
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Deep Residual Architecture Using Pixel and Feature
Cues for View Synthesis and Temporal Interpolation

Jinglei Shi, Xiaoran Jiang, Christine Guillemot Fellow, IEEE

Abstract—In this paper, we propose a deep residual architec-
ture that can be used both for synthesizing high quality angular
views in light fields and temporal frames in classical videos.
The proposed framework consists of an optical flow estimator
optimized for view synthesis, a trainable feature extractor and
a residual convolutional network for pixel and feature-based
view reconstruction. Among these modules, the fine-tuning of
the optical flow estimator specifically for the view synthesis task
yields scene depth or motion information that is well optimized
for the targeted problem. In cooperation with the end-to-end
trainable encoder, the synthesis block employs both pixel-based
and feature-based synthesis with residual connection blocks, and
the two synthesized views are fused with the help of a learned
soft mask to obtain the final reconstructed view. Experimental
results with various datasets show that our method performs
favorably against other state-of-the-art (SOTA) methods with
a large gain for light field view synthesis. Furthermore, with
a little modification, our method can also be used for video
frame interpolation, generating high quality frames compared
with SOTA interpolation methods.

Index Terms—Light field, view synthesis, pixel and feature
cues, residual connection, video frame interpolation.

I. INTRODUCTION

SCENE sampling rate plays a key role in determining
the perception quality of visual content like videos or

immersive content such as light fields (LF). However, the
video or light field sampling rates can be limited due to
technological limitations, e.g. the sensor readout speed, its
resolution, the storage space or transmission bandwidth [1],
[2]. A small video frame rate can lead to jerky motion while
undersampled angular light field views have large parallax and
can yield perspective discontinuities when navigating within
the scene. Video frame rate conversion as well as light field
view synthesis have therefore become widely investigated
problems with specific solutions.

Existing video frame interpolation (VFI) approaches consist
of synthesizing intermediate frame from given input frames
and they can be roughly classified into three categories, i.e.
optical flow [3]–[7] or feature flow-based schemes [8], kernel-
based schemes [9]–[11] and phase-based ones [12], [13].

Light field view synthesis (LFVS) methods can similarly
be roughly categorized as depth-dependent methods and depth-
independent ones. Depth-dependent schemes [14]–[16] consist
in first estimating scene depth which is then used for image
warping. Kalantari et al. [14] use two cascaded networks

This project has been supported by the EU H2020 Research and Innovation
Programme under grant agreement No 694122 (ERC advanced grant CLIM).
The authors are with INRIA, Campus Universitaire de Beaulieu, 35042
Rennes, France. Contact: firstname.lastname@inria.fr

respectively dedicated to depth prior estimation and color
synthesis. Penner et al. [15] propose instead a soft 3D re-
construction method in which a confidence measure of depth
helps for better handling boundary artifacts during the syn-
thesis. Mildenhall et al. [16] slice the scene into Multi-Plane
Images (MPIs) at different depths, then warp and fuse these
planes according to the corresponding depth clues. Another
method in [17] relies on Epipolar-Plane Images (EPI) shearing
leading to a stack of sheared EPI which can be seen as a
plane sweep volume as used in [15] and [16]. The above
methods, that we refer here as depth-dependent methods, rely
on geometry estimation for correctly warping images from one
viewpoint to another. Other methods, that we refer here as
depth-independent methods, do not require a prior geometry
estimation. They instead retrieve views by exploiting signal
priors such as sparsity [18] or smoothness of EPIs [19],
[20]. The Neural Radiance Field (NeRF) concept has been
introduced in [21] to model the mapping between the 5D
spatial and angular coordinates of light rays emitted by the
scene into its three RGB colour components and a volume
density measure. This mapping is learned for each scene to be
processed from densely captured images, using a multi-layer
perceptron and assuming that the camera pose parameters are
known. The model can then be efficiently used for synthesizing
novel light field views. The neural radiance field learning has
been further optimized in [22] to avoid prior computation of
camera pose parameters, in [23] and [24] to enable faster
inference as well as using a sparser set of input views, and to
enable generalization to new scenes.

In this paper, we describe a deep residual network archi-
tecture that can be used for both light field view synthesis
(LFVS) and temporal video frame interpolation (VFI). For the
light field view synthesis problem, the proposed architecture
takes a sparse subset of light field views and output a whole
light field at any desired angular sampling rate. The proposed
architecture builds upon the FPFR solution we proposed in
[25]. Both approaches adopt the idea of merging a pixel-based
view reconstruction and a feature-based reconstruction. How-
ever, the architecture in [25] suffers from limitations in terms
of performance, slow convergence and training instability. We
propose in this paper very effective improvements both in
terms of architecture design and training schedule in order
to address each of these limitations, as follows:

• We introduce a light-weight feature extractor (1.9M vs
2.4M parameters) which consumes less memory and can
be trained end-to-end to extract deep features that are
better suited for the reconstruction problem at hand. This



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

improves both the performance and the convergence of
the entire network.

• We replace the convolutional layers of PixRNet and
FeatRNet in [25] by residual convolutional blocks. On
one hand, the residual blocks deepen PixRNet and FeatR-
Net, enhancing their synthesis capability. On the other
hand, the residual connections in the convolutional blocks
guarantee convergence speed of the networks (by avoid-
ing gradient vanishing). These residual blocks hence also
improve performance and network convergence.

• The weights of the optical flow estimator are optimized
for the view synthesis problem or the temporal frame
interpolation problem, in an un-supervised manner, i.e.
without using ground truth optical flows or disparity
maps. This operation is essential for the VFI task, since a
flow estimator trained on synthetic data (for which ground
truth motion is available), when applied to real-world
frames, may lead to network collapse. The estimator op-
timized for view synthesis improves the training stability.

Note that there is a strong similarity between the LFVS and
VFI tasks. Light field views can indeed be seen as frames
of a video, in the special case of a static scene captured
with a moving camera. Therefore, we further show how the
proposed architecture can be adapted to the temporal video
interpolation problem, where the scenes can be dynamic with
moving objects.

We show that this novel architecture gives synthesized views
of a higher quality compared with recent reference methods,
such as DeepVS [14], Soft3D [15], LLFF [16], EPI [17],
and FPFR [25], for both dense and sparse light fields. Our
comparative analysis with the NeRF-based view synthesis
method [21], for different input view configurations, show that
the NeRF method performs quite well, provided the radiance
field is learned from a sufficient number of input views, but
that the proposed method gives better synthesis results for
a small number of input views. This advantage is further
analysed in light of storage or compression implications. We
indeed show the PSNR-rate benefits of the proposed method
compared with NeRF and with several compression methods.
Finally, we show that the proposed architecture can also be
used for video frame rate conversion with high quality which
is quite competitive compared with the one obtained with
reference methods, e.g., [10], [4], [11], [8] and [7], specifically
dedicated to the temporal frame interpolation task.

II. RELATED WORK

Light field view synthesis and video frame temporal in-
terpolation methods follow very similar principles. Although
developed in parallel with methods specific to each problem,
they can be similarly classified in two categories. One category
of methods first estimates disparity maps or optical flows
which are then used to warp input images in either the angular
or temporal dimensions. A second category of methods does
not rely on explicit depth or motion information but instead
replies on signal priors that are specific to the input data
characteristics.

A. Light field view synthesis

1) Depth-dependent schemes: Depth-dependent schemes
follow the principles of image based rendering methods, as
e.g. in [15], [26]–[28], which have been prevailing for many
years in the field of view synthesis. Along the same lines,
but using deep neural networks for both depth estimation
and view synthesis, one finds the approach of Kalantari
et al. [14] in which the authors sequentially connect two
convolutional neural networks (CNNs) dedicated respectively
to depth estimation and color fusion. The depth estimation
network exploits cues that are well suited for dense light
fields with small parallax. Hence, the method, mostly designed
for dense structured light fields, fails in occluded regions,
especially for sparse light fields having large baselines. Due
to depth imprecision, the synthesized views also suffer from
blurriness, tearing and ghosting effects. The method in [25]
first estimate disparity using a learned optical flow estimator
which is then used to warp not only the input views but also
feature representations of these views. This leads to pixel-
based and feature-based synthesized views which then merged
using a learned soft mask. This method gives state-of-the-art
results.

