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ABSTRACT

Aims. We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan
Digital Sky Survey (SDSS), to characterize the stellar halo population “in situ” out to a distance of a few tens of kpc from the Sun.
In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on
F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS).
Methods. Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that reproduces
each observed spectrum best. We used an optimization algorithm and evaluate model fluxes by means of interpolation in a precom-
puted grid. In our analysis, we account for the spectrograph’s varying resolution as a function of fiber and wavelength. Our results for
early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars
with log g (cgs units) lower than 2.5.
Results. An analysis of stars in the globular cluster M 13 reveals a dependence of the inferred metallicity on surface gravity for stars
with log g < 2.5, confirming the systematics identified in the comparison with the SSPP. We find that our metallicity estimates are
significantly more precise than the SSPP results. We also find excellent agreement with several independent analyses. We show that
the SDSS color criteria for selecting F-type halo turnoff stars as flux calibrators efficiently excludes stars with high metallicities, but
does not significantly distort the shape of the metallicity distribution at low metallicity. We obtain a halo metallicity distribution that is
narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample, at tens of kpc from the Sun, indicate a
shift of the metallicity distribution to lower abundances, consistent with what is expected from a dual halo system in the Milky Way.

Key words. methods: observational – techniques: spectroscopic – stars: atmospheres – stars: fundamental parameters –
stars: Population II – Galaxy: halo

1. Introduction

The stellar halo population in the Milky Way was first noticed
among solar neighborhood stars in the previous century (Baade
1944; Chamberlain & Aller 1951), and as observational capa-
bilities expanded, so did our knowledge about its spatial, age,
metallicity, and kinematical distribution.

Dedicated surveys of the halo, such as Beers et al. (1985,
1992), Norris et al. (1985), Ryan & Norris (1991), Majewski
(1992), and Chiba & Beers (2000), have pioneered the sam-
pling of halo stars at large distances. More recently, cosmo-
logical surveys of galaxies and quasars, including observations
of stars for different purposes, have taken the lead in explor-

⋆ Full Table 1 is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A7

ing the most distant parts of the halo. The stars with the low-
est known iron abundance come from candidates identified in
the Hamburg-ESO survey (Wisotzki et al. 1996; Christlieb et al.
1999, 2002) or the Sloan Digital Sky Survey (SDSS; York et al.
2000; Bonifacio et al. 2012), and these studies constitute the best
available database for studying the main properties of the stellar
Galactic halo.

Most of the halo turnoff stars observed in the first phases of
the SDSS (Stoughton et al. 2002; Abazajian 2003, 2004) were
targeted as flux calibrators, with the criterion 0.1 < (g − r) <
0.41, with slight variations over the years, and with additional

1 Here and throughout the rest of the manuscript, it is understood that
the magnitudes and colors are corrected for the effects of absorption and
reddening along the line of site, based on the approach of Schlegel et al.
(1998).
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significant numbers from SEGUE (Yanny et al. 2009), in partic-
ular their metal-poor MS turnoff and FG-type categories.

Among the four spectroscopic surveys included in the cur-
rent phase of the Sloan Digital Sky Survey (SDSS-III; Eisenstein
et al. 2011; Ahn et al. 2012), two are dedicated to Galactic stars.
It is, however, a third program devoted to the study of the distri-
butions of galaxy and quasar redshifts, the Baryonic Oscillations
Spectroscopic Survey (BOSS; Smee et al. 2013; Dawson et al.
2013), that provides the largest samples of distant Milky Way
halo turnoff stars.

In this series of papers we use the spectrophotometric cal-
ibration stars from BOSS and earlier SDSS phases to examine
the main characteristics of the Galactic stellar halo. Our sam-
ple constitutes the deepest sample of halo turnoff stars and sub-
giants yet assembled. We describe the observations available in
Sect. 2 and the analysis in Sect. 3, followed by a description of
the overall halo metallicity distribution, ending with a summary
in Sect. 5. Subsequent papers will examine variations of halo-
star chemistry with distance to the center of the Milky Way in
detail.

2. Observations

The spectra used in this work are included in SDSS Data Release
10 (DR10; Ahn et al. 2014) and come from the original SDSS
spectrographs and their upgraded version, in operation since
2010 (Smee et al. 2013), and the 2.5 m telescope (Gunn et al.
2006) at Apache Point Observatory. They were obtained be-
tween the beginning of the survey (2000) and July 2012. Most
quasars, galaxies, and stars observed spectroscopically in SDSS
are chosen purely based on SDSS ugriz imaging (Fukugita et al.
1996; Stoughton et al. 2002; Eisenstein et al. 2011).

