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ABSTRACT The potential applications of deep learning to the media access control (MAC) layer of

wireless local area networks (WLANs) have already been progressively acknowledged due to their novel

features for future communications. Their new features challenge conventional communications theories

with more sophisticated artificial intelligence-based theories. Deep reinforcement learning (DRL) is one

DL technique that is motivated by the behaviorist sensibility and control philosophy, where a learner

can achieve an objective by interacting with the environment. Next-generation dense WLANs like the

IEEE 802.11ax high-efficiency WLAN are expected to confront ultra-dense diverse user environments and

radically new applications. To satisfy the diverse requirements of such dense WLANs, it is anticipated that

prospective WLANs will freely access the best channel resources with the assistance of self-scrutinized

wireless channel condition inference. Channel collision handling is one of the major obstacles for future

WLANs due to the increase in density of the users. Therefore, in this paper, we propose DRL as an intelligent

paradigm for MAC layer resource allocation in dense WLANs. One of the DRL models, Q-learning (QL),

is used to optimize the performance of channel observation-based MAC protocols in dense WLANs.

An intelligent QL-based resource allocation (iQRA) mechanism is proposed for MAC layer channel access

in dense WLANs. The performance of the proposed mechanism is evaluated through extensive simulations.

Simulation results indicate that the proposed intelligent paradigm learns diverse WLAN environments and

optimizes performance, compared to conventional non-intelligent MAC protocols. The performance of the

proposed iQRA mechanism is evaluated in diverse WLANs with throughput, channel access delay, and

fairness as performance metrics.

INDEX TERMS IEEE 802.11ax, denseWLANs, HEW, reinforcement learning, Q-learning,MAC protocols.

I. INTRODUCTION

Future dense wireless local area networks (WLANs) are

attracting significant devotion from researchers and indus-

trial communities. IEEE working groups are expected to

launch an amendment to the IEEE 802.11 (WLAN) stan-

dard by the end of 2019 [1]. The upcoming amendment,

covering the IEEE 802.11ax high-efficiency WLAN (HEW),

will deal with ultra-dense and diverse user environments,

such as sports stadiums, train stations, and shopping malls.

One inspiring service is the promise of astonishingly high

throughput to support extensively advanced technologies for

5th generation (5G) communications. HEW is anticipated to

infer the various and interesting features of both the learners’

environment of a HEW device as well as device behavior in
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order to spontaneously control the optimal media access con-

trol (MAC) layer resource allocation (MAC-RA) [2] system

parameters.

In real WLANs, the devices proficiently and dynamically

manage WLAN resources, such as the MAC layer carrier

sense multiple access with collision avoidance (CSMA/CA)

mechanism to improve users’ quality of experience (QoE) [3].

Overall device performance depends on exploitation of the

instability of network heterogeneity and traffic diversity.

Conventionally, the IEEE 802.11 standard uses a binary expo-

nential backoff (BEB) scheme as a CSMA/CA mechanism

to avoid collisions [2]. In BEB, a random backoff value is

generated from a contention window (CW) to obtain channel

access. The CW size is doubled after every collision and reset

to its minimum size on successfully transmissions. However,

this blindness when increasing and resetting the CW induces

performance degradation. For a dense network, resetting the

CW to its minimum size may result in more collisions and

poor network performance. Likewise, for a small network

environment, a blind increase in CW size may cause an

unnecessarily long delaywhile accessing the channel.WLAN

resources are fundamentally limited due to shared channel

access and wireless infrastructures, whereas WLAN services

have become increasingly sophisticated and diverse, each

with a wide range of QoE requirements. Thus, for the success

of the prospective HEW, it is vital to investigate efficient and

robust MAC-RA protocols [2].

Recently, the field of deep learning (DL) has been flourish-

ing in order to enable machine intelligence (MI) capabilities

in wireless communications technologies. This newly gained

popularity of DL is because of successful applications in

different research fields, such as speech recognition, natu-

ral language processing, and computer vision. The popular

technology titans (Google, Microsoft, Facebook, Amazon,

and Nvidia) have already started serious financing of their

prevailing computing resources to drive MI research, partic-

ularly aiming at DL breakthroughs [5]. DL is now a thriving

field in active research topics into relevant applications of

wireless communications networks, ranging from learning

complex scenarios with unknown channel models to the

deployment of cognitive radio networks (CRNs). The use

of DL philosophies on the extensive collection of wireless

networks has a long history and attained numerous achieve-

ments, particularly in the upper communications layers, such

as in CRNs and forMAC layer resource management [6]. The

WLAN’s physical (PHY) layer also poses many challenges

for DL [7], such as modulation recognition [8], channel

modeling [9], encoding/decoding [10], and channel statistics

estimation [11]. It is believed by researchers that WLANs

can optimize performance by introducing DL intoMAC layer

resource allocation. Deep reinforcement learning (DRL) is

one DL technique that is motivated by the behaviorist sen-

sibility and control philosophy, where a learner can achieve

an objective by interacting with the environment [12]. DRL

uses specific learning models, such as the Markov deci-

sion process (MDP), the partially observed MDP (POMDP),

and Q-learning (QL) [13]. DRL utilizes these techniques

in applications like learning an unknown wireless network

environment and resource allocation in femto/small cells in

heterogeneous networks (HetNets) [13]. Figure 1 depicts RL

with its specific learning models and their potential applica-

tions in futuristic dense wireless networks.

FIGURE 1. Deep reinforcement learning models and their potential
applications in dense WLANs.

Motivated by QL, which is one of the prevailing DRL

models, we propose an auspicious paradigm for MAC-RA

in future dense WLANs. As shown in Figure 2, we envision

an intelligent HEW device that accesses channel resources

with the assistance of QL techniques, and autonomously

observes, learns, and evaluates its actions based on learning

in order to achieve optimal performance. QL is inspired by

behaviorist psychology, which is used to discover an optimum

strategy for taking action for any finiteMDP,mainly when the

environment is unknown [14]. A significant feature of QL is

that it overtly reflects the whole problem of a learner/device

interacting with an uncertain environment and being directed

to its goal.

