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ABSTRACT

Hashing has been a widely-adopted technique for nearest
neighbor search in large-scale image retrieval tasks. Recent re-
search has shown that leveraging supervised information can
lead to high quality hashing. However, the cost of annotating
data is often an obstacle when applying supervised hashing
to a new domain. Moreover, the results can suffer from the
robustness problem as the data at training and test stage
may come from different distributions. This paper studies
the exploration of generating synthetic data through semi-
supervised generative adversarial networks (GANs), which
leverages largely unlabeled and limited labeled training data
to produce highly compelling data with intrinsic invariance
and global coherence, for better understanding statistical
structures of natural data. We demonstrate that the above
two limitations can be well mitigated by applying the syn-
thetic data for hashing. Specifically, a novel deep semantic
hashing with GANs (DSH-GANs) is presented, which mainly
consists of four components: a deep convolution neural net-
works (CNN) for learning image representations, an adversary
stream to distinguish synthetic images from real ones, a hash
stream for encoding image representations to hash codes and
a classification stream. The whole architecture is trained end-
to-end by jointly optimizing three losses, i.e., adversarial loss
to correct label of synthetic or real for each sample, triplet
ranking loss to preserve the relative similarity ordering in the
input real-synthetic triplets and classification loss to classify
each sample accurately. Extensive experiments conducted on
both CIFAR-10 and NUS-WIDE image benchmarks validate
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the capability of exploiting synthetic images for hashing. Our
framework also achieves superior results when compared to
state-of-the-art deep hash models.

CCS CONCEPTS

• Information systems → Similarity measures; Learn-
ing to rank;

KEYWORDS

Hashing; Similarity Learning; GANs; CNN

1 INTRODUCTION

Accelerated by tremendous increase in Internet bandwidth
and storage space, multimedia data have been generated,
published and spread explosively. This has led to the surge
of research activities in large scale visual search. One fun-
damental research problem is similarity search, i.e., nearest
neighbor search, which attempts to identify similar instances
according to a query example. The need to search for mil-
lions of visual examples in a high-dimensional feature space,
however, makes the task computationally expensive and thus
very challenging.

Hashing techniques, one direction of the most well-known
Approximate Nearest Neighbor (ANN) search methods, have
been studied extensively due to its great efficiency in gigantic
data. The basic idea of hashing is to construct a series of
hash functions to map each example into compact binary
codes, making the Hamming distances on similar examples
minimized and simultaneously maximized on dissimilar ex-
amples. In the literature, there have been several techniques,
including traditional hashing models based on hand-crafted
features [3, 4, 14, 25] and deep models [11, 13], being pro-
posed for addressing the problem of hashing. The former seek
hashing function on hand-crafted features, which separate the
encoding of feature representations and their quantization
to hash codes, resulting in sub-optimal solution. The lat-
ter jointly learn feature representations and projections from
them to hash codes in a deep architecture. While encouraging
performances are reported in the aforementioned approaches
especially when supervised information is available, we are
often facing the problems of applying these methods to new

https://doi.org/10.1145/3077136.3080842


applications where there is only few labeled training data,
not to mention that the distribution of training data may be
even different with that in test stage.

We demonstrate in this paper that the above limitations
can be mitigated by generating synthetic data for training
through Generative Adversarial Networks (GANs). GANs is
a new recently proposed framework for estimating generative
models via an adversarial process. The spirit behind is a
minimax two-player game, in which a generative model is
to capture the data distribution and a discriminative model
aims to estimate the probability that a sample is from the
real training data rather than the generative model. The
generative model and discriminative model are trained si-
multaneously and the learning of the generative model is to
fool the discriminative model into making mistakes. Once
the training is complete, GANs is capable of generating both
diverse and discriminable training examples, which have a
great potential to characterize the statistical structures of
natural data.

By consolidating the idea of generating training data for
boosting hashing, we present a novel Deep Semantic Hashing
with GANs (DSH-GANs) architecture, as shown in Figure 1.
Specifically, a semi-supervised GANs is first pre-trained on
both labeled and unlabeled training data to produce synthetic
examples conditioning on class labels. Then, we form a set of
real-synthetic triplets and each tuple contains one real image
as query image, one synthetic and semantically similar image
and another synthetic but dissimilar image. A shared CNN
is exploited to capture image representations, followed by
importing into an adversary stream for differentiating the
synthetic images from real ones, a hash stream to encode hash
codes and a classification stream for measuring semantics. An
adversarial loss is computed to correct the predicted labels
(i.e., synthetic or real) of the images in adversary stream and
a triplet ranking loss is devised to preserve relative similarities
at the top of hash stream. Meanwhile, a classification error
is formulated in classification stream. By jointly learning the
three streams, our DSH-GANs is expected to offer a hashing
model with high generalization ability and the generated
hash codes could better reflect semantic relations between
images. It is also worth noting that the whole architecture is
trainable in an end-to-end fashion.

