing through

traffic (T.2.2). The traffic is characterized by a real world

traffic model (M.2.2). This model is embedded in the TSC

of the intersection (G.1). The state st represents the position

(S.5) and speed (S.6) of the vehicles. The action at represents

the choice to either keep the current traffic phase or switch to

the next traffic phase in a predetermined sequence of traffic

phases at the next time instant (A.2). The reward rt+1(st+1)
represents the relative waiting time (R.1) of the vehicles.

In the proposed scheme, the prioritized experience replay

chooses experiences from the replay memory on the priority

basis in order to increase the learning rate. The prioritized

experience replay ranks an experience i, which increases its

replay probability, based on the temporal difference error δ

calculated as follows:

δi = |Q(s, a; θ)i −Q(s, a; θ−)i| (20)
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TABLE 6: Summary of TSC attributes applied in DRL-based TSCs.

DL Architectures Reference
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N.1 FCLN Wan et al. [73], 2018 X X X X X X

Tan et al. [75], 2019 X X X X X

N.2 CNN Genders et al. [69], 2016 X X X X X

Mousavi et al. [71], 2017 X X X X X

Gao et al. [72], 2017 X X X X X X

Van et al. [77], [79], 2016 X X X X X X

Wei et al. [81], 2018 X X X X X X

N.3 SAE Li et al. [70], 2016 X X X X X

N.4 3DQN Liang et al. [74], 2018 X X X X X X

Wang et al. [76], 2019 X X X X X X

Gong et al. [80], 2019 X X X X X

N.5 LSTM Chu et al. [82], 2019 X X X X X X X

where an experience with a lower error is being ranked higher

(or prioritized). The replay probability of experience i is

calculated as follows:

Pi =
p
℘
i

∑

k p
℘
k

(21)

where pi is the priority of an experience i, and ℘ represents

the priority level. Higher ℘ represents a higher priority, and

vice-versa, while ℘ = 0 represents a random sampling.

The proposed scheme has been shown to reduce the average

waiting time (P.2) of the vehicles.

2) Gong’s Enhancement with MARL

Gong et al. [80] incorporate MARL to the traditional 3DQN

architecture (N.4), which consists of double Q-learning and

a dueling network, and the value-based approach (E.1), run-

ning the DQN algorithm (see Algorithm 2). The combination

of the 3DQN architecture and the value-based approach

allows this approach to use double Q-learning and a dueling

network to increase the learning speed (see Fig. 7) while

mapping each state-action pair to a state value (see Table 5 for

more details). MARL enables coordination among multiple

agents. This model optimizes the Q-values to address the

challenge of inappropriate traffic phase sequence (C.1) in a

multi intersection traffic network (M.1.2) and a real world

traffic network (M.1.3), which is based on an urban traffic

network in Florida, United States, using a distributed model

(T.1.2). The traffic is characterized by a real world traffic

model (M.2.2). This model is embedded in the TSC of the

intersection (G.1). The state st represents the queue length

(S.1), and the position (S.5), of the vehicles. The action at
represents the type of traffic phase to be activated in the

next time instant (A.1). The reward rt+1(st+1) represents the

relative waiting time (R.1) of the vehicles. In the proposed

scheme, the MARL algorithm enables agents to exchange

information (i.e., rewards and Q-values) with each other in

order to coordinate their actions.

Algorithm 3 shows the MARL algorithm for DRL. At time

instant t, an agent i observes the current state sit ∈ S from the

operating environment, and sends its own Q-value Qi
t(s

i
t, a

i
t)

to the neighboring agents J i. Subsequently, following steps

5 to 13 of Algorithm 2, agent i receives the optimal Q-value

maxaj∈A Q
j
t (s

j
t , a

j) from each neighboring agent j ∈ J i,
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TABLE 7: Summary of DRL attributes for TSCs.

DL Architectures Reference States Actions Rewards DRL Methods
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N.1 FCLN Wan et al. [73], 2018 X X X X X X X

Tan et al. [75], 2019 X X X X X

N.2 CNN Genders et al. [69], 2016 X X X X X X

Mousavi et al. [71], 2017 X X X X X X

Gao et al. [72], 2017 X X X X X X

Van et al. [77], [79], 2016 X X X X X X X

Wei et al. [81], 2018 X X X X X X X X

N.3 SAE Li et al. [70], 2016 X X X X X

N.4 3DQN Liang et al. [74], 2018 X X X X X

Gong et al. [80], 2019 X X X X X

Wang et al. [76], 2019 X X X X X X

N.5 LSTM Chu et al. [82], 2019 X X X X X

selects an action ait ∈ A based on the Q-value at time t,

and then receives a reward rit+1(s
i
t+1) under the next state

sit+1 ∈ S at time t + 1. Finally, the agent i updates Q-value

Qi
t(s

i
t, a

i
t). Based on Equation (2), the Q-value Qi

t(s
i
t, a

i
t) is

updated using Q-function as follows [100]:

Qi
t+1(s

i
t, a

i
t)← Qi

t(s
i
t, a

i
t) + αδit(s

i
t, a

i
t) (22)

Meanwhile, the Q-value Q
j
t (s

j
t , a

j
t ) of a neighboring agent

j ∈ J i is updated using Q-function as follows:

Q
j
t+1(s

j
t , a

j
t )← Q

j
t (s

j
t , a

j
t ) + αδ

j
t (s

j
t , a

j
t ) (23)

The proposed scheme has been shown to increase the

throughput (P.4) and reduce the average delay (P.1) of the

vehicles.

3) Investigation of the Effects of High-Resolution

Event-Based Data

Wang et al. [89] investigate the use of high-resolution event-

based data that includes a large amount of useful information

about vehicles, including their movements and positions.

The DRL model is based on the 3DQN architecture (N.4)

and the value-based approach (E.1). The combination of the

3DQN architecture and the value-based approach allows this

approach to use double Q-learning and a dueling network

to increase the learning speed (see Fig. 7) while mapping

Algorithm 3 MARL algorithm for DRL.