To cope with imprecision of disparity estimators, the con-
cept of Multi-Plane Image (MPI) representation has been
introduced in [29] for stereo views, and then used in [16]
to render novel views from irregularly sampled views in
unstructured light fields. In [16], an MPI representation is
learned for each source view, from plane sweep volumes
(PSVs), and the source MPIs are then warped and merged to
synthesize the target view. MPIs exploit notions of visibility
or transparency with alpha blending maps [29], [30]. In the
same vein, Wu et al. [17] construct a stack of sheared EPIs,
that can be seen as a PSV, which are then fused to reconstruct
light fields. They train a CNN to give a score which is then
used for the fusion of sheared EPIs.

2) Depth-independent schemes: The use of various signal
priors has also been investigated for view synthesis, often re-
garding the problem as a problem of angular super-resolution.
For example, the authors in [18] reconstruct dense light field
views from a subset of samples by exploiting sparsity of
the continuous Fourier spectrum. The authors in [19] apply
a shearlet transform-based inpainting technique on EPIs to
generate densely sampled light fields, EPI per EPI. Variational
methods imposing some smoothness contraints on EPI have
also been considered for view synthesis [31]. Similarly, the
authors in [20] use a pseudo 4DCNN to upsample the input
light field in the angular dimension. Boundary artifacts appear
when the target views are far from the source views. The
above schemes are effective on narrow-baseline light fields,
but usually fail with those having large baselines. The authors
in [32] describe a spatio-angular restoration network using 4D
convolutions and high-resolution residual blocks, in order to
extract spatial features that preserve geometrical properties. To
further exploit scene geometry, and better handle occlusions
and non lambertian scenes, the method in [21] optimizes a
5D neural radiance field representation, with volume density
and view-dependent color at any location of a scene, from a



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

set of input images. The authors then use volume rendering
techniques to sample the scene representation along rays, and
render the scene from any viewpoint. This seminal work gave
rise to several variants of NeRF learning methods, such as the
so-called MVSNeRF [23] that aims at reconstructing radiance
fields from a sparse set of views and via faster inference,
or such as NeRF– [22] that avoids a prior estimation of
camera pose parameters. Stereo radiance fields (SRF) are also
introduced in [24] that can generalize the learning of the
radiance field to new scenes.

B. Video frame interpolation
1) Flow-based interpolation: Flow-based methods consists

in first estimating optical flows between given frames, and then
in interpolating or extrapolating target frames along the motion
vectors. This is the case of the Deep Voxel Flow (DVF) in [3]
in which a network is trained to estimate the optical flows
and produce a temporal mask for trilinear interpolation of the
input frames. The authors in [4] use a first U-Net network to
predict bi-directional optical flows which are then combined
to approximate the intermediate optical flows. A second U-
Net refines the intermediate optical flows as well as predicts
soft visibility maps in order to warp and linearly merge the
input frames. In [6], [7], the authors instead employ the state-
of-the-art PWC-Net [33] for optical flow estimation. They
then warp input frames and corresponding deep features to
generate the interpolated frames. The problem of occlusion
handling is further addressed in [5] by using depth information
in addition to optical flows, together with local interpolation
kernels. A recent method in [8] uses a multi-flow multi-
attention generator to estimate feature flows instead of optical
flows. The feature flows are then used to warp and interpolate
feature maps of the input frames into the target position.
Instead of considering only two input frames for interpolating
an intermediate frame, the authors in [34] propose a framework
utilizing three frames to remove tearing and ghosting artifacts
of moving objects.

2) Flow-free interpolation: A second category of methods
can be referred to as flow-free interpolation methods. This is
the case of kernel-based methods [9], [10] which, instead of
estimating optical flows, estimate a series of spatially-adaptive
interpolation kernels used to convolve the input frames in
order to produce the interpolated ones. Besides the effort
for improving the estimation of kernels reported in [9], [10],
the authors in [35] also propose a set of techniques that
can be applied to kernel-based methods to further improve
the performance. Kernel-based methods are computationally
expensive and do not incorporate explicit mechanisms for
occlusion handling. Please note that such spatially-adaptive
filters and optical flows can nevertheless be combined as in
[11]. Phase-based methods [12], [13] represent the motion as
a per-pixel shift and operate phase modification for each pixel.
However, these methods can not reach the same level of details
as flow-based methods.

III. BACKGROUND AND NOTATIONS

In the following we consider both video sequences and
light fields. Considering a video sequence, we denote a frame

captured at instant t as It in the following sections. A light
field is represented by a 4D function L(x, y, u, v) [36], where
(x, y) ∈ J1, XK × J1, Y K and (u, v) ∈ J1, UK × J1, V K are
respectively the light field spatial and angular coordinates.
A light field can be interpreted as an array of views ob-
served from different viewpoints, and we denote the view
L(x, y, u0, v0) observed from a certain viewpoint i = (u0, v0)
as Ii (or Iu0,v0 ) for sake of notation simplicity.

IV. METHODOLOGY

A. Architecture overview
The proposed architecture aims at reconstructing a densely

sampled light field from a subset of input views, thus per-
forming angular view synthesis, and we show that it can also
be used to reconstruct a video sequence from a subset of
input frames. The overall architecture is depicted in Fig 1.
For both problems, it is composed of the same three modules.
The first module Flow estimation (blue) which will compute
disparity maps for the angular view synthesis problem and
optical flows for the frame temporal interpolation problem.
The flow estimation module is followed by a pixel-based
view synthesis module, PixRNet (orange), and by a feature-
based view synthesis module, called FeatRNet (violet). The
outputs of these two synthesis modules are then merged using
a learned soft fusion mask generated by a network called
FusNet (green).

Depending on the targeted problem, the application of the
above architecture varies only in terms of input images and
in the semantic of the estimated flows. In the case of light
field angular view synthesis, the inputs of the architecture are
2 × 2 light field views. These four inputs, according to their
relative positions, are respectively denoted as Itl (top left),
Itr (top right), Ibl (bottom left) and Ibr (bottom right) for
convenience. In the case of video frame temporal interpolation,
the inputs of the architecture are two temporally adjacent
frames I0 and I1 and the architecture produces temporally
intermediate frames. Depending on the targeted problem, the
flows estimated by the Flow estimation module are disparity
maps in the case of light field angular view synthesis, whereas
are they are bi-directional optical flows in the case of temporal
frame interpolation.

B. Flow estimation
The Flow estimation module predicts disparity maps for

angular view synthesis or bidirectional motions for temporal
interpolation.

1) Disparity maps: The notion of ‘disparity’ refers to the
horizontal and vertical displacement of points in the image
plane when moving from one viewpoint to the other one [37],
[38].

Given four corner views Itl, Itr, Ibl, Ibr, we can actually
estimate two disparity maps for each view, one is from the
horizontal view pair and the other is from the vertical view
pair. Taking Itl as an example, two corresponding disparity
maps d1, d2 are obtained from two image pairs as follows:

d1 = FNet(Itl, Itr)h, (1)

d2 = R−1 ◦ FNet(R(Itl),R(Ibl))h, (2)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 1. Overview of the proposed deep architecture for both light field view synthesis and video frame temporal interpolation. In the case of the light field
view synthesis problem, the input views are 4 sparse light field views (e.g. corner views) with i = {tl, tr, bl, br} being the index of the source view positions,
and j the index of the target view position. In the case of video frame temporal interpolation, the input views are temporally adjacent views, with i = {0, 1}
the index of source frame time instants, and j = t the target frame instant.

where FNet is a flow-estimation network, the subscript h refers
to the horizontal component of the output optical flow. R and
R−1 are respectively counterclockwise and clockwise rotation
of 90◦, which permits us to convert vertical disparities to
horizontal ones. In our work, we employ a state-of-the-art
flow estimation network PWC-Net [33] as FNet, with a novel
finetuning strategy that optimizes its weights for the targeted
view synthesis or temporal interpolation tasks without using
any ground truth optical flows. The training strategy hence
differs from the one in [25], where we finetune PWC-Net
with ground truth disparity maps between light field image
pair, More details will be presented in IV-C2. Let us note that
any other flow estimation network can likewise be used in our
architecture.

