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Abstract

By using deep learning-based strategy, the performance of face recognition tasks has been significantly enhanced.

However, the verification and discrimination of the faces with occlusions still remain a challenge to most of the

state-of-the-art approaches. Bearing this in mind, we propose a novel convolutional neural network which was

designed specifically for the verification between the occluded and non-occluded faces for the same identity. It could

learn both the shared and unique features based on a multiple network convolutional neural network architecture.

The newly presented joint loss function and the corresponding alternating minimization approach were integrated to

implement the training and testing of the presented convolutional neural network. Experimental results on the

publicly available datasets (LFW 99.73%, YTF 97.30%, CACD 99.12%) show that the proposed deep representation

approach outperforms the state-of-the-art face verification techniques.
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1 Introduction
Face recognition has become the primary biometric tech-

nique used for personal authentication and identification

in various fields, including finance [1, 2], public secu-

rity [3, 4], and education [5, 6]. A plethora of computer

vision-based approaches have been proposed from the

early 1990s and could derive the low-dimensional repre-

sentation under specific priors on the features in the facial

images. However, these techniques would result in limited

performance while the presented assumptions might not

be compatible with the practical scenarios.

Recently, deep learning especially the convolutional

neural network (CNN) has been widely accepted as the

state-of-the-art approach for face verification and face

identification [7, 8]. CNNs have shown excellent perfor-

mance in various face recognition tasks, e.g., Rajeev et al.

[9] and Schroff et al. [10] presented that their proposed

method achieved the accuracy of 99.78% and 99.63% on

the facial dataset of Labeled Faces in the Wild (LFW)

[11], respectively. However, it remains difficult for them
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to obtain satisfactory accuracy on faces varying in pose,

illumination, and occlusion, among which facial occlusion

has always been considered as an extremely challenging

mission.

On the one hand, data imbalance in the prevailing facial

datasets should be one possible explanation for this phe-

nomenon. Despite most of the face recognition training

datasets contain large amount of identities, they still suffer

from the deficiency of difficult facial images with partial

occlusions such as sunglasses, hats, and hairs. An intu-

itive solution to this problem is that more occluded facial

images should be included into the training process of the

CNN framework.

On the other hand, the loss function could also signif-

icantly affect the training of CNN-based face verification

systems and lead to poor performance while it might

be biased to the data distribution. For instance, softmax

loss, which was not specifically designed for complicated

samples, would neglect the faces with occlusion by enlarg-

ing the conditional probability of the entire samples. To

address this issue, numerous loss functions and different

constraints on the traditional loss functions have been

presented [9, 12–14].

Bearing the abovementioned analysis in mind, we pro-

pose a novel CNN architecture trained by manually col-

lected 6,178 facial image pairs from 560 different identities
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with occlusion. Our proposed CNN adopts the typical

multi-path framework, and its convolutional layers are

implemented by introducing the maxout operator pre-

viously introduced by [15]. After the initialization, the

layers including the convolutional layers in the CNN

architecture are then fine-tuned with the collected facial

images. The output layer is divided into two separate

feature vectors that contain the shared identity informa-

tion between one face and its occluded counterpart and

the unique information from each input image, respec-

tively. Meanwhile, one newly proposed mutual informa-

tion constraint and the introduced maxout operator are

integrated to reduce the dimensionality of the parame-

ters and eliminate the possibility of overfitting that might

appear in small dataset. By using the alternate mini-

mization approach, the objective function for the pro-

posed CNN model could be iteratively optimized for the

heterogeneous images both in the training and testing

procedures.

To evaluate the performance of the proposed method,

we conducted comparison experiments on several pub-

licly available facial benchmarks between state-of-the-art

approaches and ours. Experimental results demon-

strate that our mutual information constrained CNN

framework learns occlusion-invariant representation

and outperforms the state-of-the-art face verification

techniques.

Generally, our work offers three contributions as

follows.