1: Procedure

2: for episode = 1 : M do

3: observe current state sit
4: send Q-value Qi

t(s
i
t, a

i
t) to neighboring agents J i

5: receive maxaj∈A Q
j
t (s

j
t , a

j) from agent j ∈ J i

6: for t = 1 : T do

7: perform steps 5 to 13 of Algorithm 2

8: end for

9: update Q-value Qi
t+1(s

i
t, a

i
t) using Equation (22)

10: end for

11: End Procedure

each state-action pair to a state value (see Table 5 for more

details). This model optimizes the Q-values to address the

challenge of inappropriate traffic phase sequence (C.1) using

a centralized model (T.1.1) in a single intersection traffic

network (M.1.1) with (T.2.1) and without opposing through

traffic (T.2.2). The traffic is characterized by a real world

traffic model (M.2.2). This model is embedded in the TSC

of the intersection (G.1). The state st represents the green

timing (S.3), and the vehicle position (S.5). The action at
represents the type of traffic phase to be activated (A.1) in

the next time instant. The reward rt+1(st+1) represents the

relative waiting time (R.1), and the relative queue length

(R.2) of the vehicles. The high-resolution event-based data

provides a large amount of useful information about the

vehicle, such as vehicular movement and position. The high-
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TABLE 8: Summary of key contributions, quantitative results/findings, and future directions.

DL Architectures Reference Key Contributions Results/Findings Future Directions

N.1 FCLN Wan et al. [73],
(2018)

Investigates the use of
dynamic discount fac-
tors.

Reduces average delay (P.1) by
up to 20% compared to baseline
(i.e., a deterministic TSC).

To extend the proposed scheme
to be applied in multiple in-
tersections. Each intersection
may use different DRL meth-
ods, such as actor-critic [116],
deep deterministic policy gradi-
ent [117], and proximal policy
optimization [118].

Tan et al. [75],
(2019)

Incorporates a novel re-
ward function.

Reduces average queue length
(P.3) by up to 40% compared to
baseline (i.e., deterministic and
fully-dynamic TSCs).

To extend the proposed scheme
to be applied in multiple inter-
sections.

N.2 CNN Genders et al.
[69], (2016)

Investigates the use of a
large state space.

Reduces average delay (P.1) by
up to 82% and average queue
length (P.3) by up to 66% com-
pared to baseline (i.e., a fully-
dynamic TSC based on a neural
network with one hidden layer).

To extend the proposed scheme
to control the red and yellow
phases of TSC.

Gao et al. [72],
(2017)

Investigates the use of a
large state space

Reduces average delay (P.1) by
up to 86% compared to baseline
(i.e., a deterministic TSC).

To extend the proposed scheme
to be applied in multiple inter-
sections.

Mousavi et al.
[71], (2017)

Compares the value-
based (E.1) and PG-
based (E.2) methods
with a baseline (i.e.,
a fully-dynamic TSC
based on a neural
network with one
hidden layer).

The PG-based (E.2) method re-
duces the average delay (P.1)
by up to 67% and queue length
by up to 72%. The value-based
(E.1) method reduces the aver-
age delay (P.1) by up to 68% and
queue length (P.3) by up to 73%.

To extend the proposed scheme
to be applied in multiple inter-
sections.

Van et al. [77],
[79], (2016)

Incorporates max-
plus coordination
and transfer planning
algorithms.

Reduces average delay (P.1) by
up to 20% compared to MARL.

To adopt different kinds of DRL
approaches because the pro-
posed approach uses the tra-
ditional DQN approach, which
has shown to be unstable.

Wei et al. [81],
(2018)

Investigates the use
of real-world traffic
dataset.

Reduces average delay (P.1) by
up to 19% and queue length
(P.3) by up to 38% compared to
baseline (i.e., deterministic and
semi-dynamic TSCs).

To extend the proposed scheme
to control the yellow phase of
TSC.

N.3 SAE Li et al. [70],
(2016)

Investigates the use of
the SAE neural network
architecture.

Reduces average delay (P.1) by
up to 14% compared to baseline
(i.e., a fully-dynamic TSC).

N.4 3DQN Liang et al.
[74], (2018)

Incorporates a priori-
tized experience replay
technique.

Reduces average waiting time
(P.2) by up to 20% compared
to baseline (i.e., a deterministic
TSC).

Wang et al.
[76], (2019)

Investigates the use
of high-resolution
event-based data.

Reduces average delay (P.1) by
up to 21% and queue length
(P.3) by up to 30% compared
to baseline (i.e., a deterministic
and fully-dynamic TSC).

To extend the proposed scheme
to take account of traffic dis-
turbances, including detector
noise, traffic accidents, and bad
weather conditions.

Gong et al.
[80], (2019)

Incorporates MARL
with the 3DQN (N.4)
architecture.

Reduces average delay (P.1) by
up to 46% compared to baseline
(i.e., deterministic and fully-
dynamic TSCs).

To extend the proposed scheme
to ensure fairness among traffic
flows.

N.5 LSTM Chu et al. [82],
(2019)

Investigates the use of
the LSTM neural net-
work architecture.

Reduces average delay (P.1) by
up to 10% and queue length
(P.3) by up to 17% compared
to baseline (i.e., a fully-dynamic
TSC).

To extend the proposed scheme
to improve communication
among multiple intersections.
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TABLE 9: Summary of traffic simulators and performance measures.

DL Architectures Reference Traffic Simulators Performance Measures
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N.1 FCLN Wan et al. [73], 2018 X X X

Tan et al. [75], 2019 X X

N.2 CNN Genders et al. [69], 2016 X X X X

Mousavi et al. [71], 2017 X X X

Gao et al. [72], 2017 X X X

Van et al. [77], [79], 2016 X X

Wei et al. [81], 2018 X X X X

N.3 SAE Li et al. [70], 2016 X X X

N.4 3DQN Liang et al. [74], 2018 X X

Wang et al. [76], 2019 X X X

Gong et al. [80], 2019 X X X

N.5 LSTM Chu et al. [82], 2019 X X X X

resolution event-based data keeps track of: a) the time of

each vehicle arriving at and departing from an inductive loop

detector (or vehicle detector); and b) the time gap between

two consecutive vehicles, which is the time gap between

the two vehicles arriving at and departing from the detector.

The 3DQN architecture consists of one input layer, three

convolutional layers, three FC layers (in which the third

FC layer is split into two separate streams as explained in

N.4), and one output layer. The input layer receives the

accurate traffic information, and the output layer provides

an accurate Q-value for each possible action based on the

accurate information [101].