Both d1 and d2 may contain estimation errors due to color
inconsistencies or occlusions. Inspired by the work in [39], we
further improve disparity accuracy by merging two disparity
maps d1 and d2 into a single one dtl. More specifically, based
on each disparity map, other three views Itr, Ibl and Ibr are
projected to the position of Itl and the corresponding warping
errors e1 (for d1) and e2 (for d2) are computed as:

en =
∑

i∈{tr,bl,br}

∑
RGB

(Itl − Ĩni→tl), n = 1, 2, (3)

where Ĩni→tl represents image warped from current position i
to top left corner using disparity dn. The fusion of d1 and d2
is performed via value selection for each pixel p:

n′ = argmin
n

en(p), dtl(p) = dn′(p). (4)

Similarly, we can obtain disparity maps dtr, dbl and dbr for
the other three views.

2) Bidirectional optical flows: In the case of temporal
interpolation task, the flow estimation module takes two input

frames I0 and I1 and output a forward flow (from instant 0 to
1) and a backward flow (from instant 1 to 0):

flow0→1 = FNet(I0, I1), (5)
flow1→0 = FNet(I1, I0). (6)

The estimated optical flows have horizontal and vertical
components. Moreover, as there is only one estimated motion
for each view, further refinement by fusion is not required.
Both flows are used for forward and backward warping when
performing the temporal interpolation, as explained later in
Section IV-C1.

C. View warping and Fusion

Based on the estimated optical flows or disparity maps,
the input views and their feature maps are warped onto the
target view position j via a differentiable forward warping
operation while computing at the same time binary occlusion
masks. The warped images and feature maps are respectively
fed into the PixRNet and FeatRNet synthesis modules along
with the occlusion masks to synthesize two views Îpixj and
Îfeatj . The image Îpixj obtained through a pixel-wise syn-
thesis in PixRNet, is accurate in homogeneous regions but
tend to be blurred in highly textured regions and at object
boundaries. This can be explained by the fact that pixels to
be fused are not fully aligned in such regions due to disparity
value inconsistencies among the input views. In the FeatRNet
module, deep features covering different receptive fields are
warped to the desired position and, thanks to a pyramidal
reconstruction, the retrieved Îfeatj is more accurate in textured
regions. Finally, the FusNet module learns a soft mask M to
merge Îpixj and Îfeatj into an image Îj which well reconstructs
both homogeneous and textured regions.

1) Image forward warping: Backward warping (BW) has
been a widely used operation for various image processing



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

tasks, e.g. image classification [40], depth image based ren-
dering (DIBR) [14], [16] etc.It consists in projecting pixels
from one source view to a target one, using the optical flow
associated to the target view, hence requires the optical flow
at the target position. We use instead a forward warping
(FW) operation, which does not require flow estimation at the
target position, and can moreover better handle occlusions via
disparity-dependent interpolation. This FW operation proceeds
as follows.

Let us assume that we would like to project a pixel
p = (xp, yp) from a source view to a target view. In the FW
procedure, given a source viewpoint i, a target viewpoint j and
a disparity map di in the case of light field view synthesis,
or given optical flow flow0→1 between source frames I0, I1
and the target intermediate instant t in the case of video frame
interpolation, the non-integer coordinates of the projected pixel
p̃ = (xp̃, yp̃) can be computed as:

p̃ =

{
p+ (j− i)di(p), for LFVS
p+ t× flow0→1(p), for VFI

(7)

where the term t× flow0→1 approximates the flow flow0→t
between the frame I0 and the frame at time instant t, which is
then used to warp pixels of frame I0. The frame I1 is similarly
warped using flow1→t = (1− t)× flow1→0.

The pixel value Ĩi→j(q) (or Ĩ0→t(q)) at integer coordinates
q = (xq, yq) of the warped image will be interpolated as a
weighted sum of nearby source pixels Ii(p) (or I0(p)):

Ĩi→j(q) =

∑
p Ii(p)W (p,q)∑
pW (p,q) + ε

, (8)

where W (p,q) is an interpolation weight term, and ε is a
very small value for numeric stability. Three properties are
considered during its design: 1-). this term should be totally
differentiable for end-to-end learning. 2-) the further a pixel
is from the target position, the smaller weight it will have
for interpolation. 3-) pixel overlaps must be handled in the
occluded regions. Based on these considerations, this term is
finally proposed as the product of a distance term wD and an
overlap handling term wO:

W (p,q) = wD(p,q)wO(p), (9)

where
wD(p,q) = l(xp̃, xq)l(yp̃, yq), (10)

with

l(x1, x2) =

{
(1− |x1 −x2|), if |x1 −x2|< 1;
0, otherwise.

(11)

The term wO is used for handling overlapping warped
pixels, since pixels from foreground and background are often
overlaid in occluded regions. In the light field view synthesis
problem, we use the disparity maps di of each input view to
compute this weight. However, disparity maps are not available
for the video frame interpolation problem, and since scene
depth is difficult to estimate from a monocular video, we use
the warping error for handling overlapping pixels.

More precisely, we use normalized disparity d∗i or bright-
ness error e∗0 to calculate wO as

wO(p) =

{
exp(−λd∗i (p)), for LFVS,
exp(−λe∗0(p)), for VFI.

(12)

The exponential function gives more importance to pixels
having smaller disparity value or brightness error and less
importance to those with larger disparity value or brightness
error. The brightness error e0 of I0 is calculated as

e0 =
∑
RBG

|I0 − BW(I1, f low0→1)|, (13)

where I0 and I1 are the two input frames and BW denotes
the backward warping operation.

Non occupied pixel positions on the target view after pixel
warping are indicated as disoccluded positions via a binary
mask M̃ . However, to detect disoccluded pixels in a differ-
entiable manner, and to handle interpolation in disoccluded
positions, we also warp the weight map wO. For each warped
position, we thus have RGB and weight values. If there is no
pixels in the neighbourhood, then wD is 0 in all neighbourhood
positions, indicating, in a differentiable manner, that the cor-
responding pixel position is a disoccluded pixel. The warped
weights are also used to compute the interpolation weights.

In summary, by taking a source image along with its
disparity map or optical flow and brightness error, the FW
operation outputs a warped image and a binary disocclusion
mask as follows:

Ĩi→j, M̃i→j = FW(Ii, di, i, j) (14)

for LFVS, or

Ĩ0→t, M̃0→t = FW(I0, f low0→t, e0) (15)

for VFI. Both disparity and brightness error are effective cues
in handling pixel overlaps, as the larger is the brightness error
of a pixel, or the larger is its disparity value, the more likely it
will be overlaid after warping. Similar brightness error-based
image warping operation, called ‘softmax splatting’, can be
found in [7]. And forward splatting operation is also applied
in [41] to infer a layer-structured 3D representation of a scene
from a single image.

2) Finetuning the flow estimation module: Depth-
dependent LFVS approaches such as in [15], [25] and
flow-based VFI schemes such as in [5]–[7], using an off-
the-shelf disparity or optical flow estimation module, both
rely on a good initialization of that module whether or not
end-to-end finetuning is conducted later. However, most of
these concerned networks are trained on synthetic datasets
with ground truth disparities [37], [42] or optical flows
[43], [44], and are not fully adapted to the view synthesis
problem. Here, based on our aforementioned FW operation,
we propose instead a simple but effective finetuning procedure
that enables us to finetune the initial flow estimation module
under view synthesis or frame-interpolation supervision, i.e.
without any ground truth disparity maps or optical flows.

More specifically, in the case of LFVS, given four input
views Itl, Itr, Ibl, Ibr and corresponding disparity maps dtl,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

(a).Warped view before FT (b).Warped view after FT

Fig. 2. Visual comparison of views before & after finetuning (FT). The views
in the 1st row are from the light field dataset in [45], while those in the 2nd
row are from the video frame interpolation dataset in [46]

dtr, dbl, dbr estimated by Flow estimation module, we aim at
synthesizing the view at j. We finetune the estimated flows,
without using ground truth flows, by optimizing

argminθ
∑

i∈{tl,tr,bl,br}

|(Ĩi→j − Ij)M̃i→j|1 (16)

where θ is the set of parameters of the FNet module, and Ĩi→j,
M̃i→j are obtained by the FW operation in Eq. 14.