FIGURE 2. Intelligent MAC layer resource allocation (MAC-RA) learning
model for an intelligent HEW device.

A goal-directed device can be a tiny piece of a larger

behavioral system, such as HEW devices in dense WLAN

environments seeking to maximize performance in terms of
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throughput and channel access delay. In this paper, we use

QL to optimize one of our proposed channel observation–

based MAC protocol [15]. In [15], we proposed a channel

observation–based scaled backoff (COSB) mechanism to

handle the blind increase and reset of CW in BEB. The pro-

posed self-scrutinized COSB adaptively scales up and scales

down the backoff CW to enhance the performance of the

CSMA/CA in WLANs, specifically in dense environments.

Because QL finds solutions through the experience of inter-

acting with an unknown environment, this paper proposes an

intelligentQL-based resource allocation (iQRA) mechanism

for performance optimization of COSB.

The rest of this paper is structured as follows. Section II

describes deep reinforcement learning in detail along with

its challenges and features. This section also highlights the

elements, scope, and features of DRL. In Section III, the pro-

posed QL paradigm is defined. This section briefly explains

COSB and presents the proposed iQRA mechanism in detail.

Section IV contains performance evaluation of the proposed

mechanism. Finally, comprehensive conclusion and future

work are presented in Section V.

II. DEEP REINFORCEMENT LEARNING

In DRL, a device learns the actions to take and maps situa-

tions for these actions with the goal of maximizing a numer-

ical reward flag. Usually, a learning device does not know

what actions to perform; however, it has to discover which

actions produce the best reward by trying them. In many

stimulating and inspiring cases, actions might change an

instant reward as well as the next reward and, through that,

all successive rewards.

DRL is different from traditional supervised DL and

unsupervised DL techniques. It is the most recent, focused

research in the area of DL. In supervised learning, a learner

learns from a given labeled training dataset provided by

a knowledgeable external supervisor. This provided dataset

describes a situation composed of a description (that is,

the label) of the exact action the learner should take in a

specific environment. In collaborative problems, it is often

impractical to get such datasets of desired behavior that are

both correct and representative of all the states in which the

learner has to perform actions [14].

DRL is also different from unsupervised learning.

Unsupervised learning techniques are about finding structure

hidden in collections of unlabeled data. Both supervised and

unsupervised learning techniques seem to thoroughly clas-

sify DL paradigms. However, in an unfamiliar environment,

where one would imagine learning to be most advantageous,

a learner must be able to learn from experience.

A. CHALLENGES AND FEATURES OF DRL

The tradeoff between exploration and exploitation is a chal-

lenge for DRL that is not in other kinds of learning. To get

a considerable reward, a DRL device must learn toward

activities attempted in the past and observed to be com-

pelling in creating a reward. In any case, to find such actions,

it needs to attempt actions that it has not chosen previously

(exploration). The learner needs to exploit what it has effec-

tively experienced, keeping in mind that the target goal is

to acquire the maximized reward; however, it also needs to

explore in order to make better action selections in the future.

The difficulty is that neither exploration nor exploitation can

be pursued solely without failing at the task. The learner must

attempt an assortment of actions and continuously support

those actions that appear to be best. In a stochastic task, each

action must be attempted many times to gain a consistent esti-

mate of the expected reward. The exploration–exploitation

issue has been intensively examined by mathematicians for

a long time, yet remains uncertain [14]. In the HEW system,

an intelligent device would exploit to improve its perfor-

mance, and would explore to know the dynamicity of the

WLAN network.

A key component of DRL is that it expressly considers

the entire problem of an objective-directed learner interacting

with a speculative environment. This is unlike numerous

methodologies that consider sub-issues without attending to

how theymay fit into a bigger picture. DRL takes the opposite

strategy, which is beginning with a complete, interactive,

objective, seeking learner. All DRL learners have obvious

objectives, can detect features of their environments, and

can select actions to impact the environments. Besides, it is

generally expected from the beginning that the learner still

needs to operate, regardless of any huge vulnerability in the

environment it faces.

B. ELEMENTS OF DRL

Beyond the agent and the environment, a DRL framework has

four primary sub-components: policy (strategy), reward flag,

a value function, and, sometimes (optionally), environment

model.

1) POLICY

A strategy or policy characterizes the learner’s way of acting

at a given time. Generally, a policy is a mapping from appar-

ent states of the environment to actions to be taken in those

states. It compares to what in psychology would be called a

set of action–response relationships. In some cases, the policy

might be a straightforward function or lookup table, while

in others it might include broad computation (for example,

a pursuit procedure). The policy is the essence of a DRL

learner in the sense that it alone is adequate to decide its

behavior.

2) REWARD FLAG

A reward flag characterizes the objective of a learning prob-

lem. At each time step, the environment determines a solitary

number called the reward. The learner’s main objective is to

maximize the total reward it collects in the long run. The

reward flag, therefore, expresses the good and bad events for

the learner. The reward flag is the essential reason for altering

the policy at any state; if an action selected by the policy
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brings a low reward, at that point, the policymight be changed

to choose some other action for that state in the future.

3) VALUE FUNCTION

While the reward flag shows what is better in an immediate

sense, a value function indicates what is best in the end. Thus,

the value function of a specific state is the aggregate sum of

rewards a learner can collect in the long run, starting from

the initial state. For instance, a state may dependably yield

a low quick reward, yet at the same time, have a high value

function because it is frequently followed by other states that

yield high rewards. In any case, it is the value function with

which we are most concerned when making and evaluating

decisions. Action selections aremade based on value verdicts.

We pursue actions that bring states of highest values, not

the highest rewards, because these actions find the highest

extent of rewards for the learner over the long term. In fact,

the most significant element of almost all DRL algorithms is

a technique for proficiently estimating values.

4) ENVIRONMENT MODEL

An optional component of DRL frameworks is a model of

the environment. This is something that mirrors the behavior

of the environment, or more generally, that enables sugges-

tions to be made about how the environment will behave.

