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Abstract

More than a thousand disease susceptibility loci have been identified via genome-wide association 

studies (GWAS) of common variants; however, the specific genes and full allelic spectrum of 

causal variants underlying these findings generally remain to be defined. We utilize pooled next-

generation sequencing to study 56 genes in regions associated to Crohn’s Disease in 350 cases and 

350 controls. Follow up genotyping of 70 rare and low-frequency protein-altering variants (MAF 

~ .001-.05) in nine independent case-control series (16054 CD patients, 12153 UC patients, 17575 

healthy controls) identifies four additional independent risk factors in NOD2, two additional 

protective variants in IL23R, a highly significant association to a novel, protective splice variant in 

CARD9 (p < 1e-16, OR ~ 0.29), as well as additional associations to coding variants in IL18RAP, 

CUL2, C1orf106, PTPN22 and MUC19. We extend the results of successful GWAS by providing 
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novel, rare, and likely functional variants that will empower functional experiments and predictive 

models.

Crohn’s disease (CD) and ulcerative colitis (UC) are classified as chronic, idiopathic 

inflammatory bowel diseases (IBD) of the gastrointestinal tract with unknown etiology 

(IBD: OMIM #266600). CD is prevalent in roughly 100–150 per 100,000 individuals of 

European ancestry1. Generally, the disease affects the ileum and colon but can affect any 

region of the gut. UC has similar population prevalence and although shows some 

similarities in clinical manifestation, the location of inflammation is limited to the colonic 

mucosa. Strong familial aggregation has been seen in twin studies of CD and UC. Recent 

population-based sibling risk is 26-fold greater for CD and 9-fold greater for UC, and 

overall CD and UC concordance rates in non-selected twin studies is 30% and 15%, 

respectively among monozygotic (MZ) twins compared to 4% for CD or UC among 

dizygotic (DZ) twins2,3. Like most complex trait diseases, CD and UC result from a 

combination of genetic and non-genetic risk factors; each individual factor may be expected 

to have a relatively modest effect on disease risk4.

There is a clear genetic basis to common immune-mediated diseases such as IBD. However, 

until recently, identifying disease susceptibility genes was challenging for common, 

polygenic disease5,6. With the development of HapMap and the GWAS technology, 

complex trait genetics in general, and IBD in particular, have seen a remarkable increase in 

the number of bona fide associated loci that have been identified and replicated. In CD, 

individual genome-wide association scans (GWAS) and a follow-on meta-analysis of those 

studies have robustly identified over 71 susceptibility loci and have provided significant 

novel insights beyond the two loci that were established prior to the GWAS era7,8. Similarly 

in UC, GWAS studies have identified a total of 47 susceptibility loci9,10 and, accounting for 

the extensive number of alleles associated to both diseases, in total 99 distinct associations 

have been documented for IBD. While these new findings have already provided novel 

insight into disease pathways, the common SNPs identified are generally of modest effect 

and explain only about 23% of the overall variance in CD risk. Moreover, most of the 

associated variants do not have any known or obvious function and many implicate regions 

with multiple genes, limiting biological extrapolation.

SNPs implicated by GWAS have tight correlation to other SNPs in the region and are most 

likely to be in linkage disequilibrium with the causal variant rather than causal themselves. 

A complete catalog of all variation is required in the search for causal variants11,12. Even 

with denser reference data from 1000 Genomes Project however, the majority of GWAS hits 

are not correlated to a coding or obvious functional variant, and therefore do not 

conclusively implicate a unique gene. Should independently associated rare coding variation 

be discovered in a gene within a region implicated by GWAS, the gene harboring such 

variants becomes directly implicated. Furthermore, additional heritability could be explained 

and specific alleles identified for direct functional experimentation. In CD, multiple 

independent associated alleles are already documented at NOD2 and IL23R13,14. Exhaustive 

sequencing of genomic regions has recently become feasible for the first time with the 

advent of next-generation sequencing (NGS) technologies. Growing collections of genome 
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sequences through international efforts like the 1000 Genomes Project are driving the 

development of laboratory study designs and analytic methods for utilizing large-scale 

genomic sequencing in human genetic discovery15.

