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Abstract

Recent advances in high-throughput pyrosequencing (HTPS) technology now allow a thorough analysis of RNA bound to
cellular proteins, and, therefore, of post-transcriptional regulons. We used HTPS to discover the Salmonella RNAs that are
targeted by the common bacterial Sm-like protein, Hfq. Initial transcriptomic analysis revealed that Hfq controls the
expression of almost a fifth of all Salmonella genes, including several horizontally acquired pathogenicity islands (SPI-1, -2, -
4, -5), two sigma factor regulons, and the flagellar gene cascade. Subsequent HTPS analysis of 350,000 cDNAs, derived from
RNA co-immunoprecipitation (coIP) with epitope-tagged Hfq or control coIP, identified 727 mRNAs that are Hfq-bound in
vivo. The cDNA analysis discovered new, small noncoding RNAs (sRNAs) and more than doubled the number of sRNAs
known to be expressed in Salmonella to 64; about half of these are associated with Hfq. Our analysis explained aspects of
the pleiotropic effects of Hfq loss-of-function. Specifically, we found that the mRNAs of hilD (master regulator of the SPI-1
invasion genes) and flhDC (flagellar master regulator) were bound by Hfq. We predicted that defective SPI-1 secretion and
flagellar phenotypes of the hfq mutant would be rescued by overexpression of HilD and FlhDC, and we proved this to be
correct. The combination of epitope-tagging and HTPS of immunoprecipitated RNA detected the expression of many
intergenic chromosomal regions of Salmonella. Our approach overcomes the limited availability of high-density microarrays
that have impeded expression-based sRNA discovery in microorganisms. We present a generic strategy that is ideal for the
systems-level analysis of the post-transcriptional regulons of RNA-binding proteins and for sRNA discovery in a wide range
of bacteria.
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Introduction

Until now, global gene expression control studies have generally

focussed on the transcriptional regulation exerted by the specific

action of DNA binding proteins, and on the post-translational

regulation governed by specific protein–protein interactions. In

comparison, little is known about how RNA binding proteins

facilitate the global control of gene expression at the post-

transcriptional level. However, the latest discoveries of many small

noncoding RNAs (sRNAs) in both pro- and eukaryotes have

shown that the interaction of RNA with proteins plays a

prominent role in the regulation of cellular processes. In bacteria,

the majority of the sRNAs basepair with target mRNAs to regulate

their translation and/or decay [1,2,3], and these regulatory events

commonly require the bacterial Sm-like protein, Hfq [4,5].

Hfq is one of the most abundant RNA-binding proteins in

bacteria [6,7,8]. First identified in Escherichia coli as a host factor

required for phage Qb RNA replication ,40 years ago [9], Hfq is

now known to have an important physiological role in numerous

model bacteria [5]. Almost half of all sequenced Gram-negative

and Gram-positive species, and at least one archaeon, encode an

Hfq homologue [10,11]. Hfq interacts with regulatory sRNAs and

mRNAs, and much of its post-transcriptional function is caused by

the facilitation of the generally short and imperfect antisense

interactions of sRNAs and their targets [12,13,14,15,16,17].

However, Hfq can also act alone as a translational repressor of

mRNA [18,19], and can modulate mRNA decay by stimulating

polyadenylation [20,21]. In addition, roles of Hfq in tRNA

biogenesis have recently been described [22,23].

The pleiotropy of an hfq deletion mutation was first apparent

from the multiple stress response-related phenotypes in E. coli [24],

and partly reflects the reduced efficiency of translation of rpoS

mRNA, encoding the major stress sigma factor, sS [25,26].

However, Hfq clearly impacts on bacterial physiology in a much

broader fashion, including the sS-independent control of

virulence factors in pathogenic bacteria (e.g., [27,28,29,30,

31,32,33]). Specifically, deletion of hfq attenuates the ability of

the model pathogen Salmonella enterica serovar Typhimurium (S.

Typhimurium) to infect mice, to invade epithelial cells, to secrete

virulence factors and to survive inside cultured macrophages [32].
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Loss of Hfq function also results in a non-motile phenotype for

Salmonella and the deregulation of .70 abundant proteins,

including the accumulation of outer membrane proteins (OMPs);

the latter is accompanied by a chronic activation of the sE (s24)-

mediated envelope stress response [32,34]. Hfq has also been

implicated in the control of Salmonella gene expression changes

induced by the low gravity condition experienced during

spaceflight [35].

Understanding how Hfq controls Salmonella gene expression at

the post-transcriptional level requires the identification of its sRNA

and mRNA ligands. In a pioneering global study in E. coli, Zhang

et al. (2003) used co-immunoprecipitation (coIP) with Hfq-specific

antisera and direct detection of the bound RNAs on genomic high-

density oligonucleotide microarrays. Although this method proved

highly effective for detecting diverse sRNAs and mRNAs in E. coli,

the requirement for high-density microarrays and specialized

antibodies has hampered similar studies in other bacteria. An

alternate approach identified individual abundant Hfq-associated

RNAs by cDNA cloning or direct sequencing [29,36]; however,

these methods are not appropriate for large-scale analyses.

To overcome these limitations for the global identification of

Hfq targets in Salmonella, we have now used high-throughput

pyrosequencing (HTPS, a.k.a. deep sequencing) of RNA associ-

ated with an epitope-tagged Hfq protein (Figure 1). We show that

this approach recovers Hfq-binding sRNAs with high specificity,

and identifies their boundaries with unprecedented resolution. We

report the discovery of novel Salmonella sRNA genes, detect the

expression of many conserved enterobacterial sRNA genes, and

provide a set of potential mRNA targets in this model pathogen.

Comparison with the transcriptomic profile of an hfq mutant

showed that Hfq mediates its pleiotropic effects by regulating the

master transcription factors of complex regulons, and explained

how Hfq is required for Salmonella virulence. In microbiology, deep

sequencing has been used extensively for genome sequencing,

either of individual microbial species [37] or of bacterial

communities [38]. This study is the first report that describes the

use of deep sequencing to study protein-bound mRNA from

bacteria, and to discover bacterial noncoding RNAs.

Results

Transcriptomic Profiling Reveals a Large Hfq Regulon in
Salmonella

To detect genes that are, directly or indirectly, regulated by Hfq

the transcriptomic mRNA profile of the Salmonella wild-type and of

mutant strain JVS-0255 (Dhfq) was determined. We used two

different conditions for the comparison; aerobic growth in L-broth

to early stationary phase (ESP; OD600 of 2) was chosen because the

hfq mutation causes drastic protein pattern changes in ESP

Salmonella [32], and overnight growth in high-salt medium under

oxygen limitation (SPI-1-inducing conditions) to specifically

activate the Salmonella virulence genes required for host cell

invasion [39]. Hfq-dependent mRNAs that showed statistically

significant changes ($2-fold) were identified, and we discovered

that 734 genes were differentially expressed in the Dhfq strain

grown to ESP (279 up-regulated genes, 455 down-regulated genes,

Figure 2 and Table S1). Of the 71 proteins known to be Hfq-

dependent (as determined by protein levels on 2D gels; [32]), 50%

were regulated by Hfq at the transcriptional level (Table S1).

Consequently, Hfq controls the expression of 17% of all Salmonella

genes at ESP (based on the 4425 annotated ORFs; [40]). Growth

under SPI-1 inducing conditions revealed 164 differentially

expressed genes in Dhfq (91 up-, 73 down-regulated; Table S2).

69% of these genes overlapped with the changes seen in ESP.

Taken together, Hfq affects at least 785 genes, or 18% of the

Salmonella genome.

Classification of the genes deregulated at ESP (Table 1)

showed that Hfq impacted upon 26 of the 107 functional groups

annotated for Salmonella [41]; in seven groups $50% of all genes

were misregulated. In four of the five major Salmonella

pathogenicity islands (i.e., SPI-1, -2, -4, -5), and in the flagellar

and chemotaxis pathways, .60% of genes were down-regulated,

which explains the previously observed invasion and motility

phenotypes of Dhfq [32]. Because Hfq affects the mRNAs of sS

(RpoS) and sE (RpoE) [25,26,34,42], two major alternative

stress s factors of enterobacteria, we quantified the expression of

these sigma factors in Salmonella at the mRNA level (ESP) and at

the protein level (ESP and SPI-1 inducing conditions). sE

mRNA and protein levels were strongly elevated in Dhfq under

both conditions tested (Figure S1), confirming the previously

observed chronic induction of the envelope stress response.

