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Abstract

Hybrid systems which integrate the deep neural network (DNN)
and hidden Markov model (HMM) have recently achieved re-
markable performance in many large vocabulary speech recog-
nition tasks. These systems, however, remain to rely on the
HMM and estimate the acoustic scores for the (windowed)
frames independently of each other, suffering from the same
difficulty as in the previous GMM-HMM systems. In this pa-
per, we propose the deep segmental neural network (DSNN), a
segmental model that uses DNNs to estimate the acoustic scores
of phonemic or sub-phonemic segments with variable lengths.
This allows the DSNN to represent each segment as a single
unit, in which frames are made dependent on each other. We
describe the architecture of the DSNN, as well as its learning
and decoding algorithms. Our evaluation experiments demon-
strate that the DSNN can outperform the DNN/HMM hybrid
systems and two existing segmental models including the seg-
mental conditional random field and the shallow segmental neu-
ral network.
Index Terms: Segmental Model, Segmental Conditional Ran-
dom Field, Deep Segmental Neural Network

1. Introduction
Recently, deep-neural-network hidden Markov model
(DNN/HMM) hybrid systems have achieved remarkable
performance in many large vocabulary speech recognition tasks
[1, 2, 3, 4, 5]. These DNN/HMM hybrid systems, however,
estimate the observation likelihood score for each (windowed)
frame independently, and rely on a separate HMM to connect
these scores to form the overall scores for phonemes, words,
and then sentences.

It has been known for decades that modeling speech using
the conventional HMM has several limitations as analyzed in
[6, 7, 8]. The limitations include the assumption of conditional
independence of temporal observations all with an identical dis-
tribution given the state, the restriction of using frame-level fea-
tures, and weak duration modeling. To eliminate these limita-
tions, many techniques have been developed. These techniques
can be described in a unified framework named the segmen-
tal model [6]. The state sequence in the segmental models is
often modeled as a Markov chain. However, these states emit
variable-length segments (typically phonemes or subphonemes)
instead of a set of independent frames. Because of this charac-
teristic, segment-level features such as duration can be easily
incorporated in the segmental models and the frame indepen-
dence assumption is no longer needed.

More recently, segmental models have also been developed
in the discriminative model framework (e.g., segmental condi-
tional random field (SCRF) [9, 10]). These models, however,

are typically shallow, require manual feature design, and are of-
ten used in the second pass decoding scenario. In these models,
the feature design and the log-linear classifier are independently
trained as two separate components of the system.

In this paper, we propose an integrated segmental model
— deep segmental neural network (DSNN). Similar to the
SCRF, at the top of the DSNN is a conditional random field
(CRF) that models sequences. Unlike the SCRF, our proposed
DSNN uses a DNN to model the variable-length segments and
learn the CRF and DNN parameters jointly. Compared to the
DNN/HMM hybrid system, the DSNN replaces the HMM with
a CRF and generates a score for each variable-length segment
instead of for each frame. These acoustic scores, one for each
segment, are combined with the language model (LM) scores to
compute the label sequence’s conditional probability.

The rest of the paper is organized as follows. In Section 2
we describe the proposed DSNN in detail. We also propose four
ways to reduce the model complexity in order to facilitate the
implementation. In Sections 3 and 4, we introduce the learn-
ing and decoding algorithms we have developed for the DSNN.
We report experimental results on the TIMIT dataset in Sec-
tion 5 and demonstrate that the DSNN performs better than the
DNN/HMM hybrid systems and the SCRF. We discuss the re-
lated work in Section 6 and conclude the paper in Section 7.

2. The Deep Segmental Neural Network
2.1. Model Description

Assuming we are given a sequence of feature vectors, X , for an
utterance, we use L = {l1, · · · , lK} to represent a sequence of
labels, which may be defined at the subphoneme, phoneme, syl-
lable or even word level, and T = {t0, t1, · · · , tK} to denote
one particular time alignment for the label sequence. The label
sequence and the associated time sequence form a segment se-
quence. The conditional probability for the segment sequence
Y given the speech utterance X is estimated as

P (L, T |X) =
exp

(∑
i s(li, ti−1 + 1, ti|X) + u(L)

)∑
L̂,T̂ exp

(∑
j s(l̂i, t̂i−1 + 1, t̂i|X) + u(L̂)

