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Abstract. Hyperspectral image is very useful for many computer vision
tasks, however it is often difficult to obtain high-resolution hyperspectral
images using existing hyperspectral imaging techniques. In this paper,
we propose a deep residual convolutional neural network to increase the
spatial resolution of hyperspectral image. Our network consists of 18 con-
volution layers and requires only one low-resolution hyperspectral image
as input. The super-resolution is achieved by minimizing the difference
between the estimated image and the ground truth high resolution image.
Besides the mean square error between these two images, we introduce a
loss function which calculates the angle between the estimated spectrum
vector and the ground truth one to maintain the correctness of spec-
tral reconstruction. In experiments on two public datasets we show that
the proposed network delivers improved hyperspectral super-resolution
result than several state-of-the-art methods.
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1 Introduction

Hyperspectral imaging acquires spectral representation of a scene through cap-
turing a large number of continuous and narrow spectral bands. The spectral
characteristics of the hyperspectral image have been proven useful for many vi-
sual tasks, including tracking [15], segmentation [19], face recognition [16] and
document analysis [10]. However, in each narrow band only a small fraction of
the overall radiant energy reaches the sensor. To maintain a good signal-to-noise
ratio, the imaging system increases the pixel size on the chip and uses long expo-
sures, which however, results in low spatial resolution of hyperspectral images.
Recently, several matrix factorization based approaches [9,13,14,1,7] have
been proposed for hyperspectral image super-resolution. All these methods need



auxiliary data of RGB image of the same scene, and these methods cannot be
directly applied to hyperspectral images which are normally obtained beyond
the visible range.

Convolutional neural networks have recently been intensively explored due
to their powerful learning capability. Motivated by this property, we propose
a deep convolutional neural network method which learns an end-to-end map-
ping between low- and high-resolution images. This network does not need any
high resolution RGB image to provide additional information. Furthermore, Hy-
perspectral image is a data-cube and has obvious physical meaning in spec-
tral dimension. Traditional deep networks were developed for super-resolution
of grayscale images, therefore, can not be directly applied to hyperspectral image.
To address this problem, we introduce a loss function which calculates the angle
between the estimated spectrum vector and the ground truth one to maintain
the correctness of spectral reconstruction. When the network comes deeper, the
vanishing gradients problem are significantly critical, so we use residual-learning
and additional supervised output to solve this problem.

2 Related Work

In this section, we review relevant hyperspectral image super-resolution methods
and deep learning methods for grayscale image super-resolution.

2.1 Hyperspectral Image Super-resolution

In early years, Pan-sharpening techniques [2,17] were introduced to merge a
high resolution panchromatic (single band) image and a low resolution hyper-
spectral image to reconstruct a high resolution hyperspectral image. In addition,
filtering techniques [8, 12] were proposed which used high resolution edges from
other images of the same scene to guide filtering process. These methods indeed
improve the spatial resolution of hyperspectral images, but the reconstructed
high resolution images sometimes contain spectral distortions.

More recently, matrix factorization based techniques for hyperspectral image
super-resolution have been proposed. Kawakami et al. [9] used matrix factor-
ization to firstly learn a series of spectral bases. Then the sparse coefficients of
these spectral bases were calculated, which best reconstructed the corresponding
high resolution RGB signals. At last, they used these coefficients and the spec-
tral bases to reconstruct the high resolution hyperspectral image. This work was
extended by Akhtar et al. [1] who imposed a non-negativity constraint over the
solution space. Kwon et al. [13] upsampled the image guided by high resolution
RGB images of the same scene and then utilized sparse coding to locally refine
the upsampled hyperspectral image through dictionary substitution. Lanaras et
al. [14] proposed a method to perform hyperspectral super-resolution by jointly
unmixing the RGB and hyperspectral images into the pure reflectance spectra
of the observed materials and the associated mixing coefficients. To improve
the accuracy of non-negative sparse coding, a clustering-based structured sparse



coding method [7] was introduced to exploit the spatial correlation among the
learned sparse codes. All these matrix factorization based methods need high
resolution RGB images to provide extra information.

2.2 Deep Learning Methods on Grayscale Images

During the past three years, deep learning methods [4, 20, 5,6, 18, 11] have been
used for single-band grayscale image super-resolution and demonstrated great
success. To the best of our knowledge, however, deep learning has not been
introduced for hyperspectral image super-resolution. A hyperspectral image is
not simply a concatenation of several single-band images because of its obvious
physical meaning in the spectral dimension. So it is necessary to develop suitable
networks for hyperspectral image.
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Fig. 1. The structure of the proposed deep residual convolutional neural network.

3 Deep Residual Convolutional Neural Network

In this section, we describe the proposed deep residual convolutional neural
network and the new loss function to cope with spectral dimension of the image
data.

