
Deep Roots:

Improving CNN Efficiency with Hierarchical Filter Groups

Yani Ioannou1 Duncan Robertson2 Roberto Cipolla1

Antonio Criminisi2

1University of Cambridge, 2Microsoft Research

Abstract

We propose a new method for creating computation-

ally efficient and compact convolutional neural networks

(CNNs) using a novel sparse connection structure that re-

sembles a tree root. This allows a significant reduction in

computational cost and number of parameters compared

to state-of-the-art deep CNNs, without compromising ac-

curacy, by exploiting the sparsity of inter-layer filter de-

pendencies. We validate our approach by using it to train

more efficient variants of state-of-the-art CNN architec-

tures, evaluated on the CIFAR10 and ILSVRC datasets. Our

results show similar or higher accuracy than the baseline

architectures with much less computation, as measured by

CPU and GPU timings. For example, for ResNet 50, our

model has 40% fewer parameters, 45% fewer floating point

operations, and is 31% (12%) faster on a CPU (GPU).

For the deeper ResNet 200 our model has 48% fewer pa-

rameters and 27% fewer floating point operations, while

maintaining state-of-the-art accuracy. For GoogLeNet, our

model has 7% fewer parameters and is 21% (16%) faster

on a CPU (GPU).

1. Introduction

This paper describes a new method for creating compu-

tationally efficient and compact convolutional neural net-

works (CNNs) using a novel sparse connection structure

that resembles a tree root. This allows a significant reduc-

tion in computational cost and number of parameters com-

pared to state-of-the-art deep CNNs without compromising

accuracy.

It has been shown that a large proportion of the learned

weights in deep networks are redundant [1], a property that

has been widely exploited to make neural networks smaller

and more computationally efficient [2], [3]). It is unsurpris-

ing then that regularization is a critical part of training such

networks using large datasets [4]. Without regularization

deep networks are susceptible to over-fitting. Regulariza-

tion may be achieved by weight decay or dropout [5]. Fur-

thermore, a carefully designed sparse network connection

structure can also have a regularizing effect. Convolutional

Neural Networks (CNNs) [6], [7] embody this idea, using a

sparse convolutional connection structure to exploit the lo-

cality of natural image structure. In consequence, they are

easier to train.

With few exceptions, state-of-the-art CNNs for image

recognition are largely monolithic, with each filter operat-

ing on the feature maps of all filters on a previous layer. In-

terestingly, this is in stark contrast to what we understand of

biological neural networks, where we see “highly evolved

arrangements of smaller, specialized networks which are in-

terconnected in very specific ways” [8].

Recently, learning a low-rank basis for filters was found

to improve generalization while reducing the computational

complexity and model size of a CNN with only full rank

filters [9]. However, this work addressed only the spatial

extents of the convolutional filters (i.e. h and w in Fig. 1a).

In this work we will show that a similar idea can be ap-

plied to the channel extents – i.e. filter inter-connectivity –

by using filter groups [4]. We show that simple alterations

to state-of-the-art CNN architectures can drastically reduce

computational cost and model size without compromising

accuracy.

2. Related Work

Most previous work on reducing the computational com-

plexity of CNNs has focused on approximating convolu-

tional filters in the spatial (as opposed to the channel) do-

main, either by using low-rank approximations [9]–[13], or

Fourier transform based convolution [14], [15]. More gen-

eral methods have used reduced precision number repre-

sentations [16] or compression of previously trained mod-

els [17], [18]. Here we explore methods that reduce the

computational impact of the large number of filter channels

within state-of-the art networks. Specifically, we consider

decreasing the number of incoming connections to nodes.

1231



c
2
filters

h
1 w

1

c
1

…

c
1

H

W
c

2H2

W2

H

W

ReLU

(a) Convolution.

c
2
filters

h
1 w

1

c
1

H

W
c

2H2

W2

H

W

× ൗc2 g

ൗc1 g

ൗc2 g ×
ReLU

(b) Convolution with filter groups.

Figure 1: Filter Groups. (a) Convolutional filters (yellow)

typically have the same channel dimension c1 as the input

feature maps (gray) on which they operate. However, (b)

with filter grouping, g independent groups of c2/g filters

operate on a fraction c1/g of the input feature map channels,

reducing filter dimensions from h×w×c1 to h×w×c1/g.

This change does not affect the dimensions of the input and

output feature maps but significantly reduces computational

complexity and the number of model parameters.

0.6 0.8 1 1.2
·109

18%

19%

20%

2 groups

no groups
4 groups

Model Parameters (# floats)

T
o

p
-5

V
al

.
E

rr
o

r

Figure 2: AlexNet Filter Groups. Model Parameters vs.

top-5 error for variants of the AlexNet model on ILSVRC

image classification dataset. Models with moderate num-

bers of filter groups have far fewer parameters, yet surpris-

ingly maintain comparable error.