) ,
(1)

where s(li, ti−1+1, ti|X) denotes the acoustic score and it rep-
resents the score of getting label li for the segment that has the
time boundaries [ti−1+1, ti], and u(L) stands for the total LM
score computed for the entire label sequence L. The denomina-
tor in Eq.(1) sums over all possible label sequences L̂ and time
alignments T̂ . If we are only interested in the label sequence
L, we can sum over all possible time alignments to yield the
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Figure 1: Structure of the deep segmental neural network
(DSNN)

posterior probability of one particular L given X as follows:

P (L|X) =
∑
T

P (L, T |X)

=

∑
T exp

(∑
i s(li, ti−1 + 1, ti|X) + u(L)

)∑
L̂,T̂ exp

(∑
j s(l̂i, t̂i−1 + 1, t̂i|X) + u(L̂)

) . (2)

In this work, we use DNNs to compute acoustic scores for
each variable-length segment, s(li, ti−1 + 1, ti|X), and thus
name our model the deep segmental neural network (DSNN).
The scores used here may take values of any suitable range and
they need not be log probabilities. The total acoustic and energy
score of a label and segmentation sequence is the negative of the
energy function of the model. We leave the DNN to compute
any scores that maximizes conditional probability of the train-
ing data. Note that any type of LM can be used in the above def-
inition. In this paper, we use a simple bigram LM to compute
u(L). Other more complex LMs can be used as well but they
may require some approximations such as constraining search
space with word graphs instead of summing over all possible
segment sequences.

2.2. Practical Implementation

It is well known that speech segments are of variable duration.
However, the DNN expects fixed-length inputs. This imposes a
challenge when we apply DNNs to segmental models. In this
section, we propose methods to normalize segments, which lead
to various practical ways of implementing the DSNN.

The basic structure of the DSNN, shown in Fig. 1, is used to
compute the acoustic scores for segments. Some DNNs, repre-
sented as the trapezoid shapes in the figure, are used to compute
frame-level features. Each of these DNNs includes a few fully-
connected hidden layers. Similar to the DNN/HMM hybrid sys-
tem, each DNN computes an acoustic score by taking several
consecutive frames within a context window, which is centered
at one particular frame located within the given segment or the
left/right context of the segment. To normalize variable-length
segments, we uniformly sample a fixed number, Nl, of frames
from the left segment context, Nc frames from the current seg-
ment, and Nr frames from the right segment context. Example
values used in this work are Nl = Nr = 2 and Nc = 4. The
outputs from these DNNs are then fed into one or more layers
of additional hidden nodes, which now take a fixed-size input.
As shown in Fig. 1, these upper layers are called segment-

dependent hidden layers, on top of which the output layer is
added to compute the final label score vector corresponding to
the current segment.

The weights of the lower-level DNNs may be tied. In this
case, a single DNN is shifted along the time axis in the speech
utterance to compute a fixed-size feature output for the upper-
level, segment-dependent hidden layers in the DSNN.

Here we describe four practical methods that we have im-
plemented in estimating the segment score function s(li, ti−1+
1, ti|X) using a frame-based DNN. The DNN computes the la-
bel score for each frame. To compute the score o(l, t) of la-
bel l at time t, the DNN takes a number of consecutive frames
centred at time t. Then a segment score is derived from these
frame-based scores using several alternative methods as illus-
trated in Fig. 2 and described below.

2.2.1. Approximation by the Score from the Middle Frame

The first method, shown in Fig. 2a, approximates the segment’s
score using the DNN score computed for the middle frame
within the segment; i.e.,

s(li, ti−1 + 1, ti|X) = o(li,
ti + ti−1 + 1

2
) (3)

2.2.2. Approximation by the Score from the Final Frame

The segment’s score can also be approximated by the DNN
score computed from the final frame of the segment:

s(li, ti−1 + 1, ti|X) = o(li, ti) (4)

2.2.3. Approximation by Summing Scores from Full Segment

Similarly, the segment’s score can be approximated by sum-
ming the DNN scores over all frames located within the seg-
ment:

s(li, ti−1 + 1, ti|X) =

ti∑
t=ti−1+1

o(li, ti) (5)

2.2.4. Approximation by Averaging Scores from Full Segment

3. Training of Weights via Backpropagation
In this section, we describe the learning method for estimating
the weights in the DSNN model from training data. For each ut-
terance in the training set, we have its feature sequence, X , and
label sequence, L. No segment’s time boundary information,
T , is given during training. The DSNN weights are learned
discriminatively to maximize the label sequences’ conditional
likelihood function in eq. (2). This objective function is opti-
mized in this work using the stochastic gradient ascent method.