Levels of rpoS mRNA were slightly increased, yet RpoS protein

levels were strongly decreased. This reflects the poor translation

of rpoS mRNA in the absence of Hfq (Figure S1 and [25,26]). We

used published lists of sE- and sS-dependent genes of Salmonella

[43,44] to determine how the Hfq-dependent changes we

observed were related to the sE and/or sS regulons. We

discovered that 55% (41/75) and 73% (54/74) of sE- and sS-

dependent genes were also Hfq-dependent. Therefore, a

proportion of the Hfq-dependent gene expression changes

observed at ESP and under SPI-1 inducing conditions were

indirect effects caused by modulation of sS and sE levels by

Hfq.

The S. Typhimurium genome contains about 444 genes

acquired by horizontal gene transfer (HGT; [45]). 122 or 17 of

these HGT genes were Hfq-dependent under ESP or SPI-1

inducing conditions, respectively (16 genes being Hfq-dependent

under both conditions; Tables S1, S2). In other words, Hfq

regulates 28% of the HGT genes, significantly more than the 18%

regulated when using the entire Salmonella genome for calculation.

This may indicate a role of Hfq in the acquisition of DNA from

foreign sources, by regulating expression of newly acquired genes

at the RNA level.

Author Summary

The past decade has seen small regulatory RNA become an
important new mediator of bacterial mRNA regulation.
This study describes a rapid way to identify novel sRNAs
that are expressed, and should prove relevant to a variety
of bacteria. We purified the epitope-tagged RNA-binding
protein, Hfq, and its bound RNA by immunoprecipitation
from the model pathogen, Salmonella enterica serovar
Typhimurium. This new strategy used Next Generation
pyrosequencing to identify 727 Hfq-bound mRNAs. The
numbers of sRNAs expressed in Salmonella was doubled to
64; half are associated with Hfq. We defined the exact
coordinates of sRNAs, and confirmed that they are
expressed at significant levels. We also determined the
Hfq regulon in Salmonella, and reported the role of Hfq in
controlling transcription of major pathogenicity islands,
horizontally acquired regions, and the flagellar cascade.
Hfq is reported to be a global regulator that affects the
expression of almost a fifth of all Salmonella genes. Our
new approach will allow sRNAs and mRNAs to be
characterized from different genetic backgrounds, or from
bacteria grown under particular environmental conditions.
It will be valuable to scientists working on genetically
tractable bacteria who are interested in the function of
RNA-binding proteins and the identification of sRNAs.

Hfq and Deep Sequencing
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Deep Sequencing of Hfq-Associated RNAs
The variety of transcriptional regulons that showed Hfq-

dependent expression patterns could either be mediated by the

binding of certain regulatory sRNAs or of specific mRNAs by Hfq.

To identify the direct Hfq targets we co-immunoprecipitated RNA

with the chromosomally FLAG epitope-tagged Hfq protein

expressed by a Salmonella hfqFLAG strain [46]. CoIP was performed

in extracts prepared from ESP-grown bacteria. The Hfq-

associated RNA was converted to cDNA, and a total of 176,907

cDNAs pooled from two independent biological experiments was

then characterised by high-throughput pyrosequencing [37]. The

resulting sequences, from here on referred to as ‘‘Hfq cDNAs’’,

ranged in length from 1 to 145 bp, and 92% were $18 bp

(Figure 3A). Disregarding small cDNAs (,18 bp), 122,326

sequences were unequivocally mapped to the Salmonella genome

by WU-BLAST searches (http://blast.wustl.edu/; Figure 2).

About half of the mapped cDNAs (57,529) were derived from

rRNA, tRNA, and housekeeping RNAs (tmRNA, M1 RNA, and

SRP RNA; Figure 3B). Of the remaining 64,797 sequences, the

majority corresponded to mRNA regions (53% matched the sense

strand of protein-coding regions), followed by known/predicted

conserved sRNAs (18%; [47]; for distribution see Figure 3C),

predicted Salmonella-specific sRNAs (1%; [46]) and sequences that

were antisense to ORF regions (3%). The remaining 25% of

cDNAs mostly represented intergenic regions (IGRs) and 59/39

UTRs, with a few antisense transcripts to tRNAs, rRNAs, and

sRNAs (0.1%; Figure 3B).

To confirm that our procedure did effectively enrich Hfq-

associated RNAs, we analyzed 175,142 cDNAs from a control

coIP using wild-type Salmonella (expressing untagged Hfq). Of these

‘‘Control cDNAs’’ which ranged in length from 1 to 290 bp

(Figure 3A), 145,873 sequences were $18 bp in size and could be

correlated to the Salmonella chromosome. Most of the inserts (91%)

were abundant rRNA, tRNA, and housekeeping RNA transcripts

(Fig 3B). The remaining 13,725 sequences were used to calculate

the level of enrichment of Hfq-bound RNA (see below).

Visualizing Hfq-Dependent RNAs at the Nucleotide Level
Upon WU-BLAST matching, the number of cDNA hits for

each nucleotide position for either strand of the Salmonella

chromosome was calculated, and visualized using the Integrated

Genome Browser (IGB, Affymetrix). This browser allows the visuali-

zation of both whole genomes and individual genomic regions.

Figure 4 shows the distribution of cDNA sequences over a

subsection of the genome, i.e. the ,40 kb SPI-1 virulence region,

for which we observed strong enrichment of Hfq cDNAs over the

Control cDNAs. As well as the 35 mRNAs of protein-coding

genes, SPI-1 encodes the Hfq-dependent InvR sRNA [46].

Enrichment of InvR by coIP with FLAG-tagged Hfq was

previously demonstrated by Northern blot analysis [46], and this

Figure 1. Strategy to identify Hfq targets. RNA was co-immunoprecipitated with Hfq in extracts from ESP-grown Salmonella cells (wild-type and
chromosomal hfqFLAG strain) using an anti-FLAG antibody. The extracted RNA was converted to 59 monophosphate RNA, and subsequently into
cDNA, followed by direct pyrosequencing. Our approach was validated by hybridization of cDNA to high density oligo microarrays. In addition, total
RNA of the wild-type strain and its hfq deletion mutant was used for transcriptomic analysis using Salmonella SALSA microarrays.
doi:10.1371/journal.pgen.1000163.g001

Hfq and Deep Sequencing
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result is confirmed by the strong cDNA peak seen at the invR locus

located at the right-hand SPI-1 border (Figure 4).

Hfq-Dependent sRNAs Are Highly Associated with Hfq
Inspection of the cDNA libraries revealed that a major class

were derived from sRNA regions. These sRNAs, as well as their

enrichment by Hfq coIP, are listed in Tables 2 and S3. The three

most abundant sRNAs, according to the numbers of Hfq cDNA

sequences are InvR, SraH (a.k.a. RyhA) and SroB (RybC), and are

known to be strongly bound by Hfq [17,46]; coIP of Hfq enriched

these three sRNAs by 30- to 57-fold, in comparison to the control

reaction. For example, InvR, which binds Hfq with a kD of 10 nM

[46], was represented by 3,236 Hfq cDNAs and 113 Control

cDNAs (Table 2). In contrast, other sRNAs not expected to be

Hfq-dependent were found in equal numbers in the two samples.

For example, the CsrB or CsrC sRNAs which target the conserved

RNA-binding protein, CsrA [48], were represented by almost

equal numbers in the Hfq and Control cDNAs (CsrB, 67/69;

CsrC, 63/64; Table 2). Moreover, cDNAs of the abundant yet

Hfq-independent 6S RNA [49] were found in smaller numbers in

the Hfq than in the control library (451 versus 836; Table 2).

Figure 5 illustrates the distribution of cDNAs of the three

predominant Hfq-bound RNAs and of the Hfq-independent 6S

RNA. cDNAs of both the InvR (89 nt; [46]) and SroB (84 nt; [50])

sRNAs mapped along the entire RNA coding sequence from the

transcriptional start site to the Rho-independent terminator. SraH,

which is transcribed as an unstable 120 nt precursor and processed

into an abundant ,58 nt RNA species (39 part of SraH; [17,51]),

was almost exclusively recovered as the processed sRNA. Notably,

the borders of the cDNA clusters were in perfect agreement with

previous 59 and/or 39 end mapping data of the four sRNAs

[46,50,51,52]. In other words, our cDNA sequencing approach

not only detects association with Hfq, but also identifies the

termini of expressed sRNAs at nucleotide-level resolution.