• A novel deep CNN architecture or so-called deep

representation is proposed to extract the shared

information between the input pair of facial images

that were manually collected and could be optimized

through alternating minimization.
• We propose a novel loss function. It can both

maximize the intra-identity distances and minimize

the inter-identity similarity of the features extracted.

Through combining the mutual information loss and

the softmax loss, the proposed method can produce

the highly discriminative features that would

contribute to enhance the accuracy for face

verification.
• Experiments on the public available datasets by our

approach outperforms the state-of-the-art techniques

with an impressive superiority.

The rest of this paper is organized as follows. Firstly,

we briefly reviewed the related work on face verification

methods in Section 2. Then, in Section 3, we describe

both the materials that we used and the details of the

proposed approach. Section 4 presents the experimental

results and the discussion. Finally, we draw the conclusion

and presents our future work in Section 5.

2 Related work
In general, the previously proposed deep face recognition

approaches differ from each other in at least one of the

following aspects: the network architecture and the loss

function.

2.1 Types of network architecture

Most of the previously proposed CNNs have been

exploited to implement the face recognition applications.

According to the input channels used in the network

architectures, these CNN networks could be roughly cat-

egorized into two types as follows.

2.1.1 Single network

Alexnet [16] was presented in 2013 and has shown its

great performance in different machine vision systems.

It contains five convolutional layers combined with recti-

fied linear unit (ReLU), dropout operator, and three fully

connected layers.

As a very deep CNN, VGGNet [17] was proposed for

large-scale image recognition in 2014. It has 16–19 layers,

which significantly contributes to the enhancement of the

image classification accuracy.

In 2015, GoogleNet [18] with 22 network layers could

integrate the information frommulti-resolution images by

concatenating all of the features maps.

In 2016, ResNet [19] was presented. Instead of learn-

ing the underlying mapping directly, it learns a residual

mapping from the input layer.

2.1.2 Multiple networks

According to the input images, the multiple networks

could be roughly divided intomulti-view,multi-patch, and

multi-task.

In 2016, [20] and [21] proposed to address the variations

from view and pose with multiple network CNNs.

== Table 1 ==

Both [22] and [23] proposed the multiple networks to

handle with the different input face patches from the same

image in each iteration.

Meanwhile, several multi-task networks were proposed

to implement various tasks in one architecture, e.g., [24].

Generally, we summarize the state-of-the-art CNN-

based approaches with the corresponding database and

their performance as shown in Table 1.

Table 1 Face verification performances of state-of-the-art

CNN-based techniques

Method Dataset Accuracy (%)

DDML [49] YTF 82.30

DeepFace-single [50] YTF 91.40

DeepID2 [51] YTF 93.20

FaceNet [52] YTF 95.12

VGG-Face [53] YTF 97.30
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2.2 Loss function

Previously, a great deal of loss functions was proposed

for face recognition. Despite it has inner limitations, the

softmax loss is the broadly adopted loss function [25].

And many modifications have been added to enhance

the performance of original softmax loss. For instance,

[9] proposed a L2-constrained softmax loss to restrict

the extracted features to lie on a hypersphere with a

fixed radius. In [26], a margin loss was proposed to

combine with the softmax loss, which could encourage the

inter-class separability and the intra-class compactness

together.

Triplet loss is one of the most typical Euclidean

distance-based loss functions that embeds the faces into

Euclidean space. In [27] and [28], with the input triple

images including the anchor image, the positive image,

and the negative image, the proposedmethods couldmax-

imize the distance between the anchor image and the

positive image and minimize the distance between the

anchor image and the negative image.

Recently, the angular loss and its different modifi-

cations were proposed. Instead of the employment of

Euclidean space, the angular loss functions could real-

ize the separation of the output features with angular

distance.

3 Methodology
Benefiting from the success of CNN in recent years,

face verification has obtained significant progress. In this

section, we propose the CNN-based approach and the

novel loss function. Since the structure of CNN has been

presented in a great deal of studies [29], we focused on the

network architecture of the proposed CNN.