In summary, this paper makes the following contributions:
(1) We explore the problem of supervised hashing by ex-

ploiting the synthetic training data from GANs. To the best
of our knowledge, this paper represents the first effort towards
this target in the information retrieval research community.

(2) A novel hashing architecture, which combines adversary
process, hash coding and classification, is proposed to enhance
the generalization ability of hashing model and produce hash
codes, which preserve not only relative similarity between
images but also semantics of images.

(3) Extensive experiments on two widely used datasets
demonstrate the advantages of our proposal over several
state-of-the-art hashing techniques.

2 RELATED WORK

We briefly group the related works into two directions: hash-
ing for image search and image synthesis with Generative
Adversarial Networks (GANs). The former draws upon re-
search in encoding visual images into compact binary codes
for efficient image search, while the latter investigates syn-
thesizing realistic images by utilizing GANs.

Hashing for Image Search. The research in this di-
rection has proceeded along two dimensions: hand-crafted
features based hashing and deep architectures for hashing.

There are three main categories on hand-crafted features
based hashing: unsupervised hashing, semi-supervised hash-
ing and supervised hashing. Unsupervised hashing [3, 4]
refers to the setting when the label information is not avail-
able. Locality Sensitive Hashing (LSH) [3] is one of the most
popular unsupervised hashing methods, which simply us-
es random linear projections to construct hash functions.
This method is subsequently expanded to Kernelized and
Multi-Kernel Locality Sensitive Hashing [10, 27]. Another
effective method named Iterative Quantization (ITQ) [4] is
proposed for better quantization rather than random pro-
jections. Semi-supervised hashing approaches attempt to
improve the quality of hash codes by leveraging supervised
information into learning procedure. For example, Wang et al.

develop a Semi-Supervised Hashing (SSH) [25] which utilizes
pairwise information on labeled samples to preserve semantic
similarity. In another work [8], Semi-Supervised Discrimi-
nant Hashing (SSDH) learns hash codes based on Fisher’s
discriminant analysis to maximize separability between la-
beled data from different classes while the unlabeled data are
exploited for regularization. When the label information is
all available, we refer to the problem as supervised hashing.
The representative in this category is Kernel-based Super-
vised Hashing (KSH) [14] which utilizes pairwise relationship
between examples to achieve high quality hashing.

Inspired by recent advances in visual representation learn-
ing [9, 17, 19] by using deep convolutional neural networks,
several deep architecture based hashing methods have been
proposed. Semantic Hashing [23] is one of the early works
to exploit deep learning techniques for hashing. It applies
the stacked Restricted Boltzman Machine (RBM) [6] to learn
binary hash codes for visual search. Recently, Xia et al. pro-
pose Convolutional Neural Networks Hashing (CNNH) [28] to
decompose the hash learning process into a stage of learning
approximate hash codes with the pairwise relationship and a
following stage of simultaneously learning image feature and
hash function. Later in [12], such a two-stage method with
pairwise labels is further developed into an end-to-end system,
Deep Pairwise-Supervised Hashing (DPSH), which performs
simultaneous feature learning and hash encoding. Similar in
spirit, Network In Network Hashing (NINH) [11] incorpo-
rates the supervised information among triplet labels into
the feature learning based deep hashing architecture. More
recently, Zhu et al. devise Deep Hashing Network (DHN) to
simultaneously optimize the pairwise cross-entropy loss on
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Figure 1: Deep Semantic Hashing with GANs (DSH-GANs) framework (better viewed in color). The input to DSH-
GANs architecture is in the form of real-synthetic image triplets and each tuple consists of one real image as query image,
one synthetic and similar image produced with same labels of query image through generator network G, and another
synthetic but dissimilar image synthesized by G conditioning on different labels. A shared deep convolutional neural
networks is exploited for learning image representations, followed by three streams, i.e., hash stream, adversary stream
and classification stream. Hash stream is to encode each image into hash codes with relative similarity preservation
measured by a triplet ranking loss. Adversary stream is to distinguish synthetic images from real ones trained with

an adversarial loss. Classification stream is to characterize the semantic structures on image and softmax loss or cross
entropy loss is computed for single label and multi-label classification, respectively. The whole architecture is jointly

optimized in an end-to-end fashion.

semantically similar pairs and the pairwise quantization loss
on compact hash codes for hashing in [30].

In summary, our work belongs to deep architecture based
hashing. The aforementioned deep approaches often focus on
leveraging supervised information for training CNNs. Our
work in this paper contributes by not only exploring image
semantic supervision for hash learning, but also preserving
relative similarity between real and synthetic images which
are generated through a semi-supervised GANs with intrinsic
invariance and global coherence.