Figure 2. Correlation between HTPS, coIP-on-chip and transcriptomic data upon the S. Typhimurium chromosome. The data obtained
from transcriptomic, cDNA sequencing and coIP-on-chip analyses of ESP-grown bacteria were mapped onto the Salmonella chromosome for direct
comparison. The outer (1st) ring displays changes in gene expression in the Dhfq strain compared to the parental SL1344 strain. Genes that are down-
regulated in the Dhfq strain are shown as blue; genes that are up-regulated are shown as red. The next three circles show regions coding for Hfq-
associated RNA identified by deep sequencing (2nd ring shows positive strand, and 3rd ring shows negative strand) or coIP-on-chip (4th ring). Ring 5
shows the location of coding sequences on the positive strand (CDS+), on the negative strand (CDS2), and the tRNA and rRNA genes. GC-skew [110]
is shown in ring 6; purple and blue regions have a GC skew that is below or above the genomic average, respectively. AT-content is shown in ring 7;
blue and red regions have an AT-content that is below or above the genomic average, respectively. Numbers on the inside of the innermost circle are
the location relative to position zero measured in millions of base-pairs (Mbp) of the Salmonella LT2 genome. The location of the SPI-1 to SPI-5 is
indicated. An invaluable zoomable version of this atlas is available online at http://www.cbs.dtu.dk/services/GenomeAtlas/suppl/zoomatlas/
?zpid = Styphimurium_LT2_Atlas ; click on the region of interest to accurately visualize the data at the level of individual genes.
doi:10.1371/journal.pgen.1000163.g002

Hfq and Deep Sequencing
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Identification of Expressed Salmonella sRNAs
To evaluate the sRNA expression profile of Salmonella more

extensively, we analyzed three classes of sRNA candidate loci for

coverage by the Hfq and Control cDNAs. First, cDNAs of E. coli

sRNA candidate loci with predicted conservation in Salmonella

were inspected [17,47,49,50,51,53,54]. Second, we counted

cDNAs of Salmonella-specific sRNAs predicted in two recent global

screens [46,55]. Third, we manually inspected cDNAs from a

third of the Salmonella chromosome (first 1.6 Mb) and all major five

pathogenicity islands for expression patterns of IGRs indicative of

new sRNA genes, and for possible enrichment by Hfq coIP. Using

criteria similar to [49], our evaluation of these loci considered

orphan promoter/terminator signals, and possible conservation in

bacteria other than E. coli. Of the latter two classes of candidates

(summarized in Table S3), those with an Hfq enrichment factor

$10 and/or candidates showing strong promoter/terminator

predictions were selected for Northern blot analysis. To assess

sRNA expression under relevant environmental conditions, we

probed RNA from five stages of growth in standard L-broth from

exponential to stationary phases, and from two conditions known

to strongly induce the expression of the major SPI-1 [39,56] or

SPI-2 [57] virulence regions. The results of this analysis are

summarized in Table 2 (the whole set of candidates tested is shown

in Table S3); including the 26 previously detected Salmonella

sRNAs [34,46,55,58,59,60,61,62,63], a total of 64 Salmonella

sRNAs can now be considered to be experimentally validated.

We used Northern blots to detect 10 of the 31 newly identified

Salmonella sRNAs under the environmental conditions that were

tested (Figure 6, Tables 2 and S3). These sRNAs yielded stable

transcripts, predominantly in the 50 to 100 nt range (Figure 6A

and B). Faint bands of larger transcripts were observed for

STnc150 (150 nt), and STnc400 (190 nt), resembling certain E. coli

sRNAs such as SraH whose precursor is rapidly degraded whilst

the processed form accumulates [51]. The STnc150, 400, and 560

sRNAs are almost constitutively expressed, whereas STnc500, 520

and 540 are only expressed in certain environmental conditions.

Intriguingly, STnc580 can only be detected under SPI-1 inducing

conditions that mimic the environment Salmonella encounters in

the host intestine. Generally, only candidates represented by $20

cDNAs in a cDNA pool yielded a signal on Northern blots

(Tables 2 and S3). While this suggests some correlation between

intracellular abundance and cDNA frequency, we note the case of

STnc150, for which a single cDNA was recovered yet a strong

signal was obtained on Northern blots. In contrast, several

Table 1. Pathway clustering of Hfq-dependent genes at ESP.

pathwaya genes in pathwayb % upc % downd % genes regulated

Flagellar system 53 0 87 87

Chemotaxis 19 0 84 84

Fimbrial proteins 24 0 20 20

SPI1 39 0 90 90

SPI2 40 0 72.5 72.5

SPI3 29 0 14 14

SPI4 6 0 100 100

SPI5 8 0 62.5 62.5

ABC transporter 188 11 7 28

Cyanoamino acid metabolism 10 20 10 30

Cystein metabolism 15 20 0 20

Fatty acid metabolism & biosynthesis 20 15 15 30

Fructose & mannose metabolism 64 2 11 13

Glutamate metabolism 29 7 7 14

Lipopolysaccharidee biosynthesis 28 3.5 3.5 7

Glycerophospholipid metabolism 24 17 12.5 29.5

Glycine, serine & threonine metabolism 35 31.5 3 34.5

Glycolysis/Gluconeogenesis 28 3 21 24

Nitrogen metabolism 33 15 6 21

Pentose phosphate pathway 32 12.5 19 31.5

Purine metabolism 73 11 4 15

Pyrimidine metabolism 49 10 0 10

Pyruvate metabolism 49 12 0 12

Ribosome 78 35 0 35

Selenoamino acid, sulfur metabolism 18 33 17 50

Starch & sucrose metabolism 31 3 26 29

Hfq-dependent genes in ESP-grown Salmonella are shown in Table S1.
aPathway classification according to KEGG (http://www.genome.jp/kegg/; [21]). Pathways in which $50% of genes are Hfq-regulated are shadowed.
bNumber of genes involved in pathway (acc. KEGG).
c,dNumbers in percent of genes that were up- or down-regulated in Dhfq compared to wt, (Table S1).
doi:10.1371/journal.pgen.1000163.t001

Hfq and Deep Sequencing

PLoS Genetics | www.plosgenetics.org 5 August 2008 | Volume 4 | Issue 8 | e1000163



candidates with .20 cDNAs failed the Northern blot validation

(Table S3). We speculated that the corresponding cDNAs were

derived from 59 or 39 UTRs of larger mRNA transcripts, and

tested this on Northern blots of agarose gels. We tested 14 of such

candidates which had the appropriate orientation to flanking

mRNA genes to be UTR-derived; six of these showed signals

ranging in size from 500 to 2000 nucleotides (STnc180, Stnc190,

STnc330, STnc470, STnc610, and STnc640; Figure S2 and

Table S3), and are likely to be processed mRNA species.

Three sRNAs expressing stable transcripts of ,85 to 90 nts

originate from close to, or within, IS200 transposable elements

(Figure 6B). STnc290 and STnc440 are expressed just upstream of

tnpA_4 and tnpA_6, respectively, whereas STnc490 is antisense to

the translational start site of the IS200 transposase ORF. IS200

elements generally posses two stem-loop structures, one of which is

a Rho-independent transcription terminator that prevents read-

through from genes located upstream of the integration site [64].

Given their location, the STnc290 sRNA could originate from

processing of the STM3033 transcripts reading into the tnpA_4

terminator structure; by analogy, STnc440 would be derived from

STM4310 transcripts. If so, this would constitute interesting cases

in which transposon insertion has created stable sRNAs. The other

IS200 stem-loop functions as a translational repressor by

sequestering the start codon of the transposon ORF [64]; STnc490

overlaps with this structure on the opposite strand, and by acting

as an antisense RNA may function as an additional repressor of

IS200.

We determined whether 8 of the new Salmonella sRNAs showed

an Hfq-dependent pattern of transcript abundance that correlated

with Hfq binding (Figure 6C). The STnc290, 440, 490, 520, 540

and 560 sRNAs were all enriched by Hfq coIP (Table 2), by factors

up to 51-fold (STnc440). The expression of the four sRNAs with

the highest enrichment factors (STnc290, 440, 520, 560) was

strongly reduced in Dhfq, and so classified as Hfq-dependent; in

contrast, the accumulation of STnc150, STnc490 and STnc540

($1.0-, 5.1-, and 3.3-fold enrichment, respectively) was unaffected

in the absence of Hfq. STnc500, which is only detected in samples

originating from cultures at OD600 of 1, and STnc580, which

seems to be specifically expressed under the SPI-1 inducing

condition, were not detected on these blots.

In addition to the sRNAs listed above, the cDNAs included two

loci predicted to encode small peptides, i.e. shorter than the 34

amino acid cut-off used to define ORFs in the current Salmonella

genome annotation [40]. These are referred to as STnc250 and

STnc570 in Table 2, and correspond to the predicted small ypfM

and yneM mRNA-encoding genes of E. coli [49]. Probing of the

Salmonella loci yielded signals of stable short mRNAs which are

expressed in a growth phase-dependent manner (Figure S3).