For any particular weight matrix, W, in the DSNN, the
derivative of logarithm of the objective function can be com-
puted based on the chain rule as follows:

∂ log p(L|X)

∂ W
=
∑

l,ts,te

∂ log p(L|X)

∂ s(l, ts, te)
· ∂ s(l, ts, te)

∂ W
(6)

where s(l, ts, te) denotes the segmental acoustic score com-
puted by the low-level DNN defined by W.

The first derivative in the right hand-side of eq.(6) can be
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Figure 2: Three different methods for approximating the score of a segment (a, b, c). The corresponding segmental neural net in d.

computed based on eq.(2) as follows:

∂ log p(L|X)

∂s(l, ts, te)
=

∑
T∈A p(L, T |X)

p(L|X)
−

∑
(L̂,T̂ )∈B

p(L̂, T̂ |X)

(7)
where A denotes the set of time alignments that assign time
boundaries [ts, te] with label l, and where B denotes the set
of all possible label segments and time alignments that embed
(l, [ts, te])). The summations in eq. (7) contain an exponen-
tially increasing number of terms. However, if a bigram lan-
guage model is used in eq.(2), these summations can be recur-
sively evaluated using the forward-backward algorithm.

In this case, we define αs(l, t) as the sum of partial scores
of all paths that lead to label l starting at time t excluding the
current label score. We also define αe(l, t) as the sum of par-
tial scores of all paths that end with a segment label l and ends
at time instant t. Figure 3 illustrates one step in computing
αs(l, t), which accounts for all labels before time t, and one
step in computing αe(l, t), which considers all different lengths
of segment l ending in time t. These two quantities can be com-
puted recursively according to

αs(l, t) =
∑
l̂

αe(l̂, t− 1) exp
(
w(l; l̂)

)
(8)

and

αe(l, t) =
∑
d

αs(l, t− d+ 1) exp
(
s(l, t− d+ 1, t|x)

)
(9)

where d represents the segment duration that is summed from 1
to the maximum duration of segment l observed in the training
sequence, andw(l; l̂) is the language model score for transition-
ing from label l̂ to l.

Similarly, βs and βe are defined for the backward direction
as:

βe(l, t) =
∑
l̂

βs(l̂, t+ 1) exp
(
w(l̂; l)

)
(10)
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Figure 3: Illustration of recursive “forward” computations of
αs and αe.

βs(l, t) =
∑
d

βe(l, t+ d− 1) exp
(
s(l, t, t+ d− 1|x)

)
(11)

Model learning requires the computation of s(l, ts, te) for all
possible l, ts, and te, where the duration of each label l is lim-
ited to the maximum duration seen for the label in the training
set. This computation has been efficiently implemented by par-
allelizing them in a GPU. After these computations, the deriva-
tives of the log objective function are back-propagated to all
DNNs to update each weight matrix via gradient ascent.

4. Decoding
In decoding, we aim to search for the best label and alignment
sequence for each speech utterance X in the test set. With the
use of a bigram language model, the search can be carried out
using the Viterbi version of the forward algorithm in eqs. (8)
and (9) by replacing summation with maximization. This de-
coding is much slower than the standard HMM viterbi algo-
rithm as it requires the consideration of all possible segment du-
rations. In our experiments, we have speeded up decoding con-
siderably using parallel codes on both CPU (for Viterbi search)
and GPU (for compuing DSNN segments’ scores).



Table 1: Phone error rate (PER) comparisons of the full version
of a DSNN and several approximate, simplified versions.

