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Abstract

Hashing techniques have been intensively investi-
gated for large scale vision applications. Recent
research has shown that leveraging supervised in-
formation can lead to high quality hashing. How-
ever, most existing supervised hashing method-
s only construct similarity-preserving hash codes.
Observing that semantic structures carry comple-
mentary information, we propose the idea of co-
training for hashing, by jointly learning projection-
s from image representations to hash codes and
classification. Specifically, a novel deep semantic-
preserving and ranking-based hashing (DSRH) ar-
chitecture is presented, which consists of three
components: a deep CNN for learning image repre-
sentations, a hash stream of a binary mapping lay-
er by evenly dividing the learnt representations in-
to multiple bags and encoding each bag into one
hash bit, and a classification stream. Meanwhile,
our model is learnt under two constraints at the top
loss layer of hash stream: a triplet ranking loss and
orthogonality constraint. The former aims to pre-
serve the relative similarity ordering in the triplets,
while the latter makes different hash bit as indepen-
dent as possible. We have conducted experiments
on CIFAR-10 and NUS-WIDE image benchmarks,
demonstrating that our approach can provide supe-
rior image search accuracy than other state-of-the-
art hashing techniques.

1 Introduction

The rapid development of Web 2.0 technologies has led to
the surge of research activities in large scale visual search
[Mei et al., 2014]. One fundamental research problem is sim-
ilarity search, i.e., nearest neighbor search, which attempts
to identify similar instances according to a query example.
The need to search for millions of visual examples in a high-
dimensional feature space, however, makes the task compu-
tationally expensive and thus challenging.

Hashing techniques, one direction of the most well-known
Approximate Nearest Neighbor (ANN) search methods, have
received intensive research attention for its great efficien-
cy in gigantic data. The basic idea of hashing is to con-

Figure 1: Three exemplary images. Both images in (a) and (b) are
associated with four tags: “sky,” “clouds,” “sunset” and “tree.” The
image in (c) is labeled with “sky,” “clouds” and “sunset.”

struct a series of hash functions to map each example in-
to a compact binary code, making the Hamming distances
on similar examples minimized and simultaneously max-
imized on dissimilar examples. In the literature, there
have been several techniques, including traditional hashing
models based on hand-crafted features [Weiss et al., 2008;
Wang er al., 2012] and deep models [Lai er al., 2015;
Liong et al., 2015], being proposed for addressing the prob-
lem of hashing. The former seek hashing function on hand-
crafted features, which separate the encoding of feature rep-
resentations and their quantization to hash codes, resulting in
sub-optimal solution. The latter jointly learn feature repre-
sentations and projections from them to hash codes in a deep
architecture. We are investigating in this paper how to design
a deep architecture for hashing to characterize the relative
similarity between images, meanwhile making the obtained
hash bits as independent as possible.

While existing hashing approaches are promising to mea-
sure similarity, the relationship between two images is more
complex especially when images are with multiple semantic
labels and is usually reflected by the number of common la-
bels that two images have. Figure 1 shows three exemplary
images. The two images in (a) and (b) are both associated
with “sky,” “clouds,” “sunset” and “tree,” while the image in
(c) is only relevant to “sky,” “clouds” and “sunset.” In this
case, the hash codes of image in (a) should be closer in prox-
imity to the image in (b) than the image in (c). Therefore, in
practice, how to preserve semantic structures of the data in
form of class labels is also essential to be further taken into
account for hashing.

By consolidating the idea of co-training between hashing
and preserving semantic structures, this paper presents a nov-
el Deep Semantic-Preserving and Ranking-Based Hashing



(DSRH) architecture, as illustrated in Figure 2. The input to
our architecture is in the form of triplets, i.e., a query image, a
similar image and a dissimilar image. A shared DCNN is then
exploited to produce image representations, followed by im-
porting into a hash stream for hash code encoding and a clas-
sification stream for measuring semantic structures. A triplet
ranking loss is designed with orthogonality constraint to char-
acterize relative similarities at the top of hash stream, while
a classification error is formulated in classification stream.
By jointly learning hash stream and classification stream, the
generated hash codes are expected to better present semantic
similarities between images.
The main contributions of this paper include:

e We propose a novel hashing architecture, which com-
bines hash coding and classification for preserving not
only relative similarity between images but also seman-
tic structures on images.

e A triplet ranking loss with orthogonality constraint is ex-
ploited to optimize our architecture, making each hash
bit as independent as possible.

e An extensive set of experiments on two widely used
datasets demonstrate the advantages of our proposed
model over several state-of-the-art hashing techniques.