In the case of VFI, given the input frames I0, I1 and the
associated estimated flows flow0→1, flow1→0, we interpolate
a frame at an intermediate instant t, by optimizing

argminθ
∑

t′∈{0,1}

|(Ĩt′→t − It)M̃t′→t|1, (17)

where Ĩt′→t, M̃t′→t are obtained via Eq. 15, with flow0→t =
t× flow0→1 and flow1→t = (1− t)× flow1→0.

Fig. 2 illustrates the warped images obtained before and
after finetuning. Before finetuning, we can observe severe
deformations in regions like bear’s ear and licence plate that
are challenging for the synthesis process. These artifacts are
corrected thanks to the finetuning procedure.

3) Pixel and feature-based reconstruction: Thanks to the
finetuned Flow estimation module, we can obtain disparity
maps or optical flows optimized for synthesis. The synthesis
proceeds in parallel in both pixel and deep feature domains.

Pixel-based reconstruction is performed by the PixRNet
module, where, in the case of LFVS, using estimated disparity
maps and the forward warping operation, four corner views are
first projected to the target position j to generate the warped
images {Ĩtl→j, Ĩtr→j, Ĩbl→j, Ĩbr→j} and the corresponding oc-
clusion masks {M̃tl→j, M̃tr→j, M̃bl→j, M̃br→j}. The warped
images and occlusion masks are then concatenated to be fed
into the PixRNet module. Similarly, in the case of VFI, warped
frames {Ĩ0→t, Ĩ1→t} and masks {M̃0→t, M̃1→t} are instead
concatenated and fed into the PixRNet module to learn the
reconstructed Îpixt .

Fig. 3. Architecture of Residual Convolutional Block (RCB) with input tensor
of dimension [B,H,W,C1] and output tensor of dimension [B,H,W,C2].

Disoccluded pixels are clearly indicated by the occlusion
masks, which hence makes it easier for PixRNet to inpaint
these disoccluded regions while fusing different views into
the target view Îpixj . Different from the LFVS approach in
[25] that cascades four simple convolutional layers, we replace
the first three layers with novel residual convolutional block
(RCB) architecture illustrated in Fig 3. A RCB is composed
of three convolutional layers, where the first layers with kernel
size 1 × 1 convert C1 input channels to C2 channels. Then
two cascaded convolutional layers with kernel size 3×3 learn
a residual map acting on the input. Moreover, in comparison
with the original design in [25], we quadruple the number of
channels in RCB to further enhance its learning ability. The
usage of RCB improves the reconstruction efficiency. More
details will be investigated in Sec. VI-C.

Due to inconsistency between disparities or optical flows
of input views, those warped views or frames are not fully
aligned and the fusion may yield blurriness especially in
highly textured regions and object contours. To overcome
this limitation, we propose using an additional feature-based
reconstruction module named FeatRNet, in which a trainable
encoder is employed to flexibly extract deep features at three
different resolutions later used in a pyramidal reconstruction
step.

In comparison with the VGG19 encoder with fixed weights
used in [25], our trainable encoder is 1-) more lightweight than
the VGG19 encoder (1.9M parameters vs 2.3M parameters). 2-
) more flexible to extract features suitable for synthesis. The
feature maps of input views are extracted at three different
resolutions as:

{f1i , f2i , f3i } = FeatExt(Ii),∀i ∈ {tl, tr, bl, br} (18)

where FeatExt denotes the feature extraction operation and
the extracted feature maps fs+1

i are at half resolution com-
pared with fsi . Like in the PixRNet module, these feature
maps are then warped to the desired position j using forward
warping as

f̃si→j, m̃
s
i→j = FW(fsi , di, i, j). (19)

Warped features and masks at lower levels are first concate-
nated and fused by RCBs, and then 2× upsampled by a
deconvolutional layer to be fed to the next level. Finally, at
the highest level, the warped feature maps and the occlusion
masks along with upsampled features are merged to get the
desired view Îfeatj . In case of VFI, the FeatRNet module will



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

take two frames as inputs and follow the same reconstruction
process to obtain Îfeatt .

Let us note that in [25], feature maps of the ground truth
image are extracted using a fixed VGG19 encoder to super-
vise the feature reconstruction at each level of the FeatRNet
module. With a trainable encoder, the extracted feature maps of
the ground truth image vary with the learned encoder weights,
and supervising the feature reconstruction with varying ground
truth feature maps results in model performance oscillations
during training. We therefore no longer supervise feature
reconstruction and directly focus on the final reconstruction
of Îfeatj (or Îfeatt ) in the FeatRNet module. That also helps
simplifying the training schedule as detailed later in Sec. V-C.

As the reconstructed views Îpixj and Îfeatj (or Îpixt and
Îfeatt ) have complementary properties in homogeneous and
highly textured regions, we want the synthesis to benefit
from the advantages of both. A FusNet module is therefore
employed to merge two reconstructed views into the final
target view Îj (or Ît) with a soft mask M having value between
0 and 1 (forced by sigmoid activation) as follows

Îj =MÎpixj + (1−M)Îfeatj . (20)

To train the entire architecture, we propose a loss function
composed of three reconstructed views as follows

L = γ1Ll(Îpixj , Ij) + γ2Ll(Îfeatj , Ij) + γ3Ll(Îj, Ij), (21)

where Ll represents a Laplacian loss [47] with 3 levels.
{γ1, γ2, γ3} are weight hyperparameters.

Fig 4 shows the synthesized central views Îpix5,5 , Îfeat5,5 , Î5,5
and their Fourier transforms in the case of LFVS. And we can
observe from Fig 4(a) and Fig 4(b) that pixel and feature-based
reconstructions have complementary properties: the pixel-
based reconstruction is more blurred and the energy in the
Fourier domain is mainly concentrated in low frequencies,
while the feature-based reconstruction is better in textured
regions, and most of its energy resides in high frequencies.
After fusing two views with a mask, we can see in Fig 4(c)
that the final reconstructed view inherits the advantages of
both pixel and feature-based reconstruction, and is close to the
ground truth view in Fig 4(d) in both the color and Fourier
domains.

V. IMPLEMENTATION DETAILS

A. Training data preparation

In the case of LFVS, we employ 78 synthetic light fields
proposed in [45] and 16 light fields in ‘Additional’ category
of [48] to form our synthetic training set. All light fields are
of resolution 512 × 512 × 9 × 9. We also use 100 scenes
proposed in [14], which are captured by a Lytro Illum camera
with resolution 376× 541× 14× 14, by extracting the 8× 8
central views of each scene to form our real-world training set.
Since real-world data contains complicated lighting conditions
and artifacts caused by hardware limitations, making it distinct
from synthetic data, we therefore prepare two models, one
trained on synthetic data and the other further finetuned on
real-world data. The finetuning of FNet and the training of
the whole pipeline are conducted using the same dataset.

(a) Pixel-based reconstruction (b) Feature-based reconstruction

(c) Fused view (d) Ground truth

Fig. 4. Visual comparison in both pixel and frequency domains between Îpix5,5 ,
Îfeat5,5 ,Î5,5 and I5,5 in the case of LFVS.

As light fields from DLFD and SLFD in [45] and those in
[14] captured by a Lytro Illum camera, are with different
baselines, we therefore adopt different configurations when
extracting views: for light fields in DLFD that have narrow
baseline, four corner views are selected by an angular distance
corresponding to view index difference l ∈ {5, 6, 7, 8}. For
light fields in SLFD having wide baseline, corner views are
extracted with l ∈ {2, 3}. When using the real-world training
set,the corresponding angular distance is set to be l ∈ {6, 7}.
The ground truth view is randomly selected within the square
defined by corner views. We use randomly cropped patches of
size 160× 160 and a batch size of 8 in the training step.

For VFI, we adopt the widely used Vimeo90K dataset
in [49] for training. This training set contains 51,313 video
triplets with resolution 256 × 448. We use the intermediate
frame as ground truth and other two frames as inputs, and
randomly crop patches in size 160× 160 during training, the
batch size is set to 18.