Targeted sequencing of pooled samples affords the opportunity to efficiently and cost-

effectively capture all variation in a more limited target region selectively amplified in 

multiple DNA samples16,17. Such an approach allows efficient use of NGS technologies, 

which generate billions of base pairs per experimental unit, yet introduce challenges in data 

processing and analysis to discover novel variants and assess their potential association to 

disease. We describe here a pooled NGS study of 350 patients with CD and 350 controls 

across coding exons of 56 genes contained in regions of confirmed significant association to 

CD7, and introduce novel SNP calling methods for pooled targeted sequencing projects 

implemented in the software Syzygy. Novel, potentially functional rare variants identified in 

the survey are then evaluated in eight independent case-control series, enabling the 

confirmation of a role for functional, rare variants in CARD9 (Gene ID: 64170), NOD2 

(Gene ID: 64127), IL23R (Gene ID: 149233), IL18RAP (Gene ID: 8807) as well as 

additionally identifying others in MUC19 (Gene ID: 283463), CUL2 (Gene ID: 8453), 

PTPN22 (Gene ID: 26191), and C1orf106 (Gene ID: 55765) more associated than permitted 

by chance. The results lend further support to an emerging paradigm seen across both rare 

diseases (Hirschsprung’s disease, Bardet-Biedl syndrome) and common phenotypes (serum 

lipids, QT-interval, height, Type 1 Diabetes) where both common, low-penetrance and rarer, 

often higher penetrance, alleles exist in the same gene and suggest that deep sequencing of 

regions implicated by GWAS may be effective in extending the heritability and knowledge 

of specific functional alleles in complex disease16,18,19,20,21.

RESULTS

Discovery of new variants in patients with CD and healthy controls using pooled 

sequencing

We selected 350 patient with CD and 350 healthy controls of European ancestry from 

among samples collected by the NIDDK IBD Genetics Consortium (IBDGC) with genome-

wide SNP data14,22. Samples were pooled in batches of 50 cases or 50 controls matched for 

European ancestry using GWAS data. One pool of 50 cases was drawn from self-reported 

and empirically confirmed (by GWAS data22) Jewish ancestry and was matched with one 

pool of 50 equivalently defined Jewish controls – remaining pools of cases and controls 

were selected from the non-Jewish European samples. Pooling of samples was performed 

only after two rounds of quantification and normalization to insure that the initial DNA pool 

accurately reflected sample allele frequencies. For each pool we performed PCR 

amplification to capture the 107.5 kb target of genomic region, which included 645 nuclear-

encoded exons (Table S1, S2). We amplified each sample in 593 PCR reactions and the 

successful PCR amplicons were combined in equimolar amounts, concatenated, and then 

sheared to construct libraries. The 14 libraries were sequenced using Illumina Genome 

Analyzer flowcells, with one pool per lane (see Methods) (Figure 1a).

High-throughput sequencing yielded large amounts of high quality data for each pool. We 

captured 91% of our nuclear target regions at ≥ 100X coverage and achieved 1500X median 
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coverage per pool (corresponding to 30X per sample/15X per individual chromosome)

(Figure S1).

We next aimed to identify rare and low frequency single nucleotide variants/polymorphisms 

in the pooled samples. We developed a variant calling method (which we named Syzygy) to 

accommodate the specific pooled study design and confidently identify rare variants (see 

Supplementary Methods). Through empirical modeling of the sequencing error processes 

and filters to remove sites with strand inconsistency or clusters of variants suggestive of read 

misalignment, Syzygy detected 429 putatively high-confidence variants (240 

nonsynonymous sites, 169 synonymous sites, and 20 intronic variants within 5 bp of a splice 

junction) within our 107.5kb targeted region with 45% of the variants already included in 

dbSNP using dbSNP version 132, nonsynonymous-to-synonymous ratio of 1.42, and 

transition to transversion ratio of 2.3 (Table 1).

Given that our experimental design aimed to detect variants correctly at the limit of machine 

quality, we estimated the proposed set of false positive SNPs that would need to be 

eliminated in subsequent genotyping. Both the proportion of variants in dbSNP and the 

transition/transversion ratio (Ti/Tv) suggest a relatively high true positive rate in this data 

set. Specifically, high depth individual level sequencing of 1000 genes performed by the 

1000 Genomes project (so-called ‘Pilot 3’) in 697 samples identified a high-quality SNP set 

with the same %dbSNP (dbSNP version 129), while the Ti/Tv detected here suggests a 

roughly 90% true positive rate23. To confirm this, a random subset of 137 high-confidence 

functional nonsynonymous, nonsense, and putative splice variant SNPs was selected for 

Sequenom iPLEX genotyping of all samples in the sequenced pools and 91.2% validated 

(Figure 1a). Using a canonical expectation of (theta*SUM(1..1/n)*Nbases), or the rate 

observed directly in 1000Genomes Pilot 3, we would expect to see ~470 variants across the 

successfully queried target. Sensitivity for singletons however is incomplete at the lower end 

of coverage in our experiment (Figure S1) and readily accounts for the modest deficit in our 

study.

One of the main concerns in any pooled genotyping or sequencing experiment is accurate 

recovery of allele frequencies. We observed a surprisingly strong correlation between 

genotype frequencies and sequence level data estimated frequencies (r2 ~ .99) using the 

method in Syzygy – suggesting the accurate quantitation of DNAs in the pooling steps 

resulted in good experimental recovery of the pool makeup. A strong correlation is therefore 

also shown for the case-control test statistic estimated with the pooled data and the test 

statistic in the genotype data (r2 ~ .925) (Figure S2).