2.1. Instrumentation

The original SDSS spectrographs are two double spectrographs
covering between 380 and 920 nm with a FWHM resolving
power λ/δλ of about 2000, fed with 640 three-arcsecond opti-
cal fibers.

The BOSS spectrographs, in operation since 2009, consti-
tute an upgrade of the original SDSS spectrographs. The new
spectrographs have a higher multiplexing ability (1000 fibers in
a single exposure instead of 640), and a wavelength-dependent
resolving power in the range 1300 < λ/δλ < 3000 between 360
and 1040 nm. Their sensitivity is significantly enhanced from
the original instruments, mainly by adopting new detectors and
volume-phase holographic gratings, as well as using narrower
(2 instead of 3 arcsec in diameter) fibers that feed light from the
telescope.

2.2. Target selection

We apply our analysis to the bulk of BOSS stellar spectra, which
are defined as those with a measured redshift |z| < 0.01, or a ra-
dial velocity under 3000 km s−1, obtained as of late 2011. Some
of these spectra, those obtained up to July 2011, became publicly
available as of July 2012 in DR9 (Ahn et al. 2012). The rest were
made public in DR10 (Ahn et al. 2014). We process all BOSS
spectra exactly in the same manner as the observations with the
original SDSS spectrographs and they are described in Sect. 3,
to derive the atmospheric parameters (Teff, log g, [Fe/H]).

When available, we adopted the Elodie redshifts measured
by the SDSS/SEGUE spec1d pipeline. These are obtained by
template matching against a smooth version of spectra in the
Elodie library (Prugniel & Soubiran 2001; Prugniel et al. 2007).

When the Elodie redshifts were not available (elodie_z set to a
value of zero), we embraced the standard best redshift values
adopted by the BOSS spectral pipeline (Bolton et al. 2012).

The sample of BOSS targets with nearly zero redshift we
identify is mainly comprised of

1. F-type halo turnoff stars, those used for flux calibration;
2. Cooler (mostly K and M-type) stars, selected as part of an-

cillary science programs or by error;
3. White dwarfs, selected either by error or associated with an-

cillary science programs;
4. Hybrid spectra, showing a hot source in the blue (typically a

white dwarf) and a cool source (low-mass star) dominating
at redder wavelengths;

5. Galaxies or (mostly) quasars, with an incorrectly assigned
redshift.

Since SDSS/BOSS observations are mainly devoted to cosmol-
ogy, most observations point to high Galactic latitudes, avoid-
ing the Galactic disk and favoring the halo population. The ex-
ceptions are some of the SEGUE fields at low Galactic latitude.
With an absolute magnitude Mg ∼ 5, F-type halo turnoff stars
observed by the SDSS/BOSS spectrographs are located at dis-
tances out to a few tens of kpc, and more evolved, horizontal-
branch stars with similar temperatures are at distances in excess
of 100 kpc.

When SDSS came into operation, the difficulty of perform-
ing flux calibration for spectra having a wide wavelength cover-
age over of a large area of the sky was quickly recognized. Good
standards were scarce and relatively bright, a situation that, al-
though somewhat improved, persists today. The solution adopted
for SDSS was to assign spectral types and corresponding model
flux distributions to the stars, scale the model distributions to
match the available five-band ugriz SDSS photometry, and hope
that the systematic errors are small and that random errors can-
cel out over the size of an SDSS spectroscopic plug-plate, three
degrees in diameter.

F-type halo turnoff stars, in the magnitude range spectro-
scopically explored by the original SDSS (14 < g < 21), are
relatively abundant and fairly easy to model, because their con-
tinua are shaped by a combination of H and H− bound free opac-
ity, and they exhibit limited line absorption in the optical, mainly
due to iron lines. Taking BD +17 4708, with [Fe/H] = −1.7, as
a prototype, the method was developed and applied, with good
results. The same protocol remains in use for BOSS, using some-
what fainter stars.

As in earlier phases of the SDSS, halo turnoff F-type stars are
identified in BOSS observations by their colors. Typically 16 of
these stars are included per plugplate for flux calibration. These
stars satisfy

15.0 < r < 19

u − g = 0.82 ± 0.08

g − r = 0.30 ± 0.08

r − i = 0.09 ± 0.08

i − z = 0.02 ± 0.08, (1)

with slight variations used in the early phases of the project.
These stars are chosen based on the colors of the SDSS stan-
dard BD +17 4708 (Oke 1990; Fukugita et al. 1996; Bohlin &
Gilliland 2004; Ramírez et al. 2006); in addition, to satisfy the
color and magnitude range in the table, they are ranked in prior-
ity by their color resemblance to the standard star.
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3. Analysis

Our analysis of the SDSS/BOSS spectra follows in its funda-
mentals the methods described by Allende Prieto et al. (2006).
However, a number of improvements have been implemented.
We describe the basics and updates below.