B. Data augmentation

We also apply geometrical and chromatic transformations
to increase the variety of the training data. The chromatic
transformation is carried out by changing the contrast, color
balance, brightness and gamma value. The contrast is sampled
within the interval [−0.8, 0.4], the color balance is adjusted
with a multiplicative factor sampled within [0.5, 2], the bright-
ness is modified by adding a value drawn according to a
Gaussian distribution with σ = 0.2, and the gamma value
is sampled within the interval [0.7, 1.5]. For the geometrical
transform, we randomly rotate the image by 0◦, 90◦, 180◦ or
270◦ counterclockwise and flip it on the left and right.

C. Training schedule

The training schedule of the model can be divided into
an initialization step followed by an end-to-end optimization
step. In the initialization step, we fix the weights in the FNet



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

module and set γ1 = γ2 = γ3 = 1 in the loss function. The
training will enable both PixRNet, FeatRNet and FusNet to
generate views that approximate the ground truth view. We
set the learning rate to 0.0001 for this step, and the whole
pipeline is trained for 3000 epoches in the case of VSLF and
for 30 epoches in the case of VFI.

Then, by setting γ1 = γ2 = 0 and γ3 = 1 in the loss
function, we end-to-end train the framework to optimize the
final synthesized view, which makes PixRNet and FeatRNet
to retrieve views with complementary properties. The learning
rate in this stage is set to 0.00001 and we stop the train-
ing when there is no performance amelioration within 2000
epoches for LFVS or 20 epoches for VFI. The training takes
about 4 days for LFVS and 5 days for VFI on a Nvidia Tesla
V100 GPU with 32GB GRAM, the pipeline is implemented
using the tensorflow framework. Our method has about 18.2M
parameters (where 9.3M parameters are from PWC-Net), and
it takes about 0.9s to synthesize an image of size 512×512×3
(36.4M FLOPS).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our proposed
method for both LFVS and VFI tasks using various datasets.

A. Light field view synthesis

1) Synthetic LFs: We first validate the effectiveness of
the proposed architecture using public synthetic light field
datasets:
• densely sampled light fields stilllife, buddha, butterfly,

monasRoom with resolutions 768× 768× 9× 9 from the
old HCI dataset [50], and boxes, cotton, dino, sideboard
with resolutions 512×512×9×9 from new HCI dataset
[48],

• sparsely sampled light fields Toy bricks, Elec devices,
Two vases, Sculpture, Bear with resolutions 512×512×
9× 9 from the INRIA synth dataset [45]

We focus on the central 7×7 and 3×3 angular views in densely
and sparsely sampled light fields respectively, synthesizing all
views, given the four corner views.

Our approach is compared with state-of-the-art approaches,
e.g. learning-based DIBR pipeline [14] (DeepVS), EPI-based
view synthesis [17] (EPI), synthesis using multi-layer scene
representation with learning [16] (LLFF) and without learning
[15] (Soft3D), and with our previous pixel-feature based re-
construction scheme [25] (FPFR). During the test, all involved
methods take four views as inputs, except LLFF, which take
an extra fifth view as its released model requires at least
five input views. We thus employ the horizontal immediate
neighbour of Itl as the fifth view. Furthermore, we directly use
ground truth camera pose instead of estimated ones in LLFF
to make sure the reconstruction quality only depends on the
synthesis process. Given that training data plays a critical role
in determining the performance of learning-based methods,
we further finetuned pre-trained models of compared methods
using the same training data as for our method for having a
fair comparison.

Table I gives a quantitative evaluation of the synthesized
central view in terms of PSNR, with all tested light fields
arranged from dense to sparse according to the disparity
range. In the last two columns, we show the performance
of the vanilla version (Ours) and test-time augmented version
(Ours*) of our method. The test-time augmentation is achieved
by averaging eight reconstructed views, whose corresponding
input views are rotated and flipped, after inverse rotation
and flip processing. We can observe from the table that our
novel pipeline outperforms the state-of-the-art methods with
most scenes, and in average gives about 0.8dB gain against
the best reference method. Besides testing on the central
view that is the most distant from corner views, we further
trace the PSNR curves when varying the target position for
the different methods, Fig 6(a) shows the synthesis quality
evolution in terms of viewpoints. We can observe that our
method outperforms reference ones with a very large margin.
Furthermore, in comparison with the FPFR network, our novel
architecture gains in average 1dB for views distant from the
corner views, and even more for views that are near the source
input views.

2) Real-world LFs: We have also tested our method using
real-world scenes from the testset of [14]. We feed four views
to the tested methods except for LLFF, which takes a fifth
view. As the ground truth camera pose is unavailable for real-
world data, we hence convert the camera pose-based view
transform to a disparity-based transform when constructing
the PSV in LLFF. Table II shows the quantitative measures
obtained for the central reconstructed views. A gain of 0.5dB
is observed against FPFR, the best reference method.

Fig. 5 shows reconstruction error maps for both synthetic
and real-world light fields, we can observe that our method
reconstructs views with less errors, especially on the object
contours and subtle structures in highly textured regions. More
experimental results are available in our project homepage:
http://clim.inria.fr/research/TCI-VS-VI/index.html.

3) View extrapolation in LFs: Extrapolating views beyond
the original field of view of the light field is a very challenging
task, as less information on the target view is available in the
input views. We evaluate the extrapolation capability of our
method in comparison with two reference methods, namely the
FDL approach in [51], the LLFF method [16] and our previous
pipeline FPFR [25]. All tested methods take four corner views
of the central 3 × 3 subset of light field views (red slashes
in Fig. 6(b)) as inputs, except for the LLFF method which
additionally takes the central view as a fifth input view (grey
slashes in Fig. 6(b)), to synthesize a 9×9 light field. Fig. 6(c)
shows the performances for each method. We can observe that
our method yields better results than the reference methods.
Wider is the baseline, more important are the gains with our
approach. Let us note that all learning-based methods used in
this test have been trained for the interpolation task, hence
here we assess the inherent extrapolation capability of each
method without any further finetuning.

4) Comparative evaluation with Neural Radiance Fields:
In recent years, view synthesis methods have been proposed
based on the concept of Neural Radiance Fields (NeRF).
NeRFs represent a mapping between 5D spatial ((x, y, z)

http://clim.inria.fr/research/TCI-VS-VI/index.html


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE I
QUANTITATIVE RESULTS (PSNR) FOR THE RECONSTRUCTED CENTRAL VIEW OF THE SYNTHETIC TEST LIGHT FIELDS. THE CORRESPONDING DATASETS
ARE INDICATED BY SYMBOLS: ? [48], � [45] AND † [50]. THE BEST AND THE SECOND BEST PERFORMANCES ARE SHOWN IN BOLD AND UNDERLINED.

LFs Disparity range DeepVS [14] Soft3D [15] LLFF [16] EPI [17] FPFR [25] Ours Ours*
mona† [-5,5] (10) 38.90 40.92 41.20 37.54 42.47 43.26 43.57

butterfly† [-6,8] (14) 40.68 42.75 41.35 39.61 42.69 43.52 43.79
buddha† [-10,6] (16) 41.08 41.86 40.66 40.05 42.78 43.50 43.72
cotton? [-9,9] (18) 47.24 48.95 47.07 47.97 48.58 50.48 50.59
boxes? [-7,13] (20) 33.64 32.14 34.97 31.65 33.86 33.41 34.29
dino? [-10,10] (20) 38.41 41.69 41.26 38.44 42.66 43.69 44.09

sideboard? [-10,12] (22) 30.91 30.23 32.33 27.30 31.85 32.37 32.75
Toy bricks� [-1,22] (23) 28.90 36.58 37.98 31.46 38.84 40.44 40.89

Elec devices� [-10,17] (27) 34.09 36.24 36.76 31.55 37.63 39.25 39.50
stilllife† [-16,16] (32) 26.29 34.73 32.73 32.02 36.39 37.20 37.74
Lion� [-5,29] (34) 28.05 35.18 35.22 33.91 35.47 35.66 35.75

Two vases� [-5,39] (44) 25.65 32.49 35.82 29.09 35.56 35.54 36.26
Sculpture� [-26,34] (60) 22.31 29.15 29.68 26.22 30.09 30.02 30.12

Bear� [-38,53] (91) 18.36 28.00 33.22 23.40 31.87 33.41 34.22
Average - 32.49 36.49 36.43 33.59 37.92 38.70 39.09

Light field view DeepVS [14] Soft3D [15] LLFF [16] EPI [17] FPFR [25] Ours

Fig. 5. Reconstruction error maps of view Î5,5 for different synthesis methods, with higher error value in red and lower error value in blue.

and angular (θ, φ)) coordinates of light rays, and their color
(RGB) components and a volume density measure (σ). New

views can be rendered from the NeRF model using volume
rendering techniques. The model is optimized per scene, and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) PSNR for interpolated viewpoints (b) View indices (c) PSNR for extrapolated viewpoints

Fig. 6. Averaged PSNR curves for the different viewpoints. The 8 synthetic scenes are from the datasets [48], [50]. (a) Interpolation. (c) Extrapolation. (b)
View indices for interpolation (top) and extrapolation (bottom). 4 input views (red slash) are used for DeepVS [14], EPI [17], Soft3D [15], FPFR [25], FDL
[51] and our method, whereas 5 input views (grey) are used for LLFF [16].