In order to test the role of these rare variants, we identified all nonsynonymous, nonsense or 

splice site variants which occurred in 2 or more copies up to a frequency of 5% - a total of 

115 variants (Table S3). Excluding known GWAS associated low-frequency coding variants 

at NOD2 IL23R and LRRK2/MUC19, follow-up genotyping was performed for 70 of these 

markers in eight independent case control samples totaling 16054 CD disease patients, 

12153 UC disease patients, and 17575 healthy controls: 1) samples from the MGH-PRISM 

study, 2) samples assembled from throughout North America and Australia by the NIDDK 

IBDGC, 3) an Italian-Dutch case-control sample, 4) CCFA Repository Collection, 5) 
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Swedish samples, 6) Cedars samples, 7) German samples as well as Immunochip genotype 

data provided by 8) the International IBD Genetics Consortium and 9) UK IBD Genetics 

(n.b., rare coding variants discovered in this study were contributed to Immunochip design) 

(Figure 1a). Samples 1, 3, 4, and 5 were genotyped for sets of markers using Sequenom 

iPLEX, Sample 2 genotyping was done as part of a larger IBDGC Illumina GoldenGate 

study - because of design constraints and assay failures not all markers were examined in all 

eight follow-up sample sets (see Supplementary Material online for more details of follow-

up genotyping). We demonstrate that the current study design is well positioned to address 

the overall contribution of variants in coding regions of GWAS loci to IBD (Figure 1b, 

Figure S3, Supplementary Material).

The small number of non-reference alleles expected for many of these variants in each sub-

study precludes the use of asymptotic statistics common to association, and the likelihood 

that population structure becomes an even more significant problem at low frequencies 

demands a stratified analysis where strict population case-control matching is retained. With 

this in mind we implemented a mega-analysis of rare variants (MARV) that provides a 

permutation-based estimate of significance, constraining all permutations to be within each 

subgroup and thus accommodating arbitrary numbers of sample subsets of diverse 

population and case-control origin without power loss for single marker and group marker 

analysis (see Online Methods). Given a target set of 70 variants, in the follow-up analyses 

we’d expect fewer than 1 SNP to exceed p < .01 by chance and would define traditional 

experiment-wise significance to be p=.0007. Given both CD and UC are explored in follow-

up, to maximize power the primary analysis presented compares all IBD (CD+UC) versus 

control for genes in which the same common variants have been conclusively associated to 

both diseases with similar effect (such as CARD9) – for genes specifically associated to only 

CD (such as NOD2), the UC group is combined with controls (see Anderson et al. 2011 

Supplementary Information).

Novel protective splice variant in CARD9

CARD9 has been identified as associated to both CD and UC risk, with a common coding 

variant (rs4077515 creating substitution S12N – both alleles roughly equifrequent) that 

represents a ‘typical’ GWAS hit (OR ~ 1.2 in both diseases)8,9. In the pooled sequencing, 

we identified a splice site variant in CARD9 (Figure 2, Figure S4) altering the first invariant 

base after exon 11 in 6 controls and 0 disease patients, suggesting a potentially strong 

protective effect. Follow-up confirms a highly significant association (p<10−16), with the 

allele appearing at a frequency of roughly .20% of cases and .64% of controls (OR ~ 0.3, 

Table 2, Table S4). While skipping exon 11 places translation out of frame, the resulting 

transcript is predicted to escape nonsense mediated decay as premature truncation occurs 

close to the final splice junction in exon 12. Indeed this hypothetical transcript (Figure 2, 

Figure S4) has actually been observed in spleen, lymph-node and peripheral blood 

mononuclear cell (PBMC) derived cDNA libraries. Of note, this rare protective variant 

actually occurs on a haplotype carrying the risk allele at S12N, indicating that not only are 

the two associations independent but that the splice variant also completely eliminates the 

risk normally associated with the common haplotype. Since the CD risk allele at S12N has 

been associated with higher expression of CARD9, a consistent allelic series may exist if the 
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splice variant is much more substantially low or non-functional and therefore highly 

protective.

Rare risk variants in NOD2

NOD2, is a member of a family of human cytosolic, non-TIR NACHT-LRR proteins (TIR = 

Toll/IL-1 receptor; NACHT = neuronal apoptosis inhibitor protein, MHC class 2 

transactivator, HET-E, TP1; LRR = leucine-rich repeats)24 first implicated in CD13,25 and 

later discovered to be involved in Blau Syndrome26. The three previously known causal 

mutations, R702W, G908R, and fs1007insC, reside in the LRR domain of NOD2, whereas 

the mutations identified in Blau Syndrome lie on the highly-conserved NACHT nucleotide 

binding domain (NDB).

