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Abstract

X-ray scatter is a major cause of image quality degradation in dimensional CT. Especially, in case of highly attenuating

components scatter-to-primary ratios may easily be higher than 1. The corresponding artifacts which appear as cupping or

dark streaks in the CT reconstruction may impair a metrological assessment. Therefore, an appropriate scatter correction

is crucial. Thereby, the gold standard is to predict the scatter distribution using a Monte Carlo (MC) code and subtract the

corresponding scatter estimate from the measured raw data. MC, however, is too slow to be used routinely. To correct for scatter

in real-time, we developed the deep scatter estimation (DSE). It uses a deep convolutional neural network which is trained to

reproduce the output of MC simulations using only the acquired projection data as input. Once trained, DSE can be applied

in real-time. The present study demonstrates the potential of the proposed approach using simulations and measurements. In

both cases the DSE yields highly accurate scatter estimates that differ by < 3% from our MC scatter predictions. Further, DSE

clearly outperforms kernel-based scatter estimation techniques and hybrid approaches, as they are in use today.

Keywords X-ray scatter correction · Artifact reduction · CT · Cone-beam CT (CBCT) · Deep neural network · Convolutional

neural network

1 Introduction

CT image reconstruction algorithms rely on the assumption

that the acquired projection data correspond to the line inte-

gral over the spatial distribution of the attenuation coefficient.

Scattered X-rays contributing to the measured signal lead to

a violation of this assumption, and thus, to the introduction of

CT artifacts [6,9,29]. These artifacts correspond to a degrada-

tion of image quality and impair dimensional measurements

[12,13]. Especially, in case of high scatter-to-primary ratios,

apropriate scatter correction is crucial to avoid a loss of accu-

racy of the metrological assessment.

Several approaches have been proposed to address this

issue. In general, they can be divided into two classes: scat-

ter suppression and scatter estimation approaches which

are the focus of this manuscript. While scatter suppression

approaches try to reduce the amount of scattered X-rays

reaching the detector using anti-scatter grids or collimators
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[26], scatter estimation approaches aim at deriving an esti-

mate of the scatter distribution that is used to correct the

acquired projection data [27]. Thereby, the scatter estimate

can either be derived using dedicated hardware such as beam

blockers or primary modulation grids [3,7,8,20,24,28,38,39]

or using software-based approaches that rely on physical or

empirical models to predict X-ray scattering [1,2,11,17,18,

21,22,30,32–34,36,37]. Among these methods the gold stan-

dard is to use a Monte Carlo (MC) photon transport code [27].

As MC is able to model all the physics of the CT acquisi-

tion process, the resulting scatter estimates are very accurate.

However, the drawback of MC methods is their high com-

putational complexity. Even highly optimized code does not

perform in real-time on conventional hardware.

Thus, if computation time is an issue, so-called kernel-

based models are often used in practice. These models

approximate the scatter distribution by an integral transform

of a scatter source term multiplied with a scatter propaga-

tion kernel [27]. Thereby, the scatter source term is usually

modeled as a function of the primary intensity and reflects

the probability of X-ray scattering along each ray from the

X-ray source to a detector pixel. The scatter propagation

kernel accounts for the spatial distribution of the scattered
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X-rays and depends on several parameters such as the acqui-

sition geometry, the spectral distribution of X-rays and the

object itself. Different approaches to set the scatter source

term and the scatter propagation kernel have been proposed

[2,11,14,15,18,21,23,31–34]. Basically, they can be divided

into model-based and MC-based approaches. The former use

a simplified theoretical model to predict X-ray scattering (for

instance only forward scattering is assumed [21]) with a set

of open parameters. Subsequently, the open parameters are

calibrated to fit MC simulations or reference measurements.

MC-based approaches, in contrast, rely on needle-beam MC

simulations of slabs or ellipsoids with varying dimensions

which are calculated prior to the measurement. To estimate

scatter within a measured projection, one of the precalcu-

lated needle-beam kernels is assigned to every detector pixel

according to an appropriate similarity metric. Finally, all ker-

nels are summed up including correction terms that account

for differences between the slabs or ellipsoids and the actual

object shape.

