
Deep Self-Taught Learning for Handwritten Character
Recognition

Frédéric Bastien, Yoshua Bengio, Arnaud Bergeron, Nicolas Boulanger-Lewandowski, Thomas Breuel,
Youssouf Chherawala, Moustapha Cisse, Myriam Côté, Dumitru Erhan, Jeremy Eustache,

Xavier Glorot, Xavier Muller, Sylvain Pannetier Lebeuf, Razvan Pascanu,
Salah Rifai, Francois Savard, Guillaume Sicard

Dept. IRO, U. Montreal

Abstract

Recent theoretical and empirical work in statistical machine learning has demonstrated
the importance of learning algorithms for deep architectures, i.e., function classes ob-
tained by composing multiple non-linear transformations. Self-taught learning (exploit-
ing unlabeled examples or examples from other distributions) has already been applied to
deep learners, but mostly to show the advantage of unlabeled examples. Here we explore
the advantage brought by out-of-distribution examples. For this purpose we developed a
powerful generator of stochastic variations and noise processes for character images, in-
cluding not only affine transformations but also slant, local elastic deformations, changes
in thickness, background images, grey level changes, contrast, occlusion, and various
types of noise. The out-of-distribution examples are obtained from these highly distorted
images or by including examples of object classes different from those in the target test
set. We show that deep learners benefit more from them than a corresponding shallow
learner, at least in the area of handwritten character recognition. In fact, we show that
they reach human-level performance on both handwritten digit classification and 62-class
handwritten character recognition.

1 Introduction

Deep Learning has emerged as a promising new area of research in statistical machine learning [1] (see
Bengio [2] for a review). Learning algorithms for deep architectures are centered on the learning of useful
representations of data, which are better suited to the task at hand, and are organized in a hierarchy with
multiple levels. This is in part inspired by observations of the mammalian visual cortex, which consists of
a chain of processing elements, each of which is associated with a different representation of the raw visual
input. In fact, it was found recently that the features learnt in deep architectures resemble those observed in
the first two of these stages (in areas V1 and V2 of visual cortex) [3], and that they become more and more
invariant to factors of variation (such as camera movement) in higher layers [4]. It has been hypothesized
that learning a hierarchy of features increases the ease and practicality of developing representations that
are at once tailored to specific tasks, yet are able to borrow statistical strength from other related tasks (e.g.,
modeling different kinds of objects). Finally, learning the feature representation can lead to higher-level
(more abstract, more general) features that are more robust to unanticipated sources of variance extant in
real data.

Self-taught learning [5] is a paradigm that combines principles of semi-supervised and multi-task learning:
the learner can exploit examples that are unlabeled and possibly come from a distribution different from
the target distribution, e.g., from other classes than those of interest. It has already been shown that deep
learners can clearly take advantage of unsupervised learning and unlabeled examples [2, 6], but more needs
to be done to explore the impact of out-of-distribution examples and of the multi-task setting (one exception
is [7], which uses a different kind of learning algorithm). In particular the relative advantage of deep
learning for these settings has not been evaluated. The hypothesis discussed in the conclusion is that a deep
hierarchy of features may be better able to provide sharing of statistical strength between different regions
in input space or different tasks.

1

Previous comparative experimental results with stacking of RBMs and DAs to build deep supervised pre-
dictors had shown that they could outperform shallow architectures in a variety of settings, especially when
the data involves complex interactions between many factors of variation [8, 2]. Other experiments have
suggested that the unsupervised layer-wise pre-training acted as a useful prior [9] that allows one to initial-
ize a deep neural network in a relatively much smaller region of parameter space, corresponding to better
generalization.

To further the understanding of the reasons for the good performance observed with deep learners, we focus
here on the following hypothesis: intermediate levels of representation, especially when there are more such
levels, can be exploited to share statistical strength across different but related types of examples, such
as examples coming from other tasks than the task of interest (the multi-task setting), or examples coming
from an overlapping but different distribution (images with different kinds of perturbations and noises,
here). This is consistent with the hypotheses discussed in Bengio [2] regarding the potential advantage of
deep learning and the idea that more levels of representation can give rise to more abstract, more general
features of the raw input.