Score Function LM no LM
Hybrid DNN-HMM 23.31% 24.63%
Simplified DSNN - Middle Frame 25.61% 24.72%
Simplified DSNN - Last Frame 24.59% 25.36%
Simplified DSNN - Segment Average 25.27% 24.96%
Simplified DSNN - Segment Sum 25.42% 25.35%
Full-scale DSNN 22.90% 23.92%

5. Experimental Evaluation
5.1. Experimental Setup

Experiments are performed on the TIMIT corpus in the standard
phone recognition task with the core test set and with 39 folded
classes. In feature extraction, speech is analyzed using a 25-ms
Hamming window with a 10-ms fixed frame rate. The speech
feature vector is generated by a Fourier-transform-based filter-
banks, which includes 40 coefficients distributed on a Mel scale
and energy, along with their first and second temporal deriva-
tives.

In our experiments, only label sequences are used for train-
ing and no alignment information is used. In our experiments, a
bigram language model is used. The label sequence’s log prob-
ability is used in equation 1 as the LM score, and is used in
both training and decoding. No duration model is used for any
model. During DSNN training, a learning rate annealing and
early stopping strategy are adopted following [11].

5.2. Results

Experiments are conducted to measure the performance of the
proposed DSNN and to compare the effectiveness with differ-
ent score functions and DNN architectures. Table 1 summarizes
the results and compares the DSNN to the hybrid DNN/HMM
model. All the models used in the experiments have 4 fully
connected hidden layers. We observe that the full version of the
DSNN outperforms all approximate versions with various sim-
plified segment score estimation methods. It also outperforms
the hybrid DNN/HMM model. Table 2 shows the performance
of the DSNN with different architectures and hyper-parameters.
Use of four hidden layers performs considerably better than
two. Moreover, use of different sets of weights for each of the
low-level, frame-based DNNs (“non-shared” in column 2) per-
forms better than sharing weights (row 4 vs. row 3), and also
reduces the complexity in computing the DSNN scores. While a
lower PER of 21.87% was obtained using a convolutional neu-
ral network [12], the DSNN (with no convolutional structure)
performs significantly better than other segmental models such
as the Segmental CRF [13] and the shallow segmental neural
network (SNN) [14].

6. Relation to Prior Work
While both using a segmental structure, the DSNN described in
this paper is different from the earlier model of SCRF [13, 15]
in several ways. First, feature transformation and the sequence
model component in the DSNN are optimized jointly, while in
the SCRF they are two separate processes and the features are
often manually defined. Second, we modified the conditional

Table 2: PER comparisons among different DSNN architec-
tures. The first column shows the number of hidden units in
each hidden layer. The two pairs of brackets represent the lower
DNN and the top segment-dependant neural net, respectively.

DSNN Architecture features sharing PER
{300}, {1000} shared 24.15%
{300*8}, {1000} non-shared 24.40%
{1000,500}, {1000,1000} shared 23.52%
{1000,150*8}, {1000,1000} non-shared 22.90%
{CNN (84 Kernels * 20
bands),150*8}, {1000,1000} non-shared 21.87%

likelihood function to allow arbitrary LM as in equation 1. In
contrast, the LM for a SCRF is defined using the transitional
features and their weights between only two states. Although
by carefully designing the model states, this can map to N-gram
LMs [9] in an indirect way, we believe that our segmenal model
formulation of eq. 1 is more natural for incorporating arbitrary
LMs (e.g., Recurrent neural net LMs).

A similar deep model to ours has been proposed for the
CRF model in [16, 17, 18] with the difference of being frame-
based rather than being segment-based. Separately, in [14], a
segmental neural net model was proposed where the variable
length segment was sampled to a fixed number of frames and
where some frames may be skipped or repeated. In the DSNN
presented in this paper, we do re-sampling on the hidden layer
features that represent a sequence of frames. So, theoretically
all frames can be represented in the DSNN while preserving the
structure between consecutive frames.

7. Conclusions
We have presented a novel segmental model — the deep seg-
mental neural network. The DSNN estimates the acoustic
scores for variable-length segments and models the label se-
quence’s conditional probability directly. This eliminates the
assumption that each frame is independent of each other given
the state and thus has potential to perform significantly better
than the DNN/HMM hybrid. We have described several pos-
sible simplifications for practical implementation, the related
learning and decoding algorithms, and demonstrated that it per-
forms well on the TIMIT phone recognition task. While this
is an initial attempt to use the DSNN, the results are promis-
ing and are better than that obtained by other segmental models
such as the SCRF [13] and the SNN [14]. The proposed DSNN
can be further improved by optimising the language model and
using segmental-level features such as duration information that
we have not incorporated in this work.
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