3.1. Analysis strategy and model spectra

The BOSS spectrographs have a significant variation in the re-
solving power as a function of wavelength. We account for such
variations by using the arrays of FWHM values that accompany
the spectra and, through use of a grid of model spectra with
higher resolution (λ/δλ = 6400), convolving the model spec-
tra as we fit the observations according to the FWHM for each
wavelength and fiber.

The actual rest wavelengths of each BOSS spectrum dif-
fer from the others in the same plugplate as a result of the
stars’ radial velocities. To avoid further interpolations in the
observations, we resample the model fluxes as we fit the data.
BOSS and earlier SDSS spectra are preprocessed with a cus-
tom IDL pipeline that rewrites the fluxes, wavelengths and line-
spread functions for each spectrum in the format appropriate
for FERRE, our FORTRAN90 fitting code (Allende Prieto et al.
2006, 2009). We performed tests fitting either spectra with their
spectral energy distributions (suitably normalized by a constant
to make them independent of distance) or continuum normal-
ized spectra, finding that the latter method provides better re-
sults. Best-fitting parameters and spectra and estimated errors,
were stored for further study.

Our method consists of finding the optimal set of model at-
mosphere parameters that best matches the observed spectra. We
evaluate the fitness of the models with a simple χ2 criterion. For
speed, model fluxes are precalculated on a regular grid based
on classical one-dimensional Kurucz model atmospheres, and
we interpolate in the three parameters under consideration (Teff,
log g and [M/H]) using a quadratic Bezier scheme.

We make use of Kurucz model atmospheres (Castelli
& Kurucz 2003), and the ASSET spectral synthesis code
(Koesterke et al. 2008; Koesterke 2009). We adopt detailed con-
tinuum opacities from the compilation by Allende Prieto et al.
(2003) and subsequent updates (see, e.g., Allende Prieto 2008).
Line data are mainly from the calculations and literature compi-
lations by Kurucz (available from his website2), enhanced with
damping constants from Barklem (2007 and references therein)
when available.

We calculated a grid of model spectra covering −5 <
[Fe/H] < +0.5 and 0.5 < log g < 4.5 in steps of 0.5 dex,
and 4750 < Teff < 6500 K, in steps of 250 K. The α/Fe ratio
adopted was solar at [Fe/H] = 0, and then linearly increasing
toward lower [Fe/H], reaching +0.4 for [Fe/H] ≤ −1.5, in agree-
ment with the typical values found for stars in the Milky Way3.
We adopted solar reference abundances as in Asplund et al.
(2005), and the overall metallicity of the model atmospheres
was consistent with those adopted in the spectral synthesis, with
the exception of the lowest metallicities, for which no model
atmospheres were readily available for our grid nodes. Model
atmospheres with [Fe/H] = −2.5 were adopted for [Fe/H] = −3,
and those with [Fe/H] = −4 were adopted for [Fe/H] = −5.0,
−4.5, and −4.0. The grid employed included 864 model spectra:
12 × 8 × 9 ([Fe/H]/logg/Teff).

2 kurucz.harvard.edu
3 This assumption will break down for some stars. See, e.g., Cohen
et al. (2013).

The parameters inferred from our analysis cannot be more
accurate than the models used to interpret the observations.
Since we rely on large numbers of precalculated synthetic spec-
tra, we cannot consider aspects such as departures from LTE or
hydrodynamical (3D) effects. Nevertheless, we expect the im-
pact of such a simplification on the derived parameters will be
quite uniform, given the limited range in temperature and metal-
licity of the stars we consider. As mentioned earlier, metal-poor
F-type stars are one of the simplest spectral types to work with.

Despite the BOSS spectrographs offering an increased spec-
tral range over the earlier SDSS spectrographs, we decided to
adopt a wavelength region common for the two data sets. This
decision was motivated by the need to evaluate the quality of our
derived parameters and the availability of parameters for large
numbers of SDSS stars from the SEGUE (Yanny et al. 2009)
Stellar Parameter Pipeline (hereafter SSPP; Lee et al. 2008a,b;
Allende Prieto 2008) and a desire to combine SDSS-I, SEGUE,
and BOSS observations.