We identify five distinct rare variants (R311W, S431L, R703C, N852S, and M863V), as 

well as several others in LD with one of these, that are independently associated with CD 

risk (Table 2, Table S4). S431L (p=.0004) (and the rarer V793M contained on a subset of 

S431L haplotypes), R703C (p=2.3×10−5) and N852S (p=1.1×10−6) variants are found on 

distinct haplotypes that do not contain the known causal mutations: R702W, G908R, 

fs1007insC (Figure 3a, 3b) and are thus completely independent risk variants. R311W 

shares a subset of haplotypes with R703C (Figure 2), however conditional analysis and 

haplotype testing indicates both alleles likely contribute independently to risk (Table S5). 

M863V is a rarer variant that has arisen on the haplotype background of fs1007insC and 

while the risk estimate of M863V+fs1007insC is stronger (OR=4.02 [2.8,5.7]) is higher than 

the risk attributable to fs1007insC alone (OR=3.16 [2.9,3.4]), the low frequency of M863V 

precludes a conclusive statement as to the functionality of M863V at this point – for later 

calculations of novel variance explained we do not count this an additional risk factor.

Functional assessment of additional NOD2 associated alleles

Assays to identify the effect of the mutations on NOD2 intracellular localization 

demonstrated that S431L and the well-studied insertion mutation (fs1007insC) failed to 

localize at the membrane area as opposed to N852S (Figure 4). We next determined the 

abilities of NOD2 mutants S431L and N852S to activate NF-kB in response to NOD2 ligand 

muramyl dipeptide (MDP). HEK293T cells were transfected with the point mutants as well 

as wild type NOD2 and the well-studied fs1007 mutant (Figure 4). Western Blot analysis 

showed that the point mutations did not affect expression level compared to the wild type 

protein (Figure 4). As published previously, fs1007 mutant failed to induce NF-kB 

activation after MDP stimulation. The MDP-induced NF-kB activation was also impaired in 

presence of S431L and N852S (Figure 4).

Together these results indicate that the N852S mutation residing in the LRR domain may 

perturb MDP recognition without affecting NOD2 intracellular localization, similarly to the 

common mutations R702W and 908R23. This is opposite to the fs1007insC mutation, which 

also affects the targeting of NOD2 to the membrane area. Mutation S431L resides in the 

Nucleotide binding domain (NDB) of the protein and impaired both localization and MDP-

induced NF-kB activation. These findings are in line with previous studies demonstrating 

that critical residues within the NBD region attenuate MDP dependent NF-kB activation24. 
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Further studies are needed to determine the instructive role of NOD2 mutants in 

coordinating autophagy, control of cellular stress signals and adaptive immune responses.

Asn852Ser and Met863Val rare risk variants are more common in Ashkenazi Jewish 

individuals

The highest reported prevalence of CD among white individuals is in subjects of Ashkenazi 

Jewish (AJ) descent, occurring two to four times more frequently than in non-Jewish white 

populations29. Tukel and Shalata et al (2004)30 screened the NOD2 gene for rare variants 

and revealed five novel changes (D113N, D357A, I363F, L550V, and N852S) of which 

N852S occurred only in AJ individuals and was proposed as potentially disease 

predisposing, with 7 transmissions and only 1 non-transmission from heterozygous parents 

to affected offspring in an Ashkenazi Jewish family collection – concordant with the case-

control observations in this study. In our study, Ashkenazi Jewish individuals had a much 

higher frequency of both N852S and M863V (4%, 2% cases respectively in Jewish samples 

and .5% for N852S and M863V in CD non-Jewish case samples) – accounting for the 

greater incidence of these alleles in the first replication column of table 2 since NIDDK 

studies in particular had a specific and significant Ashkenazi Jewish ascertainment.

We examined the haplotype carrying N852S in Ashkenazi Jewish individuals (easily 

determined given the existence of two homozygote cases) and in white non-Jewish 

individuals in the subset of samples with existing GWAS genotype data8,9,14,22. We found 

that the N852S mutation in Ashkenazi individuals lies on a unique extended haplotype that 

extends for several megabases (at least 2 Mb to the left and right). However, N852S 

mutation in white non-Jewish individuals does not share the extended background 

haplotype. In Ashkenazi individuals the average shared distance between a pair of AJ 852S 

chromosomes is at least 4Mb, whereas for a pair of NJ 852S chromosomes is 0.5 Mb (Figure 

S5) – suggesting that the variant is reasonably old but a single copy was stochastically 

enriched in the recent Ashkenazi bottleneck ~ 25 generations ago.