This hypothesis is related to the self-taught learning setting [5], which combines principles of semi-
supervised and multi-task learning: the learner can exploit examples that are unlabeled and possibly come
from a distribution different from the target distribution, e.g., from classes other than those of interest. It
has already been shown that deep learners can take advantage of unsupervised learning and unlabeled ex-
amples [2, 6], but more needed to be done to explore the impact of out-of-distribution examples and of the
multi-task setting (one exception is [7], which shares and uses unsupervised pre-training only with the first
layer). In particular the relative advantage of deep learning for these settings had not been evaluated.

The main claim of this paper is that deep learners (with several levels of representation) can benefit more
from out-of-distribution examples than shallow learners (with a single level), both in the context of
the multi-task setting and from perturbed examples. Because we are able to improve on state-of-the-art
performance and reach human-level performance on a large-scale task, we consider that this paper is also
a contribution to advance the application of machine learning to handwritten character recognition. More
precisely, we ask and answer the following questions:

• Do the good results previously obtained with deep architectures on the MNIST digit images generalize
to the setting of a similar but much larger and richer dataset, the NIST special database 19, with 62 classes
and around 800k examples?

• To what extent does the perturbation of input images (e.g. adding noise, affine transformations, back-
ground images) make the resulting classifiers better not only on similarly perturbed images but also on the
original clean examples? We study this question in the context of the 62-class and 10-class tasks of the
NIST special database 19.

• Do deep architectures benefit more from such out-of-distribution examples, in particular do they benefit
more from examples that are perturbed versions of the examples from the task of interest?

• Similarly, does the feature learning step in deep learning algorithms benefit more from training with
moderately different classes (i.e. a multi-task learning scenario) than a corresponding shallow and purely
supervised architecture? We train on 62 classes and test on 10 (digits) or 26 (upper case or lower case) to
answer this question.

Our experimental results provide positive evidence towards all of these questions, as well as classifiers
that reach human-level performance on 62-class isolated character recognition and beat previously
published results on the NIST dataset (special database 19). To achieve these results, we introduce in
the next section a sophisticated system for stochastically transforming character images and then explain
the methodology, which is based on training with or without these transformed images and testing on clean
ones. Code for generating these transformations as well as for the deep learning algorithms are made
available at http://hg.assembla.com/ift6266.

2 Perturbed and Transformed Character Images

Original

This section describes the different transformations we used to stochastically transform
32× 32 source images (such as the one on the left) in order to obtain data from a larger
distribution which covers a domain substantially larger than the clean characters distri-
bution from which we start. Although character transformations have been used before
to improve character recognizers, this effort is on a large scale both in number of classes
and in the complexity of the transformations, hence in the complexity of the learning
task. More details can be found in this technical report [10]. The code for these trans-
formations (mostly python) is available at http://hg.assembla.com/ift6266.

2

All the modules in the pipeline share a global control parameter (0 ≤ complexity ≤ 1) modulating the
amount of deformation or noise. There are two main parts in the pipeline. The first one, from thickness to
pinch, performs transformations. The second part, from blur to contrast, adds different kinds of noise.

2.1 Transformations

Thickness

To change character thickness, morphological operators of dilation and erosion [11, 12]
are applied. The neighborhood of each pixel is multiplied element-wise with a struc-
turing element matrix. The pixel value is replaced by the maximum or the minimum
of the resulting matrix, respectively for dilation or erosion. Ten different structural ele-
ments with increasing dimensions (largest is 5×5) were used. For each image, randomly
sample the operator type (dilation or erosion) with equal probability and one structural
element from a subset of the n = round(m×complexity) smallest structuring elements

where m = 10 for dilation and m = 6 for erosion (to avoid completely erasing thin characters). A neutral
element (no transformation) is always present in the set.

Slant

To produce slant, each row of the image is shifted proportionally to its height: shift =
round(slant×height). slant ∼ U [−complexity, complexity]. The shift is randomly
chosen to be either to the left or to the right.