3.1 Network architecture

To address the difficulty of occluded facial verifica-

tion, we propose a novel CNN-based image classifica-

tion approach. The proposed CNN architecture correlates

with the CNN presented in [29], e.g., they both are mul-

tiple networks. However, the size, the number of their

layers, and the loss functions are different from each

other. Furthermore, the proposed architecture was mainly

designed to extract the shared information between the

occluded part and the non-occluded part of the face

images while the CNN in [29] was used to highlight the

subtle difference between the different bananas’ ripening

stages.

The proposed CNN architecture and the correspond-

ing parameters are firstly trained on the publicly available

facial dataset LFW [11] and VGG Face [30]. Then, the ini-

tialized model is fine-tuned with the manually collected

6178 images including the non-occluded faces and the

corresponding occluded images. As shown in Fig. 1,

for each input facial image, 8 convolutional layers with

corresponding maxout operators and 3 fully connected

layer were utilized.

Two parameter-sharing channels (as shown in Fig. 1) are

exploited to process the non-occluded and occluded faces.

And the output feature layer is exploited to obtain both

the shared features from the input face pair and the unique

feature from each input single image. The details for each

CNN channel are listed as follows.

• Convolutional layer 1. There are 48 kernels (size

17 × 17, stride of 2) in the first convolutional layer,

which is combined with one maxout operator and

one max pooling layer.
• Convolutional layer 2. There are 96 kernels (size

15 × 15, stride of 2) in the second layer, which is

combined with one maxout operator and one max

pooling layer.
• Convolutional layer 3. There are 128 kernels (size

13 × 13, stride of 2) in the third layer, which is

combined with one maxout operator and one max

pooling layer.
• Convolutional layer 4. There are 128 kernels (size

11 × 11, stride of 2) in the fourth layer, which is

combined with one maxout operator.
• Convolutional layer 5. There are 128 kernels (size

9× 9, stride of 2) in the fifth layer, which is combined

with one maxout operator.
• Convolutional layer 6. There are 128 kernels (size

7 × 7, stride of 2) in the sixth layer, which is

combined with one maxout operator.
• Convolutional layer 7. There are 384 kernels (size

5 × 5, stride of 2) in the seventh layer, which is

combined with one maxout operator.
• Convolutional layer 8. There are 384 kernels (size

3 × 3, stride of 2) in the eighth layer, which is

combined with one maxout operator.
• Fully connected layer 1. 512 neurons combined with

ReLU.
• Fully connected layer 2. 512 neurons combined with

ReLU.
• Fully connected layer 3. 512 neurons combined with

ReLU.

3.2 Mutual information regularized softmax loss function

Firstly, the widely used softmax loss function is formulated

as follows.

Ls =

m
∑

i=1

log
e
WT

yi
Xi+byi

∑n
j=1 e

WT
j Xi+bj

(1)

where Xi ∈ Rd denotes the feature of the ith input image

that belongs to the yith class. Wj ∈ Rd is the jth column

of the weightsW ∈ Rd×n in the last fully connected layer,
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Fig. 1 Our proposed CNN architecture. The maxout operator is used to extract invariant features and avoid the possibility of overfitting. Both the

features from the occluded face and its corresponding non-occuluded counterpart can be extracted from the shared layer and compared in cosine

distance

and b ∈ Rn is the bias. Andm and n denote the batch size

and the number of identities, respectively.

Let IP and IQ denote the occluded face and the facial

image without occlusion, respectively. The general feature

extraction process is defined in following formulation.

Xi = Conv(Ii, θi)(i ∈ {P,Q}) (2)

where Conv denotes the feature extraction function with

the proposed CNN, Xi is the corresponding output fea-

ture, and θ denotes the feature maps in the CNN archi-

tecture that need to learn in the training phase. One

fundamental prior used in the proposed method is that

there should be shared component between the non-

occluded image and its occluded counterpart. Accord-

ingly, we introduce three different matrices (U, VP, and

VQ) to represent the shared information of the features

and the unique feature, which can be formulated as

follows.