TABLE II
QUANTITATIVE RESULTS (PSNR) FOR THE RECONSTRUCTED VIEW (5,5)

WITH REAL-WORLD DATA (8× 8 VIEWS) [14]. THE BEST PERFORMANCES
ARE SHOWN IN BOLD AND THE SECOND BEST ONES ARE UNDERLINED.

LFs DeepVS Soft3D LLFF EPI FPFR Ours
Cars 31.53 27.68 29.06 28.17 32.05 32.86

Flower1 33.13 30.29 30.00 30.44 34.19 34.63
Flower2 31.95 30.52 28.90 29.26 33.80 34.12

Rock 34.32 32.67 32.60 32.46 36.48 37.13
Leaves 27.97 27.34 27.74 26.48 32.27 32.65

Seahorse 32.03 30.41 28.50 26.62 34.68 34.95
Average 31.82 29.82 29.47 28.90 33.91 34.39

the network weights can be seen as a representation of the
scene radiance. More views are used to train the network
(a multi-layer perceptron), more precise and complete is the
Radiance Field, and better are the rendering results.

We therefore performed a comparative evaluation with three
types of input view configurations: 1) four corner views
(Fig. 7(a)). 2) eight border views (Fig. 7(b)). 3) nine views
(Fig. 7(c)). The performance measures are averaged on all the
other light field views that are synthesized. Table III shows the
measured PSNR on 4 LFs from the benchmark considered in
[48]. The quality of the views rendered from the learned NeRF
model increases with the number of input views. However,
when taking only the four corner views, and the corresponding
ground truth camera poses, the quality of the views rendered
using NeRF is inferior to the views synthesized with our
method, except for one light field. Set aside the per-scene
training complexity, this shows the limit of the approach when
the number of input views is limited. The advantage of our
approach in that case is particularly interesting in a compres-
sion context, since it leads to higher compression efficiency
for the light field, as we show in the next section. The per-
scene training complexity of NeRF has later been addressed
in the state-of-the-art work of MVSNeRF [23] by proposing a
method in which the trained network can be applied to novel
scenes. However, as shown in Table III (column ‘MVSNeRF-
4’), its generalizability is quite limited: synthesized views have
low PSNR without per-scene finetuning. Despite the fact that

(a) 4 input views (b) 8 input views (c) 9 input views

Fig. 7. Three types of input view configurations for NeRF [21], blue squares
are input views for training and gray squares are views to be inferred.

TABLE III
QUANTITATIVE EVALUATIONS (PSNR) FOR THE SYNTHESIZED VIEWS.

METHOD NERF [21] IS TRAINED WITH DIFFERENT NUMBERS OF VIEWS
(4,8,9, SHOWN IN FIG. 7). WE SHOW IN THE PARENTHESES THE PSNR

AFTER SCENE-WISE FINETUNING FOR OUR METHOD AND MVSNERF [23]

LFs Ours-4 MVSNeRF-4 NeRF-4 NeRF-8 NeRF-9
boxes 33.89 (38.84) 31.10 (35.32) 36.88 39.22 39.30
cotton 50.39 (50.84) 38.14 (47.94) 46.67 47.51 47.74
dino 44.04 (45.56) 26.94 (42.95) 40.29 43.63 43.83

sideboard 32.49 (35.38) 22.52 (34.25) 32.15 36.19 36.88
Average 40.20 (42.66) 29.68 (40.12) 38.99 41.64 41.93

per-scene finetuning can further improve the performance of
MVSNeRF (PSNR in the parentheses), our method likewise
achieves better PSNR after the same finetuning, which proves
the superiority of our method against MVSNeRF.

5) Compression performance analysis: We consider a com-
pression set-up in which the reference views, according to
the configurations of Figure 7(a), are first encoded using the
HEVC-inter coding standard (HM 16.10). The LFVS methods
are then used for recovering the entire light field from the
compressed/decompressed reference views. This LFVS-based
compression pipeline is summarized in Fig. 8, and we use
FPFR [25], NeRF [21], MVSNeRF [23] and our scheme
as the LFVS method. Besides the LFVS-based pipeline, we
also apply deep learning-based video sequence compression
methods (HLVC [52], RLVC [53]) and the classical HEVC
inter coding method to compress light fields. Fig. 9 shows the
obtained PSNR-rate curves with the different LF compression
strategies. Our method achieves better compression efficiency
than other referenced methods, which means that our method



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 8. LF compression pipeline based on LFVS method. We use FPFR [25],
NeRF [21], MVSNeRF [23] and our proposed method as LFVS method in
the pipeline.

Fig. 9. Rate-distortion curves of scenes ‘cotton’ and ‘dino’ using different
LF compression methods. Both methods FPFR [25], MVSNeRF [23] and ours
are tested without per-scene finetuning, while NeRF [21] is trained for the
test scene.

is more suitable for compression applications. Let us note that,
although radiance field-based methods NeRF and MVSNeRF
work well for view synthesis task itself, they either work
poorly without per-scene finetuning (MVSNeRF) or require
a long-time training (NeRF) for the compression task, which
makes them less practical for the compression task.

B. Video Frame Interpolation

Besides angular view synthesis in light field, we also assess
our pipeline for video frame temporal interpolation, using two
datasets:
• The Vimeo90K datatset [49] that contains 3,782 video

triplets with resolution 256×448, covering a large variety
of scenes and actions. We interpolate the intermediate
frames using the two adjacent frames as inputs.

• The Adobe240fps dataset [54] that is a real-world video
set captured with a handheld camera, it is more chal-
lenging than Vimeo90K as it contains more motion
blur. We extracted 777 frame triplets (about 10% of the
total number of frames) with resolution 360 × 640 and
synthesized the intermediate frames.

We compare the quality of the interpolated frames with the one
obtained with state-of-the-art VFI methods, i.e. with MEMC-
Net [11], which merges kernel and flow-based synthesis in its

TABLE IV
QUANTITATIVE EVALUATIONS (PSNR&SSIM) FOR THE SYNTHESIZED

INTERMEDIATE FRAMES. THE BEST PERFORMANCES ARE SHOWN IN BOLD
AND THE SECOND BEST ONES ARE UNDERLINED.

Methods
Vimeo90K [49] Adobe240fps [54]
PSNR SSIM PSNR SSIM

SuperSloMo [4] 30.92 0.932 28.44 0.897
SepConv [10] 33.80 0.956 31.16 0.923

MEMC-Net [11] 34.43 0.963 31.54 0.927
FeFlow [8] 35.09 0.963 31.50 0.925
SMSP [7] 35.51 0.967 31.60 0.927

SMSP* [7] 36.10 0.970 - -
Ours 35.96 0.970 31.72 0.928

pipeline; FeFlow [8], which exploits a flow of features instead
of pixels for motion estimation; and Softmax Splatting (SMSP)
[7], a flow-based framework that employs pixels and features
in the synthesis. For the MEMC-Net and FeFlow methods,
We use the official authors source code and their pre-trained
model. However, as the code and model are not available for
SMSP, we re-implemented this method and trained it using the
Vimeo90K training set following the instructions in the paper.
We could not reproduce the results of the paper, therefore,
we give in Table IV both results, the ones taken from the
paper [7] (noted as SMSP*), and those obtained with our
implementation.