Affine
Transformation

A 2× 3 affine transform matrix (with parameters (a, b, c, d, e, f)) is sampled according
to the complexity. Output pixel (x, y) takes the value of input pixel nearest to
(ax + by + c, dx + ey + f), producing scaling, translation, rotation and shearing.
Marginal distributions of (a, b, c, d, e, f) have been tuned to forbid large rotations (to
avoid confusing classes) but to give good variability of the transformation: a and d
∼ U [1−3complexity, 1+3 complexity], b and e∼ U [−3 complexity, 3 complexity],
and c and f ∼ U [−4 complexity, 4 complexity].

Local Elastic
Deformation

The local elastic deformation module induces a “wiggly” effect in the image, follow-
ing Simard et al. [13], which provides more details. The intensity of the displacement
fields is given by α = 3

√
complexity × 10.0, which are convolved with a Gaussian 2D

kernel (resulting in a blur) of standard deviation σ = 10− 7× 3
√
complexity.

Pinch

The pinch module applies the “Whirl and pinch” GIMP filter with whirl set to 0. A
pinch is “similar to projecting the image onto an elastic surface and pressing or pulling
on the center of the surface” (GIMP documentation manual). For a square input image,
draw a radius-r disk around its center C. Any pixel P belonging to that disk has its
value replaced by the value of a “source” pixel in the original image, on the line that
goes through C and P , but at some other distance d2. Define d1 = distance(P,C) and
d2 = sin(πd12r)−pinch × d1, where pinch is a parameter of the filter. The actual value is

given by bilinear interpolation considering the pixels around the (non-integer) source position thus found.
Here pinch ∼ U [−complexity, 0.7× complexity].

2.2 Injecting Noise

Motion Blur

The motion blur module is GIMP’s “linear motion blur”, which has parameters length
and angle. The value of a pixel in the final image is approximately the mean of the first
length pixels found by moving in the angle direction, angle ∼ U [0, 360] degrees, and
length ∼ Normal(0, (3× complexity)2).

Occlusion

The occlusion module selects a random rectangle from an occluder character image
and places it over the original occluded image. Pixels are combined by taking the
max(occluder, occluded), i.e. keeping the lighter ones. The rectangle corners are sampled
so that larger complexity gives larger rectangles. The destination position in the occluded
image are also sampled according to a normal distribution (more details in Bastien et al.
[10]). This module is skipped with probability 60%.

3

Gaussian
Smoothing

With the Gaussian smoothing module, different regions of the image are spatially
smoothed. This is achieved by first convolving the image with an isotropic Gaussian
kernel of size and variance chosen uniformly in the ranges [12, 12 + 20 × complexity]
and [2, 2 + 6 × complexity]. This filtered image is normalized between 0 and 1. We
also create an isotropic weighted averaging window, of the kernel size, with maximum
value at the center. For each image we sample uniformly from 3 to 3+10× complexity
pixels that will be averaging centers between the original image and the filtered one. We
initialize to zero a mask matrix of the image size. For each selected pixel we add to the

mask the averaging window centered on it. The final image is computed from the following element-wise
operation: image+filtered image×maskmask+1 . This module is skipped with probability 75%.

Permute Pixels

This module permutes neighbouring pixels. It first selects a fraction complexity
3 of

pixels randomly in the image. Each of these pixels is then sequentially exchanged with
a random pixel among its four nearest neighbors (on its left, right, top or bottom). This
module is skipped with probability 80%.

Gauss. Noise

The Gaussian noise module simply adds, to each pixel of the image independently, a
noise ∼ Normal(0, (complexity10)2). This module is skipped with probability 70%.

Bg Image

Following Larochelle et al. [14], the background image module adds a random back-
ground image behind the letter, from a randomly chosen natural image, with contrast
adjustments depending on complexity, to preserve more or less of the original character
image.

Salt & Pepper

The salt and pepper noise module adds noise∼ U [0, 1] to random subsets of pixels. The
number of selected pixels is 0.2× complexity. This module is skipped with probability
75%.