However, while being fast, conventional kernel-based

models have two major drawbacks: they are far less accurate

than MC simulations and it is challenging to find parameter

sets or correction terms, respectively, that apply to different

components in the same way. To overcome these drawbacks,

we propose the deep scatter estimation (DSE). It uses a deep

convolutional neural network which is trained to reproduce

the output of MC simulations using only the acquired projec-

tion data as input. Thus, the accuracy of the scatter prediction

should be comparable to MC simulations but can be gener-

ated in real-time once the network is trained. It has to be

noted that DSE is not restricted to reproduce MC simula-

tions but can be trained with any other scatter estimate. In

this study, we demonstrate the potential of DSE using simu-

lations as well as measurements. The corresponding scatter

estimates are compared against MC simulations as well the

scatter estimates derived by a kernel-based approach and a

hybrid scatter estimation approach. Thereby, the focus of the

manuscript is set on dimensional CT applications. However,

the proposed approach is not restricted to dimensional CT

but can be applied to any X-ray imaging modality such as

medical CT or fluoroscopy for instance.

2 Material andMethods

2.1 Kernel-Based Scatter Estimation

Kernel-based methods approximate the scatter distribution

Is, est by an integral transform of a scatter source term T (ψ)

multiplied with a scatter propagation kernel G:

Is, est(u) =

∫
T (ψ)(u′)G(u, u

′, c)du
′, (1)

where ψ is the normalized primary intensity. The operator

T is usually derived from a physical model such that T (ψ)

represents the probability of X-ray scattering along a ray

from the X-ray source to the detector element located at u.

The scatter propagation kernel G with its open parameters

c = (c0, c1, . . . ) accounts for the spreading of scattered X-

rays. For a ray heading from the X-ray source to the detector

element at u
′, G(u, u

′, c) corresponds to the fraction of X-

rays reaching the detector element at u. Several approaches

to set T and G have been proposed.

In this manuscript, we use a slightly modified version of

the kernel-based model of Ohnesorge et al. as a Ref. [21].

Thereby, the scatter source term is given by the forward

scatter intensity which corresponds to the probability that an

X-ray hitting the detector was scattered in forward direction:

T (ψ) = −K · ψ · ln(ψ), (2)

where K refers to the differential cross section of forward

scattering. The scatter propagation kernel is modeled as a

sum of exponential functions:

G(u, u
′, c) =

∑
±

e−c1((u−u
′)ê1±c2)

2

·
∑
±

e−c3((u−u
′)ê2±c4)

2

(3)

The constant K as well as the open parameters c of the scatter

propagation kernel are determined by modeling them such

that the scatter estimate best fits calibration measurements or

the output of a MC simulation. Here, this is done by mini-

mizing the following cost function using a simplex algorithm

[19]:

{K , c} = argmin
∑

n

∑
u

‖Is, est(n, u, K , c) − Is(n, u)‖2
2,

(4)

where n is the sample number, Is, est is the scatter estimate

according to Eq. (1) and Is is a reference MC simulation.

2.2 Hybrid Scatter Estimation

Kernel-based approaches usually calibrate the open param-

eters in advance. Therefore, they might not perfectly fit to

the actual measurement. To increase the accuracy Baer et al.

proposed to recalibrate the parameters for every measured

projection using a coarse MC simulation [1]. Thus, the ker-

nel may be regarded as being a physics-based regularizer

to the MC estimate. This so-called hybrid scatter estimation

was implemented here as a second reference approach. Thus,

for every projection view n, a distinct parameter set was cal-
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culated by performing the following minimization using a

simplex algorithm:

{K , c}n = argmin
∑

u

‖Is, est(n, u, K , c) − Is(n, u)‖2
2. (5)

2.3 Deep Scatter Estimation

Conventional kernel-based models rely on simplified assump-

tions that do not perfectly fit arbitrary cases. Thus, their

accuracy is limited and far below the accuracy of MC simula-

tions. Furthermore it is challenging to adapt a certain model

to generalize to different cases. Neural networks have the

potential to overcome these drawbacks. Therefore, we pro-

pose the deep scatter estimation (DSE), a deep convolutional

neural network for real-time scatter estimation. The archi-

tecture of our DSE network is shown in Fig. 1. Basically, the

network is a modification of the U-net which was proposed

by Ronneberger et al. for biomedical image segmentation

[25]. Similar to the original model, the network consists of

a downward path that plays a role at extracting a hierarchy

of features from the input image and an upward path that

restores the resolution of the image while transforming the

features.

In order to estimate scatter, we use the forward scatter

intensity as given in Eq. (2) with K = 1 as input to the net-

work. Subsequently, the weights of the convolutional layers

are trained to reproduce the output of a MC simulation. Thus,

the network internally performs similar operations as kernel-

based methods. However, in contrast to these methods, the

DSE network is much more flexible since it is able to use

non-linear mappings and varying scatter kernels depending

on local features of the input image. Thus, DSE should model

X-ray scattering more precisely and should better generalize

to varying inputs.