Hfq-Associated mRNAs
To determine which of the 34,136 cDNAs were derived from

Hfq-bound mRNAs and represented genuine mRNA targets, a

stringent cutoff was used. An mRNA coding region (CDS) was

required to be represented by $10 cDNAs to be considered

significant, which identified 727 Hfq-bound mRNAs (cistrons) for

further analysis. Table 3 lists the top 42 mRNAs with at least 100

cDNAs in the Hfq coIP library (Table S4 lists all 727 mRNAs). In

the genome browser, many of these enriched mRNAs were readily

visible as a distinct cDNA cluster, e.g., the ompD mRNA (encoding

the major Salmonella outer membrane protein) shown in Figure 7A.

A survey of the transcriptomic data revealed that 33% of the Hfq-

bound mRNAs showed an Hfq-dependent pattern of gene

expression (Table S1). The reciprocal analysis showed that 32%

of the Hfq-dependent mRNAs were bound to Hfq (Table S1). We

attribute the observed partial overlap of the Hfq coIP and the

transcriptomic data (33%) to three major factors. First, Hfq

regulates transcription factors, de-regulation of which alters the

expression of downstream genes. In other words, not every gene

deregulated in the Dhfq strain is necessarily a ‘‘direct’’ Hfq target,

i.e. its mRNA bound by Hfq. Second, there may be a considerable

Figure 3. Statistical analysis of the cDNA sequencing results of
Hfq-associated RNA. (A) The pyrosequencing results were analyzed
by plotting the number of cDNA reads over the read length in bp. The
length distribution of all resulting sequences is shown. (B) Pie diagram
showing the relative proportions of the different RNA species contained
in all sequences that mapped to the Salmonella genome. The rRNA,
tRNA and housekeeping RNAs are shown in grey. Left panel: Hfq coIP,
right panel: control coIP. (C) Pie diagram showing the relative
proportions of all Hfq-associated sequences that unequivocally mapped
to known sRNA sequences. The names of the six most frequently
recovered sRNAs are given.
doi:10.1371/journal.pgen.1000163.g003
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number of Hfq-associated mRNAs below our very stringent cut-off

for Hfq-association; increasing sequencing depth will overcome

this problem. Third, the precise borders of most 59/39 UTRs are

unknown in Salmonella (and any other bacterial genome sequence);

consequently, calculations of Hfq enrichment were limited to the

CDS of an mRNA. As outlined further below (Figure 7B), this can

skew the overall enrichment factor.

To validate our cDNA sequencing approach for the detection of

Hfq-bound mRNAs by the conventional approach, we hybridized

the RNA obtained from Hfq and control coIP to a S.

Typhimurium oligonucleotide microarray. Analysis of this coIP-

on-Chip experiment with SAM-software (Statistical Analysis of

Microarrays; FDR,0.01) identified 365 enriched mRNAs. Nearly

half (45%) of these mRNAs corresponded to regions identified by

the deep sequencing approach (Table S5; P,10e-10). The overlap

increased to 67% when genes that showed enrichment values

above 5 were taken into consideration. Although coIP-on-Chip

displays a lower sensitivity than deep sequencing these two

independent methods do generate comparable results for the

identification of mRNA-protein interactions.

Genome annotations of protein-coding genes are generally

limited to the mRNA coding regions (CDS). Whilst Tables 3 and

S4 list absolute hit numbers in annotated CDS, the detailed

analysis of cDNA distribution over a given mRNA gene often

revealed a more complex picture. For example, the number of

ompA cDNAs does not drastically differ in the two libraries (Hfq

coIP, 102; control coIP, 77), which would question whether ompA

is an Hfq-bound mRNA. However, up to 12-fold enrichment is

seen in some sections of the ompA mRNA, e.g., around the AUG

and in the central CDS (Figure 7B). Note that the availability of

cDNA hit numbers for every single nucleotide of the Salmonella

chromosome offers the possibility to also analyze 59 and 39 UTRs

of mRNAs, which are not included in Tables 3 and S4, but could

also be targeted by Hfq.

Figure 8A further illustrates the complex enrichment patterns of

diverse mRNAs, some of which may be explained by previous data

obtained for these transcripts, as discussed below. i) cDNAs of

Hfq-bound mRNAs of hilD (encoding a key transcription factor of

the Salmonella invasion gene island, SPI-1), fliC (which encodes a

major flagellin), or flhDC (encoding the major transcription factor

Figure 4. Visualization of pyrosequencing data for the Salmonella pathogenicity island 1 (SPI-1) with the Integrated genome
Browser (Affymetrix). The upper panel shows an extraction of the screenshot of the Integrated Genome Browser, with the mapped Control and
Hfq cDNAs of the SPI-1 region. Shown are the annotations for the ‘‘+’’ and ‘‘–’’ strand (blue), the cDNA sequence distribution from the Hfq coIP for the
‘‘+’’ and ‘‘–’’ strand (red), the cDNA-clone distribution for the control coIP for the ‘‘+’’ and ‘‘–’’ strand (black), and the genome coordinates in the center
for the entire SPI-1. The annotation for SPI-1 and the Hfq coIP peaks for hilD and the sRNA InvR in the Hfq coIP are indicated. Note, that the clone
numbers per nucleotide are scaled to a maximum of 250 for the Hfq and the control coIP, which truncates the high peak for InvR in the Hfq coIP
library (.3000 cDNAs). The lower panel shows a close up of the invR locus and its adjacent genes.
doi:10.1371/journal.pgen.1000163.g004
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of the Salmonella flagellar genes) were distributed over the entire

length of the relevant gene, including the ,300 nt 39 UTR in the

case of hilD. Either Hfq does target such a large number of sites on

these three mRNAs, or alternatively, given that Hfq is a ribosome-

bound protein, these cDNAs may derive from polysome-bound

mRNAs. ii) cDNAs of ompD were also distributed over the entire

ompD locus, and abruptly ended 50 nt downstream of the ompD

stop codon, at the predicted Rho-independent terminator; a major

cDNA cluster was observed around the ompD AUG start codon,

i.e. the 270 to +19 region (for separate display of control coIP,

Hfq coIP, and enrichment curves see Figure 7A). Intriguingly, this

particular region binds Hfq with high affinity in vitro (kD#1 nM;

[32]). Binding of Hfq to the ompD AUG region may control

translation initiation analogous to the Hfq-mediated repression of

the E. coli ompA mRNA [18]. Similarly, cDNAs representing dppA

clustered at the 59 end of this mRNA, from the transcriptional +1

site into the N-terminal (signal peptide) coding region. The Hfq-

dependent sRNA, GcvB, is known to target the dppA 59 UTR [58],

and our data suggest that Hfq-binding to this dppA region could

enhance GcvB action. iii) cDNA clones of the ,10kb flgBCDEF-

GHIJKL mRNA (flagellar components) were almost exclusively

derived from the terminal, 80 nt region downstream of the flgL

stop codon which includes the terminator. It is possible that Hfq

controls flagellar operon mRNA expression through modulation of

mRNA decay initiating at the 39 end. iv) Almost all of the 48

cDNAs of the dicistronic glmUS mRNA mapped in two clusters to

the glmUS IGR (188 nt). cDNAs of the upstream cluster start with

the adenosine of the glmU UGA stop codon and span the first 73 nt

of the IGR. In E. coli, glmUS mRNA undergoes RNaseE-

dependent cleavage within the glmU UGA to generate a

monocistronic glmS mRNA [65,66]; the glmS mRNA is activated

by the GlmZ sRNA, which binds Hfq [49] and the glmUS IGR

[19]. As mentioned for GcvB/dppA, Hfq is likely to aid the binding

of GlmZ to the glmUS mRNA in the region of the two clusters of

cDNAs.

It is worth noting that the extended steps of lysate preparation

and antibody incubation involved in the Hfq coIP protocol do

cause some mRNA degradation [17]. Our Northern blots did not

detect full-length mRNA in the RNA samples from the Salmonella

Hfq coIP (data not shown). We believe that the sequenced cDNAs

were synthesized from a mixture of shorter cDNA fragments,

rather than from intact transcripts of several kb in length. The

short cDNAs that were prepared from Hfq coIP have the

advantage of favoring the primary Hfq binding region.