Image Synthesis with GANs. Synthesizing realistic
images has been studied and analyzed widely in AI systems
for characterizing the pixel level structure of natural images.
Thanks to the recent development of Generative Adversarial
Networks (GANs), researchers have strived to automatically
synthesize image with GANs, which could be regarded as the
generator network modules learnt with a two-player minimax
game mechanism. Goodfellow et al. propose a theoretical
framework of GANs and utilize GANs to generate images
without any supervised information in [5]. Although the early
GANs offer a distinct and promising direction for image
synthesis, the results are somewhat noisy and blurry. Hence,
Laplacian pyramid is further incorporated into GANs in [2]
to produce high quality images. Later in [20], Radford et

al. devise deep convolutional generative adversarial networks
(DCGANs) for unsupervised representation learning.

The aforementioned three works mainly explore image
synthesis task in an unconditioned manner that generates

synthetic images without any supervised information. Anoth-
er direction of image synthesis with GANs is to synthesize
images by conditioning on supervised information (e.g., class
labels or text descriptions). [15] is one of the works that devel-
op a conditional version of GANs by additionally feeding class
labels into both discriminator and generator of GANs. Later
in [16], this model is further expended with a specialized cost
function for classification, named auxiliary classifier GAN-
s (AC-GANs), for generating synthetic images with global
coherence and high diversity. Recently, Reed et al. utilize
GANs for image synthesis based on given text descriptions in
[21], enabling translation from character level to pixel level.

Most of the above approaches focus on leveraging GANs
for image synthesis. Our work is different that we apply the
synthetic images generated from GANs learnt on both largely
unlabeled and limited labeled images for hash learning, lead-
ing to more effective and robust binary image representation
for image retrieval task.

3 DEEP SEMANTIC HASHING WITH
GANS (DSH-GANS)

In this section, we will present the proposed Deep Semantic
Hashing with GANs (DSH-GANs) in detail. Figure 1 illus-
trates an overview of our architecture for hash learning, which
consists of four components: a shared CNN for learning image
representations, an adversary stream for distinguishing syn-
thetic images from real ones, a hash stream for encoding each
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Figure 2: Our semi-supervised GANs framework mainly consists of a generator network G and a discriminator network
D (better viewed in color). For the generator network G, it tries to synthesize realistic images with the concatenation
input of the class label vector C and random noise vector z. For the discriminator network D, it tries to simultaneously
distinguish real images from synthetic ones and classify input images with correct class labels. The whole architecture
is trained with the adversarial loss for assigning correct source and the classification loss for assigning correct class
label in a two-player minimax game mechanism.

image into hash codes and a classification stream for lever-
aging semantic supervision. Specifically, a semi-supervised
GANs is first devised to leverage both unlabeled and labeled
images for producing synthetic images conditioning on class
labels, followed by the three streams in our proposed DSH-
GANs framework. In particular, hash stream is trained with
the input real-synthetic triplets in a triplet-wise manner,
adversary stream recognizes the label of synthetic or real
for each image example while classification stream reinforces
the hash learning to preserve semantic structures on both
real and synthetic images. Finally, the whole optimization
of DSH-GANs and hash codes generation for image retrieval
are elaborated.

3.1 Notation

Suppose there are n images in the whole set, represented
as: X = {xi|i = 1, · · · , n} and each image can be present-
ed as x. Similarly, assume there are L (L < n) labeled
images and the set of the labeled images are denoted as
Xl = {xj |j = 1, · · · , L}. The goal of image hashing is to
learn a mapping H : x → {0, 1}K , such that an input image
x will be encoded into a K -bit binary code H(x).

3.2 Semi-supervised GANs

An unconditional generative adversarial networks (GANs)
consists of two networks: a generator network G that captures
the data distribution for synthesizing image and a discrimina-
tor network D that distinguishes real images from synthetic
ones. In particular, the generator network G takes a ran-
dom noise vector z as input and produces a synthetic image
xsyn = G (z). For the discriminator network D, it takes an
image x as input stochastically chosen (with equal probabili-
ty) from training real images or synthetic images through G

and produces a probability distribution P (S|x) = D (x) over

the two image sources. As proposed in [5], the whole GANs
can be trained in a two-player minimax game. Concretely,
given an image sample x, the discriminator network D is
trained to minimize the adversarial loss, i.e., maximizing the
log-likelihood of assigning correct source to this sample:

la (x) =

{

− logP (S = real|x) , x ∈ X
− logP (S = synthetic|x) , x ∈ Xsyn

, (1)

where X and Xsyn denote the collections of real images in
training and synthetic images produced by G, respectively.
Meanwhile, the generator network G is trained to maximize
the adversarial loss in Eq.(1), targeting for maximally fooling
the discriminator network D with its generated synthetic
images Xsyn.

