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Abstract

Background: MicroRNAs (miRNAs) are a new class of small, endogenous RNAs that play a regulatory role in the

cell by negatively affecting gene expression at the post-transcriptional level. miRNAs have been shown to control

numerous genes involved in various biological and metabolic processes. There have been extensive studies on

discovering miRNAs and analyzing their functions in model species, such as Arabidopsis and rice. Increasing

investigations have been performed on important agricultural crops including soybean, conifers, and Phaselous

vulgaris but no studies have been reported on discovering peanut miRNAs using a cloning strategy.

Results: In this study, we employed the next generation high through-put Solexa sequencing technology to clone

and identify both conserved and species-specific miRNAs in peanuts. Next generation high through-put Solexa

sequencing showed that peanuts have a complex small RNA population and the length of small RNAs varied, 24-

nt being the predominant length for a majority of the small RNAs. Combining the deep sequencing and

bioinformatics, we discovered 14 novel miRNA families as well as 75 conserved miRNAs in peanuts. All 14 novel

peanut miRNAs are considered to be species-specific because no homologs have been found in other plant

species except ahy-miRn1, which has a homolog in soybean. qRT-PCR analysis demonstrated that both conserved

and peanut-specific miRNAs are expressed in peanuts.

Conclusions: This study led to the discovery of 14 novel and 22 conserved miRNA families from peanut. These

results show that regulatory miRNAs exist in agronomically important peanuts and may play an important role in

peanut growth, development, and response to environmental stress.

Background

MicroRNAs (miRNAs), initially discovered in C. elegans

[1], are a large group of small endogenous RNAs [2-4]

that widely exist in animals [5], plants [6], and in some

viruses [7]. Increasing evidence demonstrates that miR-

NAs play an important function in many biological and

metabolic processes, including tissue identity, develop-

mental timing, and response to environmental stress

[8,9]. However, miRNAs do not directly control plant

growth and development. In contrast, miRNAs nega-

tively control gene expression by targeting protein cod-

ing gene mRNAs for cleavage or repressing protein

translation [2,3].

miRNAs are first transcribed from miRNA genes,

located mainly in the intergenic genomic region, by

RNA polymerase II [10-12]. There are also a small num-

ber of miRNA genes located inside the protein coding

genes. For these miRNAs, the transcription orientation

is the same as the protein coding gene, indicating that

they are transcribed together [2,13]. Following transcrip-

tion and several post-transcriptional modifications using

different enzymes (Dicer, Hen1, and other enzymes),

long primary miRNA transcripts (pri-RNAs) are pro-

cessed to generate miRNA precursors (pre-miRNAs)

and eventually mature miRNAs [14]. Although the

length of mature miRNA sequences varies from 16 to

29 nucleotides with an average of 22-nt, a majority of

mature miRNAs are 21 to 23-nt in length [15]. DCL1 is

a key enzyme in miRNA biogenesis and mutating this

gene results in globally decreased miRNA levels in

plants, ultimately resulting in pleiotropic defects [16,17].
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In addition, HEN1 and HYL1 also play important roles

in miRNA biogenesis in plants; mutating these two

genes results in severe defects during various develop-

mental stages of plant growth, including vegetation

maturity and proper formation of reproductive organs

[18-20].

miRNAs are involved in plant responses to the envir-

onment and several miRNAs are up-regulated or down-

regulated by abiotic stress, including high salinity,

drought, and low temperatures [21,22]. Furthermore, the

targets of several miRNAs are genes that play important

roles in stress tolerance, including the gene encoding

Cu/Zn SOD [23-25]. miR393 targets auxin receptor

genes, such as TIR1, AFB2, and AFB3, which lower

auxin signals and inhibit the pathogen P. syringae [26].

miRNAs are also induced by pathogens, which suggests

miRNAs are involved in plant-microorganism interac-

tions such as symbiosis events with legumes and rhizo-

bia bacteria [27,28]. Increasing evidence demonstrates

that miRNAs might provide a novel platform to better

understand plant development and resistance to biotic

as well as abiotic stresses.

Currently, 9539 mature miRNAs have been discovered

and deposited in the public available miRNA database

miRBase (Release 13.0, March 2009; http://microrna.san-

ger.ac.uk/sequences/index.shtml) [29]. These miRNAs

include 1763 miRNAs from 24 plant species. Although

numerous miRNAs have been identified in plants, a

majority of them were obtained from model species

such as Oryza sativa (377), Populus trichocarpa (234),

Physcomitrella patens (230), Arabidopsis thaliana (187),

and Vitis vinifera (140). This could be attributed to the

fact that the entire genomes of these organisms have

already been sequenced and are readily available. Even

so, few miRNAs have been reported in important agri-

cultural crops. Peanut is widely cultivated and is one of

the most important economic and oil crops in China,

the USA, and around the world. To date, no miRNA-

related research has been performed on peanuts.