Fi =

[

Fshare
Funique

]

=

[

UXi

ViXi

]

(i ∈ {P,Q}) (3)

where UXi denotes the shared feature, and VXi denotes

the unique feature. Due to the characteristics of mutual

information in the shared feature and unique feature, we

impose the mutual information as a regularization term

on the commonly used softmax loss function, which can

be formulated as follows.

L (F , c, θ ,U ,V ) =
∑

i∈{P,Q}

softmax(Fi, c, θ ,U ,Vi)

s.t. MI(U ,Vi) = 0 (i ∈ {P,Q})

(4)

where c denotes the class of the identity, and MI(.) [31]

denotes the function to compute the mutual information

of the input pair of matrix.

3.3 Optimization

Then, the final objective function of the proposed CNN

model could be expressed as follows according to the

lagrange multiplier.

L (F , c, θ ,U ,V ) =
∑

i∈{U ,V }

softmax(Fi, c, θ ,U ,Vi)

+ λi
∑

i∈{U ,V }

MI(U ,Vi)
(5)

where λi denotes the Lagrange multiplier for xi. By using

the alternating minimization algorithm and the back-

propagationmechanism, the θ ,U, andVi can be iteratively

optimized. The gradients ofU and Vi can be expressed as:
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∂L

∂U
=

∑

i∈{P,Q}

∂softmax(Fi, c, θi,U ,Vi)

∂U

+
∑

i∈{P,Q}

∂MI(U ,Vi)

∂U

(6)

∂L

∂Vi
=

∑

i∈{P,Q}

∂softmax(Fi, c, θi,U ,Vi)

∂Vi

+
∑

i∈{P,Q}

∂MI(U ,Vi)

∂Vi

(7)

Thus, the θ , U, and Vi should be updated with alternat-

ing minimization with a learning rate γ and expressed as

follows.

θ (t+1) = θ (t) − γ
∂L

∂θ (t)
(8)

U(t+1) = U(t) − γ
∂L

∂U(t)
(9)

V
(t+1)
i = V

(t)
i − γ

∂L

∂V
(t)
i

(10)

And the initial value of the θ could be obtained from the

trained CNNmodel;U and Vi are initialized with random

feature maps.

4 Results and discussion
Extensive experiments were conducted to assess the per-

formance of our proposed face verification method on

several publicly available face recognition benchmarks,

including LFW [11], YouTube Faces (YTF) [32], and

Cross-Age Celebrity Dataset (CACD) [33]. Both the

experimental results and the analysis are demonstrated in

this section.

4.1 Dataset and pre-processing

The dataset employed to train the CNN model would

significantly influence the performance of the corresond-

ing tasks [34]. Therefore, a variety of face recognition

datasets have been presented. LFW [11] was released in

2007 and contains 13,233 facial images from 5749 dif-

ferent identities. As the most popular benchmark used

to evaluate the performance of the deep learning tech-

niques under unconstrained conditions, its accuracy has

achieved to nearly 100% [9]. However, the faces in LFW

are mainly frontal without severe pose or illumination,

while there are not engouth difficult instances. VGG-

Face [30] and VGG-Face2 [35] includes 2.6M and 3.32M

from 2622 and 9131 identities, respectively. Unlike LFW,

these two datasets are not publicly available, and they

both contain the faces with pose-related variations. MS-

Celeb-1M [36] is the largest publicly available face recog-

nition dataset. There are 10M facial images from 100,000

famous celebrities with some annotation noise. MegaFace

[37] contains 4.7M faces from 672,057 unique individu-

als. Meanwhile, it also provides two subsets of the images

that could be used to verify the pose and age varia-

tions. Although IJB-A [38] includes only 25,809 faces

of 500 different subjects, it has been widely considered

as a difficult face recognition database because it was

designed for joint face detection and recognition tasks

since it contains both images and videos of faces with pose

variations.