To characterize the pixel level structure of both unlabeled
and labeled natural images in one architecture elegantly, we
take the inspiration from conditional GANs [15, 16] purely
trained with supervised samples and devise a novel semi-
supervised GANs architecture as shown in Figure 2. Similar
to aforementioned architectures of unconditional GANs, our
semi-supervised GANs consists of a generator network G

for synthesizing images conditioning on class labels, and a
discriminator network D that simultaneously distinguishes
real images from synthetic ones and classify the input images
with correct semantics. Specifically, given the whole image
set X including L labeled images in c classes, the class label
information of each labeled image is first encoded into a
c-dimensional vector C ∈ {0, 1}c, whose element is a class
label indicator. The indicator is 1 if the image contains this
label otherwise the indictor is 0. As such, the class label
vector C of each unlabeled image is set as zero vector 0.
Then the generator network G takes the concatenation of the
class label vector C and random noise vector z ∈ N (0, 1) as
the input for producing a synthetic image xsyn = G (C, z).
The discriminator network D generates both a probability



distribution over two sources and a probability distribution
over all the c class labels, i.e., {P (S|x) , P (C|x)} = D (x),
for each image example x from either real images or synthetic
images through G. It is worth noting that both the unlabeled
and labeled images are included in the real image selection
pool of D for better understanding the statistical structures
of natural data.

The overall objective function of our semi-supervised GAN-
s is composed of two parts: the adversarial loss la (x) in Eq.(1)
for assigning correct source to the image example x, and the
classification loss lc (x) for assigning correct class label to
this image. The details of how to measure the classification
loss for images with single label or multiple labels will be
presented in Section 3.5. Accordingly, the discriminator net-
work D is learnt to minimize lc (x) + la (x) for recognizing
both correct source and class label, while the generator net-
work G is trained to minimize lc (x)− la (x) for fooling D on
source prediction and meanwhile preserving the correct class
label. After training the whole semi-supervised GANs with
unlabeled and labeled natural images, the learnt generator
network G is directly utilized as the pre-trained generator net-
work in our DSH-GANs architecture for synthesizing realistic
images conditioning on class labels.

3.3 Hash Stream

In the traditional binary representation learning, the hash
encoding of each image is always treated independently in
point-wise hashing learning methods, regardless of the re-
lationships of similar or dissimilar between images. More
importantly, the relative similarity relations like “for query
image x, it should be more similar to image x+ than to im-
age x−,” are reflected in the image class labels in view that
image x and x+ belong to the same class while image x−

comes from other categories. The utilization of these relative
similarity relations has also been proved to be effective in
hash coding [1, 11, 18, 29]. Inspired by the idea of preserving
relative similarity in deep architecture [11], we propose a hash
stream for encoding hash codes learnt in a triplet-wise man-
ner, which aims to preserve the relative similarity ordering
in the input real-synthetic triplets.

Specifically, we can easily obtain a set of real-synthetic
triplets T based on image labels, where each tuple (x, x+

syn, x
−
syn)

consists of one real image x as query image, one synthetic and
semantically similar image x+

syn, and another synthetic but

dissimilar image x−
syn. Note that x+

syn is synthesized by gener-
ator network G conditioning on the same class labels of query
image x, while x−

syn is produced through G conditioning on
different labels of x. To preserve the similarity relations in
the real-synthetic triplets, we aim to learn a hash mapping
H(·) which makes the compact code H(x) more similar to
H(x+

syn) than to H(x−
syn). Hence, the triplet ranking loss is

employed and defined as

l̂triplet(x, x
+
syn, x

−
syn)

= max(0, 1−
∥

∥H(x)−H(x−
syn)

∥

∥

H
+

∥

∥H(x)−H(x+
syn)

∥

∥

H
)

s.t. H(x),H(x+
syn),H(x−

syn) ∈ {0, 1}K

,

(2)

where || · ||H represents Hamming distance. For ease of opti-
mization, natural relaxation tricks are utilized on Eq.(2) to
change integer constraint to the range constraint and replace
Hamming norm with l2 norm. Then, the triplet ranking loss
function is reformulated as

l̂triplet(x, x
+
syn, x

−
syn)

= max(0, 1−
∥

∥H(x)−H(x−
syn)

∥

∥

2

2
+

∥

∥H(x)−H(x+
syn)

∥

∥

2

2
)

s.t. H(x),H(x+
syn),H(x−

syn) ∈ [0, 1]K

. (3)

3.4 Adversary Stream

Noticing that the input real-synthetic triplets of aforemen-
tioned hash stream contain not only different semantics, but
also are from distinctly different sources. As a result, we ad-
ditionally devise an adversary stream to distinguish synthetic
images from real ones within each real-synthetic triplet, tar-
geting for exploiting the mutual but also fuzzy relationship
between the hash codes learning and source discrimination
in GANs. In particular, for the adversary stream, the shared
CNN for learning image representation can be treated as
the discriminator network D in GANs, followed by a cross
entropy loss layer for source prediction. Thus, given the real-
synthetic triplet (x, x+

syn, x
−
syn), an adversarial loss is used to

measure the correctness of the predicted source (i.e., real or
synthetic) of all the three images:

l̂a(x, x
+
syn, x

−
syn) =

1

3

(

la (x) + la
(

x+
syn

)

+ la
(

x−
syn

))

, (4)

where la(·) denotes the log-likelihood adversarial loss for each
image as in Eq.(1).