To confirm that Hfq bound to enriched mRNA regions,

corresponding fragments of the dppA, glmUS, flhD and hilD mRNAs

were in vitro-synthesized, and analyzed in gel mobility shift assays

(Figure 8B). These RNA fragments were fully shifted by addition

of #50 nM Hfq hexamer, which suggested significantly stronger

binding than to the previously tested, non-specific metK mRNA

(kD$250 nM; [32]) which is not regulated by Hfq and was not

recovered by Hfq coIP (Tables S1 and S4). Thus, the cDNA

sequences appear to represent high-affinity, primary binding sites

of Hfq on mRNAs.

Mechanisms of Pleiotropic Hfq Effects in Virulence and
Flagellar Pathways

Our analyses revealed an intriguing relationship between the

transcriptomic and deep sequencing data; the genes belonging to

some regulons were consistently down-regulated in the Dhfq

mutant, yet Hfq only associated with a few of the relevant mRNAs.

For example, the transcriptomic data showed that the entire SPI-1

pathogenicity island was down-regulated in the Dhfq mutant, but

the Hfq coIP only showed a strong enrichment for a small subset
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of SPI-1 genes (hilC, hilD, invFGAC, sicA, sip operon, prgHK, and orgB;

Tables S1, S4 and Figures 4, S4). Of these, hilD encodes the

primary transcriptional activator of the SPI-1 region [67]. We

hypothesized that loss of Hfq-association with hilD mRNA in Dhfq

causes loss of HilD protein synthesis, and thereby one of the

strongest hfq phenotypes, i.e. loss of SPI-1 activation and virulence

factor (effector protein) secretion. If so, ectopic HilD overexpres-

sion should restore SPI-1 effector secretion to Dhfq. As predicted,

overproduction of HilD from a PBAD expression plasmid restored

SPI-1 effector secretion to almost wild-type levels in the absence of

Hfq (Figure 9A; compare lanes 1 and 4), and also rescued

expression of the PrgI needle protein indicative of a functional

SPI-1 secretion apparatus (data not shown). In contrast, ectopic

production of HilA, the SPI-1 transcription factor that acts

downstream of HilD, failed to influence the secretion defect of

Dhfq. Preliminary data from gentamicin protection assays that

assess epithelial cell invasion of Salmonella, suggests that overex-

pression of HilD increased the invasion rate of the Dhfq strain by a

factor of ten (data not shown). Thus, by identifying the hilD mRNA

as a direct Hfq target, we have revealed the mechanism of part of

the pleiotropic virulence defect of the Dhfq strain.

In an analogous situation, 87% of the flagellar genes were

down-regulated in the Dhfq mutant, yet Hfq primarily bound to

the fhlDC (class I genes), flgMN, flgKL, fliAZ, fliD, fliI and fliP

mRNAs (class II genes) and fliC mRNA (class III gene; Tables S1,

S4 and Figure S4). fhlDC encodes the key transcription factor of

the flagellar gene cascade, and we predicted that loss of this

mRNA would account for much of the flagellar defect of Dhfq,

which is associated with strongly reduced levels of the major

flagellin, FliC (Figure 9B). Ectopic expression of flhDC restored the

levels of FliC to almost wild-type levels in the Dhfq strain carrying

the pBAD-flhDC plasmid (Figure 9B). We note, however, that the

previously reported non-motile phenotype of Dhfq on swim agar

plates [32] was not rescued by flhDC overexpression (data not

shown), presumably because the FlhD2C2-independent chemo-

taxis genes required for full motility are also down-regulated in the

absence of Hfq (Table 1).

Discussion

To understand how bacterial RNA binding proteins such as Hfq

mediate the control of global gene expression at the post-

transcriptional level, direct targets need to be identified. The first

approach that was used to do this in a global fashion involved

detection of RNA co-immunoprecipitated with Hfq-specific

antibodies on high-density oligonucleotide microarrays, and

identified new E. coli sRNAs and interesting properties of Hfq

[17]. Similarly, microarray-based detection following co-immuno-

precipitation of eukaryotic mRNA–protein complexes (mRNPs)

identified endogenous organization patterns of mRNAs and

cellular proteins [68]. Epitope-tagging of the yeast La homolog

was successfully used for global coIP analysis [69]. However, the

requirement for custom high-density microarrays and/or species-

specific antibodies has impeded similar studies in other organisms.

It is now apparent that the ideal sRNA discovery approach would

not only detect sRNAs, but would also define their exact sequence.

Given the typical genome size of model bacteria (,5 Mb), a high-

density oligonucleotide microarray with ,10 million oligonucle-

otide probes would be required to achieve single basepair

resolution. Such arrays do not exist for any organism, and even

today’s high-density arrays (with 0.5 million features) come with

extraordinarily high set-up and printing costs, and are available for

very few bacteria. Our strategy remedies these technical and

financial limitations.

The identification of Hfq-associated RNAs in Salmonella is based

upon a powerful chromosomal epitope-tagging approach [70],

followed by coIP with a commercially-available antibody, and

sequencing of hundreds of thousands cDNAs. The earlier shotgun-

cloning studies in bacteria [50,54,71] and many other organisms

(reviewed in [72,73]) were limited by costly Sanger-type

sequencing of individual cDNA inserts from plasmid vectors.

The deep sequencing approach described here avoids a cloning

step, and is able to detect small RNAs with unparalleled sensitivity

by defining the 59 and 39 ends of transcripts at basepair resolution.

Deep sequencing of cDNAs has identified the small RNA

component of eukaryotic transcriptomes (e.g., [74,75]), and new

classes of noncoding RNAs associated with eukaryotic RNA-

binding proteins [76,77]. These studies primarily focussed on the

class of 20–30 nucleotide long microRNAs and siRNAs, and

typically included size-fractionation steps. Bacterial riboregulators

are considerably larger (80-250 nucleotides), and we show that

even without prior size fractionation, deep sequencing can capture

and define the termini of these large sRNAs.

Our analysis extends the tally of confidently identified sRNAs to

64 in the model pathogen, S. Typhimurium (Table 2). Thirty eight

of these are conserved sRNAs that were initially identified in E.

coli, but only a few of their homologues have previously been

shown to be expressed in other enteric bacteria

[58,59,60,61,62,63,78,79]. A recent study of the widely conserved

DsrA and RprA sRNAs [80] failed to validate their expression

and/or function in Salmonella [81]. Our observation of 149 (DsrA)

and 286 (RprA) cDNAs in the Hfq coIP libraries (versus 6/37 in

the control library), unequivocally confirmed that these important

stress response regulators are both expressed and Hfq-associated.

The finding, from this and other studies, that highly-conserved

sRNAs are commonly expressed at the transcriptional level should

prove useful to researchers working in other bacterial systems.

A significant number of the Hfq-associated cDNAs correspond

to sRNA loci that are absent from E. coli ([46,55] and Table 2). Of

Figure 5. Visualization of the clone distribution of exemplar Hfq dependent and independent sRNAs in Salmonella. Clone distribution
for sequences mapped to InvR, SroB, SraH, or 6S sRNAs (red: Hfq coIP, black: control coIP). The vertical axis indicates the number of cDNA sequences
that were obtained. A bent arrow indicates each sRNA promoter, a circled ‘‘T’’ its transcriptional terminator.
doi:10.1371/journal.pgen.1000163.g005
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these, invR exemplifies a sRNA gene that was likely horizontally

acquired with the SPI-1 virulence region, early in Salmonella

evolution [46]. Intriguingly, InvR is the most frequently recovered

sRNA (.3,000 cDNAs in the Hfq coIP library), which shows that

our approach is not only effective for detecting conserved, but also

species-specific sRNAs of recently acquired pathogenicity regions.

Horizontal transfer of virulence islands is a driving force in the

evolution of bacterial pathogens [82], and knowledge of the

functional elements of these islands is key to understanding

pathogenesis. Whereas ORF identification in such islands has

become routine, island-specific sRNAs are more difficult to

recognize by bioinformatic-based approaches.

Besides confirming InvR, the present study found evidence for

the expression of five of the 47 Salmonella sRNA candidate loci

listed by Pfeiffer et al. [46], who predicted orphan promoter/

terminator pairs in IGRs (Table S3 and Figure 2). One of these,

i.e. STnc250, has turned out as a small mRNA gene (see above).

While this study was in progress, others reported the discovery of

18 Salmonella expressed sRNA loci [55]. We recovered cDNAs of 8

of these sRNAs (isrB-1, C, E, I-L, and P; Table 2). The fact that 10

of these sRNAs were not recovered probably reflects their low-

level expression under the growth condition used here [55]. This

observation suggests an improvement that could be made to our

method. RNomics- or microarray-based sRNA discovery methods

require sRNAs to be expressed under the chosen assay condition,

unlike bioinformatics-aided approaches that score for orphan

transcription signals and primary sequence conservation

[49,51,83,84] or for conservation of RNA structure [53]. Thus,

future studies combining several different growth conditions with

increasing sequencing depth are likely to identify even more novel

sRNAs.