For instance, given a state and an action, the model may

anticipate the resultant next state and the next reward. Models

are utilized for planning, by which we mean any method for

settling on a sequence of actions by considering conceivable

future circumstances before they are actually experienced.

C. SCOPE AND LIMITATIONS OF DRL

As discussed above, DRL depends strongly on the notion

of the state as input to the policy and the value function.

Informally, we can think of the state as a flag passing to

the learner with some sense of how the environment is at

a specific time. A large portion of DRL techniques are

organized around evaluating value functions; however, it is

not entirely essential to do this to take care of DRL problems.

For instance, approaches like genetic algorithms, genetic

programming, simulated forging, and other optimization

algorithms have been utilized to approach DRL problems

while never engaging value functions [15]. These evolution-

ary approaches assess the lifetime conduct of numerous non-

learners, each utilizing an alternate policy for interfacing with

the environment and selecting those actions that are able to

acquire themost rewards. If the space of policies is adequately

small, or can be organized so that the best policies are

common or simple to discover, or if a considerablemeasure of

time is available for the search, then evolutionary approaches

can be viable. Furthermore, evolutionary approaches have

focal points for problems in which the learner cannot detect

the entire state of the environment. In contrast to evolutionary

approaches, DRL techniques learn while interfering with

the environment. Techniques ready to exploit the details of

individual behavioral interactions can be substantially more

productive than evolutionary strategies in many types of

wireless network.

D. Q-LEARNING MODEL

QL might be summoned to trace an optimal action policy for

any given (finite) MDP, particularly for an obscure system

model, as presented in Figure 3. In such a case, the QL

model is likewise comprised of a learner, of a set of states, S,

and a set of actions, A, for every state. By performing an

action in a particular state, the learner collects a reward with

the objective of maximizing its accumulated reward. Such

a reward is represented by a Q-function (also known as a

Q-value function). The Q-value is updated in an iterative way

after the learner performs an action and observes the resultant

reward, as well as the related prospective states, at each time

instant [16]. QL has recently been applied in heterogeneous

wireless networks. A heterogeneous, completely distributed,

multi-objective approach based on an DRL model was devel-

oped for self-optimization of femtocells in [17]. That pro-

posed paradigm is supposed to solve both the resource allo-

cation and interference coordination issues in the downlink

of femtocells.

FIGURE 3. Q-learning model environment for an intelligent HEW device.

III. PROPOSED Q-LEARNING PARADIGM FOR

DENSE WLANS

In this section, we propose DRL as an auspicious paradigm

for channel observation–basedMACprotocols in dense HEW

networks. This section is further divided into three subsec-

tions. The first subsection elaborates one of the channel

observation–basedMACprotocols, COSB. In the second sub-

section, we design a QL-based intelligent mechanism (iQRA)

to optimize the performance of COSB. Third sub-section

elaborates the computational complexity of the proposed

iQRA mechanism.

A. CHANNEL OBSERVATION–BASED MAC PROTOCOL

To unravel the performance deprivation problem in dense

WLANs caused by CSMA/CA of conventional MAC layer

distributed coordination function (DCF), a more versatile

channel observation–based scaled backoff approach is pro-

posed in [3], which primarily relies on the density of the

network. The proposed COSB protocol guarantees high

throughput and low channel access delay by reducing the
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FIGURE 4. Channel observation mechanism of the channel observation–based scaled backoff during the backoff
procedure [3].

number of collisions during the channel access procedure.

In COSB protocol, the contending stations (STAs) proceed to

the backoff procedure by selecting random backoff value B,

as shown in Figure 4 (B = 9 for STA1, and B = 7

for STA2), after the communication medium has been idle

for a distributed inter-frame space (DIFS) period. The time

immediately following the DIFS is considered as discretized

observation time slots (η). The duration of η is either an

idle slot time, σ (a constant), or a variable occupied slot

time (that is, occupied due to successful transmission or a

collision). The value of B decrements by one whenever the

medium is detected as idle for σ . A data frame is transmitted

after B reaches zero. Furthermore, when the communication

channel is detected as occupied, the tagged STA stops decre-

menting B and continues sensing the channel until it is again

sensed as idle for a DIFS period. Every individual contending

STA can capably measure the conditional channel collision

probability, pobs, which is defined as the probability that a

transmission will fail. Subsequently, COSB discretizes the

time in Bobs observation time slots, where the value of Bobs
is the total number of η slotted observation slots between two

consecutive backoff stages, as presented in Figure 4. A tagged

contending STA updates pobs from Bobs as follows:

pobs =
1

Bobs
×

Bobs−1
∑

k=0

Sk (1)

where for observation time slot k , Sk = 0 if η is

sensed as idle or the tagged STA transmits the data frame

successfully, whereas Sk = 1 if η is detected as occu-

pied or the tagged STA experiences a collision, as shown

in Figuere 4. Instead of resetting the CW after a successful

transmission, COSB decrements it exponentially based on the

currently measured pobs. Because the current backoff stage

represents the number of collisions or successful transmis-

sions of a tagged STA, the increment or decrement of CW is

performed as follows:

CW cur =







2 × CW pre × ωpobs , if collision
CW pre

2
× ωpobs , if succesful

(2)

where ω is used as a constant design parameter to control

the optimal size of the current CW and is expressed as

ω = CWmin.

B. INTELIGENT QL–BASED RESOURCE ALLOCATION

The proposed iQRA mechanism considers backoff stages as

an available set of states, where a learning STA scales up

(increments to the next state) and scales down (decrements

to the previous state) the size of the CW. An action a, in a

particular state s, obtains a reward r , with the aim to exploit its

accumulatedQ-value function,Q(s, a). This Q-value function

is updated in an iterative manner after the STA performs an

action and perceives the resulting reward. Figure 5 depicts a

model environment of a channel observation–based backoff

mechanism (that is, COSB) with its elements for the proposed

iQRA mechanism. Let S = {0, 1, 2, . . . ,m} denote a finite

set of m possible states of a HEW environment for the COSB
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FIGURE 5. Intelligent Q-learning–based resource allocation (iQRA):
system environment and its elements.

mechanism, and let A = {0, 1} represents a fixed set of allow-

able actions to be taken, where zero indicates a decrement (for

successful transmission) and 1 indicates an increment (after

a collision). At time slot t , STA observes its current state (s),

i.e.st = s ∈ S, and takes an action (a), i.e. at = a ∈ A.