2 Related Work

We briefly group related works into two categories: hand-
crafted features based hashing and deep models for hashing.
The research on hand-crafted features based hashing has
proceeded along three dimensions: unsupervised hashing,
semi-supervised hashing and supervised hashing. Unsuper-
vised hashing [Gionis er al., 1999; Gong and Lazebnik, 2011]
refers to the setting when the label information is not avail-
able. Locality Sensitive Hashing (LSH) [Gionis et al., 1999]
is one of the most well-known representative, which sim-
ply uses random linear projections to construct hash func-
tions. Another effective method called Iterative Quantization
(ITQ) [Gong and Lazebnik, 2011] was suggested for better
quantization rather than random projections. Spectral Hash-
ing (SH) in [Weiss er al., 2008] was proposed to design com-
pact binary codes by preserving the similarity between sam-
ples, which can be viewed as an extension of spectral clus-
tering [Zelnik-manor and Perona, 2014]. Semi-supervised
hashing approaches try to improve the quality of hash codes
by leveraging the supervised information into learning proce-
dure. For example, Wang et al. developed a Semi-Supervised
Hashing (SSH) [Wang et al., 2012] method which utilizes
pairwise information on labeled samples to preserve relative
similarity. In another work [Kim and Choi, 2011], Semi-
Supervised Discriminant Hashing (SSDH) learns hash codes
based on Fisher’s discriminant analysis to maximize separa-
bility between labeled data in different classes while the un-
labeled data are used for regularization. When all label in-
formation is available, we refer to the problem as supervised
hashing. The representative in this category is Kernel-based
Supervised Hashing (KSH) which was proposed by Liu et
al. in [Liu et al., 2012]. It maps the data to compact bina-
ry codes whose Hamming distances are minimized on similar

pairs and simultaneously maximized on dissimilar pairs. In
[Norouzi and Fleet, 2011], Norouzi et al. proposed Minimal
Loss Hashing (MLH) method, which aims to learn similarity-
preserving binary codes by exploiting pairwise relationship.

Inspired by recent advances in image representation us-
ing deep convolutional neural networks, a few deep archi-
tecture based hashing methods have been proposed for im-
age retrieval. Semantic Hashing [Salakhutdinov and Hinton,
2009] is the first work to exploit deep learning techniques for
hashing. It applies stacked Restricted Boltzmann Machine
(RBM) to learn hash codes for visual search. Xia et al. pro-
posed Convolutional Neural Networks Hashing (CNNH) [X-
ia ef al., 2014] to decompose the hash learning process in-
to a stage of learning approximate hash codes followed by
a deep-networks-based stage of simultaneously learning im-
age features and hash functions. However, separating hashing
learning into two stages may result in a sub-optimal solution.
Later in [Lai et al., 2015], Lai et al. proposed Network in
Network Hashing (NINH) to combine feature learning and
hash coding into one stage.

In summary, our approach belongs to deep architecture
based hashing. The aforementioned approaches often focus
on similarity-preserving learning for hashing. Our work in
this paper contributes by studying not only preserving rela-
tive similarity between images, but also how image semantic
supervision could be further leveraged for boosting hashing.

3 Deep Semantic-preserving and
Ranking-based Hashing (DSRH)

In this section, we will present the proposed Deep Semantic-
Preserving and Ranking-Based Hashing (DSRH) in details.
Figure 2 illustrates an overview of our architecture, which
consists of three components: a shared DCNN for learning
image representations, a hash stream for encoding each im-
age into hash codes and a classification stream for leverag-
ing semantic supervision. Specifically, the hash stream is
designed with multiple bags construction plus orthogonality
constraint trained in a triplet-wise manner, while the classifi-
cation stream reinforces the hash learning to preserve seman-
tic structures on images. We will discuss the two streams in
the Section 3.2 and 3.3, respectively.