There are two major methods used in identifying miR-

NAs: (1) a direct cloning method, using miRNA-

enriched libraries, combined with computational and

experimental verification [21,30-32] and (2) computa-

tional identification. Several investigations have shown

that some miRNAs are highly conserved throughout

evolution and can be found in mosses to higher flower-

ing plants [31,33,34] This suggests a powerful strategy

for identifying miRNAs using comparative genomics. By

performing Blastn searches, using already known miR-

NAs, against Genbank databases including genome sur-

vey sequences (GSS), high through-put genomic

sequences (HTGS), expressed sequence tags (ESTs), and

non-redundant (NR) nucleotides, hundreds of miRNAs

have been identified in plants. Currently, several

laboratories have adopted this method in order to iden-

tify miRNAs [34-41]. However, this method is limited

by the number of nucleotide sequences available in the

database. For peanut, the genome has not been comple-

tely sequenced and there are only a limited number of

peanut ESTs in the database. This does not make com-

putational prediction an effective choice for discovering

peanut miRNAs. In this study, we employed the next

generation high through-put sequencing technology to

sequence and identify peanut miRNAs. Based on our

study, we have identified 75 conserved miRNAs as well

as 14 novel miRNAs in peanuts. Quantitative real time

PCR (qRT-PCR) analysis shows that these miRNAs are

expressed in peanuts.

Results and Discussion

Peanut has a complex small RNA population

To date, 92,988 peanut ESTs, including 86,724 ESTs

from cultivated peanuts and 6,264 ESTs from wild-type

peanuts, have been deposited in the NCBI EST data-

base. These sequences are minor compared with the

2,800-Mb genome of the allotetraploid cultivated pea-

nut or even the genome of the diploid wild-type pea-

nut. Previous studies have demonstrated, using

computational approaches and EST analysis, that only

three conserved miRNAs exist in peanut [34,38,41].

With the limited amount of peanut ESTs in the EST

database, it is not possible to perform a comprehensive

study of peanut miRNAs using only a computational

analysis. Experimental cloning and subsequent func-

tional analysis, combined with computational predic-

tion, appears to be the most effective method to

identify peanut miRNAs.

Next generation high through-put sequencing, includ-

ing 454 and Solexa technologies, provides a powerful

tool for miRNA cloning. By using the high through-put

Solexa sequencing technology, a total of 6,009,541

sequences were obtained from a small RNA library,

which was constructed from the cultivated peanut vari-

ety Fenghua-1. After removing the low quality

sequences and adapter sequences, 4,994,631 sequences

were obtained with 3-30 nt in length, among which

4,598,005 sequences ranged from 18-30 nt in length.

After further removing tRNAs (437,117), rRNAs

(133,410), snRNAs (1,282), and snoRNAs (240), a total

of 4,025,956 small RNA sequences were obtained.

Although some small RNAs were very high in abun-

dance and present thousands of times in our dataset,

the majority of small RNAs were sequenced only a few

times. For example, 2,232,910 out of 4,598,005 small

RNAs were sequenced only one time in our experiment.

This result suggests that (1) the expression of different

small RNAs in peanut varies drastically and (2) the

small RNA survey in peanut is far from saturated. This
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also suggests that peanut contains a large and diverse

small RNA population.

In peanut, the size of the small RNAs was not evenly

distributed (Figure 1). Among these sequences, the

number of 24-nt sequences was significantly greater

than shorter or longer sequences (Figure 1) and

accounted for 45% of the total sequence number. This

result was consistent with that of Medigcago [42] and

rice [43], as well as Arabidopsis 454 sequencing results

[44]. In Arabidopsis, the 24-nt small RNAs accounted

for about 60% of its small RNA transcriptome [45].

However, the size distribution differs from wheat and

conifer sequences obtained through 454 high through-

put sequencing [43,46] and Chinese yew sequences

obtained through Solexa sequencing [47]. In conifer, the

fraction of 24-nt RNAs was very small (2.6%) due to the

lack of DCL3, the enzyme that matures 24-nt RNAs in

angiosperms [43,48]. In total, 620,060 sequences (13.5%)

with 21-nt, which is the typical length of plant mature

miRNAs, represented the second highest abundance of

sequences in the peanut library.

Identification of conserved peanut miRNAs

To identify conserved miRNAs in peanuts, all small

RNA sequences were Blastn searched against the cur-

rently known miRNAs in the miRNA database miRBase

(March 9, 2009). In total, 1,763 known miRNAs from

diverse plant species were utilized in order to identify

conserved peanut miRNAs from the small RNA dataset.

After Blastn searches and further sequence analysis, a

total of 75 conserved miRNAs were identified in peanuts

and these miRNAs belong to 22 miRNA families (Table

1). Of the 22 miRNA families, three miRNA families

(miR156/157, miR166, and miR167) were predicted

[34,38,41] using a comparative genomics-based strategy

[38]. The identified miRNA families have been shown to

be conserved in a variety of plant species. For example,

miR156/157, miR159/319, miR166, miR169, and miR394

have been found in 51, 45, 41, 40, and 40 plant species,

respectively [34,38,41]. In this study, we also tried to

identify the precursor sequences for the 75 conserved

peanut miRNAs. However, due to the fact that the pea-

nut genome has not been fully sequenced, the pre-miR-

NAs and their secondary structures were only identified

for nine miRNAs (Additional file 1).