The proposed scheme has been shown to increase throughput

(P.4) and reduce the queue length of vehicles (P.3).

E. DRL MODEL WITH LSTM NEURAL NETWORK

ARCHITECTURE

The application of DRL model based on the traditional

LSTM neural network architecture and the A2C-based ap-

proach for TSC is presented.

1) Investigation of the Effects of LSTM Neural Network

Architecture

Chu et al. [82] investigate the use of LSTM neural network

architecture that provides memory to memorize previous

inputs of TSC. The DRL model is based on the LSTM

neural network architecture (N.5) and the A2C-based ap-

proach (E.3). The combination of LSTM and the A2C-based

approach allows this approach to use the LSTM neural net-

work (see Fig. 8) to provide memorization of previous inputs

while combining both value-based and PG-based methods

to control its behavior and to measure the suitability of the

selected action (see Table 5 for more details). This model

optimizes the Q-values to address the challenge of inap-

propriate traffic phase sequence (C.1) using a distributed

model (T.1.2) in a multi intersection traffic network (M.1.2),

an urban traffic network based on Monaco (M.1.3), and a

grid traffic network (M.1.4) with opposing through traffic

(T.2.1). The traffic is characterized by a real world traffic

model (M.2.2). This model is embedded in the TSC of the

intersection (G.1). The state st represents the queue length

(S.1) of the vehicles. The action at represents the type of

traffic phase to be activated in the next time instant (A.1).

The reward rt+1(st+1) represents the relative waiting time

(R.1) and the relative queue length (R.2) of the vehicles. In

the proposed scheme, the A2C-based method has been used

with the LSTM neural network architecture, which consists

of one input, one FC, one LSTM (i.e., memory cell), and one

output layer. The output layer is separated into two streams:

a) actor, which controls the behavior of an agent (i.e., policy-

based); and b) critic, which measures the suitability of the

selected action (i.e., value-based). The gradient of the loss

function for A2C is calculated using Equation (15).
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The proposed scheme has been shown to increase throughput

(P.4) and reduce the average delay (P.1) and queue length

(P.3) of vehicles.

VI. GUIDELINES AND DESIGN CONSIDERATIONS FOR

THE APPLICATION OF DEEP REINFORCEMENT

LEARNING FOR TRAFFIC SIGNAL CONTROL SYSTEMS

The guidelines and design considerations for the application

of DRL to TSC is presented in this section, which helps in

the identification of suitable DRL solutions for different TSC

problems. Table 5 provides the description of various DL

architectures and DRL methods with their strengths. Table

6 provides a summary of various TSC attributes, including

challenges, traffic network architectures, traffic characteris-

tics, TSC architectures, and traffic phases, which are applied

with DRL solutions. Table 7 provides a summary of various

DRL attributes, including agent (i.e., TSC), states, actions,

rewards, and DRL methods for TSCs. Table 8 provides a

summary of various key contributions, quantitative results/

findings, and future directions that have been presented in

the literature. These tables can be used to identify the suitable

DRL solutions for different TSC problems. Two main aspects

must be considered when applying DRL to TSCs. Firstly, an

open issue or a problem needs to be identified and well under-

stood. This includes the objectives, the problem statement, as

well as the research questions of the problem. Secondly, the

research questions are answered. The guidelines and consid-

erations for applying DRL to TSCs are presented based on

a sample case study [74] being referred to throughout this

subsection. In [74], a DRL model with the 3DQN architecture

and the value-based approach is applied to TSC in order to

reduce the average travel time of the vehicles. Next, we define

the state, action and reward representations, and discuss the

selection of the method for DRL. Lastly, we define the DL

architecture. In general, the state captures the TSC attributes,

such as queue length (S.1), red timing (S.2), green timing

(S.3), current traffic phase (S.4), vehicle position (S.5), and

vehicle speed (S.6), and so it has a direct relevance to the

problem. This explains that the state, action, and reward

representations are defined prior to method and network

architecture.

A. DEFINING STATE

The decision-making factors that an agent observes from

the operating environment should be well defined. Table 7

provides a summary of how states (see Fig. 12) have been

represented in the literature. For instance, in [74], the objec-

tive is to maximize the reward in order to reduce the average

waiting time of the vehicles at an intersection. Therefore, the

agent represents a state with the position (S.5) and speed

(S.6) of a vehicle. Upon observation of the state, the agent

can decide its action, which is based on the state. Similar

to other schemes [70], [82], the input layer consists of input

neurons. In [74], the input layer represents a grid with a size

of 60×60, where there are 60×60×2 input states to represent

the position (S.5) and speed (S.6) of a vehicle.

B. DEFINING ACTION

The possible actions should be well defined so that an agent

can maximize its rewards by taking appropriate actions. Table

7 provides a summary of how actions (see Fig. 12) have

been represented in the literature. For instance, in [74], with

respect to the objective of reducing the average waiting time

of the vehicles, the agent must select an appropriate time

interval of a traffic phase. The action represents the choice

to either keep the current traffic phase or switch to the next

traffic phase in a predetermined sequence of traffic phases at

the next time instant (A.2) in order to address the challenge

of inappropriate traffic phase split (C.2). In [74], the output

layer consists of nine neurons, and each of them represents a

possible action.

C. DEFINING REWARD

The reward should be well defined so that it reflects the

objectives that an agent aims to achieve after performing an

action under the state. Table 7 provides a summary of how

rewards (see Fig. 12) have been represented in the literature.

For instance, in [74], the reward is the increment/decrement

of the average waiting time of the vehicles at an intersection.

Therefore, the agent represents the reward with the relative

waiting time (R.1). By increasing the reward, an agent im-

proves system performance while achieving its objectives.

D. CHOOSING A METHOD

The objectives of a method (e.g., adjusting the discount factor

dynamically, or integrating several mechanisms into a single

framework) with respect to the model should be well defined.

Table 7 provides a summary of how various methods (see Fig.

12) have been used in the literature. For instance, in [74],

several mechanisms, including double Q-learning, dueling

network, and prioritized experience replay, are incorporated

into a single framework in order to increase learning rate.