AlexNet Filter Groups. Amongst the seminal contribu-

tions made by Krizhevsky, Sutskever, and Hinton [4] is the

use of ‘filter groups’ in the convolutional layers of a CNN

(see Fig. 1). While their use of filter groups was necessi-

tated by the practical need to sub-divide the work of train-

ing a large network across multiple GPUs, the side effects

are somewhat surprising. Specifically, the authors observe

that independent filter groups learn a separation of respon-

sibility (colour features vs. texture features) that is consis-

tent over different random initializations. Also surprising,

and not explicitly stated in [4], is the fact that the AlexNet

network has approximately 57% fewer connection weights

than the corresponding network without filter groups. This

is due to the reduction in the input channel dimension of the

grouped convolution filters (see Fig. 2). Despite the large

difference in the number of parameters between the mod-

els, both achieve comparable accuracy on ILSVRC – in fact

the smaller grouped network gets ≈ 1% lower top-5 valida-

tion error. This paper builds upon these findings and extends

them to state-of-the-art networks.

Low-dimensional Embeddings. Lin, Chen, and Yan [19]

proposed a method to reduce the dimensionality of con-

volutional feature maps. By using relatively cheap ‘1×1’

convolutional layers (i.e. layers comprising d filters of size

1 × 1 × c, where d < c), they learn to map feature maps

into lower-dimensional spaces, i.e. to new feature maps

with fewer channels. Subsequent spatial filters operating on

this lower dimensional input space require significantly less

computation. This method is used in most state of the art

networks for image classification to reduce computation [2],

[20]. Our method is complementary.

GoogLeNet. In contrast to much other work, Szegedy,

Liu, Jia, et al. [2] propose a CNN architecture that is highly

optimized for computational efficiency. GoogLeNet uses,

as a basic building block, a mixture of low-dimensional

embeddings [19] and heterogeneously sized spatial filters

– collectively an ‘inception’ module. There are two dis-

tinct forms of convolutional layers in the inception mod-

ule, low-dimensional embeddings (1×1) and spatial (3×3,

5×5). GoogLeNet keeps large, expensive spatial convolu-

tions (i.e. 5×5) to a minimum by using few of these filters,

using more 3×3 convolutions, and even more 1×1 filters.

The motivation is that most of the convolutional filters re-

spond to localized patterns in a small receptive field, with

few requiring a larger receptive field. The number of filters

in each successive inception module increases slowly with

decreasing feature map size, in order to maintain computa-

tional performance. GoogLeNet is by far the most efficient

state-of-the-art network for ILSVRC, achieving near state-

of-the-art accuracy with the lowest computation/model size.

However, we will show that even such an efficient and opti-

mized network architecture benefits from our method.

Low-Rank Approximations. Various authors have sug-

gested approximating learned convolutional filters using

tensor decomposition [11], [13], [18]. For example, Jader-

berg, Vedaldi, and Zisserman [11] propose approximating

the convolutional filters in a trained network with represen-

tations that are low-rank both in the spatial and the channel

domains. This approach significantly decreases computa-

tional complexity, albeit at the expense of a small amount

of accuracy. In this paper we are not approximating an ex-

isting model’s weights but creating a new network architec-

1232



1

W

H

c

m filters

H

W

…

m
d

H

W

d filters

c
w

1
m1

* *

…

1

h

…

c

Figure 3: Learning a (Spatial) Basis for Filters. Learn-

ing a linear combination of mostly small, heterogeneously

sized spatial filters [9]. Note that all filters operate on all c
channels of the input feature map.

ture with explicit structural sparsity, which is then trained

from scratch.

Learning a Basis for Filters Our approach is connected

with that of Ioannou, Robertson, Shotton, et al. [9] who

showed that replacing 3×3×c filters with linear combi-

nations of filters with smaller spatial extent (e.g. 1×3×c,
3×1×c filters, see Fig. 3) could reduce the model size and

computational complexity of state-of-the-art CNNs, while

maintaining or even increasing accuracy. However, that

work did not address the channel extent of the filters.

3. Root Architectures

In this section we present the main contribution of our

work: the use of novel sparsely connected architectures re-

sembling tree roots – to decrease computational complexity

and model size compared to state-of-the-art deep networks

for image recognition.

Learning a Basis for Filter Dependencies It is unlikely

that every filter (or neuron) in a deep neural network needs

to depend on the output of all the filters in the previous layer.

In fact, reducing filter co-dependence in deep networks has

been shown to benefit generalization. For example, Hin-

ton, Srivastava, Krizhevsky, et al. [5] introduced dropout for

regularization of deep networks. When training a network

layer with dropout, a random subset of neurons is excluded

from both the forward and backward pass for each mini-

batch. Furthermore, Cogswell, Ahmed, Girshick, et al. [21]

observe a correlation between the covariance of hidden unit

activations and overfitting. To explicitly reduce the covari-

ance of hidden activations, they train networks with a loss

function, based on the covariance matrix of the activations

in a hidden layer.

