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ARTICLE OPEN

Deep sequencing of circulating exosomal microRNA allows

non-invasive glioblastoma diagnosis
Saeideh Ebrahimkhani1,2, Fatemeh Vafaee 3, Susannah Hallal2, Heng Wei1, Maggie Yuk T. Lee1, Paul E. Young4,

Laveniya Satgunaseelan1,5, Heidi Beadnall6, Michael H. Barnett6, Brindha Shivalingam7,8, Catherine M. Suter4,9,

Michael E. Buckland1,2 and Kimberley L. Kaufman 1,10

Exosomes are nano-sized extracellular vesicles released by many cells that contain molecules characteristic of their cell of origin,

including microRNA. Exosomes released by glioblastoma cross the blood–brain barrier into the peripheral circulation and carry

molecular cargo distinct to that of “free-circulating” miRNA. In this pilot study, serum exosomal microRNAs were isolated from

glioblastoma (n= 12) patients and analyzed using unbiased deep sequencing. Results were compared to sera from age- and

gender-matched healthy controls and to grade II–III (n= 10) glioma patients. Significant differentially expressed microRNAs were

identified, and the predictive power of individual and subsets of microRNAs were tested using univariate and multivariate analyses.

Additional sera from glioblastoma patients (n= 4) and independent sets of healthy (n= 9) and non-glioma (n= 10) controls were

used to further test the specificity and predictive power of this unique exosomal microRNA signature. Twenty-six microRNAs were

differentially expressed in serum exosomes from glioblastoma patients relative to healthy controls. Random forest modeling and

data partitioning selected seven miRNAs (miR-182-5p, miR-328-3p, miR-339-5p, miR-340-5p, miR-485-3p, miR-486-5p, and miR-543)

as the most stable for classifying glioblastoma. Strikingly, within this model, six iterations of these miRNA classifiers could

distinguish glioblastoma patients from controls with perfect accuracy. The seven miRNA panel was able to correctly classify all

specimens in validation cohorts (n= 23). Also identified were 23 dysregulated miRNAs in IDHMUT gliomas, a partially overlapping

yet distinct signature of lower-grade glioma. Serum exosomal miRNA signatures can accurately diagnose glioblastoma

preoperatively. miRNA signatures identified are distinct from previously reported “free-circulating” miRNA studies in GBM patients

and appear to be superior.

npj Precision Oncology            (2018) 2:28 ; https://doi.org/10.1038/s41698-018-0071-0

INTRODUCTION

Malignant gliomas, particularly glioblastoma (GBM), represent the
most lethal primary brain tumors, owing in part to their highly
infiltrative growth patterns. The World Health Organization (WHO)
guidelines sub-categorize glioma by histopathologic evaluation
into tumor grades I–IV, where GBM (grade IV) is the most
aggressive and also the most common. Despite surgery, radiation,
and chemotherapy, essentially all GBM tumors recur, at which
point patients have reduced treatment options and worsening
prognoses. Compounding this aggressive cancer phenotype are
challenges in monitoring responses to treatment and tumor
progression. While recent revisions to the Response Assessment in
Neuro-Oncology criteria helps to standardize glioma tumor
monitoring,1 radiographic measurements can be unreliable and
insensitive to early signs of treatment failure and tumor relapse.
Moreover, there are still difficulties deciphering pseudo-
progression and pseudo-responses in some patients. Brain biopsy
and histologic analysis can provide definitive diagnoses and
evaluation of disease progression; however, serial biopsies are

impractical given the cumulative surgical risk, and biopsied tissue

may not reflect the heterogeneity of GBM tumors.
An important step toward the provision of personalized GBM