Higher learning rate reduces the learning time, which is

required to explore all state-action pairs in order to identify

the optimal action. The optimal action, such as the choice

to either keep the current traffic phase or switch to the next

traffic phase in a predetermined sequence of traffic phases at

the next time instant (A.2), helps a TSC to achieve a smoother

traffic flow. The value-based method maps each state-action

pair to a value Vt(st) in order to identify the best possible

action for each state. This helps to achieve the objectives of

TSCs, and so it is chosen. The rest of the DRL methods are

presented in Section II-D2, which can be selected based on

the objectives. For instance, the PG-based method is suitable

for the objective of selecting an action for a certain state

based on a policy [71].

E. DEFINING ARCHITECTURE

To address the challenges of TSC, a suitable DL archi-

tecture for DRL should be well defined. Table 5 provides

the description of various DL architectures with different

DRL methods as well as their strengths, while Tables 6-8
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provide a summary of how various DL architectures (see

Fig. 12) have been used in the literature. For instance, in

[74], the 3DQN architecture consists of three convolutional

and two FC layers, and it is used to capture the position

(S.5) and speed (S.6) of a vehicle in order to address the

challenge of inappropriate traffic phase split (C.2). Since the

position and speed are captured in the form of images and

videos, the 3DQN architecture with convolutional layers is

selected. The identification of a suitable number of layers is

an important aspect. Lower number of layers may struggle

to fit the training data, while higher number of layers may

cause overfit due to memorizing the properties of training

data, which affect the performance negatively.

Similarly, the identification of a suitable number of neurons

in each layer is another important aspect. In general, the

number of neurons in the input layer is equivalent to the num-

ber of features. For instance, there are eighty neurons in the

input layer to represent eighty cells of an intersection, which

enable the representation of the queue length (S.1) and the

position (S.5) of the vehicles [102]. However, the number of

neurons in the hidden layer(s) is not straightforward and are

generally determined empirically, although higher number of

neurons tend to improve system performance at the expense

of increased complexity [103].

VII. OPEN ISSUES

While DRL for TSCs has been investigated in the literature,

there are still substantial open issues that have not been well

studied for real world deployment. This section presents open

issues that can be pursued in this topic in the future.

A. ADDRESSING THE EFFECTS OF DYNAMICITY TO

DQN

The state space may be highly dimensional when traffic

images are used as part of the state representation [79],

[81]. Higher dimension of state representation is essential to

represent high-quality images that capture moving vehicles,

and this can increase the size of state space. To address

this issue, computing techniques, such as discretization and

quantization of state space, can be incorporated into DRL

applied to TSC in order to encode and decode between the

high-dimensional state representation and low-dimensional

state representation. The solutions can provide an abstract

representation of high-dimensional and complex state rep-

resentation in order to simplify large, as well as dynamic,

states.

B. ADDRESSING THE LEARNING EFFICIENCY OF DQN

FOR TSC

Trial-and-error, which is essential to learning in DQN, incurs

high learning cost such as a longer learning time that is

unacceptable in real-world traffic management. While exist-

ing DQN methods generate impressive results in simulated

environments, such as the Alpha Go or Atari games [15], they

require a large number of trials and errors. Consequently,

learning in DQN-based TSCs can cause traffic congestion in

real world. Several mechanisms can be applied to increase

learning efficiency. Firstly, knowledge exchange among mul-

tiple intersections helps to coordinate their actions, whereby

the operating environment (e.g., the congestion level) of

an intersection affects the congestion level of neighboring

intersections since vehicles traverse from one intersection to

another. The knowledge (e.g., Q-values) exchanged among

multiple intersections takes the traffic condition of individ-

ual intersection into consideration to improve the global

reward, which reflects the traffic condition of the entire traffic

network, and increase the efficiency of learning. Secondly,

enhanced exploration approaches, for instance, the model-

based exploration approach creates a model of the operating

environment, and then selects an action that increases the

possibility of exploring unseen states during exploration. The

model-based exploration approach has been applied to Lunar

Lander and Mountain Car [119]. Nevertheless, the model-

based approach has higher complexity and computational

requirement compared to existing approaches, which are

model-free in nature. Future investigations could be pursued

to improve the efficiency of learning in DQN for TSC.

C. ADDRESSING THE EFFECTS OF TRAFFIC

DISTURBANCES TO LEARNING IN DQN FOR TSC

In the real world deployment of DRL, TSC must be robust

and reliable against unexpected traffic disturbances, such

as bad weather conditions, road accidents, or construction.

However, the available information for such events is usually

sparse and incomplete, and data that integrates several factors

may be even sparser. Learning under such circumstances

can be challenging. LSTM contains memory cells that can

store historical information (or data) [82], including predic-

tions and their inaccuracy, that can be explored to reduce

the effects of disturbance (e.g., quantifying the effects of

disturbance) and improve the accuracy of prediction (e.g.,

reducing the effects of disturbance) as time goes by. While

state captures the traffic conditions that need to be monitored

at all times, the disturbance can be captured as event that

must be detected whenever it occurs. However, the occur-

rence of events (e.g., accidents) is likely to be sparse with

incomplete information, and so historical information can be

useful under such circumstances. Future investigations could

be pursued to tackle these factors when collecting the data

in order to improve the efficiency of learning from traffic

disturbances.

D. ADDRESSING THE SAFETY ISSUE OF DQN FOR TSC

Making DRL agents acceptably safe in real world environ-

ment is another pressing area for future research. While

DRL models learn from trial-and-error, the learning cost of

DRL can be critical, or even fatal in the real world as the

malfunction of traffic signals might lead to accidents. There-

fore, adopting risk management into DRL helps to prevent

unwanted behavior during and after the learning process of

DRL agents. Each action is associated with a risk factor,
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and subsequently rules can be designed to exclude high-risk

actions from a set of feasible actions. The risk factors of dif-

ferent actions can be explored and validated in simulation at

preliminary stage, and then improved conservatively during

operation as time goes by in order to minimize the learning

cost. Future investigations could be pursued to address the

safety issue of DQN for TSC.

E. ADDRESSING THE FAIRNESS AND PRIORITIZED

ACCESS ISSUE

Fairness and prioritized access to intersection using tradi-

tional and enhanced DQN approaches have not been inves-

tigated in the literature. The reward function can be revised

to achieve fairness among traffic flows while traversing from

one intersection to another. In addition, there are lack of

investigations of prioritized access in the presence of emer-

gency vehicles, such as ambulance and fire engines, that

traverse from one intersection to another on a priority basis.