Instead of using a modified loss, regularization penalty,

or randomized network connectivity during training to pre-

vent co-adaption of features, we take a much more direct

approach. We use filter groups (see Fig. 1) to force the net-

work to learn filters with only limited dependence on previ-

ous layers. Each of the filters in the filter groups is smaller

c
2
filters

…

c
2

1

h
1 w

1

c
1

…

c
1

H

W
c

2
c

3

H

WH2

W2

H

W

ReLU

c
3
filters

1

ReLU

(a) Convolution with d filters of shape h× w × c.

c
2
filters

…

1

h
1 w

1

c
1

H

W
c

2
c

3

H

WH2

W2

H

W

× ൗc2 g

ൗc1 g
ReLU

c
2

ൗc2 g ×

c
3
filters

1

ReLU

(b) Root-2 Module: Convolution with d filters in g = 2 filter

groups, of shape h× w × c/2.

c
2
filters

…

c
3
filters

1

1
h

1 w
1

c
1

H

W
c

2
c

3

H

WH2

W2

H

W

× ൗc2 g

ൗc2 g ×
ReLU

c
2

× ൗc2 g

ൗc1 g

ൗc2 g ×

ReLU

(c) Root-4 Module: Convolution with d filters in g = 4 filter

groups, of shape h× w × c/4.

Figure 4: Root Modules. Root modules (b), (c) compared

to a typical set of convolutional layers (a) found in ResNet

and other modern architectures. Grey blocks represent the

feature maps over which a layer’s filters operate, while col-

ored blocks represent the filters of each layer.

in the channel extent, since it operates on only a subset of

the channels of the input feature map.

This reduced connectivity also reduces computational

complexity and model size since the size of filters in fil-

ter groups are reduced drastically, as is evident in Fig. 4.

Unlike methods for increasing the efficiency of deep net-

works by approximating pre-trained existing networks (see

§2), our models are trained from random initialization us-

ing stochastic gradient descent. This means that our method

can also speed up training and, since we are not merely ap-

proximating an existing model’s weights, the accuracy of

the existing model is not an upper bound on accuracy of the

modified model.

Root Module The basic element of our network architec-

ture, a root module, is shown in Fig. 4. A root module has

a given number of filter groups, the more filter groups, the

fewer the number of connections to the previous layer’s out-

puts. Each spatial convolutional layer is followed by a low-

dimensional embedding (1×1 convolution). Like in [9], this

configuration learns a linear combination of the basis filters

(filter groups), implicitly representing a filter of full channel

depth, but with limited filter dependence.

1233



Table 1: Network-in-Network. Filter groups in each con-

volutional layer.

Model conv1 conv2 conv3

a b c a b c a b c

5×5 1×1 1×1 5×5 1×1 1×1 3×3 1×1 1×1

Orig. 1 1 1 1 1 1 1 1 1

root-2 1 1 1 2 1 1 1 1 1

root-4 1 1 1 4 1 1 2 1 1

root-8 1 1 1 8 1 1 4 1 1

root-16 1 1 1 16 1 1 8 1 1

Table 2: Network-in-Network CIFAR10

Model FLOPS

×10
8

Param.

×10
5

Accuracy CPU

(ms)

GPU

(ms)

Orig. 2.22 9.67 0.9211 39.0 0.623

root-2 1.64 7.37 0.9209 31.2 0.551
root-4 1.23 4.55 0.9202 27.6 0.480
root-8 1.03 3.15 0.9215 24.4 0.482
root-16 0.93 2.45 0.9167 23.0 0.475

4. Results

Here we present image classification results obtained by

replacing spatial convolutional layers within existing state-

of-the-art network architectures with root modules (de-

scribed in §3) .

4.1. Improving Network in Network on CIFAR­10

Network in Network (NiN) [19] is a near state-of-the-

art network for CIFAR-10 [22]. It is composed of 3 spatial

(5×5, 3×3) convolutional layers with a large number of fil-

ters (192), interspersed with pairs of low-dimensional em-

bedding (1×1) layers. As a baseline, we replicated the stan-

dard NiN network architecture as described by Lin, Chen,

and Yan [19] but used state-of-the-art training methods.

We trained using random 32×32 cropped and mirrored im-

ages from 4-pixel zero-padded mean-subtracted images, as

in [20], [23]. We also used the initialization of He, Zhang,

Ren, et al. [24] and batch normalization [25]. With this con-

figuration, ZCA whitening was not required to reproduce

validation accuracies obtained in [19]. We also did not use

dropout, having found it to have little effect, presumably

due to our use of batch normalization, as suggested by Ioffe

and Szegedy [25].

To assess the efficacy of our method, we replaced the

spatial convolutional layers of the original NiN network

with root modules (as described in §3). We preserved the

original number of filters per layer but subdivided them into

groups as shown in Table 1. We considered the first of the

0.2 0.4 0.6 0.8 1.0
·106

7.8%

8.0%

8.2%

8.4%

8.6%

8.8%

·10−2

2
4

8

16

2

4

816

24
8

16

Model Parameters

E
rr

o
r

NiN Root Tree Column

1.0 1.2 1.4 1.6 1.8 2.0 2.2
·108

7.8%

8.0%

8.2%

8.4%

8.6%

8.8%

·10−2

2
4

8

16

2

4

816

24
8

16

FLOPS (Multiply-Add)

E
rr

o
r

Figure 5: Network-in-Network CIFAR10 Results. Spa-

tial filters (3×3, 5×5) are grouped hierarchically. The best

models are closest to the origin. For the standard network,

the mean and standard deviation (error bars) are shown over

5 different random initializations.

pair of existing 1×1 layers to be part of our root modules.