3.1 Deep Residual Convolutional Neural Network

We propose a deep residual convolutional neural network to increase the resolu-
tion of hyperspectral image. The structure of this network is outlined in Fig. 1.
We cascade 6 sub-networks which have the same structure. Each sub-network



is a residual convolutional neural network. The input of the sub-network is low-
resolution hyperspectral image and the output is high-resolution hyperspectral
image. Meanwhile, the output of each sub-network is then regarded as the input
of the next sub-network. Each sub-network has three types of filter: ¢x fi X f1 xnq
for the first layer, n1 X fo X fo X no for the second layer, and ny X f3 X f3 X ¢
for the last layer. In this paper, we set f1 =9, fo = 3, f3 = 5,17 = 96, no = 64,
where f, means the size of the convolutional kernels and n, means the number
of feature maps, ¢ means the number of original image channels. The first layer
takes the input image and represents it as a set of feature maps (n; channels).
The second layer is used to dig deeper features. At last, the third layer is used
to transform the features (ne channels) back into the original image space (c
channels).

When the network comes deeper, the vanishing gradients problem can be crit-
ical. Inspired by [11], we use residual-learning to solve this problem. As shown
in Fig. 1, we get the residual image after the third layer. The final output of the
sub-network is the sum of residual image and the input of this sub-network. It
is worth mentioning that our network is a progressive structure which gradually
learns the residual components. Back propagation goes through a small number
of layers if there is only one supervising signal at the end of the network. So we
add supervised output at the end of the third sub-networks to make sure the
weights of the first three sub-networks can be updated efficiently. The optimal
weights are learned by automatically minimizing the loss function of both super-
vised output and the final output. We will define the loss function in the next
subsection.

We have not used any pooling layers or deconvolution layers. The whole
network takes interpolated low-resolution image (to the size of high resolution
image) as input and predicts the missed high frequency parts. Although there
is no pooling layer, the size of the feature map gets reduced every time the con-
volution operations are applied. So we use zero-padding before each convolution
operation to make sure that all feature maps have the same size.

3.2 Loss Function

We now describe the loss function of our network. Given a training dataset
{z® yIN where 2 or () means it is the iy, image in the dataset and N is
the total number of images, our goal is to learn a model f that predicts values
g = f(x), where x is a low-resolution hyperspectral image (after interpolation),
y is the target high-resolution hyperspectral image,

Mean squared error %Hy — §||? is widely used in least-squares regression set-
ting. This favors high Peak Signal-to-Noise Ratio (PSNR) by minimizing the
first loss function which is defined as
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Considered that reflectance spectrum is the most important information in
a hyperspectral image, we add a new loss function which calculates the angle
between the estimated spectrum vector and the ground truth one. Let N, be
the number of spectrum vector of hyperspectral image, y; be the jth spectral
vector. We have the second loss function
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The final loss function is the linear combination of these two loss functions
L= O[ll + (1 - CY)ZQ (3)

where a = 0.5 in our work.

We implement our model using the TensorFlow framework. Training is car-
ried out by minimizing the loss function using mini-batch gradient descent based
on back-propagation. After training, low-resolution hyperspectral image is used
as the input to test out network, and we record the super-resolution results for
comparison purpose.

4 Experiment

We used two publicly available hyperspectral datasets: CAVE [21] and Har-
vard [3] in the experiments. The first dataset includes 32 indoor images. The spa-
tial resolution of the images is 512 x 512. Each image has 31 spectral bands with
10nm spectral resolution, ranging from 400nm to 700nm. The second dataset has
50 indoor and outdoor images recorded under daylight illumination and 27 im-
ages under artificial or mixed illumination. The spatial dimension of the images
is 1392 x 1040 pixels, with 31 spectral bands covering the visible spectrum from
420nm to 720nm at 10nm spectral resolution. For convenience, we used only the
top left 1024 x 1024 pixels of each image to make the spatial dimension of the
ground truth a multiple of 32. Fig. 2 shows some representative images from
these CAVE datasets. Fig. 3 shows some representatives image from Harvard
datasets.

4.1 Implementation Detail

In our experiments, the original images served as the ground truth. To ob-
tain low-resolution hyperspectral images, we blurred the original images using
a Gaussian kernel (standard deviation=3), downsampled it by a scale factor
(=2,3,4) and then upscaled it to the desired size using bicubic interpolation
with a scale factor (=2,3,4). These images have the same size with ground truth
but lose the high frequency components, so we still call them low-resolution
images.
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Fig. 2. Selected examples of hyperspectral image from CAVE database.
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Fig. 3. Selected examples of hyperspectral image from Harvard database.

The testing set included 7 images from the CAVE dataset (Balloons, Chart
and stuffed toy, Faces, Flowers, Jelly beans, Real and fake apples, and Oil paint-
ing) and 10 images from the Harvard dataset (Imgl, Img2, Img3, Img4, Img5,
Img6, Imgal, Imga2, Imga3 and Imga4). The rest 92 images were used for train-
ing. For testing, we used the whole interpolated low-resolution images as the
input and compared the output with the corresponding ground truth. For train-
ing, we used 32 x 32 x 31 cubic-patches randomly cropped from the training
images. In total, 30,000 cubic-patches were generated from the training set.