Action at changes the state of the environment from st to

st+1 = s′ ∈ S. The main goal of the QL algorithm is to learn

an optimal policy that exploits the total anticipated reward,

which is given by following Bellman’s equation [5],

Qopt (st , at) = E{rt + β × maxa′Qopt (s′, q′)|st = s, at =}.

(3)

Since the reward may effectively get unbounded, a dis-

counted reward factor, β (0 < β <1), is utilized. In the

QL algorithm, Q(s, a) estimates the reward as the aggregate

reward and is updated as follows:

Q (s, a) = (1 − α) × Q (s, a) + α × 1Q(s, a), (4)

where α is the learning rate, defined as 0 < α < 1.

The learning occurs quickly based on improved learning

estimate1Q (s, a), and is expressed as

1Q (s, a) =
{

r (s, a) + β × maxaQ
(

s′, a′
)}

− Q (s, a) .

(5)

As characterized before, β is the discount rate. Parameter β

weighs instant rewards more vigorously than future rewards.

The expression maxaQ(s′,a′) in (3) and (5) defines the best-

estimated value for the potential states′. In the long run,

Q (s, a) converges to the optimal Q-value Qopt (s, a), that is,

lim
t→∞

Q (s, a) = Qopt (s, a). The naivest policy for action

selection can be to pick one of the actions with the maximum

measured Q-value (exploitation). If there is more than one

action with the maximum Q-value, a random choice can be

made. This exploitation method is known as a greedy action

aopt selection method, and can be written as

aopt = argmaxaQ (s, a) (6)

where argmaxa represents the exploitation of Q (s, a) with

respect to a. The instant reward is maximized by contin-

uous exploitation in a greedy manner. A modest substi-

tute is to exploit more often, but occasionally, the learning

STA explores all the allowable actions independent of aopt

with probability ε (known as exploration). The greedy and

non-greedy selection of actions is known as the ε-greedy

method [5]. A feature of the ε-greedy technique is that, as the

number of instances increases, every action guarantees the

convergence of Q (s, a) to Qopt (s, a). In a HEW environ-

ment, a STAwould exploit to improve throughput, and would

explore to know the dynamicity of the WLAN environment.

To balance exploitation and exploration under the proposed

iQRAmechanism, and ε-greedymethod is applied with prob-

ability ε for exploration and probability 1−ε for exploitation.

We express the reward in order to minimize channel colli-

sion probability pobs. The reward given by action at taken at

state st in slot-time t is expressed as

rt (st , at) = 1 − pobs (7)

The above statement indicates how pleased an STA was with

its action in state st . Figure 5 depicts the state transition

diagram of the iQRA mechanism. In the figure, the STA

moves from one state to another state with 1−pobs as a reward.

The STA observes and learns the environment to optimize

the backoff process. Algorithm 1 depicts the steps performed

by the proposed iQRA mechanism to optimize the COSB

protocol.

Algorithm 1 COSB Performance Optimization Using iQRA

1: Global initialization: //The reward andQ-valuematrices

are initialized globally to keep track of the instant reward

and cumulative reward for all possible state transitions

(actions) for s states, that is, r (s, a) and Q (s, a).

2: Function Select CW using iQRA (pobs)

Input: channel observation–based collision probability

pobs
Output: CW: return optimized contention window

3: Initialize: cur_rew = 0, 1Q (s, a) = 0, ε = 0

4: Calculate reward as cur_rew = 1 -pobs
5: Update reward table for r (s, ra) = cur_rew

6: Calculate improved estimate 1Q (s,a)according to

Equation (5)

7: Update Q-value table for Q (s, a) according to Equa-

tion (4)

8: Pick a random value to explore or exploit (ε-greedy

method)

9: if (exploit)

10: Find aopt according to Equation (6)

11: Scale CW according to the optimal action.

12: else (explore)

13: Scale the CW using COSB mechanism

14: end if

15: return CW

16: end Function

C. COMPUTATIONAL COMPLEXITY

The computational complexity of the proposed iQRA mech-

anism is based on the learning phase of the system. An STA

learns the system by exploring different permissible actions

in every specific state. However, as soon as the environment
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FIGURE 6. CSMA/CA flowchart representing functional comparison of BEB, COSB and iQRA mechanisms.

is learned, the best action can be exploited in any given state

in an ε-greedy manner, resulting in the optimal solution.

Since iQRA performs only a constant amount of computation

(a fixed number of actions and states), its computational

complexity per iteration can be written either as O (1) if

explores, or asO (mln(i)) for i ∈ (1,m) of m number of states

if exploits. The best case for the computational complexity

is when there is only one possible state to move at any state,

that ism = 1, and the worst case arises with the m number of

states. The computational complexity of iQRAmechanism is

checked for m = 6, which is a default value of number of

backoff stages in most of the IEEE 802.11 standards. The

obtained results remain below 0.000ns+. Figure 6 shows

flowchart of CSMA/CA representing the functional compar-

ison of BEB, COSB and iQRA algorithms. The figure helps

to understand the addition of functions to the currently

implemented CSMA/CA mechanism. An observation-based

intelligence is embedded to the CSMA/CA for performance

optimization.

IV. PERFORMANCE EVALUATION

We simulated the proposed learning-based iQRAmechanism

using the ns-3 network simulator, version 3.28 [19], with

an IEEE 802.11ax HEW model for dense WLANs. Some

important simulation parameters are given in Table 1.

A. QL PARAMETER SELECTION

To evaluate the QL parameters for the proposed iQRA,

we simulated 25 contending STAs for 100 seconds, varying

α and β with small (0.2), medium (0.5) and large (0.8) values.