We did not group filters in the first convolutional layer –

since it operates on the three-channel image space, it is of

limited computational impact compared to other layers. Re-

sults are shown in Table 2 and Fig. 5 for various network ar-

chitectures1. Compared to the baseline architecture, the root

variants achieve a significant reduction in computation and

model size without a significant reduction in accuracy. For

example, the root-8 architecture gives equivalent accuracy

with only 46% of the floating point operations (FLOPS),

33% of the model parameters of the original network, and

approximately 37% and 23% faster CPU and GPU timings

(see §5 for an explanation of the GPU timing disparity).

Figure 6 shows the inter-layer correlation between the

adjacent filter layers conv2c and conv3a in the network

architectures outlined in Table 1 as evaluated on the CIFAR

test set. The block-diagonalization enforced by the filter

1Here (and subsequently unless stated otherwise) timings are per image

for a forward pass computed on a large batch. Networks were implemented

using Caffe (with CuDNN and MKL) and run on an Nvidia Titan Z GPU

and 2 10-core Intel Xeon E5-2680 v2 CPUs.

1234



0 192

1
9

2

conv3a

c
o
n
v
2
c

(a) Standard

0 192

1
9

2

conv3a

c
o
n
v
2
c

(b) Root-4: 2 filter groups

0 192

1
9

2

conv3a

c
o
n
v
2
c

(c) Root-8: 4 filter groups

0 192

1
9

2

conv3a

c
o
n
v
2
c

(d) Root-32: 16 filter groups

Figure 6: Inter-layer Filter Correlation. The block-

diagonal sparsity learned by a root-module is visible in the

correlation of filters on layers conv3a and conv2c in the

NiN network.

group structure (as illustrated in Fig. 1) is visible, more so

with larger number of filter groups. This shows that the net-

work learns an organization of filters such that the sparsely

distributed strong filter relations, visible in 6a as brighter

pixels, are grouped into a denser block-diagonal structure,

leaving a visibly darker, low-correlated background. See

§A.2 for more images, and an explanation of their deriva-

tion.

4.2. Grouping Degree with Network Depth

An interesting question concerns how the degree of

grouping in our root modules should be varied as a func-

tion of depth in the network. For the NiN-like architectures

described earlier, we might consider having the degree of

grouping: (1) decrease with depth after the first convolu-

tional layer, e.g. 1–8–4 (‘root’); (2) remain constant with

depth after the first convolutional layer, e.g. 1–4–4 (‘col-

umn’); or (3) increase with depth, e.g. 1–4–8 (‘tree’).

To determine which approach is best, we created variants

of the NiN architecture with different degrees of grouping

per layer. Results are shown in Fig. 5 (numerical results are

included in §A.1). The results show that the so-called root

topology (illustrated in Fig. 7) gives the best performance,

Table 3: ResNet 50. Filter groups in each conv. layer.

Model conv1 res2{a–c} res3{a–d} res4{a–f} res5{a–c}
7×7 1×1 3×3 1×1 3×3 1×1 3×3 1×1 3×3

Orig. 1 1 1 1 1 1 1 1 1

root-2 1 1 2 1 1 1 1 1 1

root-4 1 1 4 1 2 1 1 1 1

root-8 1 1 8 1 4 1 2 1 1

root-16 1 1 16 1 8 1 4 1 2

root-32 1 1 32 1 16 1 8 1 4

root-64 1 1 64 1 32 1 16 1 8

providing the smallest reduction in accuracy for a given re-

duction in model size and computational complexity. Sim-

ilar experiments with deeper network architectures have

delivered similar results and so we have reported results

for root topologies. This aligns with the intuition of deep

networks for image recognition subsuming the deformable

parts model. If we assume that filter responses identify parts

(or more elemental features), then there should be more fil-

ter dependence with depth, as more parts (filter responses)

are assembled into complex concepts.

4.3. Improving Residual Networks on ILSVRC

Residual networks (ResNets) [20] are the state-of-the art

network for ILSVRC. ResNets are more computationally

efficient than the VGG architecture [26] on which they are

based, due to the use of low-dimensional embeddings [19].

ResNets are also more accurate and quicker to converge due

to the use of identity mappings.