patient care is the ability to assess tumors in situ. As such, there is

a real need for biomarkers that can measure disease burden and

treatment responses in GBM patients in a safe, accurate, and

timely manner and preferably before changes become clinically

apparent. The recently popularized idea of “liquid biopsy” presents

an ideal approach to monitor GBM tumor load and evolution in

response to treatment. If developed and implemented alongside

new treatments, such tests would provide useful surrogate

endpoints and allow clinical trial protocols to be more dynamic

and adaptive.
Exosomes are nano-sized (30–100 nm) membrane-bound extra-

cellular vesicles released by all cells in both health and disease,

and there is growing interest in their use as non-invasive

biomarkers for disease diagnosis and monitoring of disease

recurrence.2 GBM-derived exosomes circulate in the peripheral

blood of patients and can contain diagnostic nucleic acid.3 We
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recently described GBM exosome protein signatures4,5 and also
showed that GBM exosomes contain abundant, selectively
packaged small non-coding RNAs (sncRNAs).6 Using unbiased
sncRNA deep sequencing, we identified several unusual and/or
completely novel sncRNAs within GBM exosomes in vitro as well
as an enrichment of microRNA (miRNA) implicated in oncogenesis,
including miR-23a, miR-30a, miR-221, and miR-451.6 Thus, while
GBM exosomal miRNA contents broadly reflect their cell of origin,
there is a unique profile of miRNAs within exosomes.
Some studies of exosomal miRNA in GBM patients have already

been reported; these studies utilized methods that focused on
predefined and relatively small groups of miRNA species. One
previous study found that miR-21 levels in cerebrospinal fluid
exosomes of GBM patients were upregulated ten-fold compared
to controls,7 while another reported that serum exosomal miR-
320, miR-547-3p, and RNU6-1 were significantly associated with
GBM diagnosis, as well as outcome (RNU6-1).8 However, to date no
comprehensive analysis of the entire miRNA repertoire of serum
exosomes in glioma patients has been performed. Here we have
used unbiased next-generation sequencing and an integrative
bioinformatics pipeline9 to assay the complete repertoire of
exosomal-associated miRNAs in the serum of patients with GBM,
lower-grade gliomas, and healthy controls. We describe a novel
miRNA signature within serum exosomes that is highly predictive
of preoperative GBM diagnosis. Furthermore, we show that this
approach has the potential for describing unique miRNA
signatures for distinct glioma entities.

RESULTS

Characterization of serum exosomes isolated prior to miRNA
sequencing

Serum exosomes were isolated by size exclusion chromatography.
The combined elution fractions 8–10 showed particle sizes with a
mean diameter 89.1 ± 2.5 nm and modal diameter of 81.7 ± 5.5 nm
(Fig. 1a). Transmission electron microscopy (TEM) confirmed the
presence of similarly sized particles with vesicular morphologies,
characteristic of exosomes (Fig. 1b). Mass spectrometric analysis
confidently identified 1167, 861, and 636 proteins in qEV elution
fractions 8, 9, and 10 from healthy serum, respectively (Supp.
Table 2). Overall, 87 of the top 100 proteins commonly identified
in exosomes were confidently sequenced across the three
fractions, including all top 10 exosomal proteins (Fig. 1c-1).
Primary sub-cellular localizations included significant enrichments
of “exosome” and “blood microparticle” related proteins across all
fractions, with minimal contamination from other compartments,
including the nucleolus (Fig. 1c-2) where certain miRNAs show
specific nuclear enrichment.10 Prior to RNA extraction, serums
were treated with RNaseA to remove circulating RNAs that may
confound measurements of exosomal RNAs.9 RNA extracted from
each sample yielded profiles typical for exosomes, showing an
absence of ribosomal RNA and enrichment of small ( <200 nt) RNA
species (Fig. 1d).

Differentially expressed exosomal miRNAs in GBM patient sera

Circulating exosomal miRNA profiles from patients with histo-
pathologically confirmed IDHWT GBM (n= 12) were compared to
age- and gender-matched healthy controls (n= 12; see Table 1 for
discovery cohorts and Table 2 for validation cases). We employed
three statistical approaches (Student’s t test, Fisher’s exact,
Wilcoxon rank sum) to identify a discovery set of differentially
expressed miRNA biomarkers. miRNA biomarkers were identified if
their differential expression met a fold change ≥2 in either
direction and unadjusted p values ≤0.05 in all statistical tests
applied. Using this approach, we identified 26 miRNAs significantly
dysregulated between healthy controls and GBM patients (Table 3;

Fig. 2a; normalized miRNA counts are available in Supp. Table 3
and differential expression analysis in Supp. Table 4A).