Table IV gives the PSNR and SSIM performances for all
tested methods, we can notice that our proposed architecture,
although originally designed for angular view synthesis in light
field, is well suited for temporal video frame interpolation. It
can generate intermediate frames of a quality that is compa-
rable to the one of the top-rank official SMSP method. The
table shows that the proposed method outperforms state-of-
the-art methods by a large margin. Fig 10 shows interpolated
frames obtained with different methods. Compared with other
methods, our architecture is able to retrieve high quality
frames with subtle details. Let us note that when the input
frames contain some blur, like in the 1st row, the reference
methods may suffer from deformation or may fail to synthesize
intermediate views, while our method is more robust and can
still generate plausible results. Let us note that the proposed
VFI method can be used to compress a video. The approach
can indeed be applied in a similar way as the inter-prediction
method based on deep frame interpolation networks in [55].
For each frame that can be coded with bi-directional inter-
prediction from past and future frames, an additional reference
frame can be provided by interpolating the original reference
frames.

C. Ablation study

In this section, we carry out an ablation study to analyze
the performance gain brought by the new architecture when
compared with [25].

1) Residual convolutional block (RCB): We assess the
performance gain obtained by using the RCB instead of simple
convolutional layers. We consider the PixRNet module and
fix the weights in the FNet module so that the quality of the
synthesized views only depends on the synthesis block. We
compare the three variants shown in Fig 11, where Fig 11(a)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

(a) MEMC-Net [11] (b) FeFlow [8] (c) SMSP [7] Ours GT

Fig. 10. Video frame interpolation results in comparison with (a) MEMC-Net [11], (b) FeFlow [8], (c) SMSP [7]. The upper two rows use frames from [54],
the lower two rows use frames from [49]. We use official outputs of SMSP for the last two rows.

(a) PixRNet in [25] (b) PixRNet using RCBs

(c) PixRNet using CBs

Fig. 11. Three variants for PixRNet, with (a) fundamental architecture used in
[25], (b) PixRNet based on RCB, (c) PixRNet based on CB (without residual
connection).

shows the fundamental architecture adopted in [25], Fig 11(c)
an enhanced architecture with more kernels and layers, which
can also be considered as the non-residual connection version
of Fig 11(b), and where Fig 11(b) is our current PixRNet
architecture based on RCB. Their corresponding learning
curves are compared in Fig 12(a), with all curves have been
obtained using four HCI light field scenes in [48]. One can
notice that adding kernels and layers like in Fig. 11(c) allows
improving the network performance. Residual connections
further ameliorate the synthesis quality.

2) Trainable encoder: Another improvement in our
pipeline is the use of a trainable encoder, instead of a fixed
VGG19 encoder. A lightweight trainable encoder that flexibly
extracts feature maps in cooperation with the synthesis step
effectively accelerate the network convergence. By fixing
weights in the FNet module, we trace the learning curves
of the FeatRNet module using two different encoders (see

Fig. 12(b)). We can note that with a trainable encoder,
the FeatRNet module quickly converges to a high PSNR
value, which means that the extracted features are suitable
for synthesis. While the features extracted with the VGG19
encoder originally designed for the classification task are less
suitable for the reconstruction task, and yields slower network
convergence.

3) Global architecture: Finally, Fig. 12(c) shows that the
training of the proposed architecture, when compared with
FPFR, converges faster. Tables I and II show that this novel
architecture is quite efficient for both light field view synthesis
and video frame temporal interpolation.

VII. CONCLUSION

In this paper, we have presented a learning-based architec-
ture for both angular view synthesis for light field and video
frame temporal interpolation. The proposed scheme employs a
flow estimation network to predict flows between input images.
The synthesis is then conducted in parallel in pixel-based
and feature-based branches followed by a soft mask fusion
to obtain the synthesized view. Compared with the FPFR
solution originally designed for light field view synthesis, the
novel architecture adopts residual convolutional blocks (RCBs)
and a lighter weight trainable encoder that allows improving
both training efficiency and synthesis performance for light
field view synthesis. The architecture is further generalized to
handle video frame temporal interpolation. The effectiveness
of the proposed solution is demonstrated by comparing with
state-of-the-art methods using both light field synthesis and
video interpolation datasets. Experimental results show that
our method tackles well both tasks with high quality results.

REFERENCES

[1] B. Wilburn, N. Joshi, V. Vaish, E. Talvala, E. Antunez, A. Barth,
A. Adams, M. Horowitz, and M. Levoy, “High performance imaging



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Fig. 12. Learning curves of (left) different architectures (PixRNet in [25], PixRNet using RCB, PixRNet using CB); (middle) different encoders (FeatRNet
using VGG19 encoder, and FeatRNet using a trainable encoder); (right) FPFR and our new architecture.

using large camera arrays,” ACM Trans. on Graphics (TOG), vol. 24,
no. 3, pp. 765–776, Jul. 2005.

[2] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan,
“Light field photography with a hand-held plenoptic camera,” Computer
Science Technical Report (CSTR), vol. 2, no. 11, pp. 1–11, 2005.

[3] Z. Liu, R. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame
synthesis using deep voxel flow,” in IEEE Int. Conf. on Computer Vision
(ICCV), 2017, pp. 4463–4471.

[4] H. Jiang, D. Sun, V. Jampani, M. Yang, E. Learned-Miller, and J. Kautz,
“Super slomo: High quality estimation of multiple intermediate frames
for video interpolation,” in IEEE. Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 9000–9008.

[5] W. Bao, W. Lai, C. Ma, X. Zhang, Z. Gao, and M. Yang, “Depth-aware
video frame interpolation,” in IEEE. Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 3703–3712.

[6] S. Niklaus and F. Liu, “Context-aware synthesis for video frame interpo-
lation,” in IEEE. Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 1701–1710.

[7] ——, “Softmax splatting for video frame interpolation,” in IEEE. Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), 2020, pp.
5437–5446.

[8] S. Gui, C. Wang, Q. Chen, and D. Tao, “Featureflow: Robust video
interpolation via structure-to-texture generation,” in IEEE. Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 14 004–
14 013.

[9] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
convolution,” in IEEE. Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 670–679.

[10] ——, “Video frame interpolation via adaptive separable convolution,”
in IEEE Int. Conf. on Computer Vision (ICCV), 2017, pp. 261–270.

[11] W. Bao, W. Lai, X. Zhang, Z. Gao, and M. Yang, “Memc-net: Motion
estimation and motion compensation driven neural network for video
interpolation and enhancement,” IEEE Trans. Pattern Anal. Mach. Intell.
(TPAMI), 2019.

[12] S. Meyer, O. Wang, H. Zimmer, M. Grosse, and A. Sorkine-Hornung,
“Phase-based frame interpolation for video,” in IEEE. Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1410–
1418.

[13] S. Meyer, A. Djelouah, B. McWilliams, A. Sorkine-Hornung, M. Gross,
and C. Schroers, “Phasenet for video frame interpolation,” in IEEE. Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), 2018, pp.
498–507.

[14] N. Kalantari, T. Wang, and R. Ramamoorthi, “Learning-based view
synthesis for light field cameras,” ACM Trans. on Graphics (TOG),
vol. 35, no. 6, pp. 193:1–193:10, 2016.

[15] E. Penner and L. Zhang, “Soft 3D reconstruction for view synthesis,”
ACM Trans. on Graphics (TOG), vol. 36, no. 6, pp. 235:1–235:11, 2017.

[16] B. Mildenhall, P. Srinivasan, R. Ortiz-Cayon, N. Kalantari, R. Ra-
mamoorthi, R. Ng, and A. Kar, “Local light field fusion: Practical
view synthesis with prescriptive sampling guidelines,” ACM Trans. on
Graphics (TOG), vol. 38, no. 4, pp. 1–14, 2019.