Besides the LFW [11] dataset, we collected 6178

facial images including both non-occluded and occluded

ones (samples shown in Fig. 2) to train the pro-

posed CNN architecture. There are about 6 images

captured for each identity. To increase the diversity

of the input images and decrease the possibility of

potential overfitting in the small-scale facial images,

we enlarge the original dataset with data augmenta-

tion methods including translations (varying from 10

pixel to 100 pixels with a gap of 10 pixels) and ver-

tical and horizontal reflections. After the procedure of

data augmentation, the images are then resized into

256 × 256.

4.2 Training and evaluating

We manually labeled the samples into different cate-

gories corresponding to the identities. Fifty percent of

the images are taken as training dataset, 30% percent are

chosen into the evaluation dataset, and the other 20%

percent are used in the testing process. In the train-

ing process, the proposed framework is refined with the

back-propagation mechanism which originally calculates

the minimization of the squared difference between the

classification ground truth and the corresponding out-

put prediction. The training is performed on GPU of

high performance and implemented in TensorFlow [39];

the learning rate started from 0.01; it takes 105 itera-

tions in total. For each iteration, it takes only about 0.5 s.

Finally, the similarity score is calculated with the cosine

distance of two output features, and the threshold com-

parison is used for the face verification in the testing

process.

4.3 Experiments on the LFW

To evaluate the performance of the proposed face veri-

fication technique, we conducted the comparison exper-

iments between the state-of-the-art methods (including

DeepID3 [7], L2 Softmax [9] (3.7M), FaceNet [10] (200M),

VGG-Face [30] (2.6M), Baidu [40] (1.3M), Deep Face [41]

(4M), Range Loss [42] (1.5M), Deep Visage [43] (4.48M))

and ours on three publicly available datasets. Following

the protocol “unrestricted with labeled outside data,” we

firstly performed the experiments on 6000 pairs of facial

images in LFW, and the experimental results are shown in

Table 2.



Lei Yang et al. EURASIP Journal on Image and Video Processing        (2018) 2018:143 Page 6 of 10

Fig. 2 Image samples in the manually collected database

As shown in Table 2, the proposed approach outper-

forms the state-of-the-art face verification methods, while

the number of images used in the training set to train

our model is less than most of the other techniques like

FaceNet, which exploits 200 millions of images in its

training process.

4.4 Experiments on the YTF

To assess the performance of the proposed face verifi-

cation technique, we conducted the comparison exper-

iments between the state-of-the-art methods (including

DeepID3 [7], L2 Softmax [9] (3.7M), FaceNet [10] (200M),

VGG-Face [30] (2.6M), Baidu [40] (1.3M), Deep Face [41]

(4M), Range Loss [42] (1.5M), Deep Visage [43] (4.48M))

and ours on three publicly available datasets. Following

the protocol “unrestricted with labeled outside data,” we

firstly performed the experiments on 5000 pairs of facial

frames in YTF, and the experimental results are shown in

Table 3.

As shown in Table 3, the proposed approach outper-

forms most of the state-of-the-art face verification meth-

ods except the VGG-Face [30].
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Table 2 Face verification performances on LFW

Methods Images Single loss Accuracy (%) Time (sec)

DeepID3 – No 99.47 1.3

L2 Softmax 3.7M Yes 99.60 1.5

FaceNet 200M Yes 99.63 2.6

VGG-Face 2.6M No 98.95 1.9

Baidu 1.3M No 99.13 1.8

Deep face 4M No 97.35 1.2

Range loss 1.5M No 99.52 3.8

Deep visage 4.48M No 99.62 1.8

Our method 2.62M No 99.73 1.2

The entries in the “Images” column represent the number used to train the face

verification methods. The ‘Time” column represents the execution time for single

input image

4.5 Experiments on the CACD

To assess the performance of the proposed face ver-

ification technique, we conducted the comparison

experiments between the state-of-the-art methods

(high-dimensional LBP [44], hidden factor analysis [45],

LF-CNN [46], center loss [47], and marginal loss [12])

and ours on three publicly available datasets. Following

the protocol “unrestricted with labeled outside data,” we

firstly performed the experiments on 4000 pairs of facial

frames with different types of occlusion in CACD, and the

experimental results are shown in Table 4. Notably, there

are only several methods have reported their performance

on CACD.