Functional analysis of dysregulated miRNAs in GBM

We explored biological and canonical pathways associated with
exosomal miRNAs changing in GBM patient sera relative to
healthy controls. The identities of 44 miRNAs (p value ≤ 0.05 in all
three tests; no fold change restriction) were uploaded into the
Ingenuity Pathway Analysis environment to analyze molecular
pathways overrepresented in their targets. The dysregulated
miRNAs target mRNAs that are significantly associated with
“cancer” (1.96E−06 < p -value < 1.52E−16) and “neurological
disease” (1.72E−06 < p -value < 8.76E−13) with around half of
targeted mRNAs implicated in GBM (p value= 3.36E−12) and
glioma signaling pathways (p value= 1.25E−09; Fig. 2b,
Suppl. Fig. 1).

Selection of signature miRNA classifiers for preoperative GBM
diagnosis

The predictive power of each miRNA was estimated using logistic
regression (LR) models, in which individual miRNA expression
profiles were used as predictors. Receiver operator characteristic
(ROC) curves were determined and area under the ROC curve
(AUROC) measures were ≥0.74 across the 26 dysregulated
miRNAs. The 95% confidence intervals (CIs) corresponding to
AUROC estimates did not contain the null hypothesis value
(AUROC= 0.5 for a random prediction), indicating that all 26
miRNAs are statistically accurate univariate diagnostic predictors
of GBM (Table 2; Supp. Fig. 2). In silico validation by leave-one-out
cross-validation (LOO-CV) correctly identified the test sample on
average 83% of the time (range 77–89%). We then used
partitioning (70% training and 30% test) and Random Forest
(RF) multivariate modeling to determine whether expression
patterns of a subset of differentially expressed miRNAs could
improve the predictive power. Using these methods, seven
miRNAs (miR-182-5p, miR-328-3p, miR-339-5p, miR-340-5p, miR-
485-3p, miR-486-5p, and miR-543) distinguished GBM patients
from healthy subjects in >75% of the random data partitions and
were selected as the most “stable” miRNA classifiers (Fig. 3a, b).
The RF model was repeated using all iterations of the seven most
stable miRNAs and achieved an overall predictive power of 91.7%
for classifying GBM patients from healthy controls (Fig. 3c). The
diagnostic efficiencies of all possible combinations of the seven
miRNAs were determined using AUROC measures along with the
corresponding 95% CIs (Fig. 3d; Supplementary Table 5). Strikingly,
six miRNA combinations were able to distinguish GBM patients
from healthy controls with perfect accuracy (Fig. 3e).
To assess the temporal stability of the GBM miRNA signature in

the same patients, we tested preoperative sera collected at a GBM
recurrence (GBM1 patient relapsed and required additional
surgery after 8 months) and from an earlier GBM lesion (excised
4.6 months before GBM12; Table 1B). Using the panel of seven
exosomal miRNAs, both GBM1-relapse and GBM12-prior were
classified as GBM, in line with diagnostic histopathology. We also
tested two independent samples, including a patient diagnosed
with IDHMUT GBM (GBM13) and a patient diagnosed with “high-
grade glioma” based on repeat magnetic resonance imagings and
overall survival of 8.1 months (GBM14; see Table 1B). Both GBM13
and GBM14 were classified as GBM using the miRNA panel.
To further test the specificity of the GBM miRNA signature, we

assessed its ability to distinguish GBM patients from additional
healthy subjects and non-glioma disease controls. The panel
accurately classified all additional healthy subjects (n= 9; Table
1B) as well as a patient with ganglioglioma WHO (2016) grade I, a
slow-growing, benign brain tumor with glioneuronal components
(GIC-1). Next, we assessed the impact of neuroinflammatory
disease processes on the specificity of our exosomal miRNA panel
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ability. The bioinformatics analysis above showed that dysregu-
lated miRNAs also target mRNAs significantly associated with
autoimmune rheumatoid arthritis and broadly with “neurological
disease” (Fig. 2b). Our GBM miRNA panel was used to discriminate
patients with the inflammatory autoimmune disease, multiple
sclerosis (MS). Sera were sampled from MS patients with active
gadolinium enhancing demyelinating lesions, either untreated or
receiving immunomodulatory therapies (n= 9; Table 1B). All MS
patients were classified as controls, indicating the robustness of
our exosomal miRNA signature for GBM identification.