In addition to high-resolution data that has been used to

capture the position (S.5) and the speed (S.6) of vehicles [76],

detecting certain vehicles (e.g. ambulances and fire engines)

accurately using camera (i.e., high-resolution photos), video

camera (i.e., high-resolution videos), and sensors, must be

integrated to DQN so that it can carry out the right action

to prioritize such vehicles. The reward function should also

be altered to cater for the prioritized vehicles. Future inves-

tigations could be pursued to address these aspects so that

fairness among traffic flows can be achieved, and prioritized

vehicles can cross an intersection on a priority basis with

minimal effects to existing traffic.

F. DEVELOPING TRAFFIC SIMULATORS FOR

INVESTIGATING DQN-BASED TSCS

Most traffic simulators adopt the microscopic approach, in

which the focus is on the mobility characteristics of an

individual vehicle. However, there are lack of investigations

using most kinds of TSCs, including the DQN-based TSCs,

for controlling the overall traffic flows at the macroscopic

level that takes account of the general traffic density, vehi-

cles distributions, and so on. Future investigations could be

pursued to explore the use of macroscopic attributes in order

to improve the performance achieved by the microscopic

approach in providing more accurate results.

G. CONDUCTING A LITERATURE REVIEW OF DRL

FROM THE TSC PERSPECTIVE

With the rapid advancement of intelligent transportation

systems, a review from the TSC perspective is becoming

essential. While DRL has been proposed to implement the

fully-dynamic TSC (see Section I), other kinds of TSCs,

including the deterministic and semi-dynamic TSCs, may be

useful in different kinds of scenarios. As this article addresses

this topic from the DRL perspective, another article to under-

stand how has this topic been developed and extended from

the TSC perspective can complement this article to provide

a complete current research landscape of the application

of DRL to TSCs. This is because while DRL has been

used to address two main challenges, namely inappropriate

traffic phase sequence (C.1), and inappropriate traffic phase

split (C.2), in TSCs, other challenges brought about by the

enhanced TSCs and intelligent transportation systems over

the years may open more investigations into the application

of DRL to TSCs. In addition to the current DRL models,

namely the centralized model (T.1.1) and the distributed

model (T.1.2) used in TSCs, this may require exploring other

kinds of models such as a hybrid model with different degrees

of centralized and distributed decision-makings. Also, in

addition to the current traffic network models, namely the

single intersection traffic network (M.1.1), multi intersection

traffic network (M.1.2), real world traffic network (M.1.3),

and grid traffic network (M.1.4), this may require exploring

other kinds of models integrated with recent advancements in

the transport ecosystem. While the complex traffic networks

may be integrated with other modes of transport, such as

walking and cycling, the investigation of DRL applied to

TSCs has been limited to opposing through traffic (T.2.1),

without opposing through traffic (T.2.2), and with grouped

individual traffic (T.2.3). Hence, further literature review can

be conducted from the TSC perspective to provide a new and

refreshed look at this topic.

VIII. CONCLUSIONS

In this article, we present a comprehensive review of the

application of deep reinforcement learning (DRL) to traffic

signal control (TSC). For smoother traffic flow, the under-

lying intersection with different architectures and dynamic

traffic arrival rates have posed significant challenges to TSCs

to select the right choice of traffic phases, as well as their

duration. This article discusses how TSC can be formulated

as an DRL problem using appropriate representations (i.e.,

state, action, and reward), and used to solve the problem us-

ing a popular DRL approach called deep Q-network (DQN).

Subsequently, this article presents various kinds of deep

learning (DL) architectures and DRL methods, and highlights

their strengths in addressing the challenges brought about by

the medium- and heavy-loaded traffic at intersections. After

that, the performance measures, simulation platforms, and

complexity analysis of the DRL approaches are investigated.

This article also provides guidelines and design considera-

tions for the application of DRL to TSC. Finally, we discuss

some open issues for future research of DQN-based TSCs.

REFERENCES

[1] Molloy, K., J. Ward, and V. Benson, “Traffic signal control system." U.S.

Patent 3,754,209, issued August 21, 1973.

[2] Bullock, Darcy, and Tom Urbanik, “Traffic signal systems addressing

diverse technologies and complex user needs." A3-A18: committee on

traffic signal systems 12 (1999).

[3] Mirchandani, Pitu, and Larry Head, “A real-time traffic signal control

system: architecture, algorithms, and analysis." Transportation Research

Part C: Emerging Technologies 9, no. 6 (2001): 415-432.

[4] Dion, Francois, and Bruce Hellinga, “A rule-based real-time traffic respon-

sive signal control system with transit priority: application to an isolated

26 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034141, IEEE Access

F. Rasheed et al.: Deep Reinforcement Learning for Traffic Signal Control: A Review

intersection." Transportation Research Part B: Methodological 36, no. 4

(2002): 325-343.

[5] Zhao, Liang, Ying-Cheng Lai, Kwangho Park, and Nong Ye, “Onset of

traffic congestion in complex networks." Physical Review E 71, no. 2

(2005): 026125.

[6] Yin, Biao, Mahjoub Dridi, and Abdellah El Moudni, “Traffic network

micro-simulation model and control algorithm based on approximate dy-

namic programming." IET Intelligent Transport Systems 10, no. 3 (2016):

186-196.

[7] Cools, Seung-Bae, Carlos Gershenson, and Bart D‘Hooghe, “Self-

organizing traffic lights: A realistic simulation." In Advances in applied

self-organizing systems, pp. 45-55. Springer, London, 2013.

[8] El-Tantawy, Samah, Baher Abdulhai, and Hossam Abdelgawad, “Mul-

tiagent reinforcement learning for integrated network of adaptive traffic

signal controllers (MARLIN-ATSC): methodology and large-scale ap-

plication on downtown Toronto." IEEE Trans. Intelligent Transportation

Systems 14, no. 3 (2013): 1140-1150.

[9] Chun-Gui, Li, Wang Meng, Sun Zi-Gaung, Lin Fei-Ying, and Zhang

Zeng-Fang, “Urban traffic signal learning control using fuzzy actor-critic

methods." In 2009 Fifth International Conference on Natural Computation,

vol. 1, pp. 368-372. IEEE, 2009.