Probability ε was set to 0.5 for balanced exploration and

TABLE 1. MAC layer and PHY layer simulation parameters

exploitation. Figure 7 shows the convergence of learning

estimate 1Q from Equation (5) with respect to the learning

rate (α). The figure depicts how a smaller α makes 1Q con-

verge faster. The convergence of 1Q indicates that the STA

has learned its environment and can exploit optimal actions in

the future. An interesting observation is that1Q is not steady

in the beginning, which is due to the initial exploration of the

environment. Therefore, most of the states do not optimize

the value function in the beginning. Later, the STA infers the

states that can deliver the most rewards, increasing the cumu-

lative reward. After enough instances (such as 13 instances

for α = 0.2 in Figure 7), we can see that the learner has found

configurations that can lead to optimization of the process.

Similarly, we observe in Figure 8 1Q converges faster for a
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FIGURE 7. Convergence of learning estimate (1Q) for varying the learning
rate, α(β = 0.8, ε = 0.5).

FIGURE 8. Convergence graphs of the learning estimate (1Q) from
varying the discount factor β(α = 0.2, ε = 0.5).

large value of discount factor β. In both cases (Figure 7 and

Figure 8), ε was set to 0.5, indicating equal opportunities for

exploration and exploitation. The small value for α and the

large value for β (along with equal probability ε) yield the

best results for optimization in the system. The convergence

of learning estimates shows that an optimal solution for the

environment exists.

Figure 9 and Figure 10 portray the effects of the parameters

on throughput of the system (Figure 9 for a small network

of 15 STAs, and Figure 10 for a dense network of 50 STAs).

As shown in Figure 9(a), if ε is set to 0.2 for a small network

of 15 STAs, α = 0.5 and β = 0.2 give the best results.

However, in this case, decreasing α (that isα = 0.2) has little

effect on throughput, but increasing it to α = 0.8 degrades

throughput dramatically. Figure 9(b) shows that if ε and α

are set to 0.5, β can be set small, medium, or large. However,

for ε = 0.8 and α = 0.5, seting β to its medium value

(β = 0.5) enhances throughput, as shown in Figure 9(c).

Figures 10(a), 10(b) and 10(c) show that for a dense network

system of 50 STAs, a small value for α (that is, α = 0.2)

and a large value for β (that is, β = 0.8) are efficient for

small and medium values of ε (that isε = 0.2 and ε = 0.5).

With a large value for ε (that is,ε = 0.8), as shown

in Fig. 10(c), throughput is improved if the large α and β are

used (that is,α = 0.8, and β = 0.8). Thus, from Figure 9 and

Figure 10, we show that a combination of smallα, large β,

and a medium value for ε (that is, α = 0.2, β = 0.8, and

ε = 0.5) is somewhat efficient for both sparse and dense

network systems.

B. THROUGHPUT

To evaluate the performance of iQRA, we compared

simulation results with the traditional binary exponential

backoff (BEB) and COSB algorithms. Figure 11 shows how

the iQRA mechanism optimizes the throughput of COSB,

specifically in a dense network of 50 contending STAs.

The performance improvement clearly indicates that the

QL-based proposed mechanism is effective at learning the

wireless network. In a network of five contending STAs,

iQRA achieves relatively lower system throughput than

COSB. The performance of iQRA may degrades in small

networks due to low and irregular rewards.

C. CHANNEL ACCESS DELAY

The channel access delay for a successfully transmitted data

frame is defined as the interval from the time the frame

is at the head of the queue (ready for transmission) until

successful acknowledgement that the frame was received. If a

frame reaches the given retry limit, it is dropped, and its time

delay is not included in the calculation of channel access

delay. Figure 12 depicts the performance of the proposed

iQRA mechanism along with the conventional BEB and

the original COSB mechanisms in terms of channel access

delay (in milliseconds). From the figure, we observe that

the proposed iQRA mechanism has a higher channel access

FIGURE 9. Throughput comparison of α and β in a small network of 15 STAs with (a) ε = 0.2, (b) ε = 0.5 and (c) ε = 0.8.
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FIGURE 10. Throughput comparison of α and β in a dense network of 50 STAs with (a) ε = 0.2, (b) ε = 0.5 and (c) ε = 0.8.

FIGURE 11. Throughput comparison of BEB, COSB, and iQRA with
α = 0.2, β = 0.8 and ε = 0.5 in a network of five to 50 contending STAs.

FIGURE 12. Channel access delay comparison of BEB, COSB, and iQRA
with α = 0.2, β = 0.8, and ε = 0.5 in a network of five to 50 contending
STAs.

delay, compared to COSB; however, it does not exceed the

conventional BEB mechanism. It is obvious that the iQRA

mechanism has an increased channel access delay due to its

environment inference characteristics.

D. FAIRNESS

The fairness issue can be seen for COSB in Figure 13. In a

dense network environment of 50 STAs, COSB suffers from

the fairness problem due to some STAs continuously operat-

ing at a higher CW size, and a few fortunate STAs can operate

at a lower CW size. Under COSB, once the STA reaches

a larger CW, it has to transmit successfully many times to

return to the smaller CW, which seems difficult in a dense

network environment due to the high probability of collision.

FIGURE 13. The number of successfully transmitted packets by each STA
in a dense network of 50 STAs.

The proposed iQRA brings fairness to the contending STAs,

because every STA autonomously and intelligently exploits

its environment. Table 2 shows the values in Jain’s fairness

index [18] achieved by BEB, COSB, and iQRA for a small

network of five STAs to a large, dense network of 50 STAs.

We observe that the previously proposed COSB mechanism

was unfair for small to large network environments, while the

iQRA mechanism optimizes COSB to perform fairly among

the contending STAs, whether it is for a small network or a

large network.

TABLE 2. Jain’s fairness index comparison.