Figure 1 shows two examples of observed BOSS spectra, and
our best-fitting models. At very low metallicity, the information
on the stellar properties comes mainly from hydrogen (Balmer
and Paschen) lines, Ca II lines (H and K in the blue, as well
as the IR triplet). Our continuum correction scheme splits the
spectral range into 20 equal-velocity bins and divides each by its
mean value. This approach removes large-scale systematic er-
rors in flux, preserves some of the local information on the con-
tinuum shape, and since it is a linear transformation, it is robust
(symmetric) against noise. This is an unusual continuum nor-
malization procedure, but extensive tests with simulations led us
to conclude that it is very robust and performs better than other,
more commonly used methods for this kind of spectra. Exactly
the same procedure is applied to both models and observations.

3.2. Validation of parameters against SDSS/SEGUE

Stellar spectra taken with the SDSS spectrographs before the
BOSS upgrade benefit from the added value of the SSPP. This
software suite derives atmospheric parameters ([Fe/H]/logg/Teff
and [α/Fe]) for most normal stars, and it has been continuously
upgraded (Lee et al. 2011; Smolinski et al. 2011). The SSPP of-
fers an excellent comparison to our analysis, since our tech-
niques can be equally applied to BOSS or earlier SDSS spectra.

The SSPP includes a wide variety of techniques to derive
each atmospheric parameter. The stellar effective temperature is
the one that admits more variants, from Balmer-line equivalent
widths, to colors, line ratios, or spectral fitting – about ten dif-
ferent methods are considered by the SSPP. Metallicity is also
measured by a number of techniques, while gravity is the most
difficult parameter to extract, and only a handful of methods are
available as part of the SSPP. Only a few of the techniques derive
all parameters simultaneously and in a consistent manner.

An earlier version of our fitting code is included in the SSPP.
However, it is only one of many, and the version in the SSPP uses
earlier grids of model fluxes, limited to a narrow spectral range
(440–550 nm). The main differences between our analysis and
the SSPP are:

– We use only a single method, avoiding the complex problem
of combining multiple techniques with different performance
levels over the parameters space;

– We use a large fraction of the spectral range available from
the SDSS spectrographs;

– We account for the varying resolution of the spectra with
wavelength and fiber.

A7, page 3 of 9
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Fig. 1. Sample BOSS spectra (black) for two representative low-metallicity F-type stars, a dwarf and a giant. The spectra are divided into 20
equal-velocity bins and normalized by their mean value in each bin, as described in the text. The best-fitting parameters and models (red curves)
are shown.

We have processed all spectra in DR8 (Aihara et al. 2011) show-
ing low redshifts (cz < 3000 km s−1) with our method. This se-
lection criterion identified 545 343 spectra. We further trimmed
this control sample by selecting objects that we estimated to
have an average signal-to-noise ratio per pixel4 between 400
and 800 nm higher than 30. They were fit by our models with
a reduced χ2 < 10, that both our method and the SSPP find to
be in the range 4750 < Teff < 6500 K, and with metallicities
[Fe/H] < −1, in order to eliminate the bulk of the Milky Way
disk system. These criteria returned a sample of 61 040 stars, for
which we have compared our atmospheric parameters and those
from the SSPP. The results are illustrated in Fig. 2.

The agreement between the SSPP effective temperatures and
metallicities in this range of atmospheric parameters is excellent.
Gaussian fittings to the distribution of the differences between
this work and the SSPP are 2±70 K, 0.17±0.24 dex, and −0.05±
0.11 dex for Teff, log g, and [Fe/H], respectively (see lefthand
panels in Fig. 2).

The agreement is not as good for surface gravity, with our
values slightly higher for dwarfs by about 0.15 dex, and signif-
icantly lower for giants (log g < 2.5), with discrepancies reach-
ing up to 1 dex at log g ≃ 1. The surface gravities from the SSPP
have been throughly tested against globular and open clusters
(Lee et al. 2008b; Smolinski et al. 2011) for gravities as low as
log g ≃ 1.7, and therefore we suspect our values for low-gravity
stars. Examining the stars of this sample which belong to the
globular cluster M 13 clearly reveals a correlation for the metal-
licity with gravity at log g < 2.5, as illustrated in Fig. 3. Thus, the
metallicity estimations for stars at this range are systematically
underestimated owing to the errors in surface gravity. That leads
us to be cautious with those parameters derived at log g < 2.5,
which will be excluded in our subsequent analyses. This effect
could at least be partly related to the fact that low surface gravity

4 One pixel spans 69 km s−1 in velocity.

red giants have temperatures that are close to our grid limit. On
the other hand, the dispersion observed in our inferred metal-
licities for M 13 stars with log g > 2.5 is σ = 0.06 dex, signifi-
cantly lower than that corresponding to both DR8 and DR9 SSPP
metallicity values for the same stars, σ = 0.14 and σ = 0.13,
respectively.