Next generation high through-put sequencing provides

an alternative way to estimate expression profiles of pro-

tein coding genes and/or miRNA genes [44,46]. Millions

of peanut small RNA sequences, generated from Solexa

sequencing, allowed us to determine the abundance of

various miRNA families and even distinguish between

different members of a given family. Interestingly, pea-

nut miRNA families displayed significantly varied abun-

dance from each other. For example, ahy-miR157a, ahy-

miR168a, and ahy-miR156a were detected 95,381,

19,898, and 17,058 times respectively (Table 1). In com-

parison to other plant species, tae-miR169b in wheat

and osa-miR169 in rice were the most frequently

sequenced miRNAs while miR156 in rice and wheat

exhibited low abundance [46]. This suggests a species-

specific expression profile for miRNAs. miR156a was

also found to be highly expressed in another legume

species, Medicago [49]. In Arabidopsis, miR156a, located

on chromosome 2 [49], targets 10 mRNAs that code for

the squamosa promoter-binding protein (SBP) box,

Figure 1 Length distribution and abundance of the sequences.
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Table 1 Conserved miRNAs from peanut

miRNA
family

Name Sequence(5’-3’) Length
(nt)

Reference
miRNA

Conserved in other plants Reads

ath ptc vvi osa

156/157

ahy-MIR156a ugacagaagagagugagcac 20 ath-miR156a ++ ++ ++ ++ 17058

ahy-MIR156b ugacagaagagagugagcaca 21 bna-miR156a + + + + 255

ahy-MIR156c cugacagaagauagagagcac 21 smo-miR156b + + + + 43

ahy-MIR156e ugacagaggagagugagcac 20 vvi-miR156e + + ++ + 8

ahy-MIR156 g cgacagaagagagugagcac 20 ath-miR156 g ++ + + + 15

ahy-MIR156 h ugacagaagaaagagagcac 20 ath-miR156 h ++ + + + 4

ahy-MIR156k ugacagaagagagggagcac 20 ptc-miR156k + ++ ++ + 69

ahy-MIR156f uugacagaagaaagagagcac 21 smo-MIR156c + + + + 4

ahy-MIR157a uugacagaagauagagagcac 21 ath-miR157a ++ ++ ++ + 95381

ahy-MIR157d ugacagaagauagagagcac 20 ath-miR157d ++ + ++ + 3967

ahy-MIR157k ugacagaagagagcgagcac 20 zma-miR156k + + + + 67

159

ahy-MIR159a uuuggauugaagggagcucua 21 ath-miR159a ++ ++ ++ + 66

ahy-MIR159b uuuggauugaagggagcucuu 21 ath-miR159b ++ + + + 41

ahy-MIR319a uuggacugaagggagcucccu 21 ath-miR319a ++ + + + 12

ahy-MIR319b uuggacugaagggagcuccc 20 mtr-miR319 + ++ + + 5

160
ahy-MIR160a ugccuggcucccuguaugcca 21 ath-miR160a ++ ++ ++ ++ 41

ahy-MIR160b ugccuggcucccugaaugcca 21 osa-miR160f + ++ ++ ++ 4

162 ahy-MIR162a ucgauaaaccucugcauccag 21 ath-miR162a ++ ++ ++ ++ 94

164

ahy-MIR164a uggagaagcagggcacgugca 21 ath-miR164a ++ ++ ++ ++ 4116

ahy-MIR164d uggagaagcagggcacgugcu 21 osa-miR164d + + + ++ 88

ahy-MIR164c uggagaagcagggcacgugcg 21 ath-miR164c ++ + + + 4

ahy-MIR164d uggagaagcaggguacgugca 21 osa-miR164c + + + ++ 1

166

ahy-MIR165a ucggaccaggcuucauccccc 21 ath-miR165a ++ + + + 40

ahy-MIR166a ucggaccaggcuucauucccc 21 ath-miR166a ++ ++ ++ ++ 9577

ahy-MIR166d ucggaccaggcuucauuccccu 22 vvi-miR166d + + ++ + 9

ahy-MIR166 g ucggaccaggcuucauuccuc 21 osa-miR166 g + + ++ ++ 3647

ahy-MIR166 h ucggaccaggcuucauuccc 20 zma-miR166 h + + + + 8585