Regarding the sensitivity of our approach, it is remarkable that

RyeB sRNA was found in 653 Hfq cDNAs and 24 Control cDNAs

(Table 2); RyeB is late stationary phase-specific [49,50], and barely

detectable by probing of Salmonella RNA from the coIP assay

condition by Northern blot (unpublished results). Moreover, the 24

cDNAs recovered from the control library, i.e. without Hfq coIP,

suggest the exciting possibility that deep sequencing of total RNA,

without prior enrichment or size-fractionation, will prove to be a

successful approach for sRNA discovery. Like any other global

method for RNA identification [85,86], our approach is likely to

show certain biases, e.g., caused by cross-hybridization in the

immunoprecipitation step, or from the limited ability of reverse

transcriptase to deal with stable RNA structures in cDNA

synthesis, and these will need to be studied in more detail.

However, it is clear that deep sequencing resolved the termini of

many expressed and/or Hfq-bound sRNAs at basepair resolution

(Figure 5), which has not been achieved by other methods.

The combination of HTPS of co-immunoprecipitated sRNAs

and mRNAs with transcriptomics partly explains how Hfq acts as

a pleiotropic regulator of Salmonella gene expression. Transcrip-

tome analysis under two different growth conditions suggests that

Hfq regulates the expression of nearly a fifth of all Salmonella genes.

This proportion of Hfq-dependent genes is similar to Pseudomonas

aeruginosa (,15% of all genes; [87]), but bigger than for E. coli

(6.3%; [42]), or Vibrio cholerae (5.6%; [30]). However, the different

growth conditions and scoring parameters used for these other

organisms preclude a direct comparison with our Salmonella data.

Nonetheless, the strong impact of Hfq on the sS and sE stress

regulons that we observed is consistent with the findings in E. coli

[42] and in part in V. cholerae (sE; [30]), and expands the previous

work on Salmonella sS and sE regulated genes

Figure 6. Expression of 10 new Salmonella sRNAs over growth. Total RNA was isolated from Salmonella at seven different growth stages and/
or conditions and subjected to Northern blot analysis. (A) Blots showing the detection of stable transcripts for seven new sRNAs. The lanes refer to
the following samples (from left to right): aerobic growth of the wild-type strain in L-broth to an OD600 of 0.5, 1 or 2; growth continued after the
culture reached OD600 of 2 for 2 or 6 hours, respectively; SPI-1 inducing condition; SPI-2 inducing condition. (B) Northern blots of three sRNAs
encoded in close proximity (STnc290, STnc440) or antisense (STnc490) to IS200 elements. A schematic presentation of the position of the sRNAs
according to the IS200 element is shown to the right. The upper drawing indicates the two stem-loop structures, start codon, and stop codon of the
transposase-encoding mRNA of the IS200 elements. The three detected sRNAs are indicated by black arrows. Growth conditions as Panel A. (C) RNA
abundance of selected new sRNAs in wild-type (+) versus hfq mutant (2) Salmonella cells at ESP (OD600 of 2). The enrichment factor of each of these
sRNAs in the coIP experiment is given below the blots for comparison.
doi:10.1371/journal.pgen.1000163.g006

Figure 7. Comparison of Hfq and Control coIP cDNA distribu-
tions at the ompD and ompA loci. Extract of the screenshot of the
Integrated Genome Browser, showing the mapped Hfq and Control
cDNAs, and the enrichment curve (ratio of reads of Hfq coIP over
control coIP) for (A) the ompD and (B) ompA transcripts. Shown are
(from top to bottom) the annotations for the ‘‘+’’ strand (blue), the
enrichment curve (grey), the cDNA distributions on the ‘‘+’’ strand for
the Hfq coIP (red) and the control coIP (black), the genome coordinates,
and the annotations for the ‘‘–’’ strand (blue). In panel A, the annotation
of the ompD coding region and the flanking genes, yddG and STM1573,
are indicated. For ompA, the CDS, -10 and -35 boxes, as well as the
ribosome binding site (RBS) and a CRP binding site are indicated by
black arrows.
doi:10.1371/journal.pgen.1000163.g007
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[34,43,44,88,89,90,91] to a global level. Importantly, our

combined transcriptomic and coIP data revealed that Hfq exerts

a direct role in gene expression through the control of specific

check-points in other well-defined transcriptional regulons, such as

HilD in the SPI-1 virulence regulon, and FlhD2C2 in the flagellar

gene expression cascade.

Transcriptomic profiling by itself is clearly unable to differen-

tiate between transcriptional and post-transcriptional effects of

Hfq. In contrast, enrichment of a regulated mRNA in the Hfq

library has successfully hinted at post-transcriptional regulation by

sRNAs. For example, the observation of OmpX overproduction in

Salmonella Dhfq, combined with ompX mRNA enrichment by Hfq

coIP in E. coli [17], led to the prediction that OmpX synthesis is

repressed by an Hfq-dependent antisense sRNA; this sRNA was

subsequently identified as CyaR in Salmonella [63]. Tables 2 and 3

confirm that both ompX mRNA and CyaR strongly associate with

Salmonella Hfq (22.8-fold and 21.2-fold enrichment, respectively).

Our current data set comprises several hundred such candidate

mRNAs (Table S4); this catalogue contains many experimentally

confirmed targets of Salmonella sRNAs, e.g., the dppA, fadL, ompD,

or oppA mRNAs [34,46,58,59]. Integrating the score for Hfq-

association deduced from our experiments, and–where applicable–

from the available E. coli data [17] into available algorithms such

as TargetRNA [92] could significantly improve target predictions

for the large class of Hfq-dependent sRNAs.

Such predictions bring new understanding to the pleiotropic

phenotypes caused by the absence of Hfq in Salmonella [32]. The

fact that the Salmonella hfq mutant is attenuated for virulence can

Figure 8. Distribution patterns of cDNAs of Hfq-associated mRNA species and confirmation of binding to Hfq. (A) Different mRNAs are
shown with marked open reading frame, promoter and terminator (where known). Start and stop codons are indicated. The clone distribution is
represented by a stairstep diagram of fold enrichment in Hfq coIP vs control coIP per nucleotide below each mRNA. The vertical axis indicates the
enrichment factor in the Hfq coIP calculated over the control coIP. ORF length is given for each gene, for the overlapping ORFs of flhDC, or for the
intergenic region in the case of glmUS mRNA. Numbers in parentheses below each gene name denote number of cDNA sequences obtained from
Hfq coIP. Promoters and terminators are indicated as above. (B) The binding of Hfq to four mRNA fragments was confirmed by gel mobility shift
assay. 32P-labeled RNA fragments of dppA, glmUS, flhD, or hilD, respectively, were incubated with increasing amounts of Hfq protein (concentrations
of the hexamer are given in nM above the lanes). The lollipops on the left of the gel panels show the position of the unshifted mRNA fragment.
Following 10 minutes incubation at 37uC, samples were resolved on native 6% polyacrylamide gels, autoradiographs of which are shown.
doi:10.1371/journal.pgen.1000163.g008
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now be explained by the requirement of Hfq for the expression of

all but one key pathogenicity islands of Salmonella (SPI-3). In the

SPI-1 invasion gene island, HilD acts at the top of a transcription

factor cascade to activate SPI-1 genes, and to mediate secretion of

effector proteins by the SPI-1 type III secretion system (reviewed

in [67,93]). The levels of hilD mRNA were sevenfold reduced in

Dhfq, but the unchanged activity of a hilD promoter fusion in this

background (unpublished data) argues against direct transcrip-

tional control by Hfq. Rather, the 7.5-fold enrichment of hilD

cDNAs by Hfq coIP (Table S4) suggests that hilD is post-

transcriptionally activated in a Hfq-dependent process, presum-

ably involving an unknown sRNA. Our demonstration that SPI-1

virulence factor secretion is fully restored by HilD overproduction

in Dhfq raises the exciting possibility that post-transcriptional hilD

activation could be key event in Salmonella invasion of epithelial

cells.

We expect Hfq to have further roles in SPI-1 expression since

the protein seems to bind to many mRNAs encoded by this

pathogenicity island (Figures 4 and S4). Interestingly, SPI-1 has a

significantly higher AT content than the rest of the S.