Scratches

The scratches module places line-like white patches on the image. The lines are heavily
transformed images of the digit “1” (one), chosen at random among 500 such 1 images,
randomly cropped and rotated by an angle ∼ Normal(0, (100 × complexity)2 (in de-
grees), using bi-cubic interpolation. Two passes of a grey-scale morphological erosion
filter are applied, reducing the width of the line by an amount controlled by complexity.
This module is skipped with probability 85%. The probabilities of applying 1, 2, or 3
patches are (50%,30%,20%).

Grey Level & Contrast

The grey level and contrast module changes the contrast by changing grey levels, and
may invert the image polarity (white to black and black to white). The contrast is C ∼
U [1 − 0.85 × complexity, 1] so the image is normalized into [1−C2 , 1 − 1−C

2]. The
polarity is inverted with probability 50%.

3 Experimental Setup

Much previous work on deep learning had been performed on the MNIST digits task with 60 000 examples,
and variants involving 10 000 examples [15]. The focus here is on much larger training sets, from 10 times
to to 1000 times larger, and 62 classes.

The first step in constructing the larger datasets (called NISTP and P07) is to sample from a data source:
NIST (NIST database 19), Fonts, Captchas, and OCR data (scanned machine printed characters). Once

4

a character is sampled from one of these data sources (chosen randomly), the second step is to apply a
pipeline of transformations and/or noise processes described in section 2.

To provide a baseline of error rate comparison we also estimate human performance on both the 62-class
task and the 10-class digits task. We compare the best Multi-Layer Perceptrons (MLP) against the best
Stacked Denoising Auto-encoders (SDA), when both models’ hyper-parameters are selected to minimize
the validation set error. We also provide a comparison against a precise estimate of human performance
obtained via Amazon’s Mechanical Turk (AMT) service (http://mturk.com). AMT users are paid
small amounts of money to perform tasks for which human intelligence is required. An incentive for them
to do the job right is that payment can be denied if the job is not properly done. Mechanical Turk has been
used extensively in natural language processing and vision. AMT users were presented with 10 character
images at a time (from a test set) and asked to choose 10 corresponding ASCII characters. They were forced
to choose a single character class (either among the 62 or 10 character classes) for each image. 80 subjects
classified 2500 images per (dataset,task) pair. Different humans labelers sometimes provided a different
label for the same example, and we were able to estimate the error variance due to this effect because each
image was classified by 3 different persons. The average error of humans on the 62-class task NIST test set
is 18.2%, with a standard error of 0.1%.

3.1 Data Sources

NIST. Our main source of characters is the NIST Special Database 19 [16], widely used for training and
testing character recognition systems [17, 18, 19, 20]. The dataset is composed of 814255 digits and
characters (upper and lower cases), with hand checked classifications, extracted from handwritten sample
forms of 3600 writers. The characters are labelled by one of the 62 classes corresponding to “0”-“9”,“A”-
“Z” and “a”-“z”. The dataset contains 8 parts (partitions) of varying complexity. The fourth partition (called
hsf4, 82587 examples), experimentally recognized to be the most difficult one, is the one recommended
by NIST as a testing set and is used in our work as well as some previous work [17, 18, 19, 20] for that
purpose. We randomly split the remainder (731,668 examples) into a training set and a validation set for
model selection. The performances reported by previous work on that dataset mostly use only the digits.
Here we use all the classes both in the training and testing phase. This is especially useful to estimate
the effect of a multi-task setting. The distribution of the classes in the NIST training and test sets differs
substantially, with relatively many more digits in the test set, and a more uniform distribution of letters in
the test set (whereas in the training set they are distributed more like in natural text).
Fonts. In order to have a good variety of sources we downloaded an important number of free fonts
from: http://cg.scs.carleton.ca/˜luc/freefonts.html. Including an operating sys-
tem’s (Windows 7) fonts, there is a total of 9817 different fonts that we can choose uniformly from. The
chosen ttf file is either used as input of the Captcha generator (see next item) or, by producing a corre-
sponding image, directly as input to our models.
Captchas. The Captcha data source is an adaptation of the pycaptcha library (a Python-based captcha
generator library) for generating characters of the same format as the NIST dataset. This software is based
on a random character class generator and various kinds of transformations similar to those described in
the previous sections. In order to increase the variability of the data generated, many different fonts are
used for generating the characters. Transformations (slant, distortions, rotation, translation) are applied to
each randomly generated character with a complexity depending on the value of the complexity parameter
provided by the user of the data source.
OCR data. A large set (2 million) of scanned, OCRed and manually verified machine-printed characters
where included as an additional source. This set is part of a larger corpus being collected by the Image
Understanding Pattern Recognition Research group led by Thomas Breuel at University of Kaiserslautern
(http://www.iupr.com), and which will be publicly released.