ahy-MIR166j ucggaucaggcuucauuccuc 21 osa-miR166j + + + ++ 8

ahy-MIR166 m ucggaccaggcuucauucccu 21 osa-miR166 m + + + ++ 35

ahy-MIR166n ucggaccaggcuucauuccuu 21 ptc-miR166n + ++ + + 13

ahy-MIR166e ucgaaccaggcuucauucccc 21 osa-MIR166e + + + ++ 3

ahy-MIR166k ucggaccaggcuucaaucccu 21 osa-miR166k + + + ++ 1

ahy-MIR166b ucggaccaggcuucauuccccc 22 vvi-miR166c + + ++ + 5

167

ahy-MIR167a ugaagcugccagcaugaucua 21 ath-miR167a ++ ++ ++ ++ 2572

ahy-MIR167b ugaagcugccagcaugaucuaa 22 bna-miR167a + + + + 34

ahy-MIR167c ugaagcugccagcaugaucuc 21 vvi-miR167c + + ++ + 15

ahy-MIR167d ugaagcugccagcaugaucugg 22 ath-miR167d + + + + 224

ahy-MIR167e ugaagcugccagcaugaucug 21 osa-miR167d + ++ ++ + 34

ahy-MIR167f ugaagcugccagcaugaucuu 21 ptc-miR167f + ++ + + 8767

168
ahy-MIR168a ucgcuuggugcaggucgggaa 21 ath-miR168a ++ ++ ++ + 19898

ahy-MIR168b ucgcuuggugcagaucgggac 21 osa-miR168a + + + ++ 86

169

ahy-MIR169b cagccaaggaugacuugccgg 21 ath-miR169b ++ ++ ++ ++ 66

ahy-MIR169e uagccaaggaugacuugccgg 21 osa-miR169e + + + ++ 1

ahy-MIR169a cagccaaggaugacuugccga 21 ath-miR169a ++ ++ ++ ++ 1

ahy-MIR169 m gagccaaggaugacuugccgg 21 vvi-miR169 m + + ++ + 1
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which is involved in leaf morphogenesis [50]. Similar to

miR156a, miR157a, which is located on chromosome 1

in Arabidopsis thaliana, was thought to target mRNAs

coding for proteins comprising the SBP box [49]. How-

ever, the mechanisms, causing the differential expression

profile of a same miRNA in different plant species, are

unknown. A majority of peanut miRNAs were only

sequenced less than 1,000 times, and some rare miRNAs

were detected less than 10 times. Compare with the

most abundant miRNA ahy-miR157a, their expression

level is about 9,500 times lower (Table 1). miRNAs of

moderate abundance included ahy-miR157d, ahy-

miR164a, ahy-miR166a, ahy-miR166 g, ahy-miR166a,

ahy-miR167f, and ahy-miR172a were detected 2,000-

10,000 times in the library. The relative abundance of

the 22 conserved peanut miRNA families is represented

in Figure 2.

Next generation high through-put sequencing technol-

ogy also provides a method for distinguishing and mea-

suring miRNA sequences with only a few nucleotide

changes. Based on the results from the Solexa sequen-

cing, different family members displayed drastically dif-

ferent expression levels. For example, the abundance of

miR156 family varied from 4 read (ahy-miR156f) to

17,058 reads (ahy-miR156a) in the deep sequencing.

This was also the case for some other miRNA families,

such as ahy-miR164 (from 1 read to 4,116 reads) and

ahy-miR166 (from 1 read to 9577 reads). The existence

of a dominant member in a miRNA family may suggest

that the regulatory role of this family was performed by

the dominant member at the developmental time when

the samples were collected for RNA extraction. Abun-

dance comparisons of different members in one miRNA

family, during various growth conditions or specific

Table 1: Conserved miRNAs from peanut (Continued)