Rare protective variants in IL23R

We also identified significant protective effects of amino acid substitutions G149R (P value 

3.2×10−4) and V362I (P value 1.2×10−5) in IL23R. This confirms recently published 

findings32 and is consistent with each of these variants having a protective effect equivalent 

to that of the more common R381Q substitution (Table 2, Table S4), although they arose on 

different haplotype backgrounds and are in no LD with R381Q. Despite the large follow-up 

sample size, we did not find evidence for a protective effect of the previously reported R86Q 

variant (31747, 0.94). IL23R signaling is attenuated in Th17 cells generated from healthy 

subjects carrying the R381Q substitution leading to a decrease of IL17A secretion in 

response to IL-23, indicating that R381Q is associated with reduced Th17 responses33. In 

addition, recent studies have highlighted a role for IL23 in Th17 cell lineage commitment in 

the absence of TGF-β. This alternate mode of Th17 differentiation, dependent on IL23R 

expression, appears to play greater pathogenic role further highlighting the value to 

discovering protective variants in autoimmunity31. Future therapies for autoimmune disease 

should consider the phenotypic characters of pathogenic Th17 cells, generated in the 

absence of TGF-β, and their signaling pathways as possible targets.
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Rare risk and protective variants in IL18RAP, C1orf106, CUL2, MUC19, and PTPN22

Although CD and UC do not share an association to the common variant (rs2058660, 

MAF=.23, OR ~ 1.19, chr2:102.17–102.67 Mb), overlap with celiac disease has recently 

been documented to rs205866034. We identify a rare risk missense variant, V527L (MAF= .

003), in IL18RAP with an estimated minor allele odds ratio of 2.79 to CD. In addition, a low 

frequency missense variant, Y333F (MAF=.008), in C1orf106 was associated to risk both in 

CD and UC.

A common CUL2 variant (rs12261843, MAF= 0.30, OR ~ 1.15) has been identified as 

associated to both CD and UC risk. In the pooled sequencing experiment we identified a 

splice site variant in CUL2 altering a nucleotide 5 bases downstream exon 17 with an 

estimated OR of 0.72 in the follow up samples (MAF = .007). Interestingly, several 

members of the ubiquitin proteosome are present in the autophagy interaction network 

including CUL2 suggesting cross talk between these processes in intracellular quality 

control and immunity35.

A common missense variant (risk allele frequency=.90, OR=1.31, rs2476601) in PTPN22 is 

associated with CD7,8, Type 1 diabetes (T1D)36, Rheumatoid Arthritis (RA)37, and 

Vitiligo38. This is one of the rare instances where the direction of association differs in 

different diseases, with the minor allele (W) strongly associated to T1D, RA, and vitiligo but 

highly protective against CD. Analysis of rare variants in the IBD versus healthy controls 

comparison demonstrates a modest risk effect (P value = .00026, minor allele odds ratio = 

1.6), for a rare (MAF = .003) PTPN22 missense mutation (H370N). Ongoing studies in 

other autoimmune diseases will help elucidate the overall relevance of H370N and 

rs2476601 in different conditions.

Examination of haplotype structure (Figure S6) and formal conditional analysis (Table S6) 

demonstrates that the rare variants highlighted in IL18RAP, MUC19, C1orf106, PTPN22, 

and CUL2 are independent of the common GWAS variant associated. Specifically, the rare 

variants at IL18RAP and MUC19 arise on the common higher risk background but confer 

independently significant risk, the rare variants at PTPN22 and C1orf106 occur on the 

common low risk background and are therefore obviously independent, and the rare variant 

at CUL2 is protective and in weak LD with common risk variants at that locus.

Heritability estimates of rare associated variants

We estimated the fraction of additive genetic variance explained using the liability threshold 

model of Pearson and Lee39 and Fisher40, which assumes an additive effect at each locus 

and shifts the mean of a normally distributed distribution of disease liability for each 

genotype class. We assumed a prevalence of CD of 4 per 1,000 and a total narrow-sense 

heritability of 50%41. We estimate that the discovered rare and low frequency variants 

associated to CD in this study contribute another 1–2% genetic variance explained over all 

populations and 2–3% genetic variance explained to the Ashkenazi Jewish population (Table 

S7).
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DISCUSSION

Genomewide association has been remarkably successful in IBD with now 99 confirmed 

associations already providing important and previously unappreciated views into disease 

biology. Oddly however, it is quite often what has not yet been discovered or explained 

(perhaps 75% of the heritability) that consumes much of the debate and focus in human 

genetics. Next-generation sequencing offers potential insights into both the biology and the 

heritable component explained by GWAS results through direct ascertainment of a more 

complete allelic spectrum of functional alleles in cases and controls, including rare variation.

With a targeted, pooled approach, we performed an efficient and cost-effective scan for rare 

and low frequency polymorphisms in genes in regions identified as relevant in GWAS. After 

extensive follow-up genotyping, we identify highly significant variants at CARD9, NOD2, 

CUL2, and IL18RAP that contribute to risk independently from previously defined variants 

at these loci, and we demonstrate the functionality of the newly implicated NOD2 variants. 