Typhimurium chromosome [40], predicting that SPI-1 mRNAs

are AU-rich. Coincidently, Hfq primarily recognizes AU-rich

single-stranded regions in RNAs [12,94,95,96]. This type of

sequence is also recognized by the major endoribonuclease, RNase

E, and Hfq has been shown to protect certain RNAs by

competitive binding to RNase E sites [97,98]. It is tempting to

speculate that Hfq could reduce the impact of DNA from foreign

sources by controlling expression of newly acquired AT-rich genes

at the RNA level, similar to the role of the H-NS DNA-binding

protein in controlling such genes at the DNA level [99,100,101].

Collectively, the present study provides the first picture of the

impact of Hfq on Salmonella gene expression at both the

transcriptional and post-transcriptional level. We believe that

more detailed inspection of this freely available data set, in

particular of the remaining ,60% of the chromosome that

remains to be fully analyzed, as well as sampling under different

growth conditions, will expand the gamut of Salmonella small

mRNA and noncoding RNA genes. In addition, the available data

sets should help to discover whether Hfq controls the expression of

cis-antisense sRNAs that overlap with mRNA coding regions [54],

or whether certain Salmonella tRNAs are selectively associated with

this protein [22,23].

Bacterial genomes encode a large number of RNA binding

proteins [102], including globally acting proteins such as the

CsrA/RsmA [48] and Csp families [103]. Our generic method will

identify the RNA targets of these proteins in any genetically

tractable bacterium.

Materials and Methods

Bacterial Strains, Plasmids, and Oligodeoxynucleotides
The Salmonella enterica serovar Typhimurium strains used in this

study were: JVS-0255 (Dhfq::CmR, [32]), JVS-1338 (hfqFLAG, [46]),

and the isogenic wild-type strain SL1344 [104]. Plasmid pKP8-35

[59] served as a pBAD control plasmid. The SPI-1 transcription

factor, HilA, was expressed from pCH-112 [105], and HilD from

plasmid pAS-0045 (which carries a hilD PCR fragment obtained

with primer pair JVO-686/-687 amplified from Salmonella DNA,

inserted into plasmid pLS-119 [106] by NcoI/EcoRI cloning). The

FlhDC expression plasmid, pAS-0081, was constructed by

inserting a PCR fragment obtained with primers JVS-2152/-

2153 into plasmid pBAD/Myc-His A (Invitrogen) by NcoI/XhoI

cloning. All cloning procedures where carried out in E. coli strain

Top10 (Invitrogen). Table S6 lists the sequences of oligodeox-

ynucleotides used in this study for cloning and T7 transcript

generation.

Bacterial Growth and L-arabinose Induction
Growth in Lennox (L) broth (220 rpm, 37uC) or on L-plates at

37uC was used throughout this study. Antibiotics (where

appropriate) were used at the following concentrations: 50 mg/

ml ampicillin, 30 mg/ml chloramphenicol. For early stationary

phase (ESP) cultures, 30 ml L-broth in 100 ml flasks were

inoculated 1/100 from overnight cultures and incubated at

Figure 9. Rescue of complex Dhfq phenotypes by overexpression of identified Hfq target mRNAs. SDS-PAGE analysis (12% gels stained
with Coomassie) of (A) secreted proteins upon overexpression of the SPI-1 transcription factors, HilA and HilD from pCH-112 and pAS-0045 (lanes 3
and 4) in Salmonella Dhfq. Lanes 1 and 2 show the secreted protein profile of Salmonella wild-type and Dhfq bacteria carrying a control vector, pKP8-
35. (B) Whole cell and secreted proteins upon overexpression of the flagellar transcription factor, FlhD2C2. The left hand three lanes show total protein
samples, and the right hand three lanes show secreted proteins. Genetic background and plasmids are indicated above the lanes; FlhDC was
expressed from plasmid pAS-0081. FliC was also analyzed on a Western blot using a specific antibody (lower panel). FliC protein levels are shown (in
%), in comparison to wild-type Salmonella, which was set to 100% for either the total protein or secreted protein lanes.
doi:10.1371/journal.pgen.1000163.g009
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Table 3. mRNAs represented by $100 cDNAs in the pyrosequencing data.

STM number Gene namea
Number of inserts in control
coIPb

Number of inserts in Hfq
coIPc Enrichmentd Producte

STM4261 254 1042 4.1 putative inner membrane protein

STM2665 yfiA 72 648 9.0 ribosome stabilization factor

STM1377 lpp 168 608 3.6 murein lipoprotein

STM4087 glpF 40 570 14.3 glycerol diffusion

STM1959 fliC 248 547 2.2 flagellar biosynthesis protein

STM2874 prgH 73 415 5.7 needle complex inner membrane protein

STM2267 ompC 63 385 6.1 outer membrane protein C precursor

STM2882 sipA 36 354 9.8 secreted effector protein

STM2885 sipB 126 335 2.7 translocation machinery component

STM4326 aspA 79 328 4.2 aspartate ammonia-lyase

STM2925 nlpD 30 300 10.0 lipoprotein

STM4086 glpK 115 278 2.4 glycerol kinase

STM2883 sipD 34 269 7.9 translocation machinery component

STM0739 sucD 14 261 18.6 succinyl-CoA synthetase alpha subunit

STM1572 ompD 76 246 3.2 putative outer membrane porin precursor

STM2898 invG 16 226 14.1 outer membrane secretin precursor

STM2879 sicP 6 224 37.3 secretion chaparone

STM2283 glpT 30 221 7.4 sn-glycerol-3-phosphate transport protein

STM1091 sopB 23 216 9.4 secreted effector protein

STM1732 ompW 28 206 7.4 outer membrane protein W precursor

STM0451 hupB 14 198 14.1 DNA-binding protein HU-beta

STM2871 prgK 46 198 4.3 needle complex inner membrane lipoprotein

STM2884 sipC 96 192 2.0 translocation machinery component

STM4406.S ytfK 6 191 31.8 putative cytoplasmic protein

STM2867 hilC 3 187 62.3 invasion regulatory protein

STM2869 orgB 8 182 22.8 needle complex export protein

STM2878 sptP 20 177 8.9 protein tyrosine phosphatase/GTPase
activating protein

STM2894 invC 14 175 12.5 type III secretion system ATPase

STM2875 hilD 23 174 7.6 invasion protein regulatory protein

STM2284 glpA 57 149 2.6 sn-glycerol-3-phosphate dehydrogenase
large subunit

STM3526 glpD 39 147 3.8 sn-glycerol-3-phosphate dehydrogenase

STM2886 sicA 23 146 6.3 secretion chaperone

STM3138 19 143 7.5 putative methyl-accepting chemotaxis
protein

STM2896 invA 19 142 7.5 needle complex export protein

STM0833 ompX 6 137 22.8 outer membrane protein X

STM2899 invF 18 129 7.2 invasion regulatory protein

STM2924 rpoS 19 129 6.8 RNA polymerase sigma factor

STM0629 cspE 9 125 13.9 cold shock protein E

STM2285 glpB 33 119 3.6 anaerobic glycerol-3-phosphate
dehydrogenase subunit B

STM0736 sucA 42 110 2.6 2-oxoglutarate dehydrogenase

STM2445 ucpA 5 105 21.0 short chain dehydrogenase

STM1070 ompA 77 102 1.3 putative hydrogenase membrane
component precurosr

aGene names according to ColiBase (Chaudhuri et al., 2004)
bBased on 145,873 sequences
cBased on 122,326 sequences
dEnrichment factor calculated by the number of blastable reads from Hfq coIP over control coIP.
eProduct according to KEGG (http://www.genome.jp/kegg/; (Goto et al., 1997)).
doi:10.1371/journal.pgen.1000163.t003
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37uC, 220 rpm to an optical density of 2. For SPI-1 induced

cultures, 5 ml L-broth containing NaCl (final concentration

0.3 M) was inoculated from single colonies; incubation was carried

out for 12 hours at 37uC, 220 rpm in tightly closed 15 ml Falcon

tubes. For SPI-2 induced cultures, 70 ml SPI-2 medium [107] in

250 ml flasks were inoculated 1/100 from overnight cultures

grown in the same medium. Bacteria were grown at 37uC,

220 rpm until the culture reached an OD of 0.3. For HilA, HilD,

and FlhDC expression from pBAD-derived plasmids, growth

media were supplemented with 0.1% L-arabinose.

Transcriptomic Experiments
Strain SL1344 and JVS-0255 (Dhfq) were grown in L-broth

either to an OD600 of 2 (ESP aerobic growth), or for 12 hours

under SPI-1 inducing conditions. RNA extraction and data

generation were carried out as described with SALSA microarrays

[59]. The complete dataset is available at GEO under accession

number GSE8985.