171

ahy-MIR171b ugauugagccgugccaauauc 21 osa-miR171b + ++ + ++ 26

ahy-MIR171c agauugagccgcgccaauauc 21 ptc-miR171c + ++ + + 1

ahy-MIR171d ugauugagccgcgucaauauc 21 vvi-miR171b + + ++ + 5

ahy-MIR171f uugagccgcgccaauaucacu 21 vvi-miR171f + + ++ + 3

ahy-MIR171e uugagccgugccaauaucac 20 zma-miR171b + + + + 1

ahy-MIR171a uugagccgugccaauaucaca 21 zma-miR171f + + + + 4

172

ahy-MIR172a agaaucuugaugaugcugcau 21 ath-miR172a ++ ++ ++ ++ 2176

ahy-MIR172b agaaucuugaugaugcugca 20 zma-miR172a + + + + 81

ahy-MIR172c agaaucuugaugaugcugcag 21 ath-miR172c ++ + + + 58

ahy-MIR172e ggaaucuugaugaugcugcau 21 ath-miR172e ++ ++ + ++ 2

390 ahy-MIR390a aagcucaggagggauagcgcc 21 ath-miR390a ++ ++ ++ ++ 149

393

ahy-MIR393a uccaaagggaucgcauugaucc 22 ath-miR393a ++ + ++ + 2

ahy-MIR393b uccaaagggaucgcauugauc 21 osa-miR393 + ++ + ++ 6

ahy-MIR393c uccaaagggaucgcauugaucu 22 osa-miR393b + + + ++ 1

394 ahy-MIR394a uuggcauucuguccaccucc 20 ath-miR394a ++ ++ ++ ++ 8

396

ahy-MIR396a uuccacagcuuucuugaacug 21 ath-miR396a ++ ++ ++ ++ 221

ahy-MIR396b uuccacagcuuucuugaacuu 21 ath-miR396b ++ ++ + ++ 35

ahy-MIR396d uccacaggcuuucuugaacug 21 osa-miR396d + + + ++ 1

ahy-MIR396c uuccacagcuuucuugaacua 21 vvi-miR396a + + ++ + 5

ahy-MIR396e uuccacagcuuucuugaacu 20 vvi-miR396b + + ++ + 2

397

ahy-MIR397a ucauugagugcagcguugaug 21 ath-miR397a ++ ++ ++ ++ 344

ahy-MIR397c ucauugagugcagcguugaugu 22 bna-miR397a + + + + 5

ahy-MIR397b uuauugagugcagcguugaug 21 osa-miR397b + + + ++ 1

398 ahy-MIR398b uguguucucaggucgccccug 21 osa-miR398b + ++ ++ ++ 12

399 ahy-MIR399e ugccaaaggagauuugcccag 21 osa-miR399e + + + ++ 1

408
ahy-MIR408a augcacugccucuucccuggc 21 ath-miR408 ++ ++ ++ + 105

ahy-MIR408b ugcacugccucuucccuggcu 21 ppt-miR408b + + + + 5

528 ahy-MIR528 uggaaggggcaugcagaggag 21 osa-miR528 ++ 3

535 ahy-MIR535 ugacaacgagagagagcacgc 21 ppt-miR535a + + 1

894 ahy-MIR894 cguuucacgucggguucacc 20 ppt-miR894 2

The abbreviations represent: ath, Arabidopsis thaliana; ptc, Populus trichocarpa; vvi, Vitis vinifera; osa, Oryza sativa. The plus symbols indicate: ++, miRNA

sequences of peanut were exactly identical to those in other species; +, miRNA sequences of peanut were conserved in other species but have variations in

some nucleotide positions.
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developmental stages, may provide valuable information

on the role that miRNAs play in plant growth. Expres-

sion levels of two members of the ahy-miR159 family

(ahy-miR159a and ahy-miR159b) were similar and were

detected 66 and 41 times, respectively (Table 1).

Identification of novel peanut miRNAs

In addition to the identification of conserved miRNAs,

14 novel peanut miRNA families were also identified

(Table 2). Only one member was identified in each spe-

cies-specific miRNA family and the read number for

each novel miRNA was much lower than that for the

conserved miRNAs. This is consistent with previous

conclusions indicating that non-conserved miRNAs are

usually expressed at lower levels and with a tissue- or

developmental-specific pattern. Therefore, miRNAs

identified in this study might represent only a small por-

tion of novel miRNA families found in peanut due to

the fact that the small RNA library was constructed

from young peanut seedlings grown under normal con-

ditions. Precursors of these novel miRNAs were identi-

fied and formed proper secondary hairpin structures,

with free energies ranging from -26.91 kcal mol-1 to

-132 kcal mol-1 (average of -52.54 kcal mol-1) (Table 2,

Additional file 1). More importantly, the identification

of an anti-sense miRNA (miRNA*) from five novel

miRNA candidates provided more evidence to consider

them as novel miRNAs. To investigate the conservation

of these 14 novel miRNAs in a wide range of plant spe-

cies, we used these 14 miRNAs as query sequences to

perform Blastn searches against all nucleotide sequences

in NCBI databases. No homologs were found in any

plant species except miRn1, which has a homolog in the

soybean EST CD39249. This suggests that these newly

identified miRNAs are all peanut-specific miRNAs

except miRn1.

Besides these 14 identified novel candidate miRNAs,

we also discovered two small RNAs, with 701 and 159

reads in our small RNA dataset, which correspond to

Phaseolus vugaris legume-specific miRS1 and miR2118.

These two miRNAs were able to detected in peanut by

northern blot analysis [51]. Interestingly, the expression

of miR2118 has previously been shown to be induced in

Phaseolus vugaris by abiotic stress, especially drought

and ABA treatment [51]. We did not include these two

sequences in the list of novel peanut miRNAs because

we could not find their precursor sequences in the cur-

rent databases. In addition to miRS1 and miR2118, we

also found the third small RNA with 137 reads in our

dataset that had only one mismatch with Phaseolus

vugaris miR159.2. A fourth 21-nt small RNA with 729

reads was also identified in our dataset, which had 4

mismatches and one nucleotide missing to compare

with Phaseolus vugaris miR482*.

Based on the number of detection times and

sequences in the small RNA library, novel peanut miR-

NAs displayed lower expression levels compared to the

majority of conserved families. The low abundance of

novel miRNAs might suggest a specific role for these

miRNAs under various growth conditions, in specific

tissues, or during developmental stages. The library

Figure 2 Abundance of peanut-conserved miRNA families.
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enriched only small RNAs that play a role during early

seedling stages under normal growth conditions.

Whether these low-abundant miRNAs are expressed at

higher levels in other tissues and organs, such as flow-

ers, gynophores, pods, or seeds, or whether they are

regulated by biotic or abiotic stress, remains to be inves-

tigated. Future experiments would provide more insight

into the function of these miRNAs.

Validation of peanut miRNAs

Stem-loop qRT-PCR is a reliable method for detecting

and measuring the expression levels of miRNAs. The

stem-loop primers increase the sensitivity of the reac-

tions such that this method can significantly distinguish

two miRNAs with only one single nucleotide change

[52]. In this study, we adopted this technique to validate

and measure the expression of 4 novel miRNAs (miRn1,

miRn2 and miRn2*, miRn3, and miRn4) as well as 5

conserved miRNAs (miR156, miR157, miR162, miR172,

and miR396). All of these miRNAs were identified in

peanut by Solexa sequencing. The qRT-PCR results

demonstrate that all tested miRNAs, and one miRNA*,

are expressed in peanut leaves (Figure 3). However, the

expression levels of the different miRNAs varied.