The model grid is limited to log g ≤ 4.5 due to the in-
clusion of very low metallicities, for which no model atmo-
spheres for stars of higher gravity are available in the Castelli
& Kurucz (2003) grids we employ. We have built grids limited
to [Fe/H] ≥ −2.5 that reach log g = 5, but are otherwise identi-
cal, for other analyses presented in the following papers in this
series.

As explained above, although BOSS spectra have a broader
spectral range than the one provided by the SDSS spectra in
DR8, we limit our analysis to the range 380–900 nm, common to
all data. Thus, we expect that our confidence on the metallicities
we derive for metal-poor stars in DR8 can be extended to stars
observed by BOSS with similar properties and signal-to-noise
ratios.

DR9 involved some changes in the SSPP, mainly that the ef-
fective temperatures were calibrated to match the infrared flux
method scale (see, e.g., Casagrande et al. 2010). Repeating the
previous comparison but adopting the SSPP DR9 parameters
we find a very similar agreement, although systematic offsets
are more prominent than in DR8. The Gaussian fittings to the
distribution of the differences between this work and the SSPP
are −54 ± 66 K, 0.23 ± 0.23 dex, and −0.11 ± 0.11 dex for Teff ,
log g, and [Fe/H], respectively.

3.3. Validation against individual-line analysis
of BOSS spectra

A second method investigating the accuracy of the metallicities
obtained in the analysis of BOSS spectra was implemented. This
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Fig. 2. Comparison between the parameters
derived by our method and those from the
SEGUE Stellar Parameter Pipeline (SSPP)
for 61,040 F- and G-type stars in DR8.
Lefthand panels: density distribution of stars
in a logarithmic scale, with the one-to-one re-
lationship shown in yellow. Righthand pan-
els: distribution of differences between this
work and the SEGUE SSPP for each param-
eter, with Gaussian fittings and their central
values in red.

analysis focused on the Ca II (H and K) resonance lines (cen-
tered at about 397 and 393 nm), which saturate at high metal-
licity, but are a useful metallicity proxy at [Fe/H] < −1. Similar
to our primary algorithm, we determine [Fe/H] by comparing
the χ2 between observations and model spectra, but this time
using only wavelengths in the vicinity of the Ca II lines, con-
fining the comparison to the Teff and log g values previously ob-
tained, and varying [Fe/H]. A preliminary χ2 minimum is found
by fitting three points with a parabola. We then evaluate the χ2 at
five additional values of [Fe/H] around the minimum (±0.2 dex
and ±0.4 dex), then fitting a new parabola to the constrained re-
gion around the minimum.

This method relies strongly on the fact that metal-poor stars
have enhanced Ca/Fe ratios relative to solar proportions and
will fail when this is not true, or when the enhancement is far
from the assumed value (+0.4 at [Fe/H] ≤ −1), but this caveat
also applies to our main method. We derive an estimate of the
uncertainty in the metallicity associated with the noise in the

spectrum, although this ignores the error covariances with Teff
and log g, since these are held constant. We tested approximately
a thousand stars with metallicities between −3 < [Fe/H] < −1
and found excellent agreement with our main algorithm, with a
mean metallicity about −0.09 dex lower, and an rms deviation
of 0.11 dex. An attempt to consider both the Ca II resonance
lines and the Ca II IR triplet at about 860 nm provided slightly
worse results.

3.4. Additional validations

A number of recent studies from the literature have investigated
metal-poor stars from SDSS. We can use these to obtain an addi-
tional constraint on the accuracy of our atmospheric parameters.

As part of a larger sample Allende Prieto et al. (2008)
analyzed a homogeneous set of high-resolution spectra from
HRS on the 10-m Hobby-Eberly Telescope (Tull et al. 1998)
for 81 stars that had been previously observed with the
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Fig. 3. Analysis of the stars belonging to the
globular cluster M 13. The left panel compares
the stars (red dots) with an isochrone (black as-
terisks) at 10.0 Gy and Z = 0.0004 from Girardi
et al. (2002). In the right panel [Fe/H] vs. log g
values from the SSPP in DR8 and DR9 are plot-
ted at the top; the bottom panel is the same plot
for our results, which shows evidence of a sys-
tematic decrease in the metallicity with the sur-
face gravity at log g < 2.5 but a significant im-
provement in precision over the SSPP results.

SDSS spectrographs. Most of these stars have higher metallic-
ities than those we are concerned with, but nevertheless we find
good agreement between our derived parameters for the 74 stars
in the sample that are cooler than 6500 K (the warmest tem-
perature we include in our sample) and the parameters pub-
lished by Allende Prieto et al. (2008). Our metallicities are on
average 0.1 dex lower, our temperatures are 130 K warmer,
and our gravities are 0.25 dex higher than those from the high-
resolution analysis, with rms dispersions between the results of
the two analyses (measured by fitting Gaussians to the residu-
als) of 0.18 dex, 163 K, and 0.23 dex in [Fe/H], Teff, and log g,
respectively.