3.1 Notation

Suppose that we have n images and each of them can be pre-
sented as X . The goal of image hashing is to learn a mapping
H : X — {0, 1}*, such that an input image X will be encod-
ed into a k-bit binary code H(X).

3.2 Hash Stream

The hash coding of each image is treated independently in
point-wise hashing learning methods, regardless of the rela-
tionships of similar or dissimilar between images. More im-
portantly, the relative similarity relations like “for query im-
age X, it should be more similar to image X than to image
X~ are reflected in the image class labels that image X and
X belong to the same class while image X~ comes from
other categories. The utilization of these relative similarity
relations has been proved to be effective in hash coding [Pan
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Figure 2: Deep Semantic-Preserving and Ranking-Based Hashing (DSRH) framework (better viewed in color). The input to DSRH archi-
tecture is in the form of image triplets. A shared deep convolutional neural networks is exploited for learning image representations, followed
by two streams, i.e., hash stream and classification stream. Hash stream is to encode each image into hash codes by first dividing the learnt
representations into multiple bags and then convert each bag into one hash bit. Triplet loss with orthogonality constraint is measured in hash
stream. Classification stream is to characterize the semantic structures on image and softmax loss or cross entropy loss is computed for single
label and multi-label classification, respectively. Both hash stream and classification stream are jointly learnt by minimizing two losses.

etal., 2015; Lai et al., 2015; Li et al., 2014]. Inspired by the
idea of preserving relative similarity in deep architecture [Lai
et al., 2015], we propose a hash stream with multiple bags
construction plus orthogonality constraint learnt in a triplet-
wise manner, which aims to preserve relative similarity as
well as make each hash bit as independent as possible.

Triplet Ranking Loss

Specifically, we can easily obtain a set of triplets 7 based on
image labels, where each tuple (X, X, X ™) consists of a
query image X, a similar image X+ and a dissimilar image
X~. To preserve the similarity relations in the triplets, we
aim to learn a hash mapping 7{(-) which makes the compact
code H(X') more similar to #(X ) than to H(X ). Thus,
the triplet ranking hinge loss is employed and defined as

itriplet(H(X)7H(X+)7H(X_))
— max(0, 1 — || H(X) = HX )|, + [HX) = HEX D) ,,)
st H(X),H(XT),H(X) e {0,1}"
(1)

where || - || represents Hamming distance. For ease of op-
timization, natural relaxation tricks are utilized on Eq.(1) to
change integer constraint to the range constraint and replace
Hamming norm with /5 norm. Then, the loss function is re-
formulated as

ltm’plet(H(X): H(X+)7 H(Xi))
= max(0, 1 — || H(X) = H(X )2 + [H(X) - H(X)|2) -

st H(X), H(XT),H(X) e[0,1]F
3]

The gradients in the back-propagation of the triplet ranking
loss are computed as

8lt7‘iplet _ - +
“on O ) 2w 20
altriplet _ +
Tonr ~ h =) D e s O
alt'riplet -
———— = (2h — 2h 1

on- )2 ot 2 o 2120

where H(X),H(X™),H(X ™) are represented as vector
h,h*™ h~, respectively. The indicator function I.ongiion = 1
if condition is true; otherwise I ongizion = 0.

Multiple Bags Construction plus Orthogonality
Constraint

For hashing representation learning, compactness is a critical
criterion to guarantee its performance in efficient similarity
search. Given a certain small length of binary codes, the re-
dundancy lies in different bits would badly affect its perfor-
mance. By removing the redundancy, we can either incorpo-
rate more information in the same length of binary codes, or
shorten the binary codes while maintaining the same amount
of information. Thus to alleviate the redundancy problem, we
develop multiple bags construction in our deep architecture.
The multiple bags module has a unique construction which
divides the input features into k bags firstly and then encodes
each bag into one hash bit by a fully-connected layer. It aims
to reduce the bit redundancy and the effectiveness has been
proved in the hashing work [Lai er al., 2015]. Moreover, an
orthogonality constraint is further imposed at the top loss lay-
er of hash stream to decorrelate different hash bit.