3.5 Classification Stream

Image labels not only provide knowledge in classification but
also are useful supervised information for mining semantic
structures in images. A valid question is how to leverage
the semantic supervision into both hashing and GANs, and
make the generated hash codes better reflecting semantic
similarities between images. Hence, we propose a joint learn-
ing mechanism by combining hash stream, adversary stream
and classification stream. In the classification stream, a clas-
sification error is measured based on the input real-synthetic
triplets. Specifically, for the single label classification, we use
softmax optimization method. Given an input image x, the
softmax loss is then formulated as

lc(x) = −
c

∑

j=1

I(y=j)log
e
θ
⊤

j x

∑c
l=1 e

θ⊤

l
x
, (5)

where x is the output image representation of the shared CNN
for image x, θj denotes the parameter matrix in a softmax
layer and y ∈ {1, 2, ..., c} represents image class label. The
indicator function Icondition = 1 if condition is true; otherwise
Icondition = 0.

If an image contains multiple class labels, we refer to this
problem as multi-label classification. Cross entropy loss is
then employed in this case. Similar to softmax loss, cross



entropy loss is computed by

lc(x) = −
c

∑

j=1

[

I(Cj=1) log (P (Cj = 1|x))

+ (1− I(Cj=1)) log (1− P (Cj = 1|x))
]

P (Cj = 1|x) =
1

1 + e
−δ⊤

j
x

, (6)

where Cj denotes the j-th element in class label vector C

and δj denotes the parameter matrix in a sigmoid layer.
Hence, given the real-synthetic triplet (x, x+

syn, x
−
syn), the

classification error is calculated on all the three examples by

l̂c(x, x
+
syn, x

−
syn) =

1

3

(

lc (x) + lc
(

x+
syn

)

+ lc
(

x−
syn

))

. (7)

3.6 Optimization

The overall training objective of DSH-GANs integrates the
triplet ranking loss in Eq.(3), adversarial loss in Eq.(4) and
classification error in Eq.(7). As our DSH-GANs is a variant
of GANs architecture which mainly consists of generator
network G for image synthesis with labels and the shared
CNN for image representation learning, we train the whole
architecture in a two-player minimax game mechanism. In
particular, for the shared CNN, we update its parameters
according to the following overall loss:

l̂CNN =
∑

T

[

l̂triplet(x, x
+
syn, x

−
syn)

+l̂a(x, x
+
syn, x

−
syn) + l̂c(x, x

+
syn, x

−
syn)

]

, (8)

where T is the set of real-synthetic triplets. By minimizing
this term, the shared CNN is trained to preserve the relative
similarity ordering in the real-synthetic triplets and simul-
taneously recognize both correct sources and class labels of
images in the triplets.

For the generator network G, its parameters are adjusted
with the following loss:

l̂G =
∑

T

[

l̂triplet(x, x
+
syn, x

−
syn)

−l̂a(x, x
+
syn, x

−
syn) + l̂c(x, x

+
syn, x

−
syn)

]

. (9)

Thus, the generator network G is trained to fool the shared
CNN on source prediction and meanwhile preserve the rela-
tive similarity ordering and correct class labels of the real-
synthetic triplets.

3.7 Image Retrieval

After the optimization of DSH-GANs, we can employ hash
stream in the architecture followed by a sigmoid layer to
generate K -bit hash codes for each input image. In this
procedure, an image x is first encoded into a K -dimension
feature vector h = H(x). Then, a quantization operation
b = Q(h) is exploited to generate hash codes b, where Q(h)
is a sign function on vector h with Q(hi) = 1 if hi > 0.5 and
otherwise Q(hi) = 0. Given a query image, the retrieval list of
images is produced by sorting the Hamming distances of hash
codes between the query image and images in search pool.

4 EXPERIMENTS

We conducted extensive evaluations of our proposed archi-
tecture on two image datasets, i.e., CIFAR-101 which is a
collection of tiny images and NUS-WIDE2 of a large-scale
Web image dataset.

4.1 Datasets

The CIFAR-10 dataset consists of 60,000 real world tiny
images (32×32 pixels), which can be divided into 10 categories
and 6,000 images for each category. We randomly select 1,000
images (100 images per class) as the test query set. For
the unsupervised setting, all the rest images are used as
training samples. For the supervised setting, we additionally
sample 500 images from each class in the training samples
and constitute a subset of 5,000 labeled images for training.
The rest training images are treated as the unlabeled data.