3.2 Data Sets

All data sets contain 32×32 grey-level images (values in [0, 1]) associated with a label from one of the
62 character classes. They are obtained from the optional application of the perturbation pipeline to iid
samples from the datasources, and they are randomly split into training set, validation set, and test set.
NIST. This is the raw NIST special database 19 [16]. It has {651668 / 80000 / 82587} {training / validation
/ test} examples, containing upper case, lower case, and digits.
P07. This dataset of upper case, lower case and digit images is obtained by taking raw characters from all
four of the above sources and sending them through the transformation pipeline described in section 2. For
each new example to generate, a data source is selected with probability 10% from the fonts, 25% from the
captchas, 25% from the OCR data and 40% from NIST. We apply all the transformations in the order given

5

above, and for each of them we sample uniformly a complexity in the range [0, 0.7]. It has {81920000 /
80000 / 20000} {training / validation / test} examples.
NISTP. This one is equivalent to P07 (complexity parameter of 0.7 with the same proportions of data
sources) except that we only apply transformations from slant to pinch. Therefore, the character is trans-
formed but no additional noise is added to the image, giving images closer to the NIST dataset. It has
{81,920,000 / 80,000 / 20,000} {training / validation / test} examples obtained from the corresponding
NIST sets plus other sources.

3.3 Models and their Hyperparameters
The experiments are performed using MLPs (with a single hidden layer) and deep SDAs. Hyper-parameters
are selected based on the NISTP validation set error.

Multi-Layer Perceptrons (MLP). Whereas previous work had compared deep architectures to both shal-
low MLPs and SVMs, we only compared to MLPs here because of the very large datasets used (making the
use of SVMs computationally challenging because of their quadratic scaling behavior). Preliminary exper-
iments on training SVMs (libSVM) with subsets of the training set allowing the program to fit in memory
yielded substantially worse results than those obtained with MLPs. For training on nearly a hundred million
examples (with the perturbed data), the MLPs and SDA are much more convenient than classifiers based on
kernel methods. The MLP has a single hidden layer with tanh activation functions, and softmax (normal-
ized exponentials) on the output layer for estimating P (class|image). The number of hidden units is taken
in {300, 500, 800, 1000, 1500}. Training examples are presented in minibatches of size 20. A constant
learning rate was chosen among {0.001, 0.01, 0.025, 0.075, 0.1, 0.5}.
Stacked Denoising Auto-encoders (SDA). Various auto-encoder variants and Restricted Boltzmann Ma-
chines (RBMs) can be used to initialize the weights of each layer of a deep MLP (with many hidden layers)
apparently setting parameters in the basin of attraction of supervised gradient descent yielding better gener-
alization [9]. This initial unsupervised pre-training phase uses all of the training images but not the training
labels. Each layer is trained in turn to produce a new representation of its input (starting from the raw pix-
els). It is hypothesized that the advantage brought by this procedure stems from a better prior, on the one
hand taking advantage of the link between the input distribution P (x) and the conditional distribution of
interest P (y|x) (like in semi-supervised learning), and on the other hand taking advantage of the expressive
power and bias implicit in the deep architecture (whereby complex concepts are expressed as compositions
of simpler ones through a deep hierarchy).