miRNAs dysregulated in IDH-mutant grade II–III gliomas provide
additional markers for glioma severity and IDH mutational status

We then compared serum exosome miRNA profiles between
IDHMUT grade II-III glioma patients (n= 10; mean age= 42.7) and
matched healthy controls (n= 10; mean age= 42.9 years; see
Table 1B) and identified 23 differentially expressed miRNAs (fold
change ≥2; unadjusted p < 0.05 in all three tests; Supp. Table 4b).
Of these, 12 miRNAs were shared with the GBM analysis and
showed the same direction of change (Fig. 4a). AUROC curve
measures were ≥0.78 (average 0.88) across the 23 dysregulated
miRNAs, and LOO-CV correctly identified the test sample on
average 83% of the time (range 77–88%; Supp. Table 5a; Supp. Fig.
3a-b). RF modeling performed on partitioned data selected miR-
7d-3p, miR-98-5p, miR-106b-3p, miR-130b-5p, and miR-185-5p as
the most stable features for classifying grade II–III glioma patients
from healthy participants, with a predictive power of 75.0% (Fig.
4c-1; Supp. Fig. 3c). The most stable miRNAs for classifying GII-III
IDHMUT from healthy controls were distinct from GBM IDHWT

signature miRNAs (Fig. 4b-1, b-2).

The sncRNA data was further interrogated to ascertain whether
a subset of miRNAs showed potential for distinguishing glioma
disease severity or IDH mutational status. Direct comparisons
between GBM IDHWT and GII–III IDHMUT patients revealed 13
differentially expressed miRNAs (fold change ≥2; unadjusted p <
0.05 in all three tests; (Fig. 4c-1; Supp. Table 4c). AUROC curve
measurements were ≥0.78 (average 0.84) across the 13 dysregu-
lated miRNAs and LOO-CV correctly identified the test sample on
average 80% of the time (range 76–86%; Supp. Table 5b; Supp.
Fig. 4a-b). Numbers of significant miRNA were too few to perform
partitioning, so a single RF model was constructed from all 13
dysregulated miRNAs that showed an estimated predictive power
of 77.4% (Fig. 4c-2) Interestingly, three of the top four features that
discriminate GBM IDHWT from GII–III IDHMUT are members of the
GBM miRNA signature (i.e., miR-543, miR-485-3p, and miR-486-3p),
changing only in GBM patient sera relative to healthy participants
(indicated by asterisks in Fig. 4).

DISCUSSION

Using unbiased high-throughput next-generation sequencing and
an integrative bioinformatics pipeline,9 we have identified
differentially expressed serum exosomal miRNAs that discriminate
GBM patients from healthy controls. Machine-learning approaches
on miRNAs were used to examine their individual and shared
predictive abilities for a preoperative GBM diagnosis via a blood
test. Of the 26 differentially expressed miRNAs in GBM patients’
relative to healthy controls, we selected a stable signature panel of
seven miRNAs. Together, the expression levels of miR-182-5p, miR-
328-3p, miR-339-5p, miR-340-5p, miR-485-3p, miR-486-5p, and

Fig. 1 Characterization of serum exosomes isolated in fractions 8–10 by size exclusion chromatography prior to miRNA sequencing. a Size
distribution of particles as analyzed by nanoparticle tracking analysis. b Transmission electron microscopy allowed visualization of vesicles
with sizes ranging from 60 to 110 nm in diameter, scale bars= 500 nm (b-1, wide field) and 200 nm (b-2, close-up). c-1 Mass spectrometry-
based proteome analysis of size chromatographic elution fractions 8–10 identified all top 10 exosome marker proteins and c-2 showed
significant enrichment of proteins characteristic of exosomes and blood microparticles. Proteins identified in fractions 8–10 showed limited,
non-significant associations with compartments like the nucleolus, where certain miRNA species are concentrated. d Bioanalyzer trace of RNA
extracted from serum exosomes shows the main population of small RNA and no ribosomal RNA
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miR-543 predicted a preoperative GBM diagnosis with a 91.7%
accuracy. Within this multivariate model, a combination of just
four miRNAs (miR-182-5p, miR-328-3p miR-485-3p, miR-486-5p)
distinguished GBM patients from healthy controls with perfect
accuracy (100.0%).
There have been multiple studies examining “free-circulating”

miRNAs in glioma patients with varying success. A recent meta-
analysis of these studies found the specificity and sensitivity of
circulating miRNAs to be 0.87 and 0.86, respectively, while noting
the large heterogeneity of circulating miRNAs within the included