4.3.1 ResNet 50

As a baseline, we used the ‘ResNet 50’ model [20] (the

largest residual network model to fit onto 8 GPUs with

Caffe). ResNet 50 has 50 convolutional layers, of which

one-third are spatial convolutions (non-1×1). We did not

use any training augmentation aside from random crop-

ping and mirroring. For training, we used the initialization

scheme described by [24] modified for compound layers [9]

and batch normalization [25]. To assess the efficacy of our

method, we replaced the spatial convolutional layers of the

original network with root modules (as described in §3). We

preserved the original number of filters per layer but subdi-

vided them into groups as shown in Table 3. We considered

the first of the existing 1×1 layers subsequent to each spa-

tial convolution to be part of our root modules.

Results are shown in Table 4 and Fig. 8 for various net-

work architectures. Compared to the baseline architecture,

the root variants achieve a significant reduction in compu-

tation and model size without a significant reduction in ac-

curacy. For example, the best result by accuracy(root-16),

1235



ReLU

…

H

W
3

…

ReLU

1
1

…

ReLU

1
1

…

ReLU

…

ReLU

1
1

…

ReLU

1
1

…

ReLU

…

ReLU

1
1

…

ReLU

1
1

· · ·

input image conv1a conv1b conv1c conv2a conv2b conv2c conv3a conv3b conv3c

(a) Standard

ReLU

…

H

W
3

…

ReLU

1
1

…

ReLU

1
1

ReLU

…

ReLU

1
1

…

ReLU

1
1

ReLU

…

ReLU

1
1

…

ReLU

1
1

· · ·

root-4 module root-2 module

(b) Root-4 Architecture

Figure 7: Network-in-Network Root Architecture. The Root-4 architecture as compared to the original architecture for all

the convolutional layers. Colored blocks represent the filters of each layer. Here we don’t show the intermediate feature maps

over which a layer’s filters operate, or the final fully connected layer, out of space considerations (see Fig.4). The decreasing

degree of grouping in successive root modules means that our network architectures somewhat resemble plant roots, hence

the name root.

Table 4: ResNet 50 Results.

Model FLOPS

×10
9

Param.

×10
7

Top-1

Acc.

Top-5

Acc.

CPU

(ms)

GPU

(ms)

Orig. 3.86 2.55 0.730 0.916 621 11.6

root-2 3.68 2.54 0.727 0.912 520 11.1
root-4 3.37 2.51 0.734 0.918 566 11.3
root-8 2.86 2.32 0.734 0.918 519 10.7
root-16 2.43 1.87 0.732 0.918 479 10.1
root-32 2.22 1.64 0.729 0.915 469 10.1
root-64 2.11 1.53 0.732 0.915 426 10.2

exceeds the baseline accuracy by 0.2% while reducing the

model size by 27% and floating-point operations (multiply-

add) by 37%. CPU timings were 23% faster, while GPU

timings were 13% faster. With a drop in accuracy of only

0.1% however, the root-64 model reduces the model size

by 40%, and reduces the floating point operations by 45%.

CPU timings were 31% faster, while GPU timings were

12% faster.

4.3.2 ResNet 200

To show that the method applies to deeper architectures, we

also applied our method to ResNet 200, the deepest network

for ILSVRC 2012. To provide a baseline we used code im-

Table 5: ResNet-200 Results

Model FLOPS ×10
12 Param. ×10

7 Top-1 Acc. Top-5 Acc.

Orig. 5.65 6.25 0.7804 0.9377

root-2 5.64 6.24 0.7832 0.9408
root-4 5.46 6.06 0.7806 0.9393
root-8 4.84 4.91 0.7795 0.9374
root-16 4.43 3.98 0.7814 0.9399
root-32 4.23 3.51 0.7793 0.9370
root-64 4.13 3.28 0.7790 0.9396

plementing full training augmentation to achieve state-of-

the-art results2. Table 5 shows the results, top-1 and top-5

error are for center cropped images. The models trained

with roots have comparable or lower error, with fewer pa-

rameters and less computation. The root-64 model has 27%

fewer FLOPS and 48% fewer parameters than ResNet 200.

4.4. Improving GoogLeNet on ILSVRC

We replicated the network as described by Szegedy, Liu,

Jia, et al. [2], with the exception of not using any training

augmentation aside from random crops and mirroring (as

supported by Caffe [27]). To train we used the initialization

of [24] modified for compound layers [9] and batch normal-

2https://github.com/facebook/fb.resnet.torch

1236

https://github.com/facebook/fb.resnet.torch


1.6 1.8 2 2.2 2.4 2.6
·107

7%

8%

9%

2

4816
3264

Model Parameters (# Floats)

T
o

p
-5

E
rr

o
r ResNet 50 All Filters

(a) Model Parameters vs. Top-5 Error.

2.5 3 3.5
·109

7%

8%

9%

2

4816
3264

FLOPS (Multiply-Add)

T
o

p
-5

E
rr

o
r

(b) FLOPS (Multiply-Add) vs. Top-5 Error.

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6
7%

8%

9%

2

4816
3264

GPU Forward (ms)

T
o

p
-5

E
rr

o
r

(c) GPU Forward Time vs. Top-5 Error.