Here we chose to use the Denoising Auto-encoder [15] as the building block for these deep
hierarchies of features, as it is simple to train and explain (see tutorial and code there:
http://deeplearning.net/tutorial), provides efficient inference, and yielded results compa-
rable or better than RBMs in series of experiments [15]. It really corresponds to a Gaussian RBM trained
by a Score Matching criterion [21]. During training, a Denoising Auto-encoder is presented with a stochas-
tically corrupted version of the input and trained to reconstruct the uncorrupted input, forcing the hidden
units to represent the leading regularities in the data. Here we use the random binary masking corruption
(which sets to 0 a random subset of the inputs). Once it is trained, in a purely unsupervised way, its hidden
units’ activations can be used as inputs for training a second one, etc. After this unsupervised pre-training
stage, the parameters are used to initialize a deep MLP, which is fine-tuned by the same standard procedure
used to train them (see previous section). The SDA hyper-parameters are the same as for the MLP, with the
addition of the amount of corruption noise (we used the masking noise process, whereby a fixed propor-
tion of the input values, randomly selected, are zeroed), and a separate learning rate for the unsupervised
pre-training stage (selected from the same above set). The fraction of inputs corrupted was selected among
{10%, 20%, 50%}. Another hyper-parameter is the number of hidden layers but it was fixed to 3 based on
previous work with SDAs on MNIST [15]. The size of the hidden layers was kept constant across hidden
layers, and the best results were obtained with the largest values that we could experiment with given our
patience, with 1000 hidden units.

4 Experimental Results
The models are either trained on NIST (MLP0 and SDA0), NISTP (MLP1 and SDA1), or P07 (MLP2 and
SDA2), and tested on either NIST, NISTP or P07 (regardless of the data set used for training), either on
the 62-class task or on the 10-digits task. Training time (including about half for unsupervised pre-training,
for DAs) on the larger datasets is around one day on a GPU (GTX 285). Figure 1 summarizes the results
obtained, comparing humans, the three MLPs (MLP0, MLP1, MLP2) and the three SDAs (SDA0, SDA1,
SDA2), along with the previous results on the digits NIST special database 19 test set from the literature,
respectively based on ARTMAP neural networks [17], fast nearest-neighbor search [18], MLPs [19], and
SVMs [20].The deep learner not only outperformed the shallow ones and previously published performance

6

Figure 1: SDAx are the deep models. Error bars indicate a 95% confidence interval. 0 indicates that
the model was trained on NIST, 1 on NISTP, and 2 on P07. Left: overall results of all models, on NIST
and NISTP test sets. Right: error rates on NIST test digits only, along with the previous results from
literature [17, 18, 19, 20] respectively based on ART, nearest neighbors, MLPs, and SVMs.

Figure 2: Relative improvement in error rate due to self-taught learning. Left: Improvement (or loss,
when negative) induced by out-of-distribution examples (perturbed data). Right: Improvement (or loss,
when negative) induced by multi-task learning (training on all classes and testing only on either digits,
upper case, or lower-case). The deep learner (SDA) benefits more from both self-taught learning scenarios,
compared to the shallow MLP.

(in a statistically and qualitatively significant way) but when trained with perturbed data reaches human
performance on both the 62-class task and the 10-class (digits) task. 17% error (SDA1) or 18% error
(humans) may seem large but a large majority of the errors from humans and from SDA1 are from out-
of-context confusions (e.g. a vertical bar can be a “1”, an “l” or an “L”, and a “c” and a “C” are often
indistinguishible).

In addition, as shown in the left of Figure 2, the relative improvement in error rate brought by self-taught
learning is greater for the SDA, and these differences with the MLP are statistically and qualitatively sig-
nificant. The left side of the figure shows the improvement to the clean NIST test set error brought by the
use of out-of-distribution examples (i.e. the perturbed examples examples from NISTP or P07), over the
models trained exclusively on NIST (respectively SDA0 and MLP0). Relative percent change is measured
by taking 100%× (original model’s error / perturbed-data model’s error - 1). The right side of Figure 2
shows the relative improvement brought by the use of a multi-task setting, in which the same model is
trained for more classes than the target classes of interest (i.e. training with all 62 classes when the target
classes are respectively the digits, lower-case, or upper-case characters). Again, whereas the gain from the
multi-task setting is marginal or negative for the MLP, it is substantial for the SDA. Note that to simplify
these multi-task experiments, only the original NIST dataset is used. For example, the MLP-digits bar
shows the relative percent improvement in MLP error rate on the NIST digits test set is 100%× (single-task
model’s error / multi-task model’s error - 1). The single-task model is trained with only 10 outputs (one
per digit), seeing only digit examples, whereas the multi-task model is trained with 62 outputs, with all 62
character classes as examples. Hence the hidden units are shared across all tasks. For the multi-task model,