Let m and k denote the number of triplets in a batch and the
number of output hash bits, respectively. After we obtain the

matrix H € [0, 1] of hash bits, a projection H = 2H — 1

is exploited to transform H to H € [-1 1]””’“ . Thus, the
loss function with orthogonality constraint is given by

min(ltr'iplet (ﬂ* ) ﬁ+ ) ﬁ_))

T+ T3 o k
st. H*H" H € [—1,1]m>< 7 )

%ﬁTﬁ -1 He(d @m0 )
where H*, H", H™ represents the matrix of the approximate
hash bits of query images, similar images and dissimilar im-
ages from all the triplets, respectively.

The orthogonality constraint in Eq.(4) makes the optimiza-
tion difficult to be solved. To address this problem, the or-
thogonal constraint %HTH = I can be relaxed by append-
ing the converted soft penalty term to the objective function.
Then, the final loss function can be rewritten as

ﬁ) + )\lo'rthogonu,l (ﬁ)) ’ (5)

min(lt'riplet (

where the hyper-parameter A is the tradeoff parameter be-
tween triplet ranking loss and orthogonality constraint. For-
mally, the orthogonality constraint loss is

~ 1 1 ~p~
lo'rthogonal (H) = g Z H *HTH |

; ©)

where || - || p represents the Frobenius norm.
Therefore, the gradient of the orthogonality constraint loss
respect to hash stream is computed by

8lo'rthogonal _ T
oo 3mH(H A-1), (7)

where H € {H* Ht, H™}.

3.3 Classification Stream

Image labels not only provide knowledge in classifying but
also are useful supervised information for mining semantic
structures in images. A valid question is how to leverage
the semantic supervision into hashing and make the generat-
ed hash codes better reflecting semantic similarities between
images. Specifically, we propose a co-training mechanism
by combining hash stream and classification stream. In the
classification stream, a classification error is measured and
the whole architecture of the two streams are jointly learnt by
minimizing triplet ranking loss in hash stream and classifica-
tion loss in classification stream.

Softmax Optimization

For the single label classification, we use softmax optimiza-
tion method. Given an input image z°, the softmax loss is
then formulated as

—— Il ®)
;; (yi=3) ngc

where 6 denotes the parameters of our architecture and
y* € {1,2,...c} represents image label.

lsoftma,z (9

The gradient with respect to 6; for optimization is
8lso max N PR
# =7, Z [ ((yizjieiy =Py = jlz §9))] )

where p(y* = j|a?; 0) is the predicted probability:

T i
eGjac

. (10)
> el

p(y" =jlz';0) =
Cross Entropy Optimization
If an image contains multiple labels, we refer to this problem
as multi-label classification. Cross entropy loss is employed
in this case. Similar to softmax loss, cross entropy loss is
computed by

0) =~ 33" Inlys = Diog(pi(s} = 1:6))

i=1 j=1 )

1))log(1 — pi(Fh = 1;0))]

lC'r'ossEntropy (

+(1-pily; =
an

where p; is the predict probability which is the same as
Eq.(10). y* € {0,1}° is a binary label vector, where c is the
number of labels.

3.4 Image Retrieval

After the optimization of DSRH, we can employ hash stream
in the architecture to generate k-bit hash codes for each input
image. In this procedure, an image X is first encoded into a
k-dimension feature vector h. Then, a quantization operation
b = sign(h) is exploited to generate hash codes b, where
sign(h) is a sign function on vector h with sign(h;) = 1 if
h; > 0 and otherwise sign(h;) = 0. Given a query image,
the retrieval list of images is produced by sorting the ham-
ming distances of hash codes between the query image and
images in search pool.