The results of the qRT-PCR reaction show that con-

served miRNAs are expressed in peanut. Based on the

threshold cycle (CT), miR172 and miR156 were highly

expressed with CT values of 19.6 ± 3.5 and 20.5 ± 5.3,

respectively. In one of our previous studies, we also

found that miR172 is highly expressed in cotton leaves

[53]. Other studies have shown that conserved miR172

and miR156 play very important roles in plant growth

and development [41]. miR156 is involved in Arabidop-

sis leaf development by negatively regulating the Squa-

mosa-promoter binding protein (SBP) [38,42]. miR172

controls flower development by regulating the expres-

sion of apetala2 (ap2) in Arabidopsis [4,43] and glossy

15 in maize [44]. Aberrant expression of miR156 and

miR172 in plants disrupts normal leaf and flower devel-

opment. Compared with miR156 and miR172, the

expression levels of miR157 and miR162 are moderate

while the expression of miR396 is low. The expression

patterns of these miRNAs appear to be related to their

function.

Four novel miRNAs and one miRNA*, all identified by

Solexa sequencing, were validated by qRT-PCR. The

expression levels of the miRNAs differed from one

another in peanut leaves. miRn2 and miRn1 were

expressed much higher than other tested peanut-specific

miRNAs with a CT value of 21.2 ± 1.0 and 24.6 ± 3.2,

respectively. The expression levels are much lower for

miRn3 and miRn2* with CT values of 37.9 ± 1.8 and

33.1 ± 4.2. However, more studies need to be performed

to elucidate the function that these miRNAS have on

the growth and development of peanut.

Target prediction of peanut miRNAs

To better understand the functions of the newly identi-

fied species-specific as well as conserved peanut miR-

NAs, putative targets of these miRNAs were predicted

using the described criteria and methods. The target

genes of thirteen conserved and seven novel peanut

miRNA families were predicted. Transcription factors,

including GRAS family transcription factor, nuclear

Table 2 Novel miRNAs identified from peanut

Name Count miRNA sequence Folding energy

ahy-miRn1 656 UAGAGGGUCCCCAUGUUCUCA -65.9

ahy-miRn2 40 UCACCGUUAAUACAGAAUCCUU -70.57

ahy-miRn2* 3 AGGAUUCUGUAUUAACGGUGA -70.57

ahy-miRn3 15 AAUGUAGAAAAUGAACGGUAU -64.6

ahy-miRn4 12 UGCUGGGUGAUAUUGACAGAAG -48.72

ahy-miRn5 7 CUGACCACUGUGAUCCCGGAA -39.5

ahy-miRn6 6 UGACCUUUGGGGAUAUUCGUG -61.9

ahy-miRn7 5 UCAAUCAAUGACAGCAUUUCA -39.42

ahy-miRn8 4 UGGUGAUGGUGAAUAUCUUAUC -38.1

ahy-miRn8* 1 AAGGGAGACGUUUGAAUUAUC -38.1

ahy-miRn9 3 UGGUGAGUCGUAUACAUACUG -30.91

ahy-miRn10 3 AUACUUGAGAGCCGUUAGAUGA -52.8

ahy-miRn10* 1 AUCUAACGACUCUCAGAUAUAAU -52.8

ahy-miRn11 3 UUAUACCAUCUUGCGAGACUGA -49.7

ahy-miRn12 4 UGUUACUAUGGCAUCUGGUAA -40.2

ahy-miRn12* 1 GCCAGGGCCAUGAAUGCAGAU 40.2

ahy-miRn13 3 CGCAAAUGAUGACAAAUAGA -26.91

ahy-miRn14 11 UUAAUUUCUGAGUUUGUCAUC -32.57

ahy-miRn14* 1 UUGAUAAGAUAGAAAUUGUAU -32.57
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transcription factor Y subunit and NAC1 were predicted

to be potential targets of peanut miRNAs. Furthermore,

genes directly involved in protein synthesis, e.g., riboso-

mal protein S12, were targets of peanut miRNAs. A pre-

vious study indicates that auxin signaling is regulated by

miRNAs [18]; our current result is consistent with this

study and the auxin signaling F-box 3 is a potential tar-

get of peanut miR393. Resveratrol synthase, NAM (no

apical meristem)-like protein, growth regulator factor 5,

basic blue copper protein, endonuclease, a protein

kinase, transport inhibitor response 1 and a disease

resistance response protein were also predicted to be

potential targets of identified peanut miRNAs (Addi-

tional file 2).

Conclusion

For the first time we discovered, through high through-

put Solexa sequencing, 14 novel miRNA families and 75

Figure 3 qRT-PCR validation of the identified peanut miRNAs using high through-put sequencing technology. A. Amplification plot; B.

Threshold cycle. Error bars indicate one standard deviation of three different biological replicates (n = 3).
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conserved miRNAs, belonging to 22 families, in peanut.

Of these 14 novel peanut miRNAs, 13 are peanut-speci-

fic because no homologs have been found in other plant

species. qRT-PCR analysis demonstrated that both con-

served and peanut-specific miRNAs are expressed in

peanuts.