7

the digit error rate is measured by comparing the correct digit class with the output class associated with
the maximum conditional probability among only the digit classes outputs. The setting is similar for the
other two target classes (lower case characters and upper case characters). Note however that some types
of perturbations (NISTP) help more than others (P07) when testing on the clean images.

5 Conclusions and Discussion

We have found that the self-taught learning framework is more beneficial to a deep learner than to a tradi-
tional shallow and purely supervised learner. More precisely, the answers are positive for all the questions
asked in the introduction.

• Do the good results previously obtained with deep architectures on the MNIST digits generalize
to a much larger and richer (but similar) dataset, the NIST special database 19, with 62 classes
and around 800k examples? Yes, the SDA systematically outperformed the MLP and all the previously
published results on this dataset (the ones that we are aware of), in fact reaching human-level performance
at around 17% error on the 62-class task and 1.4% on the digits, and beating previously published results
on the same data.

• To what extent do self-taught learning scenarios help deep learners, and do they help them more
than shallow supervised ones? We found that distorted training examples not only made the resulting
classifier better on similarly perturbed images but also on the original clean examples, and more importantly
and more novel, that deep architectures benefit more from such out-of-distribution examples. MLPs were
helped by perturbed training examples when tested on perturbed input images (65% relative improvement
on NISTP) but only marginally helped (5% relative improvement on all classes) or even hurt (10% relative
loss on digits) with respect to clean examples. On the other hand, the deep SDAs were significantly boosted
by these out-of-distribution examples. Similarly, whereas the improvement due to the multi-task setting was
marginal or negative for the MLP (from +5.6% to -3.6% relative change), it was quite significant for the
SDA (from +13% to +27% relative change), which may be explained by the arguments below.

In the original self-taught learning framework [5], the out-of-sample examples were used as a source of
unsupervised data, and experiments showed its positive effects in a limited labeled data scenario. However,
many of the results by Raina et al. [5] (who used a shallow, sparse coding approach) suggest that the relative
gain of self-taught learning vs ordinary supervised learning diminishes as the number of labeled examples
increases. We note instead that, for deep architectures, our experiments show that such a positive effect
is accomplished even in a scenario with a large number of labeled examples, i.e., here, the relative gain
of self-taught learning and out-of-distribution examples is probably preserved in the asymptotic regime.
However, note that in our perturbation experiments (but not in our multi-task experiments), even the out-
of-distribution examples are labeled, unlike in the earlier self-taught learning experiments [5].

Why would deep learners benefit more from the self-taught learning framework? The key idea is that
the lower layers of the predictor compute a hierarchy of features that can be shared across tasks or across
variants of the input distribution. A theoretical analysis of generalization improvements due to sharing of
intermediate features across tasks already points towards that explanation [22]. Intermediate features that
can be used in different contexts can be estimated in a way that allows to share statistical strength. Features
extracted through many levels are more likely to be more abstract and more invariant to some of the factors
of variation in the underlying distribution (as the experiments in Goodfellow et al. [4] suggest), increasing
the likelihood that they would be useful for a larger array of tasks and input conditions. Therefore, we
hypothesize that both depth and unsupervised pre-training play a part in explaining the advantages observed
here, and future experiments could attempt at teasing apart these factors. And why would deep learners
benefit from the self-taught learning scenarios even when the number of labeled examples is very large?
We hypothesize that this is related to the hypotheses studied in Erhan et al. [9]. In Erhan et al. [9] it was
found that online learning on a huge dataset did not make the advantage of the deep learning bias vanish, and
a similar phenomenon may be happening here. We hypothesize that unsupervised pre-training of a deep
hierarchy with self-taught learning initializes the model in the basin of attraction of supervised gradient
descent that corresponds to better generalization. Furthermore, such good basins of attraction are not
discovered by pure supervised learning (with or without self-taught settings), and more labeled examples
does not allow the model to go from the poorer basins of attraction discovered by the purely supervised
shallow models to the kind of better basins associated with deep learning and self-taught learning.