For all results presented in this manuscript, the DSE net-

work was trained on a GeForce GTX 1080 for 80 epochs

using an Adam optimizer, a batch size of 16, and the mean

squared error between the output of the network and the MC

scatter Is as loss function. To increase the computational

performance of the training, we did not use the full size

projection data as input but downsampled them to a size of

256 × 256. Since X-ray scatter is known to be low frequent,

this downsampling has only minor influence on the accuracy

of the scatter estimation. Once the network is trained it can be

applied in real-time (≈ 20 ms / projection) to the downsam-

pled testing data. Finally, the scatter estimates are upsampled

again to have the full size.

2.4 Simulation Study

Considering a certain scatter estimation approach it is benefi-

cial if it does not need to be optimized for every component to

be measured but applies to a broad range of components and

acquisition parameters. Practically, one would want to opti-

mize its parameters only for a couple of typical components

and acquisition parameters. Subsequently, these parameters

should also yield appropriate scatter estimates for other com-

ponents. To investigate the performance of the proposed

scatter estimation as well as the reference approaches to do

so, a simulation study was performed. Therefore, projection

data of different components (see Fig. 2) were simulated as

follows. For each component primary intensities ψ were gen-

erated using an analytic model:

ψ(u) =

∫
d E w(E) e−µ(E)·p(u)∫

d E w(E)
, (6)

Fig. 1 Architecture of the

proposed deep convolutional

neural network
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Fig. 2 Models used for the simulation study. The materials were chosen to be aluminum (cylinder head, casting, profile), steel (bicycle cassette)

and a titanium alloy (compressor wheel). Note that the aluminum profile was used for testing only

Table 1 Parameters for the training and testing data of the simulation

study

Training Testing

Detector elements 1024 × 1024 1024 × 1024

Detector pixel size2 0.4 mm × 0.4 mm 0.4 mm × 0.4 mm

Source-detector distance 1000 mm 1000 mm

Source-isocenter distance 400, 500, 600 mm 550 mm

Tilt angle 0◦, 30◦, 60◦, 90◦ 15◦

View angle 360◦ 360◦

Tube voltage 225, 275, 320 kV 250 kV

Tin prefilter 1.0, 2.0 mm 1.5 mm

Scaling 0.8, 1.2 1.0

Number of projections 16,416 3600

where w(E) is the detected X-ray spectrum that was gener-

ated according to the model of Tucker et al. [35], µ(E) is

the attenuation coefficient of the component according to the

evaluated photon data library [4] and p(u) is the intersec-

tion length at detector position u that is derived by a forward

projection of the component’s CAD model. Subsequently,

X-ray scatter Is was simulated using our in-house MC sim-

ulation [1]. Finally, Poisson noise P was added to generate

the intensity data ψ̃ :

ψ̃(u) = ψ(u) + Is(u) + P(ψ(u) + Is(u)). (7)

Based on Eq. (7) two data sets were generated: a training data

set and a testing data set. Thereby, the training data set is used

to optimize the open parameters of the kernel-based approach

and the weights of the DSE network (see Sects. 2.1 and 2.3),

while the testing data are used to evaluate the performance of

the scatter estimation approaches. For the training data set,

16,416 projections were generated using the CAD model of

a compressor wheel, a cylinder head, a casting and a bicy-

cle cassette as prior (Fig. 2). The corresponding simulation

parameters are given in Table 1. The testing data set con-

sists of a tomography (720 projections/360◦) of a compressor

wheel, a cylinder head, a casting and a bicycle cassette and

Fig. 3 Aluminum profile measured at our in-house table-top system

an aluminum profile. To make sure that training data do not

resemble the testing data, they were simulated using differ-

ent parameters (see Table 1). Different scaling factors were

applied to the prior models such that they differ in size. The

data was simulated with a different orientation of the models

(tilt angle) and different magnifications. Furthermore, differ-

ent tube voltage and prefilter settings were used.