In addition, we report additional protective variants at IL23R, and identify an excess of 

additional nominally significant variants in MUC19, PTPN22, and C1orf106.

The results of this experiment are highly relevant to ongoing debates in human genetics. 

While we found little support for the hypothesis that common variant associations are 

simply an indirect LD-driven byproduct of higher-penetrance rare alleles, additional 

independent acting low frequency alleles in genes implicated by common variant association 

are documented. In the case of the CARD9 splice variant, this novel allele explains more of 

the overall population variance in risk than does the common S12N associated variant 

(roughly .3% and .2% respectively). Such observations, should they become commonplace 

now that technology permits their discovery, may render pointless the strongly worded 

debates over common versus rare variation. As with many quantitative traits and Mendelian 

disorders, we observe instances where common alleles of modest effect and rarer alleles 

with more significant impact peacefully coexist in the same genes – both types of variation 

providing insight into the same disease biology. In fact the value of these results is likely 

much more in the realm of functional biology than in nudging the tally of variance explained 

marginally forward. In addition to the functional confirmation of NOD2 alleles, the 

identification of a novel CARD9 isoform that is strongly protective against disease 

development provides a concrete handle with which to study disease biology and potentially 

a model that could be mimicked therapeutically. Adding .3% to the variance explained and 

an additional tidbit for the discussion of rare variants and GWAS studies (without which 

CARD9 would not have been evaluated in this study) are trivial by comparison. Finally, our 

study validates the principle that additional variants should be routinely searched for by 

thorough sequencing of genes located within significantly associated regions in GWAS in 

large sets of cases and appropriate controls.

ONLINE METHODS

DNA preparation and pooling

Crohn’s disease patients and Controls from NIDDK consortium were selected with priority 

given to samples with adequate amounts of DNA and those with GWAS data available. 
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Samples from the NIDDK consortium undergo rigorous clinical phenotyping and control 

matching for genetic studies. DNA purification methods are also performed on these 

samples. The case/control samples selected have already been stringently matched in 

previous GWAS studies. The baseline concentration of genomic DNA was quantified by 

Quant-iT™ PicoGreen® dsDNA reagent and detected on the Thermo Scientific Varioskan 

Flash. All DNAs were normalized to 20ng/μl and repeat quantification was performed to 

assess accuracy of the normalization step. The quantification and normalization was 

repeated again to ensure that all samples fell within the desired concentration range. The 

normalization steps were done with robotic automation using the Packard Multiprobe II HT 

EX. Once each individual sample is normalized to 10ng/ul, groups of 50 individuals were 

pooled together using a Multiprobe or Packard Robotic to total 14 pools (700 people).

Target selection and design

Candidate exonic targets from top GWAS published, confirmed genes along with a sample 

of other highly significant regions of interest were uploaded against HG17 freeze to an in-

house database, which houses PRIMER3 software. Amplicons encompassing each target 

region (coding exons only) were designed using Illumina parameters including a minimum 

amplicon length of 150bp and maximum amplicon length of 600bp with no buffer sequence 

added. Additionally, Not1 tails were added to the primer pairs to provide a recognition site 

for downstream concatenation and shearing step. Amplicons were validated by running PCR 

product on agarose gels to assess clarity of single bands. Amplicons that had 2/3 clear bands 

were considered validated. Pfu enzyme, used in Illumina sequencing protocol for PCR, was 

used in the characterization process. In total, 593 primer pairs passed and covered 95% of 

the 108 kb target. PCRs contained 20 ng of pooled genomic DNA, 1× HotStar buffer, 0.8 

mM dNTPs, 2.5 mM MgCl2, 0.2 units of HotStar Enzyme (Qiagen), and 0.25 μM forward 

and reverse primers in a 6- or 10-μl reaction volume. PCR cycling parameters were: one 

cycle of 95°C for 15 min; 35 cycles of 95°C for 20 s, 60°C for 30 s, and 72°C for 1 min; 

followed by one cycle of 72°C for 3 min. Each PCR product was then treated to similar 

steps used for the pooling of DNA individuals. The quantification, normalization, and 

pooling process was again required to ensure that equimolar PCR product went into library 

construction to have equal representation of all targets. PCR yield was assessed by the same 

quantification system and the lowest product yield was then used to normalize across PCR 

plates. Secondary confirmation was ascertained by testing one column of PCR product per 

plate on 2% agarose E-gel against 1kb DNA ladder to visualize PCR product size. The 593 

PCR products were then combined, using the Packard Multiprobe II HT EX, resulting in an 

amplified target product per sample pool for sequencing.