[10] Medina, Juan C., and Rahim F. Benekohal, “Traffic signal control using

reinforcement learning and the max-plus algorithm as a coordinating

strategy." In 2012 15th International IEEE Conference on Intelligent

Transportation Systems, pp. 596-601. IEEE, 2012.

[11] Prabuchandran, K. J., Hemanth Kumar AN, and Shalabh Bhatnagar, “De-

centralized learning for traffic signal control." In 2015 7th International

Conference on Communication Systems and Networks (COMSNETS), pp.

1-6. IEEE, 2015.

[12] Prashanth, L. A., and Shalabh Bhatnagar, “Threshold tuning using stochas-

tic optimization for graded signal control." IEEE Trans. Vehicular Tech-

nology 61, no. 9 (2012): 3865-3880.

[13] Abdulhai, Baher, Rob Pringle, and Grigoris J. Karakoulas, “Reinforcement

learning for true adaptive traffic signal control." Journal of Transportation

Engineering 129, no. 3 (2003): 278-285.

[14] Yau, Kok-Lim Alvin, Junaid Qadir, Hooi Ling Khoo, Mee Hong Ling,

and Peter Komisarczuk, “A survey on reinforcement learning models and

algorithms for traffic signal control." ACM Computing Surveys (CSUR)

50, no. 3 (2017): 1-38.

[15] Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-

nis Antonoglou, Daan Wierstra, and Martin Riedmiller, “Playing atari with

deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).

[16] Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,

Joel Veness, Marc G. Bellemare, Alex Graves et al., “Human-level control

through deep reinforcement learning." Nature 518, no. 7540 (2015): 529-

533.

[17] Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,

Aja Huang, Arthur Guez, Thomas Hubert et al. “Mastering the game of go

without human knowledge." Nature 550, no. 7676 (2017): 354-359.

[18] Gu, Shixiang, Ethan Holly, Timothy Lillicrap, and Sergey Levine. “Deep

reinforcement learning for robotic manipulation with asynchronous off-

policy updates." In 2017 IEEE international conference on robotics and

automation (ICRA), pp. 3389-3396. IEEE, 2017.

[19] Sharma, Akanksha Rai, and Pranav Kaushik. “Literature survey of sta-

tistical, deep and reinforcement learning in natural language processing."

In 2017 International Conference on Computing, Communication and

Automation (ICCCA), pp. 350-354. IEEE, 2017.

[20] Esteva, Andre, Alexandre Robicquet, Bharath Ramsundar, Volodymyr

Kuleshov, Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado,

Sebastian Thrun, and Jeff Dean. “A guide to deep learning in healthcare."

Nature medicine 25, no. 1 (2019): 24-29.

[21] Jiang, Zhengyao, Dixing Xu, and Jinjun Liang. “A deep reinforcement

learning framework for the financial portfolio management problem."

arXiv preprint arXiv:1706.10059 (2017).

[22] Spielberg, S. P. K., R. B. Gopaluni, and P. D. Loewen. “Deep reinforce-

ment learning approaches for process control." In 2017 6th international

symposium on advanced control of industrial processes (AdCONIP), pp.

201-206. IEEE, 2017.

[23] Zhang, Dongxia, Xiaoqing Han, and Chunyu Deng. “Review on the

research and practice of deep learning and reinforcement learning in smart

grids." CSEE Journal of Power and Energy Systems 4, no. 3 (2018): 362-

370.

[24] Ren, Zhou, Xiaoyu Wang, Ning Zhang, Xutao Lv, and Li-Jia Li. “Deep

reinforcement learning-based image captioning with embedding reward."

In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 290-298. 2017.

[25] Sallab, Ahmad EL, Mohammed Abdou, Etienne Perot, and Senthil Yoga-

mani. “Deep reinforcement learning framework for autonomous driving."

Electronic Imaging 2017, no. 19 (2017): 70-76.

[26] Nagabandi, Anusha, Gregory Kahn, Ronald S. Fearing, and Sergey Levine.

“Neural network dynamics for model-based deep reinforcement learning

with model-free fine-tuning." In 2018 IEEE International Conference on

Robotics and Automation (ICRA), pp. 7559-7566. IEEE, 2018.

[27] Wei, Wu, Y. I. Zhang, Jean Bosco Mbede, Zuo Zhang, and Jingyan Song.

“Traffic signal control using fuzzy logic and MOGA." In 2001 IEEE

International Conference on Systems, Man and Cybernetics. e-Systems

and e-Man for Cybernetics in Cyberspace (Cat. No. 01CH37236), vol. 2,

pp. 1335-1340. IEEE, 2001.

[28] LI, Rui-min, and Hua-pu LU. “Traffic signal control multi-object opti-

mization based on genetic algorithm [J]." Journal of Chang’an University

(Natural Science Edition) 3 (2009).

[29] Li, Tao, Dongbin Zhao, and Jianqiang Yi. “Adaptive dynamic program-

ming for multi-intersections traffic signal intelligent control." In 2008 11th

International IEEE Conference on Intelligent Transportation Systems, pp.

286-291. IEEE, 2008.

[30] Abdulhai, Baher, Rob Pringle, and Grigoris J. Karakoulas. “Reinforcement

learning for true adaptive traffic signal control." Journal of Transportation

Engineering 129, no. 3 (2003): 278-285.

[31] Bazzan, Ana LC, “Opportunities for multiagent systems and multiagent

reinforcement learning in traffic control." Autonomous Agents and Multi-

Agent Systems 18, no. 3 (2009): 342.

[32] Wei, Hua, Guanjie Zheng, Vikash Gayah, and Zhenhui Li, “A Survey on

Traffic Signal Control Methods." arXiv preprint arXiv:1904.08117 (2019).

[33] Mannion, Patrick, Jim Duggan, and Enda Howley, ”An experimental

review of reinforcement learning algorithms for adaptive traffic signal con-

trol." In Autonomic road transport support systems, pp. 47-66. Birkhauser,

Cham, 2016.

[34] Liu, Zhiyong, “A survey of intelligence methods in urban traffic signal

control." IJCSNS International Journal of Computer Science and Network

Security 7, no. 7 (2007): 105-112.