4 Experiments

We conducted extensive evaluations of our proposed method
on two image datasets, i.e., CIFAR-10!, a tiny image collec-
tion and NUS-WIDE?, a large scale web image dataset.

4.1 Dataset

The CIFAR-10 dataset consists of 60,000 real world tiny
images in 10 classes. Each class has 6,000 images in size
32 x 32. We randomly select 1,000 images (100 images per
class) as the test query set. For the unsupervised setting, all
the rest images are used as training samples. For the super-
vised setting, we additionally sample 500 images from each
class in the training samples and constitute a subset of 5,000
labeled images for training.

The NUS-WIDE dataset contains 269,648 images collect-
ed from Flickr. Each of these images is associated with one
or multiple labels in 81 semantic concepts. For a fair com-
parison, we follow the settings in [Lai et al., 2015] to use
the subset of images associated with 21 most frequent labels,

"http://www.cs.toronto.edu/ kriz/cifar.html
*http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Figure 3: Comparisons with state-of-the-art approaches on CIFAR-10 dataset. (a) Mean average precision (MAP) performance. (b) Precision
within Hamming radius 2 using hash lookup. (c) Precision-Recall curves on 48 bits. For better viewing, please see original color pdf file.

where each label associates with at least 5,000 images. We re-
size each image to 256 x 256. Similar to the split in CIFAR-
10, we randomly select 2,100 images (100 images per class)
as the test query set. For the unsupervised setting, all the rest
images are used as the training set. For the supervised setting,
we uniformly sample 500 images from each class to construct
a subset for training.

4.2 Experimental Settings

On both datasets, we utilize the 19-layer VGG [Simonyan
and Zisserman, 2015] as our basic DCNN architecture. In
between, the first 18 layers follow the exactly same architec-
tures as VGG network and the number of neurons in the last
fully-connected layer is set to s X k, where s and k is the
number of bags and hash bits, respectively. We empirically
set s = 30 in all our experiments. The hyper-parameter X is
determined by using a validation set and set to 0.25 finally.

We implement the proposed method based on the open-
source Caffe [Jia er al., 2014] framework. In all experiments,
our networks are trained by stochastic gradient descent with
0.9 momentum. The start learning rate is set to 0.01, and we
decrease it to 10% after 5,000 iterations on CIFAR-10 and
after 20, 000 iterations on NUS-WIDE. The mini-batch size
of images is 64. The weight decay parameter is 0.0002.

4.3 Protocols and Baseline Methods

We follow three evaluation protocols, i.e., mean average pre-
cision (MAP), hash lookup and precision-recall curve, which
are widely used in [Gong and Lazebnik, 2011; Liu et al.,
2012; Wang et al., 2012]. We compare the performances of
our proposed model DSRH with six hashing methods in-
cluding five traditional models, i.e., PCA Hashing (PC AH),
Locality Sensitive Hashing (LSH) [Gionis et al., 1999],
Spectral Hashing (SH) [Weiss et al., 2008], Tterative Quan-
tization (IT'Q)) [Gong and Lazebnik, 2011] and Supervised
Hashing with Kernels (K'SH) [Liu et al., 2012], and one deep
model, i.e., Network In Network Hashing (NIN H) [Lai et
al., 2015]. Moreover, two slightly different settings of our
DSRH are named as DRH* and DRH, which only in-
cludes individual hash stream with and without orthogonality
constraint, respectively.

For NINH, DRH, DRH* and DSRH, the raw pix-
el images are set as input. For the other baseline methods,
we use the 512-dimensional GIST vector for each image in
CIFAR-10 and the output of 1000-way fc8 classification lay-
er in Alexnet [Krizhevsky et al., 2012] for NUS-WIDE.