Bonifacio et al. (2012) present high-resolution VLT/UVES
(Dekker et al. 2000) observations of 16 metal-poor stars with
[Fe/H]< −3 identified from SDSS DR6 (Adelman-McCarthy
et al. 2008). We have analyzed the SDSS spectra of these stars
and compared our derived parameters with those from the anal-
ysis of high-resolution spectra published by Bonifacio et al.
Ignoring one star (SDSS J002113-005005) that is warmer than
the models in our grid (Teff ∼ 6550 K), the agreement is ex-
cellent. Our effective temperatures are on average 63 K higher,
with an rms scatter between the two sets of results of 114 K.
Similarly, our gravities are, on average, 0.13 dex higher with an
rms scatter of 0.46 dex, and our metallicities are 0.3 dex higher
with an rms scatter of just 0.2 dex.

The same team of authors has recently announced the dis-
covery of a dwarf star with a metallicity around [Fe/H] ∼ −5,
SDSS J102915+172927, originally identified as a candidate for
ultra-low metallicity from the pool of SDSS spectra and later
analyzed with higher resolution data from the X-shooter and
UVES spectrographs, both on the VLT. Our analysis of the
SDSS spectrum of this relatively bright star for our sample
(g = 17.3) yields estimates of Teff = 5888 K, log g = 4.47,
and [Fe/H] = −4.4, which compare well with those from the
high-resolution analysis by Caffau et al. (2012), namely Teff =

5811 ± 150 K, log g = 4.0 ± 0.5, and [Fe/H] = −4.89 ± 0.10.

An investigation by Yong et al. (2013), using several high-
resolution spectrographs, includes results on four stars orig-
inally observed with the SDSS spectrographs. We compared
our measurements for three of the stars, for which the team
has derived the three atmospheric parameters; our temperatures

are an average of 9 K cooler with an rms scatter of 88 K,
our surface gravities are on average 0.02 dex higher with an
rms scatter of 0.57 dex, and our metallicities are an average
of 0.34 dex higher with an rms of 0.25 dex. For the fourth SDSS
star (SDSS J014036+234458), Yong et al. derived the effective
temperature and metallicity assuming that the star was either a
dwarf or a giant, finding a Teff = 5703 K and [Fe/H] = −4.0
or −4.1, respectively. Our analysis of the SDSS spectrum re-
turned Teff = 5958 K, [Fe/H] = −3.4, and log g = 3.8.

Aoki et al. (2013) have published atmospheric parameters
and compositions for 137 stars, most of them on the turnoff,
selected for having very low metallicities from SDSS/SEGUE.
From 111 stars in common, we find that our Teff , log g, and
[Fe/H] values differ an average of −99 K (σ = 212 K), −0.01 dex
(σ = 0.62 dex), and +0.13 dex (σ = 0.34 dex), respectively,
from theirs. This comparison adds very little to the discus-
sion about surface temperatures and gravities in Sect. 3.2, since
these authors embrace the effective temperatures provided by
the SSPP and assume a constant log g of 4.0 with an expected
uncertainty of about 0.5 dex for their turnoff stars. The large
scatter in Teff is driven by a number of outliers at low temper-
ature (T < 5000 K); a robust scatter estimate from a Gaussian
model, as performed in Sect. 3.2, would instead show a mean
offset of −27 K and a σ of 93 K, in fair agreement with the
spread shown in the top panel in Fig. 2. Of relevance is the mod-
est offset and scatter in metallicity, which Aoki et al. derive from
Fe I lines in high-resolution Subaru/HDS spectra (Noguchi et al.
2002). This scatter is about three times larger than the overall
figure of ≈0.1 dex in Fig. 2, at least partly because most of the
Aoki sample spans the range −3.5 < [Fe/H] < −2.5; i.e., they
have about one full dex lower metallicity than the median of the
sample considered in Fig. 2.

Overall, all these comparisons provide high confidence in
our analysis of SDSS spectra of F and early G-type metal-poor
stars and, in particular, on the inferred metallicities.

4. The halo metallicity distribution function

For our study of halo stars we selected those targeted in
BOSS as spectrophotometric standards. These are labeled as
SPECTROPHOTO_STD by the pipeline, and they represent a ho-
mogeneously selected sample of metal-poor stars.
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Table 1. Calculated ugriz colors for stars with different atmospheric
parameters.