[17] G. Wu, Y. Liu, Q. Dai, and T. Chai, “Learning sheared epi structure for
light field reconstruction,” IEEE Trans. Image Process. (TIP), vol. 28,
no. 7, pp. 3261–3273, 2019.

[18] L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light field
reconstruction using sparsity in the continuous fourier domain,” ACM
Trans. on Graphics (TOG), vol. 34, no. 1, p. 12, 2014.

[19] S. Vagharshakyan, R. Bregovic, and A. Gotchev, “Light field reconstruc-
tion using shearlet transform,” IEEE Trans. Pattern Anal. Mach. Intell.
(TPAMI), vol. 40, no. 1, pp. 133–147, 2018.

[20] Y. Wang, F. Liu, Z. Wang, G. Hou, Z. Sun, and T. Tan, “End-to-end
view synthesis for light field imaging with pseudo 4DCNN,” in Eur.
Conf. on Computer Vision (ECCV), 2018, pp. 333–348.

[21] B. Mildenhall, P. Srinivasan, M. Tancik, J. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for
view synthesis,” in Eu. Conf. on Computer Vision (ECCV), 2020, pp.
405–421.

[22] Z. Wang, S. Wu, W. Xie, M. Chen, and V. Prisacariu, “NeRF−−:
Neural radiance fields without known camera parameters,” ArXiv, vol.
abs/2102.07064, 2021.

[23] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su,
“MVSNeRF: Fast generalizable radiance field reconstruction from multi-
view stereo,” in IEEE Int. Conf. on Computer Vision (ICCV), 2021.

[24] J. Chibane, A. Bansal, V. Lazova, and G. Pons-Moll, “Stereo radiance
fields (SRF): Learning view synthesis for sparse views of novel scenes,”
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2021.

[25] J. Shi, X. Jiang, and C. Guillemot, “Learning fused pixel and feature-
based view reconstructions for light fields,” in IEEE. Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2555–
2564.

[26] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph,”
in ACM Trans. on Graphics (TOG), 1996, pp. 43–54.

[27] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis,
“Depth synthesis and local warps for plausible image-based navigation,”
ACM Trans. on Graphics (TOG), vol. 32, no. 3, pp. 1–12, 2013.

[28] Z. Zhang, Y. Liu, and Q. Dai, “Light field from micro-baseline image
pair,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 3800–3809.

[29] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely, “Stereo
magnification: Learning view synthesis using multiplane images,” ACM
Trans. on Graphics (TOG), vol. 37, no. 4, pp. 65:1–65:12, 2018.

[30] J. Flynn, I. Neulander, J. Philbin, and N. Snavely, “Deepstereo: Learning
to predict new views from the world’s imagery,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 5515–
5524.

[31] S. Wanner and B. Goldluecke, “Variational light field analysis for
disparity estimation and super-resolution,” IEEE Trans. Pattern Anal.
Mach. Intell. (TPAMI), vol. 36, no. 3, pp. 606–619, Aug. 2013.

[32] N. Meng, H. So, X. Sun, and E. Lam, “High-dimensional dense residual
convolutional neural network for light field reconstruction,” IEEE Trans.
Pattern Anal. Mach. Intell. (TPAMI), 2019.

[33] D. Sun, X. Yang, M. Liu, and J. Kautz, “PWC-Net: CNNs for optical
flow using pyramid, warping, and cost volume,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 8934–
8943.

[34] J. Choi, J. Park, and I. Kweon, “High-quality frame interpolation via
tridirectional inference,” in IEEE Winter Conf. on App. of Comput. Vis.
(WACV), 2021, pp. 596–604.

[35] S. Niklaus, L. Mai, and O. Wang, “Revisiting adaptive convolutions for
video frame interpolation,” in IEEE Winter Conf. on App. of Comput.
Vis. (WACV), 2021, pp. 1099–1109.

[36] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. 23rd Annu.
Conf. Comput. Graph. Interact. Techn.(CCGIT), 1996, pp. 31–42.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[37] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox, “A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation,” in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 4040–4048.

[38] Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou, and
J. Zhang, “Learning for disparity estimation through feature constancy,”
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 2811–2820.

[39] X. Jiang, J. Shi, and C. Guillemot, “A learning based depth estimation
framework for 4D densely and sparsely sampled light fields,” in IEEE
Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2019,
pp. 2257–2261.

[40] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu,
“Spatial transformer networks,” in Advances in Neural Information
Processing Systems (NIPS), 2015, pp. 2017–2025.

[41] S. Tulsiani, R. Tucker, and N. Snavely, “Layer-structured 3D scene
inference via view synthesis,” in Eur. Conf. on Computer Vision (ECCV),
2018, pp. 302–317.

[42] E. Ilg, T. Saikia, M. Keuper, and T. Brox, “Occlusions, motion and depth
boundaries with a generic network for disparity, optical flow or scene
flow estimation,” in Eu. Conf. on Computer Vision (ECCV), 2018.

[43] D. Butler, J. Wulff, and M. Black, “A naturalistic open source movie
for optical flow evaluation,” in Eu. Conf. on Computer Vision (ECCV),
2012, pp. 611–625.

[44] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. V. D. Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” in IEEE Int. Conf. on Computer
Vision (ICCV), 2015.

[45] J. Shi, X. Jiang, and C. Guillemot, “A framework for learning depth
from a flexible subset of dense and sparse light field views,” IEEE Trans.
Image Process. (TIP), vol. 28, no. 12, pp. 5867–5880, Dec 2019.

[46] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool, M. Gross, and
A. Sorkine-Hornung, “A benchmark dataset and evaluation methodology
for video object segmentation,” in IEEE. Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2016.

[47] P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam, “Optimizing the
latent space of generative networks,” arXiv preprint arXiv:1707.05776,
2017.

[48] K. Honauer, O. Johannsen, D. Kondermann, and B. Goldluecke, “A
dataset and evaluation methodology for depth estimation on 4D light
fields,” in Asian Conf. on Computer Vision (ACCV), 2016, pp. 19–34.

[49] T. Xue, B. Chen, J. Wu, D. Wei, and W. Freeman, “Video enhancement
with task-oriented flow,” Int. J. Computer Vision (IJCV), vol. 127, no. 8,
pp. 1106–1125, 2019.

[50] S. Wanner, S. Meister, and B. Goldluecke, “Datasets and benchmarks
for densely sampled 4D light fields,” in Conf. on Vision, Modeling &
Visualization (VMV), 2013, pp. 225–226.

[51] M. L. Pendu, C. Guillemot, and A. Smolic, “A fourier disparity layer
representation for light fields,” IEEE Trans. Image Process. (TIP),
vol. 28, no. 11, pp. 5740–5753, Nov 2019.

[52] R. Yang, F. Mentzer, L. Van Gool, and R. Timofte, “Learning for video
compression with hierarchical quality and recurrent enhancement,” in
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2020.

[53] ——, “Learning for video compression with recurrent auto-encoder
and recurrent probability model,” IEEE J. Sel. Topics Signal Process.
(JSTSP), vol. 15, no. 2, pp. 388–401, 2021.

[54] S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and O. Wang,
“Deep video deblurring for hand-held cameras,” in IEEE. Int. Conf.
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1279–
1288.

[55] J. Bégaint, F. Galpin, P. Guillotel, and C. Guillemot, “Deep frame inter-
polation for video compression,” in IEEE Data Compression Conference
(DCC), Mar. 2019, pp. 1–10.


	Introduction
	Related work
	Light field view synthesis
	Depth-dependent schemes
	Depth-independent schemes

	Video frame interpolation
	Flow-based interpolation
	Flow-free interpolation


	Background and notations
	Methodology
	Architecture overview
	Flow estimation
	Disparity maps
	Bidirectional optical flows

	View warping and Fusion
	Image forward warping
	Finetuning the flow estimation module
	Pixel and feature-based reconstruction


	Implementation details
	Training data preparation
	Data augmentation
	Training schedule

	Experimental results
	Light field view synthesis
	Synthetic LFs
	Real-world LFs
	View extrapolation in LFs
	Comparative evaluation with Neural Radiance Fields
	Compression performance analysis

	Video Frame Interpolation
	Ablation study
	Residual convolutional block (RCB)
	Trainable encoder
	Global architecture


	Conclusion
	References