Table 3. Significant dysregulated miRNAs in serum exosomes from glioblastoma (GBM) patients (n= 12) relative to healthy controls (HC; n= 12)

miRNA CPM (GBM) CPM (HC) FC Exact test t test Wilcoxon Error rate AUROC 95% CI of AUROC

486-5p 25,291.6 8522.6 3.0 1.6E−07* 4.0E−04* 1.0E−04* 0.149 0.924 (0.823, 1)

182-5p 2090.5 850.6 2.5 5.7E−07* 3.0E−04* 2.0E−04* 0.151 0.917 (0.808, 1)

486-3p 277.4 114 2.4 5.0E−06* 0.002* 3.0E−04* 0.149 0.910 (0.791, 1)

378a-3p 2083.2 875.2 2.4 1.4E−06* 0.003* 4.0E−04* 0.158 0.903 (0.783, 1)

183-5p 645.8 267.9 2.4 2.0E−05* 0.001* 0.001* 0.176 0.882 (0.749, 1)

501-3p 359.6 157.3 2.3 1.1E−05* 0.002* 0.001* 0.161 0.875 (0.726, 1)

20b-5p 594.6 266.3 2.2 2.9E−06* 0.002* 1.0E−04* 0.133 0.938 (0.834, 1)

106b-3p 2703.2 1215 2.2 3.9E−06* 0.001* 0.001* 0.160 0.889 (0.752, 1)

629-5p 896.8 415 2.2 0.001* 0.047 0.04 0.235 0.743 (0.532, 0.954)

185-5p 23,250.5 11,424.1 2.0 4.3E−05* 0.007* 0.005* 0.207 0.833 (0.670, 0.997)

25-3p 21,838.8 10,949.9 2.0 0.001* 0.002* 0.006* 0.199 0.826 (0.662, 0.991)

21-5p 73,535.3 142,796.9 −2.0 2.7E−04* 4.2E−05* 5.0E−05* 0.133 0.944 (0.862, 1)

7a-3p 82.1 176.3 −2.0 0.003* 0.005* 0.010* 0.187 0.806 (0.611, 1)

381-3p 190.5 397.9 −2.0 0.009* 0.012 0.012 0.220 0.799 (0.620, 0.977)

409-3p 1146.9 2242.5 −2.0 0.019 0.029 0.024 0.233 0.771 (0.575, 0.967)

7d-3p 1050.5 1912.9 −2.0 0.005* 0.013 0.017 0.209 0.785 (0.574, 0.996)

323b-3p 117.3 288.3 −2.4 0.004* 0.010* 0.004* 0.199 0.840 (0.665, 1)

328-3p 382.5 922.5 −2.5 4.6E−06* 2.0E−04* 2.2E−05* 0.117 0.958 (0.889, 1)

339-5p 90.1 234.8 −2.5 1.2E−06* 2.0E−04* 3.3E−05* 0.109 0.951 (0.864, 1)

340-5p 1536 3848.1 −2.5 4.8E−06* 1.0E−04* 5.0E−05* 0.134 0.944 (0.858, 1)

126-5p 1222.3 2947 −2.5 5.6E−06* 0.002* 0.001* 0.150 0.896 (0.767, 1)

130b-5p 111.9 248.9 −2.5 0.007* 0.009* 0.024 0.203 0.771 (0.556, 0.986)

493-5p 210 514.4 −2.5 0.010* 0.015 0.028 0.221 0.764 (0.561, 0.967)

543 223.1 753.2 −3.3 2.5E−06* 3.0E−04* 2.0E−04* 0.143 0.917 (0.808, 1)

654-3p 110.2 342.5 −3.3 2.2E−04* 0.009* 0.006* 0.193 0.826 (0.642, 1)

485-3p 93.2 352.3 −3.3 5.8E−07* 1.0E−04* 3.3E−05* 0.123 0.951 (0.876, 1)