Sequencing

The PCR products for each pooled sample were concatenated using NotI adapters and 

sheared into fragments as previously described42. Libraries were constructed by a modified 

Illumina single-end library protocol, with 225–275 bp gel size selection and PCR 

enrichment using 14 cycles of PCR, and then single-end sequenced with 76 cycles on an 

Illumina Genome Analyzer. Each sample pool was sequenced using a single lane of a 

Illumina GAII analyzer flowcell. 76bp, 36bp and 52bp reads were aligned to the genome 
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using MAQ algorithm43 within the Picard analysis pipeline, and further processed using the 

SAMtools software44 and custom scripts.

Genotyping

137 high confidence Single Nucleotide Variants (SNVs) were assayed in two phases of 

genotyping using Sequenom MassARRAY iPLEX GOLD chemistry50. The first phase 

consisted of 72 SNVs and the second phase of 65 SNVs on 350 NIDDK Crohns samples and 

350 NIDDK controls for validation purposes. In each phase of genotyping, oligos were 

synthesized and mass-spec QCed at Integrated DNA Techologies. All SNVs were genotyped 

in multiplexed pools of 25–36 assays, designed by AssayDesigner v.3.1 software, starting 

with 10 ng of DNA per pool. Around 7 nl of reaction was loaded onto each position of a 

384-well SpectroCHIP preloaded with 7 nl of matrix (3-hydroxypicolinic acid). 

SpectroCHIPs were analyzed in automated mode by a MassArray MALDI-TOF Compact 

system 2with a solid phase laser mass spectrometer (Bruker Daltonics Inc.). We obtained 

high quality data (>95% genotype call rate, HWE P> 0.001) in all samples that had at least 

one SNV. Variants were called by real-time SpectroCaller algorithm, analyzed by 

SpectroTyper v.4.0 software and manually reviewed for rare variants. Additional Sequenom 

Genotyping was carried out for 9 SNVs in 2887 CD cases and 2244 healthy controls from 

the German popgen biobank collection. German patients were recruited either at the 

Department of General Internal Medicine of the Christian-Albrechts-University Kiel, the 

Charité University Hospital Berlin, through local outpatient services, or nationwide with the 

support of the German Crohn and Colitis Foundation. German healthy control individuals 

were obtained from the popgen biobank45.

Beadexpress data generated by the NIDDK IBD consortium on 5549 NIDDK samples aided 

in validation purposes as well as follow-up of associated variants. Genotyping of IIBDGC 

samples were done with the Illumina Immunochip where design of SNVs discovered in this 

experiment were included. Independent Crohn's disease and ulcerative colitis (UC) patients, 

along with unaffected population controls were genotyped at five genotyping centers (See 

Supplementary Material on quality control steps).

Cells, Antibodies and Plasmids

HEK293T were obtained from American Type Culture Collection (ATCC) and maintained 

according to ATCC’s instructions. Anti-β-actin Ab was obtained from SantaCruz. Anti-

NOD2 Ab (clone NOD-15) was obtained from BioLegend.

Human wild type NOD2 cDNA was cloned in pBK-CMV vector (stratagene) to express 

untagged NOD2. Mutated constructs were made using the Quick change site-directed 

mutagenesis kit (stratagene). Inserts were fully sequenced to check the presence of only the 

desired mutations.

Immunostaining

HEK293T were seeded on poly-lysine-coated slides and transfected with NOD2 constructs 

using lipofectamine 2000. The following day, cells were fixed with 4% paraformaldehyde 

(10 min) and permeabilized PBS-Triton X-100 0.1% (10 min). After washing with PBS, the 
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sections were incubated 15 minutes in PBS containing 1% bovine serum albumin. The 

sections were then incubated with anti-NOD2 Ab (1:200) for one hour, washed using PBS, 

incubated with dylight 488 conjugated donkey anti-mouse Ig Ab (Jackson 

ImmunoResearch) for one hour, washed using PBS and incubated with PBS containing 

100μg/ml of DABCO (Sigma) as antifading reagent before mounting in Glycergel medium 

(Dako). Fluorescence signals were captured using a laser confocal microscope (model 

Radiance 2000 Bio-Rad).

Luciferase reporter assays

HEK293T cells were co-transfected with 0.025 ng of renilla luciferase plasmid, 2.5 ng of Ig-

pIV firefly luciferase reporter and 5 ng of NOD2 plasmids using Lipofectamine 2000 

(Invitrogen). After 24h of transfection, cells were stimulated with MDP-LL or MDP-LD 

(1ug/ml) for 6h. Luciferase activities were measured using the Dual Luciferase reporter 

assay system (Promega) in a BD moonlight 3010 luminometer (BD Biosciences) and 

normalized to the internal transfection control of renilla luciferase activity.