450 500 550 600

7%

8%

9%

2

4816
3264

CPU Forward (ms)

T
o

p
-5

E
rr

o
r

(d) CPU Forward Time vs. Top-5 Error.

Figure 8: ResNet-50 Results. Models with filter groups

have fewer parameters, and less floating point operations,

while maintaining error comparable to the baseline.

ization without the scale and bias [25]. At test time we only

evaluate the center crop image.

While preserving the original number of filters per layer,

we trained networks with various degrees of filter grouping,

as described in Table 7. While the inception architecture is

relatively complex, for simplicity, we always use the same

number of groups within each of the groups of different fil-

ter sizes, despite them having different cardinality. For all

of the networks, we only grouped filters within each of the

‘spatial’ convolutions (3×3, 5×5).

As shown in Table 6, and plotted in Fig. 9, our method

Table 6: GoogLeNet Results.

Model FLOPS

×10
9

Param.

×10
7

Top-1

Acc.

Top-5

Acc.

CPU

(ms)

GPU

(ms)

Orig. 1.72 1.88 0.694 0.894 315 4.39

root-2 1.54 1.88 0.695 0.893 285 4.37
root-4 1.29 1.85 0.693 0.892 273 4.10
root-8 0.96 1.75 0.691 0.891 246 3.72
root-16 0.76 1.63 0.683 0.886 207 3.59

Table 7: GoogLeNet. Filter groups in each convolutional

layer and Inception module (incp.)

Model conv1conv2 incp. 3{a,b} incp. 4{a–e} incp. 5{a,b}
7×7 1×1 3×3 1×1 3×3 5×5 1×1 3×3 5×5 1×1 3×3 5×5

Orig. 1 1 1 1 1 1 1 1 1 1 1 1

root-2 1 1 2 1 1 1 1 1 1 1 1 1

root-4 1 1 4 1 2 2 1 1 1 1 1 1

root-8 1 1 8 1 4 4 1 2 2 1 1 1

root-16 1 1 16 1 8 8 1 4 4 1 2 2

shows significant reduction in computational complexity –

as measured in FLOPS (multiply-adds), CPU and GPU tim-

ings – and model size, as measured in the number of floating

point parameters. For many of the configurations the top-5

accuracy remains within 0.5% of the baseline model. The

highest accuracy result, is 0.1% off the top-5 accuracy of

the baseline model, but has a 0.1% higher top-1 accuracy

– within the error bounds resulting from training with dif-

ferent random initializations. While maintaining the same

accuracy, this network has 9% faster CPU and GPU timings.

However, a model with only 0.3% lower top-5 accuracy

than the baseline has much higher gains in computational

efficiency – 44% fewer floating point operations (multiply-

add), 7% fewer model parameters, 21% faster CPU and

16% faster GPU timings.

While these results may seem modest compared to the

results for ResNet, GoogLeNet is by far the smallest and

fastest near state-of-the-art model ILSVRC model. We be-

lieve that more experimentation in using different cardinal-

ities of filter grouping in the heterogeneously-sized filter

groups within each inception module will improve results

further.

5. GPU Implementation

Our experiments show that our method can achieve a sig-

nificant reduction in CPU and GPU runtimes for state-of-

the-art CNNs without compromising accuracy. However,

the reductions in GPU runtime were smaller than might

have been expected based on theoretical predictions of com-

1237



1.65 1.7 1.75 1.8 1.85
·107

10%

11%

12%

248
16

Model Parameters (# Floats)

T
o

p
-5

E
rr

o
r

GoogLeNet All Filters

(a) Model Parameters vs. Top-5 Error.

0.8 1 1.2 1.4 1.6
·109

10%

11%

12%

248
16

FLOPS (Multiply-Add)

T
o

p
-5

E
rr

o
r

(b) FLOPS (Multiply-Add) vs. Top-5 Error.

3.6 3.8 4 4.2 4.4

10%

11%

12%

248
16

GPU Forward (ms)

T
o

p
-5

E
rr

o
r

(c) GPU Forward Time vs. Top-5 Error.

220 240 260 280 300

10%

11%

12%

248
16

CPU Forward (ms)

T
o

p
-5

E
rr

o
r

(d) CPU Forward Time vs. Top-5 Error.

Figure 9: GoogLeNet Results. Models with filter groups

have fewer parameters, and less floating point operations,

while maintaining error comparable to the baseline.

putational complexity (FLOPs). We believe this is largely

a consequence of the optimization of Caffe for existing net-

work architectures (particularly AlexNet and GoogLeNet)

that do not use a high degree of filter grouping.