[Fe/H] Teff log g (u − g)0 (g − r)0 (r − i)0 (i − z)0

0.5 3500 0.00 3.873 1.472 1.308 0.717
0.5 3500 0.50 3.519 1.374 1.402 0.752
0.5 3500 1.00 3.176 1.288 1.477 0.782
0.5 3500 1.50 2.845 1.215 1.533 0.805
. . . . . . . . . . . . . . . . . . . . .

Notes. Full table available at the CDS.

We limited the surface gravity to 2.5 < log g < 4, and g > 17.
All else being equal, stars with lower gravities are more extended
and luminous, and they probe larger distances. Using stellar evo-
lution models, we find that the above magnitude and gravity
limits place our sample at distances beyond 5 kpc, restricting
it mainly to a halo population. We further limited our sample to
stars fit with a χ2 < 3 and a Teff > 5600 K. For our selection
of BOSS plugplates, this sample comprises about 5100 stars. If
we instead consider a more relaxed upper limit in surface grav-
ity, 2.5 < log g < 4.4, our sample includes about 16 000 stars.
We checked that imposing an additional selection on the average
signal-to-noise ratio per pixel to be higher than 30 did not alter
our results significantly. Repeated observations are about 12%,
and therefore their effect on our analysis is negligible, but they
provide a consistency check. We find a mean rms for matched
pairs of 73 K, 0.29 dex, and 0.16 dex in Teff, log g, and [Fe/H],
respectively.

The observed metallicity distribution is biased by to the color
cuts adopted to select the BOSS spectrophotometric standard
stars, i.e., Eq. (1). To evaluate this bias quantitatively, we make
use of the spectral energy distributions provided with the very
same Kurucz model atmospheres described in Sect. 3. We cal-
culate the SDSS ugriz colors for stars with different atmospheric
parameters, using the fiducial filter responses (Gunn 2001, priv.
comm.5) for a point source at an airmass of 1.3. They correspond
to measurements performed in 2000, but see the discussion by
Doi et al. (2010) for more details on the time stability of the
SDSS filter responses. The results are given in Table 1, available
at the CDS.

By selecting models in Table 1 within the temperature
range 5600 ≤ Teff ≤ 6500 K and identifying which ones would
make it through the color cut in Eq. (1), we evaluate how the
color selection distorts the underlying metallicity distribution.
This is illustrated in Fig. 4. In this figure we show 2D gray-scale
maps of the distribution in log g and [Fe/H] for models within the
range in temperature stated above in Table 1, before (top panel)
and after applying the color selection appropriate to BOSS spec-
trophotometric standards (middle panel). These results were ob-
tained using bins of 1.0 dex for both log g and [Fe/H], and inter-
polating linearly for an improved resolution. The bottom panel
shows the ratio of the arrays depicted in the middle and top pan-
els, i.e. the fraction of models that pass the color cut. From Fig. 4
it is obvious that the color cut used to select spectrophotometric
standards is very efficient at removing high-metallicity stars, and
it becomes more efficient at low gravities.

The resulting metallicity distribution function is depicted in
Fig. 5. Each panel shows samples subjected to different mag-
nitude and gravity cuts. The corrections associated with the
color cut are fairly small. The top two panels are limited to
stars with g > 17 and either 2.5 < log g < 4.4 (top-left)
or 2.5 < log g < 4 (top-right). The more stringent gravity

5 http://www.sdss.org/dr3/instruments/imager/#filters

Fig. 4. Analysis of the distortions in the observed metallicity distribu-
tion due to the BOSS color cut for the selection of spectrophotometric
standards. Top panel: distribution of models under consideration (and
listed in Table 1). Middle panel: distribution of models that pass the
color cut in Eq. (1). Bottom panel: ratio of the middle and top panels.
White indicates higher numbers on a linear scale. See text for details.

cut is introduced to ensure that all our stars are at least 5 kpc
away, minimizing contributions from the thick disk or metal-
weak thick disk. However, both distributions are very similar,
indicating that the color cut is in fact very efficient at select-
ing halo stars. In all cases we are also limiting the samples to
stars with Teff > 5600 K and logχ2 < 0.5. For the bulk of the
halo, the metallicity distribution peaks at about [Fe/H] = −1.6,
in good agreement with previous determinations. However, there
are some striking differences with earlier results that we discuss
below. Table 2 provides the number of stars in each bin for the
largest subsample (g > 17 and 2.5 < log g < 4.4).