2.5 Measurement Data

To evaluate the performance of the DSE for real data, mea-

surements of an aluminum profile (see Fig. 3) were conducted

at our in-house table-top CT that is equipped with a 110 kV

micro-focus X-ray tube and a Varian 4030 flat detector. Sim-

ilar to the simulation study, a training data set and a testing

data set was generated. Again, the training data set is used

for parameter optimization and the testing data set is used

for performance evaluation. Basically, there are two possi-

ble approaches to get the training data set. Probably the most

accurate way is to use data of different components that were

measured at the same CT system as well as the corresponding

MC scatter simulations. However, since we were not aware

of enough measurement data to prevent an overfitting of the
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Table 2 Parameters for the simulated training data set and the mea-

surement

Training Measurement

Detector elements 768 × 768 768 × 768

Detector pixel size 0.388 mm ×

0.388 mm

0.388 mm ×

0.388 mm

Source-detector

distance

580 mm 580 mm

Source-isocenter

distance

100, 110, 120

mm

110 mm

Tilt angle 0◦, 30◦, 60◦, 90◦ 0◦

View angle 360◦ 360◦

Tube voltage 100, 110, 120 kV 110 kV

Copper prefilter 1.0, 2.0 mm 2.0 mm

Scaling 1.0 –

Number of samples 8207 720

DSE network, the training data set is based on simulations.

The simulated data that was generated according to Eq. (7)

with

ψ(u) = Goff(u) ∗

∫
d E w(E) e−µ(E)·p(u)∫

d E w(E)
, (8)

Thereby, we tuned the simulation such that it best resembles

measurements of our table-top CT. Therefore, the detected X-

ray spectrum w(E) of our system was estimated as described

in Ref. [10]. Furthermore, off-focal radiation that was mod-

eled as a convolution with an off-focal kernel Goff as

described in Ref. [16] was included in the simulation. As

prior for the generation of the training data, the CAD mod-

els described in Sect. 2.4 were used. However, in contrast to

the simulation study, the material of all components was set

to aluminum as it is not possible to penetrate steel or tita-

nium parts with a 110 kV X-ray source appropriately. All

parameters are summarized in Table 2.

3 Results

3.1 Simulation Study

Scatter estimates were evaluated for simulated tomographic

measurements of five different components. The data were

generated as described in Sect. 2.4. Subsequently, scatter was

estimated using the kernel-based approach, the hybrid scatter

estimation and DSE. The corresponding results of an exem-

plary projection view are shown in Fig. 4. A more quantitative

evaluation that calculates the mean absolute percentage error

(MAPE) between the scatter estimate and the ground truth

for all projection views is given in Table 3. Thereby, the

MAPE of the kernel-based method is in between 8.8 and

19.8% with a maximum error between 30.3 and 87.7%. Since

the hybrid scatter estimation calculates a distinct parameter

set for every projection, there is an increased performance

with a MAPE between 2.7 and 11.7% and a maximum

error between 16.4 and 63.4%. DSE clearly outperforms

the reference approaches leading to scatter estimates with a

MAPE between 0.6 and 1.5% with a maximum error between

5.0 and 13.2%. Similar trends can be observed considering

CT images. Therefore, the scatter estimates are subtracted

from the scatter corrupted projection data to derive a scatter

corrected data set. Subsequently, the corrected projections

were reconstructed analytically using the FDK algorithm [5].

Exemplary images are shown in Fig. 5. While all scatter cor-

rection approaches lead to a significant improvement of CT

value accuracy, the kernel-based and the hybrid approach

tend to overcorrect scatter. As a result streak artifacts are

introduced to the CT reconstructions. In contrast, the DSE

leads to CT images that are almost free of artifacts.

3.2 Measurement Data

Scatter estimates were evaluated for a tomographic measure-

ment of an aluminum profile at our in-house table-top CT

system. The training data and the measurement data were

generated as described in Sect. 2.5. Subsequently, scatter was

estimated using the kernel-based approach, the hybrid scat-

ter estimation and the DSE. Since there is no ground truth

for the measurement data, the scatter estimates were com-

pared against a MC scatter prediction. Scatter estimates for

an exemplary projection view are shown in Fig. 6. A quanti-

tative evaluation yields a MAPE of the kernel-based method

of 12.6% with a maximum error of 41.4%. As to be expected,

the hybrid scatter estimation yields more accurate scatter esti-

mates with a MAPE of 5.4% and a maximum error of 31.4%.

Similar to the simulation study, DSE shows the best perfor-

mance. Here the MAPE is 2.7% and the maximum error is

10.0%. It has to be noted that the evaluation was restricted to

the area of the component since the error in air does not affect

the CT value distribution of the component significantly.