Error rates estimated by leave-one-out cross-validation. Significant Benjamini and Hochberg adjusted p values are indicated by asterisks

CPM miRNA counts per million, FC fold change, AUROC area under the receiver operating characteristic, CI confidence interval

Table 2. Additional patients and cohorts used for validation

Patient/cohort Age Gender Diagnosis Notesdysregulated miRNAs in serum exosomes

GBM1_relapse 46 M GBM IV Preoperative blood taken after recurrence of GBM1 (8-month relapse)

GBM12_prior 45 F GBM IV Preoperative blood taken before removal of earlier GBM lesion (GBM12;
4.6 months prior)

GBM13 33 M GBM IV Glioblastoma, IDHMUT, WHO (2016) grade IV

GBM14 56 M High-grade glioma No surgery/tissue pathology performed, diagnosis based on repeat MRIs. Overall
survival of 8.1 months

GI_C 24 F Ganglioglioma grade I GFAP+ in glial component/NeuN+ in neuronal component, IDH1WT, ATRX+, BRAF
(V600E)+++

HC (n= 9) 36.2 ± 10.3 5 F, 4 M Healthy controls —

MS_C (n= 9) 35.3 ± 10.4 5 M, 4 F Relapse-remitting multiple
sclerosis

All patients had active lesions, were untreated (n= 5) or receiving different
immunomodulatory therapies (n= 4)

For more detailed demographic, clinical, and histopathologic information, please refer to Supplementary Tables 2A-B. The mean age with standard deviation is

provided for each cohort

F female, GBM glioblastoma, GII–III glioma grade II–III, GI_C ganglioglioma grade I control case, HC healthy controls, M male, MS_C multiple sclerosis control

cohort

Table 1. Overview of cohorts used for discovery miRNA analyses

GBM,
IDHWT

GBM-matched
HC

GII–III,
IDHMUT

GII–III-
matched HC

Sample, n 12 12 10 10

Age (mean ±
SD)

63.3 ±
11.5

56.2 ± 12.4 42.9 ± 12.7 42.7 ± 10.2

Gender 7 M, 5 F 7 M, 5 F 6 M, 4 F 6 M, 4 F
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studies.11 The heterogeneity is likely due to differences in data
normalization used in quantitative reverse transcriptase–PCR

studies, with no universally accepted endogenous housekeeping
control.11 Interestingly, the majority of miRNAs identified in our
exosomal signature have not been previously identified in “free-

circulating” studies. This is consistent with the notion that

exosomes represent a distinct pathway of nucleic acid release
from cells and contain selectively packaged miRNA species.6 We

have previously shown the effects of RNAse pretreatment of
serum prior to exosome isolation, as performed in this study,
drastically alters the miRNA profiles identified, presumably due to

eradication of co-precipitated “free-circulating” miRNAs.9

Fig. 2 a Hierarchical clustering of 26 differentially expressed miRNAs shows clear separation of glioblastoma (GBM) patients and healthy
control (HC) exosomal profiles (fold change ≥2 or ≤0.5; unadjusted p values ≤0.05 in all three statistical tests). b Functional pathway analysis of
mRNAs targeted by 44 significantly changing miRNA (unadjusted p values ≤0.05 in all three statistical tests) in GBM circulating exosomes. Top
canonical pathways, diseases and disorders and molecular and cellular functions are listed with the numbers of overlapping molecules and
significance of associations (right-tailed Fisher exact test, p value)

Fig. 3 a miRNAs appearing in >75 of the 100 partitions (70% training set, 30% test set) were selected as the most stable miRNA classifiers by
Random Forest modeling (frequencies are specified in brackets). b Box-and-whisker plots and receiver operator characteristic curves with area
under the curve (AUROC) calculations demonstrate the individual discriminatory power of the seven most stable miRNA classifiers. c miRNAs
were ordered by the importance of their contribution to discriminating GBM from [healthy] controls; overall out-of-the-bag (OOB) error rate of
the seven features was 8.33%. d AUROC measures of all possible combinations of the seven miRNAs previously identified to be the most
stable predictors, stratified by the number of miRNAs (signature size) and their distributions, and displayed as violin plots. emiRNA signatures
that discriminate between GBM and healthy controls with perfect accuracy
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Moreover, normalization of deep sequencing data is not
dependent on comparison to a reference signal or housekeeping
gene, potentially reducing variability in data analysis.
Functional pathway analysis of mRNA species targeted by