The metallicity distribution published by Allende Prieto
et al. (2006), based on SDSS spectra included in DR6 for G- and
F-type stars located at more than 8 kpc from the plane has an
extended tail toward low metallicity, similar to our results, but
it extends to significantly higher metallicities. The distribution
we derived is also more concentrated and asymmetric than pre-
vious results from photometric calibrations (Ivezic et al. 2008;
An et al. 2013). Our results are perhaps more similar to those
by Li et al. (2010), but those authors do not separate halo and
thick-disk stars at high metallicity.

The two bottom panels in Fig. 5 show the metallicity dis-
tributions for much more restricted samples, which are limited
to stars with lower gravities, hence more distant, but still with
g > 17 in both cases. For 2.5 < log g < 3 (bottom right panel),
we limit the sample to stars beyond 10 kpc. In this panel we find
a clear shift of the distributions to lower metallicities, in line with
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Fig. 5. Metallicity distribution derived from
BOSS spectra of spectrophotometric standard
stars. Black lines are as measured, and red lines
after correcting selections effects as explained
in the text. Upper two panels: distributions for
stars with two different upper limits on sur-
face gravity, log g. Two lower panels: change
in metallicity distribution for stars exploring the
more distant regions of the halo system.

Table 2. Metallicity distribution derived from BOSS spectra of spec-
trophotometric standards with Teff > 5600 K, 2.5 ≤ log g ≤ 4.4,
and g > 17.

[Fe/H] (bin center) N N/Ntotal
–4.000 1 0.0001
–3.833 1 0.0001
–3.667 0 0.0000
–3.500 5 0.0003
–3.333 16 0.0009
–3.167 30 0.0017
–3.000 65 0.0038
–2.833 144 0.0084
–2.667 260 0.0151
–2.500 521 0.0302
–2.333 845 0.0490
–2.167 1525 0.0884
–2.000 2305 0.1336
–1.833 3183 0.1845
–1.667 4459 0.2584
–1.500 2768 0.1605
–1.333 828 0.0480
–1.167 152 0.0088
–1.000 121 0.0070
–0.833 21 0.0013
–0.667 0 0.0000
–0.500 0 0.0000
–0.333 0 0.0000
–0.167 0 0.0000
0.000 0 0.0000

Notes. All metallicity bins are 0.1 dex wide.

results by Carollo et al. (2007, 2010), de Jong et al. (2010), and
Beers et al. (2012). The metallicity peaks at [Fe/H] = −1.6 and
[Fe/H] = −2.2 resemble those associated by these authors with
the inner and outer halo of the Galaxy.

5. Conclusions

We analyzed a large sample of F-type halo turnoff stellar spec-
tra obtained by the SDSS-III BOSS project. We upgraded our

analysis methods to better account for instrumental distortions
and systematic calibration errors and derived the main atmo-
spheric parameters, including the overall iron abundance.

Our results compare well with previously published analy-
ses of SDSS spectra. The analysis of stars in the globular cluster
M 13 shows that the [Fe/H] estimations from this work have less
dispersion than those provided up to now by the SSPP, although
low-gravity metal-poor stars suffer from underestimated gravi-
ties and metallicities. Relative to previous work, we reach more
distant regions of the Galactic halo with a highly homogeneous
sample of F-type turnoff stars.

Our experiments indicate that selection effects associated
with the color cuts used in SDSS to select these stars cause
no significant distortions in the observed metallicity distribu-
tions. We find a halo metallicity distribution that peaks at around
[Fe/H] = −1.6, in agreement with a plethora of previous stud-
ies. Nonetheless, our distribution is more sharply concentrated,
with a rapid fall-off on the high-metallicity side, including very
few stars at [Fe/H] > −1 and an extended tail toward very low
metallicities.

The most distant stars in our sample, at tens of kpc from the
Sun, hint at a significant change in the metallicity distribution,
which shifts toward lower metallicities, consistent with expec-
tations if the halo of the Milky Way comprises both an inner-
and an outer-halo population. However, this has been the sub-
ject of an intense debate in the last few years (see, e.g., Beers
et al. 2012 vs. Schonrich et al. 2014) which we do not pretend to
solve in this paper, since we are focused on a small fraction of
the spectra obtained by the SDSS.

At this point we have only considered the overall metal-
licity of the stars, as derived from all metal lines available in
BOSS spectra (380–920 mm). At the lowest metallicities and for
the surface temperatures of the F-type stars considered, the de-
rived metallicities are dominated by the signal in the CaII lines,
whereas at higher metal abundances our metallicity determina-
tions are dominated by large numbers of iron lines. In the fol-
lowing papers, we will separate individual elements and revisit
the halo metallicity distribution. We will also infer distances to
the stars and examine possible variations in metal abundances as
a function of distance from the Galactic center in more detail.
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