Caffe presently parallelizes over filter groups by using

multiple CUDA streams to run multiple CuBLAS matrix

multiplications simultaneously. However, with a large de-

gree of filter grouping, and hence more, smaller matrix mul-

tiplications, the overhead associated with calling CuBLAS

from the host can take approximately as long as the matrix

computation itself. To avoid this overhead, CuBLAS pro-

vides batched methods (e.g. cublasXgemmBatched),

where many small matrix multiplications can be batched to-

gether in one call. Jhurani and Mullowney [28] explore in

depth the problem of using GPUs to accelerate the multi-

plication of very small matrices (smaller than 16×16), and

show it is possible to achieve high throughput with large

batches, by implementing a more efficient interface than

that used in the CuBLAS batched calls. We have modified

Caffe to use CuBLAS batched calls, and achieved signifi-

cant speedups for our root-like network architectures com-

pared to vanilla Caffe without CuDNN, e.g. a 25% speed

up on our root-16 modified version of the GoogleNet archi-

tecture. However, our optimized implementation still is not

as fast as Caffe with CuDNN (which was used to generate

the results in this paper), presumably because of other un-

related optimizations in the (proprietary) CuDNN library.

Therefore we suggest that direct integration of CuBLAS-

style batching into CuDNN could improve the performance

of filter groups significantly.

6. Future Work

In this paper we focused on using homogeneous filter

groups (with a uniform division of filters in each group),

however this may not be optimal. Heterogeneous filter

groups may reflect better the filter co-dependencies found in

deep networks. Learning a combined spatial [9] and chan-

nel basis, may also improve efficiency further.

7. Conclusion

We explored the effect of using complex hierarchical ar-

rangements of filter groups in CNNs and show that impos-

ing a structured decrease in the degree of filter grouping

with depth – a ‘root’ (inverse tree) topology – can allow

us to obtain more efficient variants of state-of-the-art net-

works without compromising accuracy. Our method ap-

pears to be complementary to existing methods, such as

low-dimensional embeddings, and can be used more effi-

ciently to train deep networks than methods that only ap-

proximate a pre-trained model’s weights.

We validated our method by using it to create more

efficient variants of state-of-the-art Network-in-network,

GoogLeNet, and ResNet architectures, which were evalu-

ated on the CIFAR10 and ILSVRC datasets. Our results

show similar accuracy with the baseline architecture with

fewer parameters and much less compute (as measured by

CPU and GPU timings). For Network-in-Network on CI-

FAR10, our model has 33% of the parameters of the orig-

inal network, and approximately 37% (23%) faster CPU

(GPU) timings. For ResNet 50, our model has 40% fewer

parameters, and was 31% (12%) faster on a CPU (GPU).

For ResNet 200 our model has 27% fewer FLOPS and 48%

fewer parameters. Even for the most efficient of the near

state-of-the-art ILSVRC network, GoogLeNet, our model

uses 7% fewer parameters and is 21% (16%) faster on a

CPU (GPU).

1238



References

[1] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N.

de Freitas, “Predicting parameters in deep learning,”

in Neural Information Processing Systems (NIPS),

2013, pp. 2148–2156. arXiv: 1306.0543 (cit. on

p. 1).

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich, “Going deeper with convolutions,” in Com-

puter Vision and Pattern Recognition (CVPR), 2015

(cit. on pp. 1, 2, 6).

[3] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R.

Fergus, “Exploiting linear structure within convolu-

tional networks for efficient evaluation,” in ArXiv,

2014, pp. 1–11. arXiv: 1404.0736 (cit. on p. 1).

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-

agenet classification with deep convolutional neural

networks,” in Advances In Neural Information Pro-

cessing Systems, P. L. Bartlett, F. C. N. Pereira, C.

J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,

2012, pp. 1–9, ISBN: 9781627480031. arXiv: 1102.

0183 (cit. on pp. 1, 2).

[5] G. E. Hinton, N. Srivastava, A. Krizhevsky, I.

Sutskever, and R. R. Salakhutdinov, Improving neu-

ral networks by preventing co-adaptation of feature

detectors, 2012. arXiv: 1207.0580 (cit. on pp. 1,

3).

[6] K Fukushima, “Neocognitron: a self-organizing neu-

ral network model for a mechanish of pattern recog-

nition unaffected by shifts in position,” Biological

Cybernetics, vol. 36, pp. 193–202, 1980 (cit. on p. 1).

[7] Y Lecun, L Bottou, Y Bengio, and P Haffner,

“Gradient-based learning applied to document recog-

nition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998, ISSN: 0018-9219 (cit. on p. 1).

[8] M. Minsky and S. Papert, Perceptrons. MIT press,

1988 (cit. on p. 1).

[9] Y. Ioannou, D. P. Robertson, J. Shotton, R. Cipolla,

and A. Criminisi, “Training cnns with low-rank

filters for efficient image classification,” in Inter-

national Conference on Learning Representations,

2016 (cit. on pp. 1, 3, 5, 6, 8).

[10] F. Mamalet and C. Garcia, “Simplifying convnets

for fast learning,” in Artificial Neural Networks and

Machine Learning–ICANN 2012, Springer, 2012,

pp. 58–65 (cit. on p. 1).

[11] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speed-

ing up convolutional neural networks with low rank

expansions.,” in British Machine Vision Conference,

2014 (cit. on pp. 1, 2).

[12] A. Sironi, B. Tekin, R. Rigamonti, V. Lepetit, and P.

Fua, “Learning separable filters,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol.