The impact of the scatter correction on CT images is shown

in Fig. 7. Both, the reconstruction that uses the kernel-based

scatter correction as well as the reconstruction that uses the

hybrid scatter correction show strong streak artifacts. These

artifacts are a result of an overestimation of X-ray scattering

that can also be observed in Fig. 6. In regions of high atten-

uation the scatter distribution is slightly lower. However, the

kernel-based approach and the hybrid scatter estimation do

not reproduce that dip in the scatter distribution. As a result,

the attenuation is overestimated within the corrected projec-

tions which leads to the introduction of streak artifacts to

the reconstructed images. In comparison, the proposed DSE

approach yields images with similar quality as the MC scatter

correction.
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Fig. 4 Absolute percentage error between the scatter estimates of the simulation study and the ground truth for an exemplary projection

4 Discussion and Conclusion

This manuscript describes the application of a deep convolu-

tional neural network to estimate X-ray scatter in real-time.

Therefore, the proposed DSE network is trained to reproduce

the output of MC simulations using the acquired projection

data as input. In contrast to conventional kernel-based scatter

estimation approaches the DSE has the advantage of being

able to use non-linear mappings and varying scatter kernels

depending on local features of the input image. Thus, X-

ray scattering can be modeled more precisely leading to an

increased accuracy of the scatter estimates. The potential of

DSE was demonstrated for simulated and measured data. The

simulation study shows that the DSE generalizes well to mea-

surements of different components with different materials

and varying acquisition parameters. The performance of DSE

was evaluated for cases that differed from the training data in

terms of size, shape and acquisition parameters. For any of

the tested components, the MAPE between the DSE scatter

prediction and the ground truth was less than 1.5%. This sug-
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Table 3 Mean and maximum absolute percentage error between the

scatter estimate and the ground truth evaluated for all 720 projection

views of each component

Kernel-based Hybrid DSE

Mean Max Mean Max Mean Max

Compressor wheel 19.8 84.0 11.7 61.6 1.46 13.2

Cylinder head 12.4 66.8 7.2 36.5 0.63 10.7

Casting 9.0 57.8 3.9 29.0 0.58 9.9

Bicycle cassette 13.3 87.7 8.5 63.4 0.66 12.1

Aluminum profile 8.8 30.3 2.7 16.4 0.78 5.0

Note, that the evaluation was restricted to the area of the component.

The absolute percentage error in air was not considered since it does

not affect the CT value accuracy of the reconstruction of the component

gests that for a practical application of DSE it is sufficient to

train the network using a couple of typical cases and typical

acquisition parameters. Subsequently, DSE can be applied to

other cases without a major loss of accuracy. In contrast to

DSE, the reference approaches showed a significantly infe-

rior performance. The kernel-based approach led to scatter

estimates with a MAPE between 8.8 and 19.8%. Also more

sophisticated approaches such as the hybrid scatter estima-

tion were less accurate (MAPE between 2.7 and 11.7%)

than DSE. Especially, in regions of high attenuation the

reference methods often overestimated the actual scatter dis-

tribution leading to streak artifacts within the reconstructed

CT images. Similar trends can be observed for real data mea-

sured at our in-house table-top CT system. Also here, DSE

clearly outperforms the two reference approaches. While CT

Fig. 5 CT reconstructions of projections without scatter (first column), with scatter (second column) as well as the difference between the scatter

corrected reconstructions and the ground truth (third to sixth column)
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Fig. 6 Absolute percentage error between the scatter estimates of the measurement and the MC scatter prediction for an exemplary projection

Fig. 7 CT reconstructions of projections with MC scatter correction (first column), without correction (second column) as well as the difference

between the three investigated scatter correction approaches and the MC scatter corrected reconstruction (third to sixth column)

reconstructions that were corrected using the kernel-based

method and the hybrid scatter estimation show streak arti-

facts, DSE yields almost the same results as the MC-based

correction.

However, compared to the simulation study, DSE is less

accurate in case of measured data. This may be explained by

the fact that the network was not trained using measurements

but using simulations. Although the simulations were tuned

to reproduce measurements at our CT system, they do not

perfectly resemble real data. Therefore, we assume that the

accuracy of the scatter estimates can be further increased if

the training is performed on measured data.

It has to be noted that DSE, as it is applied here, highly

relies on the accuracy of the MC simulation. If the MC code

does not predict the actual scatter distribution correctly, DSE

does not either. However, DSE is not restricted to reproduce

MC simulations but can be trained with any other scatter

estimate i.e. a scatter estimate derived using beam blockers

or primary modulation approaches.
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