SDS PAGE and Western Blot for Protein Quantification
Proteins were resolved by SDS PAGE (12% gels). For

Coomassie stain or Western analysis, proteins equivalent to 0.1

OD or 0.05 OD, respectively, were loaded per lane. For FliC

detection, strains SL1344 and JVS-0255 carrying the indicated

plasmids were grown to an OD of 1, and induced with L-

arabinose. Growth continued for one hour, and whole cell and

secreted protein fractions were analyzed as described in [32]. FliC

was detected using a monoclonal FliC antibody (BioLegend).

RNA Isolation and Northern Blot Analysis
RNA was prepared by hot phenol extraction [108], followed by

DNase I treatment. After separation on 5% polyacrylamide (PAA)

gels containing 8.3 M Urea, or agarose gels, respectively, RNA

was transferred onto Hybond-XL membrane (Amersham). 5 or

10 mg (PAA gels) or 20 mg (agarose gels) RNA was loaded per

sample. For detection of new transcripts c-ATP end-labeled

oligodeoxyribonucleotides were used (see Table S7).

Gel Mobility Shift Assay of In Vitro RNA
DNA templates carrying a T7 promoter sequence were

generated by PCR using genomic DNA and primers as listed in

Table S6. For dppA oligonucleotides JVO-1034/1035 (the

fragment covers the dppA region from positions 2163 to +73

relative to the start codon) were used. For the PCR of the

intergenic region of glmUS primer JVO-2471/2472 were used,

resulting in a product starting 38 nucleotides upstream of the glmU

stop codon and extending to nucleotide 113 in the intergenic

region. For flhD, oligonucleotides JVO-2284/-2285 were used, to

yield a fragment that covers flhD from position 259 to +38

relative to the start codon. The hilD fragment (oligonucleotides

JVO-2286/-2287) spans region +400 to +600 relative to the start

codon.

In vitro transcription was performed using the MEGAscript High

Yield Transcription Kit (Ambion, #1333), followed by DNase I

digestion (1 unit, 15 min, 37uC). Following extraction with

phenol:chloroform:isopropanol (25:24:1 v/v), the RNA was pre-

cipitated overnight at -20uC with 1 vol of isopropanol. RNA

integrity was checked on a denaturing polyacrylamide gel. RNA

was 59 end-labeled and purified as described in [59].

Gel mobility shift assays were carried out as described in [32].

In brief, labeled RNA was used in 10 ml reactions at a final

concentration of 4 nM. Hfq was added to a final concentration in

the range of 1.25 to 150 nM of the hexamer. After incubation for

10 min at 37uC complexes were separated on 6% native PAA gels

at 4uC. Signals were detected with a Fuji PhosphorImager.

coIP and Sequence Analysis
Strains SL1344 and JVS-1338 (hfqFLAG) were grown in L-broth

under normal aeration at 37uC to ESP. Co-immunoprecipitation

was carried out using the protocol published in [46]. For

pyrosequencing and coIP-on-Chip experiments, samples of two

independent pull down experiments were used. cDNA cloning and

pyrosequencing was performed as described for the identification

of eukaryotic microRNA [109] but omitting size-fractionation of

RNA prior to cDNA synthesis. Microarrays used for the coIP-on-

Chip experiments were designed and produced by Oxford Gene

Technology (Kidlington, UK). They consist of 21,939 60-mer

oligonucleotides tiled throughout the S. Typhimurium SL1344

NCTC13347 genome and 636 control oligonucleotides. The

SL1344 sequence was obtained from the Sanger Institute

(Hinxton, UK) website (http://www.sanger.ac.uk/Projects/Sal-

monella/). As this genome is not yet fully annotated, the

oligonucleotides were associated with corresponding S. Typhimur-

ium LT2 genes or intergenic regions, if conserved in both

organisms. Full description of the microarray and protocols used

for generating and analysing the data are associated with the

dataset deposited in the GEO data repository (http://www.ncbi.

nlm.nih.gov/geo/) under accession number GSE10149. For

detailed description of data analysis using the Integrated Genome

Browser see the Supplementary Text S1. In brief, cDNA reads

$18 nt were mapped to the Salmonella chromosome and hits per

nucleotide were calculated along the entire genome. To calculate

enrichment factors for Hfq coIP, the Hfq cDNA number was divided

by Control cDNA number at each position of the genome,

following normalization to the total number of mapped reads.

Upon upload of the Salmonella genome sequence and annotation

from Genbank (NC_003197.fna and NC_003197.gff), the two

graphs for each library were loaded into the Integrated Genome

Browser (IGB) of Affymetrix (version IGB-4.56), which can be

directly launched by Java Web Start at http://www.affymetrix.

com/support/developer/tools/download_igb.affx or downloaded

from http://genoviz.sourceforge.net/.

Supporting Information

Figure S1 Expression levels of RpoE and RpoS in wild-type and

Dhfq cells. Samples were taken from wild-type and Dhfq strains

grown under standard conditions to early stationary phase (OD600

of 2) or for 12 hours under SPI-1 inducing conditions, respectively.

(A) Analysis of mRNA level by real time PCR for rpoE, degP, and

rpoS mRNA. (B) Whole cell proteins were separated by 12% SDS

PAGE and sigma factors detected via Western blot. Expression

levels of each protein were determined by densitometry and are

given as a percentage of the wild-type level of expression below

each gel.

Found at: doi:10.1371/journal.pgen.1000163.s001 (0.29 MB TIF)

Figure S2 Northern detection of Hfq bound mRNAs. Total

RNA was isolated from Salmonella at OD600 of 2. Northern blots

based on agarose gel for detection of long transcripts showing the

detection of six mRNAs.

Found at: doi:10.1371/journal.pgen.1000163.s002 (1.29 MB TIF)

Figure S3 Expression levels of small peptide encoding mRNAs

in Salmonella. RNA samples were either taken from wild-type or hfq

mutant Salmonella at different growth stages (as in Figure 6 in the

main manuscript), and probed for STnc250 and STnc570 over

growth (A) or at early stationary phase (B).
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Found at: doi:10.1371/journal.pgen.1000163.s003 (0.99 MB TIF)

Figure S4 Hfq binds significantly to a few but not all mRNAs of

the SPI-1 and the flagellar regulon. Shown are all genes belonging

to the SPI-1 and the flagellar regulon. The level of Hfq-dependent

gene regulation is shown as fold-change below each gene (taken

from the transcriptomic dataset; Table S1). Representation of

cDNAs in pyrosequencing is indicated by different colours (green:

1–10 clones, turquoise: 11–100 clones, orange: 101–500 clones,

magenta: $501 clones).

Found at: doi:10.1371/journal.pgen.1000163.s004 (0.41 MB TIF)

Figure S5 Expression of IstR-1 and IstR-2 in Salmonella.

Northern analysis of istR transcripts. Total RNA was extracted

from of E. coli K12 and Salmonella Typhimurium SL1344 cells

grown to an OD600 of 2, exposed to Mitomycin C (0.5 mg/ml) for

30 min as described by [2]. Length is indicated according to

marker sizes in nt. Full-length IstR-1 and IstR-2 are indicated by

arrows.

Found at: doi:10.1371/journal.pgen.1000163.s005 (0.28 MB TIF)

Table S1 Deregulated genes in Dhfq at ESP.

Found at: doi:10.1371/journal.pgen.1000163.s006 (0.95 MB

DOC)

Table S2 Deregulated genes in Dhfq after 12 hrs SPI-inducing

conditions.

Found at: doi:10.1371/journal.pgen.1000163.s007 (0.21 MB

DOC)

Table S3 Coverage of known and candidate Salmonella sRNA

loci in pyrosequencing data.

Found at: doi:10.1371/journal.pgen.1000163.s008 (0.26 MB

DOC)

Table S4 mRNAs in Hfq CoIP identified by $10 of 170,000

inserts in pyrosequencing data.

Found at: doi:10.1371/journal.pgen.1000163.s009 (0.81 MB

DOC)

Table S5 Genes that were significantly enriched in coIP-on-

Chip and were identified by pyrosequencing.

Found at: doi:10.1371/journal.pgen.1000163.s010 (0.32 MB

DOC)

Table S6 Oligodeoxynucleotides used in this study.

Found at: doi:10.1371/journal.pgen.1000163.s011 (0.06 MB

DOC)

Table S7 Oligodeoxynucleotides used for Northern detection.

Found at: doi:10.1371/journal.pgen.1000163.s012 (0.05 MB

DOC)

Text S1 Supplementary material and methods.

Found at: doi:10.1371/journal.pgen.1000163.s013 (0.31 MB

DOC)
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