4.4 Results on CIFAR-10 Dataset

Figure 3(a) shows the MAP performances of nine runs on
CIFAR-10 dataset. Overall, the results across different num-
ber of hash bits consistently indicate that our DSRH out-
performs others. In particular, the MAP of DSRH makes
the relative improvement over the best traditional competi-
tor K.SH and deep model NIN H by 132.1%~179.5% and
33.8%~41.6%, respectively, which is so far the highest per-
formance reported on CIFAR-10 dataset. There is a signifi-
cant performance gap between the traditional and deep mod-
els. It is not surprising to see that DRH improves NINH
since DRH exploits a more powerful image representation
brought by a deeper CNN. By additionally incorporating or-
thogonality constraint, DRH™ exhibits better performance
than DRH. Our DSRH further improves DRH™* with a
relative increase of 1.6%~3.6%, demonstrating the advan-
tage of boosting hashing by preserving semantic structures
through classification.

In the evaluation of hash lookup within Hamming radius 2
as shown in Figure 3(b), the precisions for most of the tradi-
tional methods drop when a longer size of hash codes is used
(48 bits in our case). This is because the number of samples
falling into a bucket decreases exponentially for longer sizes
of hash codes. Therefore, for some query images, there are
even no any neighbor in a Hamming ball of radius 2. Even
in this case, the precision of our proposed DSRH still has a
very slight improvement from 78.57% of 32 bits to 79.17%
of 48 bits, indicating fewer failed queries for DSRH.

We further detail the precision-recall curves in Figure 3(c).
The results confirm the trends seen in Figure 3(a) and demon-
strate performance improvements using the proposed DS RH
approach over other methods.

4.5 Results on NUS-WIDE Dataset

Figure 4 shows the experimental results on NUS-WIDE
dataset. MAP performance and precision with Hamming ra-
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Figure 5:

Examples showing the top 10 image retrieval results by different methods in response to two query images on NUS-WIDE dataset

(better viewed in color). In each row, the first image with a red bounding box is the query image and the images whose annotations completely
contain all the labels of the query image are regarded as excellent ones, which are enclosed in a blue bounding box.

dius 2 using hash lookup are given in Figure 4(a) and (b), re-
spectively. Our DS RH model consistently outperforms oth-
ers. In particular, the MAP performance and precision with
Hamming radius 2 using hash lookup of DS RH can achieve
87.61% and 73.59% with 48 hash bits, which make the im-
provement over the best competitor NIN H by 22.53% and
15.85%. Furthermore, DSRH, in comparison, is benefited
from utilizing semantic supervision and thus shows a rela-
tive increase of 1.0%~1.8% over DRH™ in terms of MAP.
Similar to the observations on CIFAR-10 dataset, the preci-
sions of most methods decrease when increasing the size of
hash codes to 48 bits and the drop in precision of our DSRH
is much less compared to others. Figure 4(c) shows the
precision-recall curves and the results indicate that DSRH
constantly leads to better performance.

Figure 5 further illustrates the top ten image search results
by different methods in response to two query images. We
can see that the proposed DS RH method achieves more sat-
isfying results and retrieves eight “excellent images” in the
returned top ten images. It is worth noticing that “excellent
images” here refer to images whose annotations completely
contain all the labels of the query image. As a result, the im-
ages retrieved by our DSRH approach are more similar in
semantics with the query image.

5 Conclusion and Discussion

In this paper, we have presented deep semantic-preserving
and ranking-based hashing architecture which explores both
relative similarity between images and semantic supervision
on images. Particularly, given triplets of images with label-
s, we exploit a shared DCNN to learn image representation,
followed by two streams, i.e., hash stream and classification
stream. Hash stream aims to encode each image into hash
codes by characterizing the relative similarities between im-
ages in a triplet and meanwhile making the generated hash
codes as compact as possible, while classification stream is to
preserve the semantic structures on images. Basically, utiliz-
ing only hash stream shows better performance than state-of-
the-art hashing techniques on two image datasets. By joint-
ly learning hash stream and classification stream to reinforce
hashing, further improvements are consistently observed in
the experiments.

Our future works are as follows. First, as our architecture is
a co-training process, how the architecture performs on clas-
sification task will be further investigated and evaluated. Nex-
t, more in-depth studies of how to fuse the two streams in a
principle way could be explored. Furthermore, how to apply
our proposed architecture to video domain seems interesting.
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