Statistical Methods

Variant Discovery Software—Next generation sequencing technology is allowing 

investigators for the first time to comprehensively survey the full spectrum of genetic 

variation in large case/control samples. Tools and analytical methods are being developed to 

address the rapid change in technology and data application capabilities. We have 

implemented methods in the program Syzygy for analysis of pooled sequencing data 

generation. The software enables investigators to perform SNP calling on pooled data, 

estimate allele frequencies of discovered variants, apply single-marker association test in 

pooled setting, group wise testing of rare and low frequency variants discovered, power 

evaluation and QC summary, and annotation of variants discovered in regions from primary 

sequencing data in BAM/SAM format. By doing so allowing researchers to prioritize 

variants and regions for follow up and dissection of the genetic architecture in the targets of 

interest.

Mega-Analysis of Rare Variants—One of the goals of the project was to combine data 

from different groups and subpopulations where samples were carefully matched. We 

propose the following approach to analyze rare - variants, referred to in this manuscript as 

M.A.R.V.

Step 1. Let our random variable

Step 2. The affected/unaffected status is permuted among the individuals within each 

subgroup, and Step (1) is repeated k times to sample x1
*, …, xk

* under the null-

hypothesis.

Step 3. The average (μ̂) and sample standard deviation (σ̂) of x1
*, …, xk

* are calculated 

and the standardized score is found as
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Under the null hypothesis, Z has an approximately standard normal distribution (see Figure 

S7). Thus, a p-value for the association test can be obtained by comparing Z to the quantiles 

of the standard normal. Alternatively, a p-value can be obtained by using a standard 

permutation test, where the p-value is found by (k0+1)/(k+1), and k0 is the number of the k 

permutations that are at least as extreme as x.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. (a) Schematic overview of the Crohn’s disease rare variant phenotype project. (b) 
Power to detect single-marker rare variant association in follow-up sample sets

Here we report the results of the Crohn’s pooled resequencing project with follow up 

genotypes in over 13167 CD patients, 12153 UC patients, 15331 healthy controls. We report 

that of the 70 markers successfully genotyped 22%,60%,79%,88%,91% have at least 80% 

power to detect association at minor allele frequency odds ratios of 1.5,2,3,4, and 5 

respectively (Figure 1b,S3a,S3b), implying that we are well positioned to address the 

contribution of rare and low frequency polymorphisms in GWAS loci to IBD.
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Figure 2. CARD9 protective splice site variant and predicted transcript

(a) A splice-site variant IVS11+1C>G (OR = 0.29) conferring protection against Crohn’s 

disease with predicted transcript. This hypothetical transcript has been observed in spleen, 

lymph-node and peripheral blood mononuclear cell (PBMC) derived CDNA libraries. We 

predict exon 11 to be skipped and alternative transcript to include exon 9 mRNA sequence 

continuing to exon 12 including 21 AA before reaching a premature stop.
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Figure 3. (a) Identification of additional rare variants associated with Crohn’s disease and its 
haplotype structure (b) NOD2 haplotypes observed in 700 individuals with overlapping genotype 
data (R311W, S431L, R702W, R703C, V793M, N852S, M863V, G908R, fs1007insC)

(a) Five additional risk variants are discovered in NOD2 demonstrating the – log10(P value) 

and the minor allele odds ratio with 95% CI along with their haplotype block. (b) Note that 

S431L and V793M are in tight LD and we regard this as one unit S431L + V793M, R703C 

has a higher frequency than R311W although they share haplotypes conditional analysis 

(Table S3) demonstrates independent contributions. M863V lies on the background 

haplotype of fs1007insC.
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Figure 4. Functional analyses of NOD2 variants

HEK293T cells were transfected with NOD2 constructs and fixed using paraformaldehyde 

4% at 24h post transfection. Cells were then subjected to immunofluorescent staining to 

detect NOD2 and fluorescence was collected using a confocal microscope. Image gallery 

displays a single confocal section.

HEK293T cells were transfected with NOD2 constructs and reporter plasmids encoding 

firefly luciferase cloned under a promoter containing NF-kB elements and with a plasmid 

encoding renilla luciferase as a transfection control. After 24h, cells were then stimulated 

with MDP-LL or MDP-LD (1ug/ml) for 6h. Transcriptional activation was quantified by 

ratios of firefly luciferase activity to renilla luciferase activity. Data were normalized to the 

unstimulated condition with empty vector transfection. Statistical analyses were performed 

using Student t-test. (* p<0.05). Cell lysates were also collected and subjected to western 

blot analysis to detect NOD2 and actin expression levels.
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Table 1

Variant Discovery Summary

Using Syzygy we detected 429 high-confidence variants (240 nonsynonymous sites, 169 synonymous sites, 

and 20 variants within 5bp of the nearest splice site) within our 107.5kb targeted region with a dbSNP rate of 

45%, nonsynonymous-to-synonymous ratio of 1.42, and transition to transversion ratio of 2.3 in the CD 

pooled sequencing experiment with 350 CD patients and 350 healthy controls.

Category High Quality Moderate Quality

Variants Identified 429 173

dbSNP % 45 24

NS/S 1.4 1.7

Ts/Tv 2.3 1.4
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