E. NETWORK DYNAMICITY

Subsequently, QL is essentially intended to make intelli-

gent adjustments according to the dynamics of the environ-

ment. A dynamic environment can be the activation of more
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contending STAs in the network or the deactivation of

previously active STAs. We evaluated the performance of

the proposed iQRA mechanism by activating five more

contending STAs every 50 seconds until the number of

STAs reached 50. Figure 14 explains the effects of network

dynamics on 1Q (that is, learning estimate) of a tagged

STA. The figure shows 1400 learning instances (events) of

a tagged STA during the simulation period (500 sec). Each

instance represents the updated value of learning estimate

1Q whenever a packet transmission is attempted. As shown

in the figure, with changes in the number of contending STAs

within the network, the tagged STA experiences a fluctuation

in1Q, indicating the change in the environment. Later, this

QL-equipped, intelligent tagged STA converges and is capa-

ble of optimizing the performance in a dynamic wireless

environment. In Figure 15, we see that iQRA eventually

reaches a steady state in system throughput. On the other

hand, BEB and COSB are severely affected by the increase

in the number of competing STAs.

FIGURE 14. Convergence of the learning estimates (δQ) in a dynamic
network environment (increasing the number of contenders every
50 seconds).

FIGURE 15. System throughput comparison in a dynamic network
environment (increasing contenders by five every 50 seconds).

F. DISTANCE-BASED RATE ADAPTATION MODELS

Throughput shown in Figure 11 and Figure 15 are achieved in

a network environment using the ConstantRateWifiManager

rate-adaptation algorithm [19], in which contending STAs

are placed at a fixed distance from the access point (AP).

Hence, all the devices are transmitting at a constant data rate.

To evaluate the performance of the proposed iQRAalgorithm,

we simulated a more practical and real network environ-

ment, such as MinstrelWifiManager [19]. The Minstrel rate

adaptation varies the transmission rate of the sender STA to

match the WLAN channel conditions (mainly based on the

distance from the AP), in order to achieve the best possible

performance. The results shown in Figure 16 are achieved in

an IEEE 802.11a (11 Mbps) wireless network for N = 10.

All contending STAs were randomly placed within a distance

of 25m from the AP. A tagged STA (initially placed at a

1m distance) moves away from the AP after a step-time

of 1sec. Throughput shown in Figure 16 was obtained after

each 5m distance from the AP. The performance of a tagged

STA for all three of the compared algorithms (BEB, COSB,

and iQRA) degrades as the distance from the AP increases,

as shown in Figure 16. We observe that the throughput of the

tagged STA for BEB is close to zero after the STA reaches a

distance of 60m, and finally becomes zero when it exceeds the

coverage (80m). Under COSB, due to its observation-based

nature, a STA achieves higher throughput even after a 60m

distance, compared to BEB. However, the proposed iQRA

maintains performance, even if the distance increases to 80m,

due to its intelligence capability.

FIGURE 16. Throughput comparison for distance-based rate-adaptation
network environments.

G. EFFECTS OF CHANNEL ERROR-RATE MODELS

In order to achieve reliable results to compare with real

device performance, it is essential to represent the PHY layer

of the WLAN as correctly as possible in simulations. The

ns-3 simulator states two error-rate models for calculation of

the bit error rate (BER) and corresponding packet error rate

(PER): YansErrorRateModel and NistErrorRateModel [19].

Currently, ns-3 recommends using NistErrorRateModel as

the default, specifically for ideal channel cases. There is

not much difference between these two, except that YansEr-

rorRateModel uses overly optimistic (analytical) results.

In Figure 17, we evaluate the effect of the above-stated

error-rate models. The figure shows that there is not much

FIGURE 17. Throughput comparison for NistErrorRateModel and
YansErrorRateModel network environments.
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difference among BEB, COSB, and iQRA performance when

simulated with the two different error-rate models. The per-

formance of COSB increases a little with YansErrorRate-

Model. The reason is that, similar to YansErrorRateModel,

COSB scales its parameters based on analytical results, that

is, channel collision probability. On the other hand, the per-

formance of iQRA remains almost the same, because it is the

optimized form of COSB.

V. CONCLUSION

The upcoming dense high-efficiency WLAN (that is,

IEEE 802.11ax HEW) promises per-device throughput per-

formance that is four times higher. One of the bottlenecks

for this performance achievement is tackling the huge chal-

lenge of efficient MAC layer resource allocation in WLANs

due to their distributed contention-based nature. Currently,

a CSMA/CA-based WLAN uses a binary exponential back-

off mechanism, which blindly increases and decreases the

contention window after collisions and successful transmis-

sions, respectively. To handle the performance degradation

challenge caused by the increasing density of WLANs,

a self-scrutinized channel observation–based scaled backoff

(COSB) mechanism based on a practical channel collision

probability was proposed. COSB overcomes the limitation

of BEB to achieve high efficiency and robustness in highly

dense networks, and enhances the performance of CSMA/CA

in dense networks. However, to satisfy the diverse require-

ments of such denseWLANs, it is anticipated that prospective

WLANswill autonomously access the best channel resources

with the assistance of sophisticated wireless channel condi-

tion inference. Motivated by the potential applications and

features of deep reinforcement learning in wireless networks,

such as the deployment of cognitive radio, we introduced

DRL as a paradigm for MAC layer resource allocation in

dense WLANs. In this paper, we propose one of the DRL

techniques, Q-learning, as an intelligent paradigm for MAC

layer resource allocation in dense WLANs. The proposed

DRL paradigm uses intelligent QL-based inference to opti-

mize the performance of COSB, and we call it intelligent

QL–based resource allocation. Simulation results show that

the proposed iQRA optimizes the performance of COSB in

fixed wireless STA network environments, as well as for

randomly placed and distance-based rate adaptation network

environments.

Future research considerations include the formulation

of a mathematical model for the proposed iQRA mecha-

nism. Future work also includes performance evaluations of

iQRA inmore realistic channel-error and signal-to-noise ratio

(SINR)–based data rate models.