Methods

Plant materials

Peanuts (Arachis hypogaea L. cv. Fenghua-1) were

grown in a growth chamber, with a light intensity of

3000 lx, at a relative humidity of 75%, and 26/20°C day/

night temperatures. Leaves, stems, and roots from 14-

day-old seedlings were collected and immediately stored

in liquid nitrogen until total RNA extraction.

RNA extraction and miRNA cloning

Total RNA was isolated from leaves and roots using Tri-

zol agent (TaKaRa, Dalian, China), according to the

manufacturer’s instructions. Total RNA was isolated

from stems using a modified CTAB method with isopro-

panol instead of lithium chloride for RNA precipitation

[54]. Briefly, one gram of stem tissue was ground to a

fine powder using liquid nitrogen and mixed thoroughly

with 5 ml of pre-warmed (65°C) extraction buffer (2%

CTAB, 2% PVP, 0.1 M Tris-HCl, 2.0 M NaCl, 25 mM

EDTA, 2% beta-mercaptoethanol, pH 8.0). The mixture

was incubated at 65°C for 5 min and shaken three indi-

vidual times during the incubation period. After a brief

cooling of the mixture, 2.5 ml of chloroform and 2.5 ml

of isopropanol were added. The mixture was vortexed

for 1 min and then centrifuged at 12000 rpm for 15 min

at 4°C. After DNase treatment of the extract, RNA was

precipitated at room temperature (25°C) for 10 min

using an equal volume of isopropanol. The RNA was

resuspended in an equal volume of phenol:chloroform:

isopropanol (25:24:1), and then resuspended again with

an equal volume of chloroform:isopropanol (24:1). A

total of 1/10 volume of 3 M NaOAC (pH 5.2) and 2.5

volumes of cold ethanol were added to precipitate the

RNA overnight at -20°C.

To identify as many tissue- or developmental-specific

miRNAs as possible, we pooled the total RNAs from

leaf, stem, and root samples in an equal fraction ratio.

miRNA cloning was performed as described previously

by Sunkar and Zhu [21]. Briefly, 0.5 M NaCl and 10%

PEG8000 were used to precipitate and enrich RNAs

with low molecular weight. Next, a 15% polyacrylamide

denaturing gel was employed to separate the low-mole-

cular weight RNA. During gel electrophoresis, about 100

μg of total RNA was applied to the gel and two labeled

RNA oligonucleotides, approximately 18 and 26 nt in

length, were used as size standards. After gel electro-

phoresis, small RNAs with 18-26 nt were excised from

the gel and eluted with 0.4 M NaCl overnight at 4°C.

The RNA was dephosphorylated using alkaline phospha-

tase (New England Biolabs, Beijing China) and recovered

by ethanol precipitation. The isolated small RNAs were

then sequentially ligated to RNA/DNA chimeric oligo-

nucleotide adapters, reversely transcribed, and amplified

by PCR. Finally, Solexa sequencing technology was

employed to sequence the small RNAs from pooled pea-

nut samples (BGI, Beijing China).

Identification of conserved and peanut-specific miRNAs

The raw sequences were processed using PHRED and

CROSS MATCH programs as previously reported

[21,55]. After removing the vector sequences, trimmed

sequences longer than 17 nt were used for further ana-

lyses. First, rRNA, tRNA, snRNA, and snoRNA, as well

as those containing the polyA tail, were removed from

the small RNA sequences and the remaining sequences

were compared against rice and Arabidopsis ncRNAs

deposited in the NCBI Genbank database and Rfam8.0

database. Then, the unique small RNA sequences were

used to do a Blastn search against the miRNA database,

miRBase 13.0, in order to identify conserved miRNAs in

peanuts. Only perfectly matched sequences were consid-

ered to be conserved miRNAs. To study potential

miRNA precursor sequences, we used the identified pea-

nut mature miRNA sequences to do Blastn searches

against peanut ESTs in NCBI. Non-coding ESTs, which

met previously described criteria [56], were then consid-

ered to be miRNA precursors. Specifically, dominant,

mature sequences residing in the stem region of the

stem-loop structure and ranging between 20-22 nt with

a maximum free-folding energy of -25 kcal mol-1 were

considered. A maximum of six unpaired nucleotides

between the miRNA and miRNA* was allowed. The dis-

tance between the miRNA and miRNA* ranged between

5 and 240-nt. After removing the conserved miRNA

sequences, the rest of the small RNA sequences were

used to perform Blastn searches against peanut ESTs in

order to obtain precursor sequences for novel potential

miRNAs. The selected EST sequences were then folded

into a secondary structure using an RNA-folding

Table 3 qRT-PCR-validated miRNAs and their sequences

miRNA Sequence

miR 156 UGACAGAAGAGAGUGAGCAC

miR 157 UUGACAGAAGAUAGAGAGCAC

miR162 UCGAUAAACCUCUGCAUCCAG

miR172 AGAAUCUUGAUGAUGCUGCAU

miR396 UUCCACAGCUUUCUUGAACUG

miRn1 UAGAGGGUCCCCAUGUUCUCA

miRn2 UCACCGUUAAUACAGAAUCCUU

miRn2* AGGAUUCUGUAUUAACGGUGA

miRn3 AAUGUAGAAAAUGAACGGUAU

miRn4 UGCUGGGUGAUAUUGACAGAAG
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program mFold. If a perfect stem-loop structure was

formed, the small RNA sequence was sit at one arm of

the stem as well as other criteria were followed, this

small RNA was consisted as one novel peanut miRNA.