The NUS-WIDE dataset contains 269,648 images col-
lected from Flickr. Each of these images is associated with
one or multiple labels in 81 semantic concepts. For a fair
comparison, we follow the settings in [11] to employ the sub-
set of images associated with 21 most frequent labels, where
each label associates with at least 5,000 images. Similar to
the split in CIFAR-10, we randomly select 2,100 images (100
images per class) as the test query set. For the unsupervised
setting, all the rest images are used as the training set. For
the supervised setting, we uniformly sample 500 images from
each class to construct the labeled subset for training and
the rest training images are all treated as unlabeled data.

4.2 Experimental Settings

On both datasets, we utilize AlexNet [9] as our basic CNN
architecture and take the outputs of fc6 layer from AlexNet
as the image representation. The shared CNN architecture
is pre-trained on ImageNet dataset [22] and the generator
network G is pre-trained with our proposed semi-supervised
GANs on each dataset.

We mainly implement our proposed method based on
Caffe [7], which is one of the widely adopted deep learning
frameworks. For the semi-supervised GANs, we follow the
standard settings in [20] and train our GANs models on both
datasets by utilizing Adam optimizer with a mini-batch size
of 128. All weights are initialized from a zero-centered Normal
distribution with standard deviation 0.02 and the slope of
the leak is set to 0.2 in the LeakyReLU. We fix the learning
rate and momentum to 0.0002 and 0.9, respectively. For our
DSH-GANs architecture, it is trained by stochastic gradient
descent with 0.9 momentum. The start learning rate is set
to 0.0001, and we decrease it to 10% after 10, 000 iterations
on CIFAR-10 and after 40, 000 iterations on NUS-WIDE,
respectively. The mini-batch size of images is 64 and the
weight decay parameter is 0.0005.

1http://www.cs.toronto.edu/ kriz/cifar.html
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm



Table 1: Accuracy in terms of MAP. The best MAPs on each number of hash bits are shown in boldface. Note that
the MAP performance is calculated on the top 5,000 returned images for NUS-WIDE dataset.

Method CIFAR-10 (MAP) NUS-WIDE (MAP)

12-bits 24-bits 32-bits 48-bits 12-bits 24-bits 32-bits 48-bits

DSH-GANs 0.735 0.781 0.787 0.802 0.838 0.856 0.861 0.863

DSH-GANs− 0.726 0.769 0.772 0.783 0.823 0.847 0.845 0.854

DPSH 0.713 0.727 0.744 0.757 0.794 0.822 0.838 0.851

NINH 0.552 0.566 0.558 0.581 0.674 0.697 0.713 0.715

CNNH 0.439 0.476 0.472 0.489 0.611 0.618 0.625 0.608

KSH+CNN 0.446 0.502 0.518 0.516 0.746 0.774 0.765 0.749

ITQ+CNN 0.212 0.230 0.234 0.240 0.728 0.707 0.689 0.661

SH+CNN 0.158 0.157 0.154 0.151 0.620 0.611 0.620 0.591

LSH+CNN 0.134 0.157 0.173 0.185 0.438 0.586 0.571 0.507

KSH 0.303 0.337 0.346 0.356 0.556 0.572 0.581 0.588

ITQ 0.162 0.169 0.172 0.175 0.452 0.468 0.472 0.477

SH 0.127 0.128 0.126 0.129 0.454 0.406 0.405 0.400

LSH 0.121 0.126 0.120 0.120 0.403 0.421 0.426 0.441

4.3 Protocols and Baseline Methods

We follow four evaluation protocols, i.e., mean average preci-
sion (MAP), hash lookup, precision-recall curve, and preci-
sion curves w.r.t. different numbers of top returned samples,
which are widely used in [4, 11, 14]. We compare the following
approaches for performance evaluation:

(1) Locality Sensitive Hashing [3] (LSH) aims to map
similar examples to the same bucket with high probability by
using a Gaussian random projection matrix. The property of
locality in the original space will be largely preserved in the
Hamming space.

(2) Spectral Hashing [26] (SH) is based on quantizing
the values of analytical eigenfunctions computed along PCA
directions of the data.

(3) Iterative Quantization [4] (ITQ) learns similarity-preserving
binary codes by directly minimizing the quantization error
of mapping data to vertices of the binary hypercube.

(4) Kernel-based Supervised Hashing [14] (KSH) employs
a kernel formulation for learning the hash functions to handle
linearly inseparable data.

(5) Convolutional Neural Networks Hashing [28] (CNNH)
firstly learns approximate hash codes with the supervised
pairwise relationship and then trains CNN architecture with
approximate hash codes and image tags.