REFERENCES

[1] IEEE802.org. (2018). IEEE P802.11—TASK GROUP AX. Accessed:

Feb. 30, 2018. [Online]. Available: http://www.ieee802.org/11/Reports/

tgax_update.htm

[2] R. Ali, S. W. Kim, B. Kim, and Y. Park, ‘‘Design of MAC layer resource

allocation schemes for IEEE 802.11ax: Future directions,’’ IETE Tech.

Rev., vol. 35, no. 1, pp. 28–52, 2016, doi: 10.1080/02564602.2016.

1242387.

[3] R. Ail, N. Shahin, R. Bajracharya, Y. T. Kim, B.-S. Kim, and S. W. Kim,

‘‘A self-scrutinized backoff mechanism for IEEE 802.11ax in 5G

unlicensed networks,’’ Sustainability, vol. 10, no. 4, p. 1201, 2018,

doi: 10.3390/su10041201.

[4] N. Kato et al., ‘‘The deep learning vision for heterogeneous network

traffic control: Proposal, challenges, and future perspective,’’ IEEE Wire-

less Commun., vol. 24, no. 3, pp. 146–153, Jun. 2017, doi: 10.1109/

MWC.2016.1600317WC.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,

MA, USA: MIT Press, 2016. [Online]. Available: http://www.

deeplearningbook.org
[6] U. Challita, L. Dong, and W. Saad. (2017). ‘‘Proactive resource manage-

ment in LTE-U systems: A deep learning perspective.’’ [Online]. Available:

https://arxiv.org/abs/1702.07031.
[7] T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, ‘‘Deep

learning for wireless physical layer: Opportunities and challenges,’’

China Commun., vol. 14, no. 11, pp. 92–111, Nov. 2017, doi: 10.1109/

CC.2017.8233654.
[8] A. Fehske, J. Gaeddert, and J. H. Reed, ‘‘A new approach to signal clas-

sification using spectral correlation and neural networks,’’ in Proc. IEEE

Int. Symp. New Frontiers Dyn. Spectr. Access Netw. (DYSPAN), Nov. 2005,

pp. 144–150.
[9] M. Ibukahla, J. Sombria, F. Castanie, and N. J. Bershad, ‘‘Neural net-

works for modeling nonlinear memoryless communication channels,’’

IEEE Trans. Commun., vol. 45, no. 7, pp. 768–771, Jul. 1997.
[10] J. Bruck and M. Blaum, ‘‘Neural networks, error-correcting codes, and

polynomials over the binary n-cube,’’ IEEE Trans. Inf. Theory, vol. 35,

no. 5, pp. 976–987, Sep. 1989.
[11] C.-K. Wen, S. Jin, K.-K. Wong, J.-C. Chen, and P. Ting, ‘‘Channel estima-

tion for massive MIMO using Gaussian-mixture Bayesian learning,’’ IEEE

Trans. Wireless Commun., vol. 14, no. 3, pp. 1356–1368, Mar. 2015.
[12] J. Moon and Y. Lim, ‘‘A reinforcement learning approach to access

management in wireless cellular networks,’’ Wireless Commun. Mobile

Comput., Vol. 2017, pp. 1–7, May 2017, Art. no. 6474768, doi:

10.1155/2017/6474768.
[13] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, ‘‘Machine

learning paradigms for next-generation wireless networks,’’ IEEE Wire-

less Commun., vol. 24, no. 2, pp. 98–105, Apr. 2017, doi: 10.1109/

MWC.2016.1500356WC.
[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2nd ed. Cambridge, MA, USA: MIT Press, 1998.
[15] R. Ali, N. Shahin, Y.-T. Kim, B.-S. Kim, and S. W. Kim, ‘‘Chan-

nel observation-based scaled backoff mechanism for high-efficiency

WLANs,’’ Electron. Lett., vol. 54, no. 10, pp. 663–665, May 2018.
[16] E. Alpaydm, Introduction to Machine Learning, 3rd ed. Cambridge, MA,

USA: MIT Press, 2014.
[17] G. Alnwaimi, S. Vahid, and K. Moessner, ‘‘Dynamic heterogeneous learn-

ing games for opportunistic access in LTE-based macro/femtocell deploy-

ments,’’ IEEE Trans. Wireless Commun., vol. 14, no. 4, pp. 2294–2308,

Apr. 2015.
[18] R. Jain, D. Chiu, and W. Hawe, ‘‘A quantitative measure of fairness and

discrimination for resource allocation in shared computer system,’’ Eastern

Res. Lab., Digit. Equip. Corp., Maynard, MA, USA, DEC Res. Rep. TR-

301, 1984.
[19] The Network Simulator ns-3. Accessed: Mar. 5, 2018. [Online]. Available:

https://www.nsnam.org/

RASHID ALI received the B.Sc. degree in

information technology from Gomal University,

Pakistan, in 2007, the M.Sc. degree in com-

puter science (advanced network design), in 2010,

under the supervision of Dr. S. Belenki, and

the M.Sc. degree in informatics from University

West, Sweden, in 2013, under the supervision of

Dr. M. Spante. He is currently pursuing the Ph.D.

degree with the Wireless Information Network-

ing Laboratory, Department of Information and

Communication Engineering, Yeungnam University, South Korea. Between

2007 and 2009, he was a WiMAX Engineer with the Operations Research

Department, Wateen Telecom Pvt. Ltd., Pakistan. From 2013 to 2014, he was

a Lecturer with COMSATS University, Vehari, Pakistan. His research inter-

ests include enhancement of efficiency and reliability in future WLANs,

modeling and analyzing the stochastic process of media access control layer

resource allocation in future WLANs, deep learning, blockchain, and the

Internet of Things.