miRNA validation

Identified peanut miRNAs were validated using quanti-

tative real time PCR (qRT-PCR) using a well-developed

strategy. The Applied Biosystems TaqMan® microRNA

Assays (Foster City, CA) were employed to detect and

compare the expression levels of miRNAs in peanut

leaves. TaqMan-based real time quantification of peanut

miRNAs includes two important steps: a reverse tran-

scription reaction and a real time quantitative PCR reac-

tion [52]. In this study, 5 conserved miRNAs (miR156,

miR157, miR162, miR172, and miR396) and 4 peanut-

specific miRNAs (miRn1, miRn2 and miRn2*, miRn3,

and miRn4) were validated using qRT-PCR (Table 3).

The primer and probe sequences for the 5 conserved

miRNAs were purchased from Applied Biosystems and

the sequences of the primers for the 4 peanut-specific

miRNAs were obtained from Invitrogen. In the reverse

transcription reaction, mature miRNAs were reversely

transcribed into cDNAs using a miRNA-specific stem-

loop RT primer and a reverse transcriptase enzyme. In

the qRT-PCR reaction, the expression levels of the 5

conserved and 4 peanut-specific miRNAs were analyzed

using miRNA-specific primers (forward and reverse pri-

mers) [52].

The RT-PCR and qRT-PCR reactions, for validating

and detecting peanut miRNAs, were followed using the

same protocols as our previous report [37,53]. Briefly,

miRNA reverse transcription reactions were performed

in 200 μL PCR tubes, each containing a total of 20 μL

of reaction solution. Each reaction solution contained

1000 ng of total leaf RNAs, 3.33 U/μL MultiScribe

reverse transcriptase, 1× reverse transcription buffer,

0.25 mM each of dNTPs, and 0.25 U/μL RNase inhibi-

tor; sterilized RNase-free water was used to adjust the

total volume of the reverse transcription reaction to 20

μL. The miRNA reverse transcription reactions were

incubated in an Eppendorf Mastercycler (Eppendorf

North America, Westbury, NY). The RT-PCR tempera-

ture program was adjusted to run for 30 min at 16°C,

30 min at 42°C, 5 min at 85°C, and then 4°C until future

use. For each miRNA, three biological replicates were

performed. After reverse transcription, the products of

each reaction were diluted 10 times to avoid potential

primer interference in the following qRT-PCR reaction.

Quantitative real time PCR was performed using the

TaqMan® microRNA Assay kit (Foster City, CA) on an

Applied Biosystems 7300 Sequence Detection System

(Foster City, CA). Each reaction consisted of 3 μL of

product from the diluted reverse transcription reaction,

2 μL of 20× TaqMan MicroRNA Assay primers (forward

and reverse), 12.5 μL of 2× TaqMan Universal PCR

Master Mix, and 7.5 μL of nuclease-free water. The

reactions were incubated in a 96-well plate at 95°C for

10 min, followed by 45 cycles of 95°C for 15s and 60°C

for 60s. After the reactions were completed, the thresh-

old was manually set and the threshold cycle (CT) was

automatically recorded. The CT is defined as the frac-

tional cycle number at which the fluorescence signal

passes the fixed threshold [52]. All reactions were run in

two replicates for each sample.

Target gene prediction

The potential targets of peanut miRNAs were predicted

using the psRNATarget program http://bioinfo3.noble.

org/psRNATarget/ with default parameters. Newly iden-

tified peanut miRNA sequences were used as custom

miRNA sequences; Arachis transcript/genomic library

(EST, GSS, and nucleotide databases) were used as cus-

tom plant databases.

All predicted target genes were evaluated by scoring,

and the criteria used were as follows: each G:U wobble

pairing was assigned 0.5 points, each indel was assigned

2.0 points, and all other non-canonical Watson-Crick

pairings were assigned 1.0 points each. The total score

for an alignment was calculated based on 20 nt. When

the query was longer than 20 nt, scores for all possible

consecutive 20 nt subsequences were computed, and the

minimum score was considered the total score for the

query-subject alignment. Because targets complementary

to the miRNA 5’ end appear to be critical, mismatches

other than G:U wobbles at positions 2-7 at the 5’ end

were further penalized by 0.5 points in the final score

[57]. Sequences were considered to be miRNA targets if

the total score was less than 3.0 points.

Once potential target mRNA sequences were obtained,

redundant sequences were removed using the ‘contig

express’ feature of the Vector NTI program. Blastx was

performed using the target sequence and the NCBI

database to predict functions of potential targets.

Additional file 1: Secondary structures of conserved and novel

miRNAs in peanuts.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2229-10-3-

S1.RTF ]

Additional file 2: The putative target genes of identified miRNAs.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2229-10-3-

S2.DOC ]
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