(6) Network In Network Hashing [11] (NINH) utilizes a
triplet ranking loss to preserve relative similarity and divide-
and-encode modules to encode hash bits.

(7) Deep Pairwise-Supervised Hashing [12] (DPSH) per-
forms simultaneous feature learning and hash learning by
leveraging pairwise labels in an end-to-end system.

(8) Deep Semantic Hashing with Generative Adversarial
Networks (DSH-GANs) is our proposal in this paper. A
slightly different of this run is named as DSH-GANs−, which
is trained without classification stream.

Note that for the four hashing methods using hand-crafted
features (i.e., LSH, SH, ITQ and KSH), each image in CIFAR-
10 and NUS-WIDE is represented by a 512-dimensional GIST

vector and an officially available 500-dimensional bag-of-
words vector, respectively. For the deep hashing methods,
we resize all images to be 224×224 pixels and then directly
exploit the raw image pixels as input. Moreover, we also
conduct the experiments by using the outputs of fc6 layer in
AlexNet as image representation in the four traditional hash-
ing approaches and name them as LSH+CNN, SH+CNN,
ITQ+CNN and KSH+CNN, respectively.

4.4 Results on CIFAR-10 Dataset

The left half of Table 1 shows the MAP performance com-
parisons on CIFAR-10 dataset. Overall, the results across
different number of hash bits indicate that our DSH-GANs
consistently outperforms others. In particular, the MAP of
DSH-GANs with 48-bits makes the relative improvement over
the best traditional competitor KSH with GIST features or
the outputs of fc6 layer in AlexNet, and deep model DPSH
by 125.3%, 55.4% and 5.9%, respectively. Furthermore, tra-
ditional approaches with image representations extracted
from CNN architecture lead to a large performance boost
against these methods with GIST features, which is expect-
ed as deep CNN has demonstrated its high capability in
generating image representations. Compared to the tradi-
tional models with deep image representations, deep hash
models which benefit from the joint learning of image rep-
resentations and hash coding exhibit better performances.
DSH-GANs− outperforms DPSH and NINH. The result basi-
cally indicates the advantage of exploring synthetic images in
hashing. DSH-GANs further improves DSH-GANs− with a
relative increase of 1.2%∼2.4%, demonstrating the strength
of boosting hashing by additionally preserving semantics of
images through classification. In addition, when utilizing a
deeper CNN architecture VGG-19 [24] networks as our basic
CNN, the MAP performance of our DSH-GANs with 12-bits,
24-bits, 32-bits and 48bits will be boosted up to 86.1%, 88.1%,
87.9% and 88.4%, respectively.



12 24 32 48

Number of bits

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

o
n

 (
H

a
m

m
. 

d
is

t.
 <

=
 2

)

DSH-GANs
DSH-GANs¡

DPSH

NINH

CNNH

KSH

ITQ

SH

LSH

KSH+CNN

ITQ+CNN

SH+CNN

LSH+CNN

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

DSH-GANs
DSH-GANs¡

DPSH

NINH

CNNH

KSH

ITQ

SH

LSH

KSH+CNN

ITQ+CNN

SH+CNN

LSH+CNN

(b)

100 200 300 400 500 600 700 800 900 1000

Number of top returned images

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

o
n

DSH-GANs
DSH-GANs¡

DPSH

NINH

CNNH

KSH

ITQ

SH

LSH

KSH+CNN

ITQ+CNN

SH+CNN

LSH+CNN

(c)

Figure 3: Comparisons with state-of-the-art approaches on CIFAR-10 dataset. (a) Precision within Hamming radius
2 using hash lookup. (b) Precision-Recall curves with 48-bits. (c) precision curves with 48-bits w.r.t. different number

of top returned samples. Better viewed in original color pdf file.
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Figure 4: Comparisons with state-of-the-art approaches on NUS-WISE dataset. (a) Precision within Hamming radius
2 using hash lookup. (b) Precision-Recall curves with 48-bits. (c) precision curves with 48-bits w.r.t. different number
of top returned samples. Better viewed in original color pdf file.

In the evaluation of hash lookup within Hamming radius
2 as shown in Figure 3(a), the precisions for most of the
traditional methods drop when a longer size of hash codes
is used (48 bits in our case). This is because the number
of samples falling into a bucket decreases exponentially for
longer sizes of hash codes. Therefore, for some query images,
there are not even any neighbor in a Hamming ball of radius
2. Even in this case, the precision of our proposed DSH-GANs
only has a slight decrease from 80.6% of 32 bits to 79.7%
of 48 bits, indicating fewer failed queries for DSH-GANs.
We further detail the precision-recall curves and precision
curves with 48-bits w.r.t. different number of top returned
samples in Figure 3(b) and 3(c). The results confirm the
trends observed in Figure 3(a) and demonstrate performance
improvements by our proposed DSH-GANs approach over
other methods.