37, no. 1, pp. 94–106, 2015, ISSN: 01628828 (cit. on

p. 1).

[13] V. Lebedev, Y. Ganin, M. Rakhuba1, I. Oseledets,

and V. Lempitsky, “Speeding-up convolutional neu-

ral networks using fine-tuned cp-decomposition,”

International Conference on Learning Representa-

tions (ICLR), vol. abs/1412.6, pp. 1–10, 2015. arXiv:

arXiv:1412.6553v2 (cit. on pp. 1, 2).

[14] M. Mathieu, M. Henaff, and Y LeCun, “Fast train-

ing of convolutional networks through ffts,” Inter-

national Conference on Learning Representations

(ICLR), pp. 1–9, 2014. arXiv: arXiv : 1312 .

5851v5 (cit. on p. 1).

[15] O. Rippel, J. Snoek, and R. P. Adams, “Spectral rep-

resentations for convolutional neural networks,” Ad-

vances in Neural Information Processing Systems

28, pp. 2440–2448, 2015, ISSN: 10495258. arXiv:

1506.03767 (cit. on p. 1).

[16] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P.

Narayanan, Deep learning with limited numerical

precision, 2015. arXiv: 1502.02551 (cit. on p. 1).

[17] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger,

and Y. Chen, “Compressing neural networks with

the hashing trick,” in Proceedings of The 32nd In-

ternational Conference on Machine Learning, F. R.

Bach and D. M. Blei, Eds., ser. JMLR Proceed-

ings, vol. 37, JMLR.org, 2015, pp. 2285–2294, ISBN:

9781510810587. arXiv: 1504.04788 (cit. on p. 1).

[18] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and

D. Shin, “Compression of deep convolutional neu-

ral networks for fast and low power mobile applica-

tions,” in International Conference on Learning Rep-

resentations (ICLR), 2016, pp. 1–16. arXiv: 1511.

06530 (cit. on pp. 1, 2).

[19] M. Lin, Q. Chen, and S. Yan, “Network in network,”

ArXiv preprint, vol. abs/1312.4, p. 10, 2013. arXiv:

1312.4400 (cit. on pp. 2, 4, 5).

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-

ual learning for image recognition,” Arxiv.Org, vol.

7, no. 3, pp. 171–180, 2015, ISSN: 1664-1078. arXiv:

1512.03385 (cit. on pp. 2, 4, 5).

[21] M. Cogswell, F. Ahmed, R. B. Girshick, L. Zitnick,

and D. Batra, “Reducing overfitting in deep networks

by decorrelating representations.,” in International

Conference on Learning Representations, 2016 (cit.

on p. 3).

1239

http://arxiv.org/abs/1306.0543
http://arxiv.org/abs/1404.0736
http://arxiv.org/abs/1102.0183
http://arxiv.org/abs/1102.0183
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/arXiv:1412.6553v2
http://arxiv.org/abs/arXiv:1312.5851v5
http://arxiv.org/abs/arXiv:1312.5851v5
http://arxiv.org/abs/1506.03767
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1504.04788
http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1512.03385


[22] A. Krizhevsky, “Learning multiple layers of features

from tiny images,” Univ. Toronto, Technical Report,

2009, pp. 1–60. arXiv: arXiv:1011.1669v3 (cit.

on pp. 4, 11).

[23] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A.

Courville, and Y. Bengio, “Maxout networks,” in

Proceedings of the 30th International Conference on

Machine Learning (ICML), vol. 28, 2013, pp. 1319–

1327. arXiv: 1302.4389 (cit. on p. 4).

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Delving

deep into rectifiers: surpassing human-level perfor-

mance on imagenet classification,” in IEEE Confer-

ence on Computer Vision and Patern Recognition

(ICCV), IEEE, 2015, pp. 1026–1034, ISBN: 978-1-

4673-8391-2. arXiv: 1502.01852 (cit. on pp. 4–

6).

[25] S. Ioffe and C. Szegedy, “Batch normalization: ac-

celerating deep network training by reducing inter-

nal covariate shift.,” in Proceedings of the 32 nd In-

ternational Conference on Machine Learning, Lille,

France, 2015, 2015 (cit. on pp. 4, 5, 7).

[26] K Simonyan and A Zisserman, “Very deep convo-

lutional networks for large-scale image recognition,”

in Eprint ar{X}iv:arXiv:1409.1556v5, 1409 (cit. on

p. 5).

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J.

Long, R. Girshick, S. Guadarrama, and T. Darrell,

“Caffe: convolutional architecture for fast feature

embedding,” ACM International Conference on Mul-

timedia, pp. 675–678, 2014, ISSN: 10636919. arXiv:

1408.5093 (cit. on p. 6).

[28] C. Jhurani and P. Mullowney, “A gemm interface and

implementation on nvidia gpus for multiple small

matrices,” Journal of Parallel and Distributed Com-

puting, vol. 75, pp. 133–140, 2015 (cit. on p. 8).

1240

http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/1302.4389
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1408.5093