We cascaded 6 sub-networks and added supervised output to the end of
the third one. In our experiments, adding more layers does not bring obvious
improvement to the result. So we finally used 18 convolution layers. After each
convolution layer, we used ReLLU as the nonlinear mapping function. For training,
we used mini-batch gradient descent based on back propagation and the batch
size was set to 128. We set the momentum parameter to 0.9 and the weight decay
to 0.0001. Learning rate was initially set to 0.01 and then decreased by a factor
of 10 if the validation error did not decrease for 3 epochs. If the learning rate
was less than 1076, the procedure was terminated. We trained three independent
networks for factor= 2, 3, 4. It took 2 days to train one network on a GTX 980 Ti,
but it took only 4.2 second to process a testing hyperspectral image on average.

4.2 Experimental Results

All hyperspectral image super-resolution methods reviewed in section 2 used
extra high resolution image to help the estimation process, so it is unfair to
directly compare our method with these methods. We used another comparing
strategy. Firstly, we set bicubic interpolation method as the baseline to evaluate
the learning ability of our network. Then we compared our method with three
single-band image super-resolution neural networks [4,18,11] to show that our
network is more suitable for hyperspectral images. We considered hyperspectral



images as a series of independent gray-level images and used these images to train
and test the neural networks. To be fair, all methods used the same training set
and we followed the network settings in their original paper for each method
being compared.

In this work, we used Peak Signal-to-Noise Ratio (PSNR) and spectral an-
gle mapper(SAM) [22] as the evaluation measurements. Peak Signal-to-Noise
Ratio (PSNR) is used as the primary evaluation measure for the estimated high-
resolution hyperspectral image Z and the ground truth image Z in an n-bit
intensity range. Let B be the number of bands of hyperspectral image and N,,
be the number of spectral vector of hyperspectral image, PSNR is calculated by

1
PSNR =10 xlogyy | —————— | . (4)
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To evaluate the correctness of spectral responses, we used the spectral angle
mapper (SAM) [22], which is defined as the angle between the estimated spec-
trum vector Z; and the ground truth spectrum vector z;, averaged over the whole
image. The SAM is given in degrees
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Table 1 and Table 2 show the average PSNR and SAM values on the two
datasets. Our approach achieves higher PSNR than all four methods. Notably,
in terms of SAM, our method is clearly the best among all the methods. Con-
sidering hyperspectral image as a series of gray-level images instead of a whole
data-cube always leads to spectral distortion. The loss function proposed in this
paper solves this problem well. To complement the tabulated results, we also
visualize the experimental results in Fig. 4 and Fig. 5. Due to space limita-
tion, we only show one spectral image at 550nm. The fourth column of Fig. 4
and Fig. 5 shows the absolute difference between the estimated high resolution
hyperspectral image and the ground truth. It shows that with our method, a
significantly larger number of pixels have very small reconstruction errors below
1 in grayscale value.

5 Conclusion

We have introduced a deep residual convolutional neural network for hyperspec-
tral image super-resolution. The input to this network is a single low-resolution
hyperspectral image and no extra RGB or other high-resolution images are
needed. A new loss function is used to make the framework more suitable for hy-
perspectral image. Residual-learning and additional supervised output are used
to solve the vanishing gradients problem. Experimental results show that the
proposed method performs well under both PSNR and SAM measurements.



Table 1. Results on the CAVE dataset

CAVE Database
Method PSNR SAM
Scale x2 x3 x4 x2 x3 x4
Bicubic 31.73 31.58 30.14 6.00 5.99 6.36
Dongl[4] 36.28 35.10 34.67 4.23 4.20 4.52
Shi[18] 36.65 35.39 34.91 4.12 4.16 4.43
Kim[11] 36.98 35.87 35.02 4.35 4.21 4.39
Ours 38.24 37.86 37.14 1.56 1.73 1.85
Table 2. Results on the Harvard dataset
Harvard Database
Method PSNR SAM
Scale x2 x3 x4 X2 x3 x4
Bicubic 36.67 36.52 36.39 3.09 3.10 3.17
Dong[4] 38.98 38.41 38.10 2.57 2.61 2.74
Shi[18] 39.35 38.63 38.29 2.55 2.57 2.61
Kim[11] 39.54 39.02 38.59 2.46 2.49 2.53
Ours 40.13 39.68 39.14 1.14 1.21 1.35
Low Resolution Ground Truth High Resolution Absolute Difference

Fig. 4. Spectral images at 550nm for sample CAVE [21] data. Estimated high resolution
images are shown along with their absolute difference with the ground truth. The scale
factor is 3.
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Fig. 5. Spectral images at 550nm for sample Harvard [3] data. Estimated high resolu-
tion images are shown along with their absolute difference with the ground truth. The
scale factor is 3.
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