A Flash demo of the recognizer (where both the MLP and the SDA can be compared) can be executed
on-line at http://deep.host22.com.

8

References
[1] Goeffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief

nets. Neural Computation, 18:1527–1554, 2006.
[2] Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2

(1):1–127, 2009. Also published as a book. Now Publishers, 2009.
[3] Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deep belief net model for visual area

V2. In NIPS’07, pages 873–880. MIT Press, Cambridge, MA, 2008.
[4] Ian Goodfellow, Quoc Le, Andrew Saxe, and Andrew Ng. Measuring invariances in deep networks.

In NIPS’09, pages 646–654. 2009.
[5] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-taught learning:

transfer learning from unlabeled data. In ICML, pages 759–766, 2007.
[6] J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. In ICML 2008,

2008.
[7] Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep

neural networks with multitask learning. In ICML, pages 160–167, 2008.
[8] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An empirical

evaluation of deep architectures on problems with many factors of variation. In ICML’07, pages 473–
480. ACM, 2007.

[9] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? In JMLR, pages 625–660.

[10] Frédéric Bastien, Yoshua Bengio, Arnaud Bergeron, Nicolas Boulanger-Lewandowski, Thomas
Breuel, Youssouf Chherawala, Moustapha Cisse, Myriam Côté, Dumitru Erhan, Jeremy Eustache,
Xavier Glorot, Xavier Muller, Sylvain Pannetier Lebeuf, Razvan Pascanu, Salah Rifai, François
Savard, and Guillaume Sicard. Deep self-taught learning for handwritten character recognition. Tech-
nical Report 1353, University of Montréal, 2010.

[11] R. M. Haralick, S. R. Sternberg, and X. Zhuang. Image analysis using mathematical morphology.
IEEE Trans. Pattern. Anal. Mach. Intel., 9(4):532–550, 1987.

[12] J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.
[13] Patrice Simard, David Steinkraus, and John C. Platt. Best practices for convolutional neural networks

applied to visual document analysis. In ICDAR, pages 958–962, 2003.
[14] Hugo Larochelle, Yoshua Bengio, Jerome Louradour, and Pascal Lamblin. Exploring strategies for

training deep neural networks. In JMLR, pages 1–40.
[15] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features

with denoising autoencoders. In ICML 2008, 2008.
[16] P.J. Grother. Handprinted forms and character database, NIST special database 19. In National

Institute of Standards and Technology (NIST) Intelligent Systems Division (NISTIR), 1995.
[17] Eric Granger, Robert Sabourin, Luiz S. Oliveira, and Catolica Parana. Supervised learning of fuzzy

artmap neural networks through particle swarm optimization. JPRR, 2(1):27–60, 2007.
[18] Juan Carlos Pérez-Cortes, Rafael Llobet, and Joaquim Arlandis. Fast and accurate handwritten char-

acter recognition using approximate nearest neighbours search on large databases. In IAPR, pages
767–776, London, UK, 2000. Springer-Verlag. ISBN 3-540-67946-4.

[19] L.S. Oliveira, R. Sabourin, F. Bortolozzi, and C.Y. Suen. Automatic recognition of handwritten nu-
merical strings: a recognition and verification strategy. IEEE Trans. Pattern Analysis and Mach.
Intelli., 24(11):1438–1454, 2002.

[20] J. Milgram, M. Cheriet, and R. Sabourin. Estimating accurate multi-class probabilities with support
vector machines. In Int. Joint Conf. on Neural Networks, pages 906–1911, 2005.

[21] Pascal Vincent. A connection between Score Matching and Denoising Autoencoders. Technical
Report 1359, Universite de Montreal, 2010.

[22] Jonathan Baxter. Learning internal representations. In Proceedings of the 8th International Confer-
ence on Computational Learning Theory (COLT’95), pages 311–320, Santa Cruz, California, 1995.
ACM Press.

9