[35] Zhao, Dongbin, Yujie Dai, and Zhen Zhang, “Computational intelligence

in urban traffic signal control: A survey." IEEE Trans. Systems, Man, and

Cybernetics, Part C (Applications and Reviews) 42, no. 4 (2011): 485-494.

[36] Zhu, Li, Fei Richard Yu, Yige Wang, Bin Ning, and Tao Tang, “Big data

analytics in intelligent transportation systems: A survey." IEEE Trans.

Intelligent Transportation Systems 20, no. 1 (2018): 383-398.

[37] Veres, Matthew, and Medhat Moussa, “Deep learning for intelligent trans-

portation systems: A survey of emerging trends." IEEE Trans. Intelligent

Transportation Systems (2019).

[38] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton, “Deep learning."

nature 521, no. 7553 (2015): 436-444.

[39] Bengio, Yoshua, Ian Goodfellow, and Aaron Courville, “Deep learning."

Vol. 1. MIT press, 2017.

VOLUME 4, 2016 27



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034141, IEEE Access

F. Rasheed et al.: Deep Reinforcement Learning for Traffic Signal Control: A Review

[40] Schmidhuber, Jürgen, “Deep learning in neural networks: An overview."

Neural networks 61 (2015): 85-117.

[41] Zurada, Jacek M, “Introduction to artificial neural systems." Vol. 8. St.

Paul: West, 1992.

[42] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville, “Deep learning."

MIT press, 2016.

[43] Haykin, Simon, “Neural networks: a comprehensive foundation." Prentice

Hall PTR, 1994.

[44] Sutton, Richard S., and Andrew G. Barto, “Reinforcement learning: An

introduction." MIT press, 2018.

[45] Szepesvari, Csaba, “Algorithms for reinforcement learning." Synthesis

lectures on artificial intelligence and machine learning 4, no. 1 (2010):

1-103.

[46] Botvinick, Mathew, Sam Ritter, Jane X. Wang, Zeb Kurth-Nelson, Charles

Blundell, and Demis Hassabis “Reinforcement learning, fast and slow."

Trends in cognitive sciences (2019).

[47] Nachum, Ofir, Shixiang Shane Gu, Honglak Lee, and Sergey Levine,

“Data-efficient hierarchical reinforcement learning." In Advances in Neu-

ral Information Processing Systems, pp. 3303-3313. 2018.

[48] Nair, Ashvin, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba,

and Pieter Abbeel, “Overcoming exploration in reinforcement learning

with demonstrations." In 2018 IEEE International Conference on Robotics

and Automation (ICRA), pp. 6292-6299. IEEE, 2018.

[49] Jaderberg, Max, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy

Lever, Antonio Garcia Castaneda, Charles Beattie et al., “Human-level per-

formance in 3D multiplayer games with population-based reinforcement

learning." Science 364, no. 6443 (2019): 859-865.

[50] Gao, Yang, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor

Darrell, “Reinforcement learning from imperfect demonstrations." arXiv

preprint arXiv:1802.05313 (2018).

[51] Alshiekh, Mohammed, Roderick Bloem, Rudiger Ehlers, Bettina

Könighofer, Scott Niekum, and Ufuk Topcu, “Safe reinforcement learning

via shielding." In Thirty-Second AAAI Conference on Artificial Intelli-

gence. 2018.

[52] Sutton, Richard S., and Andrew G. Barto, “Reinforcement learning: An

introduction." (2011).

[53] Montague, P. Read, “Reinforcement Learning: An Introduction, by Sutton,

RS and Barto, AG." Trends in cognitive sciences 3, no. 9 (1999): 360.

[54] Sutton, Richard S., and Andrew G. Barto, “Introduction to reinforcement

learning." Vol. 135. Cambridge: MIT press, 1998.

[55] Kaelbling, Leslie Pack, Michael L. Littman, and Andrew W. Moore, “Re-

inforcement learning: A survey." Journal of artificial intelligence research

4 (1996): 237-285.

[56] Li, Yuxi, “Deep reinforcement learning: An overview." arXiv preprint

arXiv:1701.07274 (2017).

[57] Ye, Hao, Geoffrey Ye Li, and Biing-Hwang Fred Juang, “Deep reinforce-

ment learning based resource allocation for V2V communications." IEEE

Trans. Vehicular Technology 68, no. 4 (2019): 3163-3173.

[58] Henderson, Peter, Riashat Islam, Philip Bachman, Joelle Pineau, Doina

Precup, and David Meger, “Deep reinforcement learning that matters." In

Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[59] Nguyen, Thanh Thi, and Vijay Janapa Reddi, “Deep Reinforcement Learn-

ing for Cyber Security." arXiv preprint arXiv:1906.05799 (2019).

[60] Rolnick, David, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and

Gregory Wayne, “Experience replay for continual learning." In Advances

in Neural Information Processing Systems, pp. 348-358. 2019.

[61] Chen, Xi-liang, Lei Cao, Chen-xi Li, Zhi-xiong Xu, and Jun Lai, “Ensem-

ble network architecture for deep reinforcement learning." Mathematical

Problems in Engineering (2018).

[62] Takano, Yoshina, Hideyasu Inoue, Ruck Thawonmas, and Tomohiro

Harada, “Self-Play for Training General Fighting Game AI." In 2019

Nicograph International (NicoInt), pp. 120-120. IEEE, 2019.

[63] He, George, Daylen Yang, and Kelly Shen, “Improving DQN Training

Routines with Transfer Learning." (2019).

[64] Behzadan, Vahid, and William Hsu, “Analysis and Improvement of Ad-

versarial Training in DQN Agents With Adversarially-Guided Exploration

(AGE)." arXiv preprint arXiv:1906.01119 (2019).

[65] Liu, Yutong, Lianping Zhang, Yifei Wei, and Zhaoying Wang, “Energy

Efficient Training Task Assignment Scheme for Mobile Distributed Deep

Learning Scenario Using DQN." In 2019 IEEE 7th International Confer-

ence on Computer Science and Network Technology (ICCSNT), pp. 442-

446. IEEE, 2019.

[66] Liu, Ge, Rui Wu, Heng-Tze Cheng, Jing Wang, Jayden Ooi, Lihong Li,

Ang Li, Wai Lok Sibon Li, Craig Boutilier, and Ed Chi, “Data Efficient

Training for Reinforcement Learning with Adaptive Behavior Policy Shar-

ing." arXiv preprint arXiv:2002.05229 (2020).