As shown in Table 4, the proposed approach achieve

superior performance over the state-of-the-art methods.

4.6 Experiments on the datasets with different λ

Furthermore, to evaluate the influence of different value of

λ in Eq. (5), we carried out experiments with our method

on the abovementioned datasets, and the experiments are

shown in Fig. 3.

Table 3 Face verification performances on YTF

Methods Images Single loss Accuracy (%) Time (sec)

DeepID3 – No 93.20 1.4

L2 Softmax 3.7M Yes 95.54 1.4

FaceNet 200M Yes 95.12 2.2

VGG-Face 2.6M No 97.30 2.1

Baidu 1.3M No – 1.5

Deep face 4M No 91.4 1.3

Range loss 1.5M No 93.70 2.7

Deep visage 4.48M No 96.25 1.9

Our method 2.62M No 96.61 1.1

The “Time” column represents the execution time for single input image

Table 4 Face verification performances on CACD

Methods Accuracy (%) Time (sec)

High-Dimensional LBP 81.60 2.4

Hidden factor analysis 84.40 2.6

LF-CNN 98.50 2.1

Center loss 97.48 1.7

Marginal loss 98.95 1.5

Our method 99.12 1.5

The “Time” column represents the execution time for single input image

As shown in Fig. 3, while the value of λ is greater than

0.40, the accuracy of the proposed method would start to

degenerate. It demonstrates that the value of λ should be

set to around 0.40.

4.7 Analysis

From the experimental results on LFW, YTF, and CACD,

we can observe the availability and reliability of the pro-

posed loss function. By integrating the shared features

from the input image pairs to the proposed CNN model

(the non-occluded face and occluded face) and unique

information from each input facial image, the presented

loss function could provide the constraint from a pair

of input facial images on the original softmax loss and

have shown its performance in the face verification tasks.

Meanwhile, similar to human being’s visual system, our

proposed approach can extract the global and local fea-

tures of the images of faces. The global features combined

with local features form a layout for each identity.

The proposed approach have proven to improve the face

verification accuracy by integrating the softmax loss and

the mutual information loss while the λi in Eq. (5) is used

to implement the trade-off between them. As shown in

Fig. 3, the optimal value of λ should be set to 0.35–0.45. To

note, the introduction of the new loss function contributes

substantially to the image classification by combining the

complementary information from both the non-occluded

image and occluded image.

5 Conclusion
To implement the partially occluded face verification, we

propose a deep learning strategy-based two-channel CNN

architecture and a newly presented loss function. In the

proposed CNN architecture, two parameter-sharing CNN

channels are exploited to respectively process a pair of

face images: the non-occluded facial image and occluded

facial image. At the end of the network, both the shared

feature and the unique feature could be obtained in a

feature layer. The mutual information regularized soft-

max loss is iteratively optimized through the alternating

minimization algorithm. To evaluate the performance of
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Fig. 3 Performance of the proposed method with different λ

the proposed approach, we conducted comparison exper-

iments between the state-of-the-art methods and ours on

several publicly available face image datasets. Experimen-

tal results show that the proposed approach outperforms

the state-of-the-art methods in accuracy.

This paper offers several contributions. First of all, a

novel deep CNN is proposed to implement the face ver-

ification task. Secondly, this is probably the first attempt

to introduce the novel loss function in the CNN archi-

tecture. Meanwhile, it is also an early application of the

shared information between the non-occluded image and

occluded image into the same CNN model. Thirdly, our

approach performs with superiority to the state-of-the-art

face verification techniques.

In our future works, we will continue to implement

more applications [31, 48] of the presented CNN architec-

ture. For instance, we would use more practical images,

e.g., the blurry images, and evaluate the accuracy of the

proposed CNN on these images. To achieve this objective,

we will continue to collect more face images and create a

publicly available dataset.
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that would contribute to accurate face verification. Experiments on the public

datasets our approach outperforms the state-of-the-art techniques with an

impressive superiority. All authors read and approved the final manuscript.
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