4.5 Results on NUS-WIDE Dataset

The right half of Table 1 lists the MAP performance compar-
isons on NUS-WIDE dataset. Precision with Hamming radius
2 using hash lookup, precision-recall curves with 48-bits and
precision curves with 48-bits w.r.t. different number of top

returned samples is given in Figure 4(a), 4(b) and 4(c), respec-
tively. DSH-GANs constantly exhibits better performance
than other baselines across different performance metrics.
Specifically, the MAP performance and precision with Ham-
ming radius 2 using hash lookup of DSH-GANs achieve 86.3%
and 81.2% with 48-bits, which make the improvements over
the best competitor DPSH by 1.4% and 2.7%, respectively.
This again verifies the effectiveness of generating synthetic
and discriminable training data through GANs for hashing.
Furthermore, DSH-GANs is benefited from utilizing semantic
supervision and thus shows a relative increase of 1.1%∼1.9%
over DSH-GANs− in terms of MAP.

Figure 5 further showcases the top ten image search results
by different methods in response to two query images. We
can see that the proposed DSH-GANs method achieves the
most satisfying results and retrieves eight “excellent images”
in the returned top ten images to each query image. It is
worth noticing that “excellent images” here refer to images
whose annotations completely contain all the labels of the
query image (e.g., “water,” “clouds,” “ocean” and “beach”
of the first image example). As a result, the images retrieved
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Figure 5: Examples showing the top 10 image retrieval results by different methods in response to two query images

on NUS-WIDE dataset (better viewed in color). In each row, the first image with a red bounding box is the query
image and the images whose annotations completely contain all the labels of the query image are regarded as excellent
ones, which are enclosed in a blue bounding box.
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Figure 6: MAP performance comparison with different
percentage of synthetic data in training triplets.

by our DSH-GANs approach are more similar in semantics
with the query image.

4.6 Comparison between Synthetic and
Real Examples for Hashing

In order to examine how performance is affected when exploit-
ing synthetic examples in training triplets of different degree
by DSH-GANs, we compare the MAP performances of using
synthetic data with percentage ranging from 10% to 100%. In
the previous experiments, the similar and dissimilar images
in the training triplets are all synthetic images, which refers
to 100% in this analysis. We control the ratio between real
and synthetic data in training by replacing part of synthetic
images with real ones. Figure 6 shows the results on both
CIFA-10 and NUS-WIDE datasets across different hash bits.
The results are encouraging in the way that involving more
synthetic data tends to achieve better performance. This em-
pirically validates our proposal of generating synthetic data
through semi-supervised GANs which additionally leverages
largely unlabeled data, making the generated examples more
discriminable to characterize the structure of the data.

4.7 Visualization of Synthetic Images

Figure 7 illustrates image examples on CIFAR-10 dataset,
which are both randomly selected from each class in the
dataset (left half) and generated for each class through our
semi-supervised GANs (right half). In general, the generated
images are plausible and semantically relevant to each class.

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Real Images Synthetic Images

Figure 7: Visualization of image examples on CIFAR-10
dataset. Left half: images randomly selected from each
class in the dataset; Right half: synthetic image examples

for each class through our semi-supervised GANs.

Figure 8 further visualizes the synthetic image examples on
NUS-WIDE dataset. The images in the right half of each row
are semantically related to the images in the left half. Take
the first row as an example, the images in the left half are
generated with label “clouds,” while the images in the right
half are synthesized with labels “clouds” and “sunset.” All
the images look real and the generated images in the right
part could clearly manifest the semantics of “sunset” and
differentiate them from the images in the left part with only
semantics of “clouds.”

5 CONCLUSIONS

We have presented a Deep Semantic Hashing with Genera-
tive Adversarial Networks (DSH-GANs) architecture which
explores semi-supervised GANs to generate synthetic train-
ing data for hashing. Particularly, a semi-supervised GANs
is trained on both labeled and unlabeled data to produce
compelling and discriminable examples conditioning on class
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Figure 8: Visualization of synthetic image examples on NUS-WIDE dataset. All the image examples are generated
with multiple labels. The images in the right half of each row are semantically related to the images in the left half.

labels. To verify our claim, we optimize the whole architec-
ture of our hashing model by simultaneously distinguishing
synthetic images from real ones and preserving not only rela-
tive similarity between images but also semantics of images.
Experiments conducted on both CIFAR-10 and NUS-WIDE
datasets validate our proposal and analysis. Performance
improvements are clearly observed when comparing to other
hashing techniques.

Our future works are as follows. First, as our architecture
is a joint learning procedure, how the architecture performs
on classification task will be further evaluated. Next, more in-
depth studies of how to fuse the three streams in a principled
way could be explored. Finally, more advanced GANs (e.g.,
Stacked GANs) and CNN architectures (e.g., ResNet) will
be investigated in our architecture.
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