[67] Anschel, Oron, Nir Baram, and Nahum Shimkin, “Deep reinforcement

learning with averaged target DQN." CoRR abs/1611.01929 (2016).

[68] Ruder, Sebastian, “An overview of gradient descent optimization algo-

rithms." arXiv preprint arXiv:1609.04747 (2016).

[69] Genders, Wade, and Saiedeh Razavi, “Using a deep reinforcement learning

agent for traffic signal control." arXiv preprint arXiv:1611.01142 (2016).

[70] Li, Li, Yisheng Lv, and Fei-Yue Wang, “Traffic signal timing via deep

reinforcement learning." IEEE/CAA Journal of Automatica Sinica 3, no. 3

(2016): 247-254.

[71] Mousavi, Seyed Sajad, Michael Schukat, and Enda Howley, “Traffic light

control using deep policy-gradient and value-function-based reinforce-

ment learning." IET Intelligent Transport Systems 11, no. 7 (2017): 417-

423.

[72] Gao, Juntao, Yulong Shen, Jia Liu, Minoru Ito, and Norio Shiratori, “Adap-

tive traffic signal control: Deep reinforcement learning algorithm with

experience replay and target network." arXiv preprint arXiv:1705.02755

(2017).

[73] Wan, Chia-Hao, and Ming-Chorng Hwang, “Value-based deep reinforce-

ment learning for adaptive isolated intersection signal control." IET Intel-

ligent Transport Systems 12, no. 9 (2018): 1005-1010.

[74] Liang, Xiaoyuan, Xunsheng Du, Guiling Wang, and Zhu Han, “Deep

reinforcement learning for traffic light control in vehicular networks."

arXiv preprint arXiv:1803.11115 (2018).

[75] Tan, Kai Liang, Subhadipto Poddar, Soumik Sarkar, and Anuj Sharma,

“Deep Reinforcement Learning for Adaptive Traffic Signal Control."

In ASME 2019 Dynamic Systems and Control Conference. American

Society of Mechanical Engineers Digital Collection, 2019.

[76] Wang, Song, Xu Xie, Kedi Huang, Junjie Zeng, and Zimin Cai, “Deep

reinforcement learning-based traffic signal control using high-resolution

event-based data." Entropy 21, no. 8 (2019): 744.

[77] Van der Pol, Elise, and Frans A. Oliehoek, “Coordinated deep reinforce-

ment learners for traffic light control." Proceedings of Learning, Inference

and Control of Multi-Agent Systems (at NIPS 2016) (2016).

[78] Rasheed, Faizan, Kok-Lim Alvin Yau, and Yeh-Ching Low. “Deep rein-

forcement learning for traffic signal control under disturbances: A case

study on Sunway city, Malaysia." Future Generation Computer Systems

(2020).

[79] van der Pol, Elise, “Deep reinforcement learning for coordination in traffic

light control." Master’s thesis, University of Amsterdam (2016).

[80] Gong, Yaobang, Mohamed Abdel-Aty, Qing Cai, and Md Sharikur Rah-

man, “Decentralized network level adaptive signal control by multi-agent

deep reinforcement learning." Transportation Research Interdisciplinary

Perspectives 1 (2019): 100020.

28 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3034141, IEEE Access

F. Rasheed et al.: Deep Reinforcement Learning for Traffic Signal Control: A Review

[81] Wei, Hua, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li, “Intellilight:

A reinforcement learning approach for intelligent traffic light control."

In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pp. 2496-2505. 2018.

[82] Chu, Tianshu, Jie Wang, Lara Codeca, and Zhaojian Li, “Multi-agent deep

reinforcement learning for large-scale traffic signal control." IEEE Trans.

Intelligent Transportation Systems (2019).

[83] Luttinen, R. Tapio, “Statistical analysis of vehicle time headways."

Helsinki University of Technology, 1996.

[84] Nagel, Kai, and Michael Schreckenberg, “A cellular automaton model for

freeway traffic." Journal de physique I 2, no. 12 (1992): 2221-2229.

[85] Keong, Chin Kian, “The GLIDE system-Singapore‘s urban traffic control

system." Transport reviews 13, no. 4 (1993): 295-305.

[86] Robertson, Dennis I., and R. David Bretherton, “Optimizing networks of

traffic signals in real time-the SCOOT method." IEEE Trans. vehicular

technology 40, no. 1 (1991): 11-15.

[87] Sims, Arthur G., and Kenneth W. Dobinson, “The Sydney coordinated

adaptive traffic (SCAT) system philosophy and benefits." IEEE Trans.

vehicular technology 29, no. 2 (1980): 130-137.

[88] Van Hasselt, Hado, Arthur Guez, and David Silver, “Deep reinforcement

learning with double q-learning." In Thirtieth AAAI conference on artifi-

cial intelligence. 2016.

[89] Wang, Ziyu, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot,

and Nando De Freitas, “Dueling network architectures for deep reinforce-

ment learning." arXiv preprint arXiv:1511.06581 (2015).

[90] Hochreiter, Sepp, and Jürgen Schmidhuber, “Long short-term memory."

Neural computation 9, no. 8 (1997): 1735-1780.

[91] Kok, Jelle R., and Nikos Vlassis, “Using the max-plus algorithm for

multiagent decision making in coordination graphs." In Robot Soccer

World Cup, pp. 1-12. Springer, Berlin, Heidelberg, 2005.

[92] Oliehoek, Frans A., Shimon Whiteson, and Matthijs TJ Spaan, “Approxi-

mate solutions for factored Dec-POMDPs with many agents." In AAMAS,

pp. 563-570. 2013.

[93] Krauß, Stefan, “Microscopic modeling of traffic flow: Investigation of

collision free vehicle dynamics." PhD diss., 1998.

[94] Hu, Junling, and Michael P. Wellman, “Multiagent reinforcement learning:

theoretical framework and an algorithm." In ICML, vol. 98, pp. 242-250.

1998.

[95] Zhang, Kaiqing, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Başar,
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