3510 VOLUME 7, 2019

http://dx.doi.org/10.1080/02564602.2016.1242387
http://dx.doi.org/10.1080/02564602.2016.1242387
http://dx.doi.org/10.3390/su10041201
http://dx.doi.org/10.1109/MWC.2016.1600317WC
http://dx.doi.org/10.1109/MWC.2016.1600317WC
http://dx.doi.org/10.1109/CC.2017.8233654
http://dx.doi.org/10.1109/CC.2017.8233654
http://dx.doi.org/10.1155/2017/6474768
http://dx.doi.org/10.1109/MWC.2016.1500356WC
http://dx.doi.org/10.1109/MWC.2016.1500356WC


R. Ali et al.: DRL Paradigm for Performance Optimization

NURULLAH SHAHIN received the B.Sc. and

M.Sc. degrees from the Department of Informa-

tion and Communication Engineering, Islamic

University, Kushtia, Bangladesh, in 2009 and

2010, respectively. He is currently pursuing the

combined M.Sc. and Ph.D. degrees with the

Department of Information and Communication

Engineering, Yeungnam University, Gyeongsan,

South Korea. He is a Maintenance Engineer with

the IT Operation and Communication Department,

Bangladesh Bank (Central Bank of Bangladesh), Bangladesh. His research

interests include dense wireless networks, vehicular ad-hoc networks, and

resource allocation in wireless networks.

YOUSAF BIN ZIKRIA (SM’17) received the

B.Sc. degree in computer engineering from

the University of Arid Agriculture Rawalpindi,

in 2005, the M.Sc. degree in computer engineer-

ing from Comsats University Islamabad, Pakistan,

in 2007, and the Ph.D. degree from the Department

of Information and Communication Engineering,

YeungnamUniversity, South Korea, in 2016. From

2007 to 2011, hewas a ResearchOfficer withHori-

zon Technology Pvt. Ltd., Pakistan. From 2011 to

2012, he was a Lecturer with King Khalid University, Saudi Arabia. From

2016 to 2018, he was a Postdoctoral Fellow with the Department of Infor-

mation and Communication Engineering, Yeungnam University, where he

is currently an Assistant Professor. He has more than 10 years of experi-

ence in research, academia, and industry in the field of information and

communication engineering, and computer science. His research interests

include the Internet of Things, 5G, wireless communications and networks,

opportunistic communications, wireless sensor networks, routing protocols,

cognitive radio ad hoc networks, cognitive radio ad hoc sensor networks,

transport protocols, VANETS, embedded systems, and information security.

BYUNG-SEO KIM (M’02–SM’17) received the

B.S. degree in electrical engineering from In-Ha

University, Incheon, South Korea, in 1998, and

the M.S. and Ph.D. degrees in electrical and com-

puter engineering from the University of Florida,

in 2001 and 2004, respectively. His Ph.D. research

was supervised by Dr. Y. Fang. Between 1997 and

1999, he was a Computer Integrated Manufac-

turing Engineer of advanced technology research

and development with Motorola Korea Ltd., Paju,

South Korea. From 2005 to 2007, he was a Senior Software Engineer

of networks and enterprises with Motorola Inc., Schaumburg, IL, USA,

where he focuses on designing protocol and network architecture of wireless

broadband mission critical communications. From 2012 to 2014, he was the

Chairman of the Department of Software and Communications Engineering,

Hongik University, South Korea, where he is currently a Professor. He has

authored or co-authored in around 180 publications and holds 25 patents.

His research interests include the design and development of efficient wire-

less/wired networks including link-adaptable/cross-layer-based protocols,

multi-protocol structures, wireless CCNs/NDNs, mobile edge computing,

physical layer design for broadband PLC, and resource allocation algorithms

for wireless networks. He is a Senior Member of the IEEE and an Asso-

ciative Editor of the IEEE ACCESS. He served as a member for the Sejong-city

ConstructionReviewCommittee and theAnsan-cityDesignAdvisory Board.

He served as the General Chair for the General Chair of 3rd IWWCN 2017,

and a TPCMember for the IEEEVTC 2014-Spring, the EAI FUTURE 2016,

and ICGHIT 2016–2019 conferences. He served as a Guest Editor for

special issues of the International Journal of Distributed Sensor Networks,

IEEE ACCESS, MDPI Sensors, and Journal of the Institute of Electrics and

Information Engineers.

SUNG WON KIM received the B.S. and M.S.

degrees from the Department of Control and

Instrumentation Engineering, Seoul National Uni-

versity, South Korea, in 1990 and 1992, respec-

tively, and the Ph.D. degree from the School of

Electrical Engineering and Computer Sciences,

Seoul National University, in 2002. From 1992 to

2001, he was a Researcher with the Research

and Development Center, LG Electronics, South

Korea. From 2001 to 2003, he was a Researcher

with the Research and Development Center, AL Tech, South Korea. From

2003 to 2005, he was a Postdoctoral Researcher with the Department of

Electrical and Computer Engineering, University of Florida, Gainesville,

USA. In 2005, he joined the Department of Information and Communication

Engineering, Yeungnam University, South Korea, where he is currently a

Professor. His research interests include resource management, wireless

networks, mobile networks, performance evaluation, and embedded systems.

VOLUME 7, 2019 3511


	INTRODUCTION
	DEEP REINFORCEMENT LEARNING
	CHALLENGES AND FEATURES OF DRL
	ELEMENTS OF DRL
	POLICY
	REWARD FLAG
	VALUE FUNCTION
	ENVIRONMENT MODEL

	SCOPE AND LIMITATIONS OF DRL
	Q-LEARNING MODEL

	PROPOSED Q-LEARNING PARADIGM FOR DENSE WLANS
	CHANNEL OBSERVATION–BASED MAC PROTOCOL
	INTELIGENT QL–BASED RESOURCE ALLOCATION
	COMPUTATIONAL COMPLEXITY

	PERFORMANCE EVALUATION
	QL PARAMETER SELECTION
	THROUGHPUT
	CHANNEL ACCESS DELAY
	FAIRNESS
	NETWORK DYNAMICITY
	DISTANCE-BASED RATE ADAPTATION MODELS
	EFFECTS OF CHANNEL ERROR-RATE MODELS

	CONCLUSION
	REFERENCES
	Biographies
	RASHID ALI
	NURULLAH SHAHIN
	YOUSAF BIN ZIKRIA
	BYUNG-SEO KIM
	SUNG WON KIM