exosomal miRNAs dysregulated in GBM patient sera showed
highly significant associations with specific GBM molecular path-
ways. This provides confidence that the miRNA biomarkers
resolved by our methods are relevant to this particular disease
setting. Previous studies have identified roles for all seven GBM
miRNA classifiers in various aspects of glioma and GBM biology.
miR-182, detected here in significantly higher levels in GBM sera,
was proposed as a marker of glioma progression, critical for
glioma tumorigenesis, tumor growth, and survival in vitro,12,13

with high miR-182 tissue expression observed in GBM14 and
associated with poor overall survival.15 Also in line with
observations here, the upregulation of miR-486 was shown to
promote glioma aggressiveness both in vitro and in vivo.16

Exosomal miRNAs identified with lower expression levels in GBM
patient sera are also substantiated by the literature. Functional
assays indicate tumor-suppressive roles of miR-328,17 miR-340,18,19

miRNA-485-5p,20 and miR-54321 with low levels observed in tumor
tissues relative to normal brain17,19–21 and low tissue expression
levels significantly associated with poor patient outcomes.17,19

While miR-339 (decreased levels in GBM patients here) was shown
to contribute to immune evasion of GBM cells by modulating T
cell responses,22 inhibitory roles for miR-339 were reported in
acute myeloid leukemia,23 hepatocellular carcinoma,24 gastric,25

colorectal,26 breast,27 and ovarian cancers.28

The GBM miRNA signature was able to accurately classify all
additional specimens in the validation sets (healthy, n= 9; non-
glioma, n= 10), including patients with gadolinium enhancing

active demyelinating lesions. Tumefactive demyelination is a well-
recognized mimic of GBM.29 The GBM signature also correctly
classified four additional GBM specimens, including two serial
collections from patients within the discovery cohort as well as
two independent patients. This pilot study utilized a relatively
small patient group, and further testing is needed to determine
whether the miRNA panel can reliably diagnose GBM in large,
independent patient cohorts. Moreover, the correlation between a
positive GBM classification and tumor burden needs to be
addressed. To this end, longitudinal studies should be pursued
to assess whether the GBM miRNA panel can detect time critical
GBM tumor recurrences.
There is more than one pathological route to a GBM; primary

and secondary GBMs are distinct entities with IDH mutations
considered a genetic signpost.30 The only patients where early
detection of a GBM tumor is likely are arguably those with diffuse
and anaplastic (grade II–III) gliomas who progress with a
secondary GBM recurrence (IDHMUT). Accordingly, the identifica-
tion of reliable and readily accessible circulating progression
markers is an important step toward precision medicine for
patients diagnosed with low-grade gliomas. While the GBM
miRNA signature was described in serum exosomes from IDHWT

GBM patients, it was also able to categorize a patient with IDHMUT

GBM (GBM13) from healthy participants. It is worth noting that
miRNA members of the GBM signature panel (specifically,
increased miR-182-5p, decreased miR339-5p and miR-340-5p)
were also identified in the IDHMUT GII–III comparative analysis.
Whether these miRNA changes are related to IDH mutational
status, glioma grade, or a combination of the two cannot be
delineated here. However, our multivariate modeling did identify
distinct panels of miRNAs for classifying GBM and glioma patients

Fig. 4 a A Venn diagram summarizes the differentially expressed miRNAs between IDHMUT glioma tumor grades II–III (GII–III; n= 10), IDHWT

glioblastoma (GBM; n= 12), and corresponding age- and gender-matched healthy controls (HC; fold change ≥2 or ≤0.5; unadjusted p values
≤0.05 in all three statistics tests, i.e., Exact, t test, and Wilcoxon), with 12 overlapping differentially expressed miRNAs. Decreased expression is
indicated in blue and increased expression in red. The most stable miRNAs for classifying b-1 GII-III IDHMUT and b-2 GBM IDHWT from HCs are
listed and show distinct features. c-1 Summary of differentially expressed miRNAs between the GBM IDHWT and GII-III IDHMUT cohorts and c-2
plot of “importance” of each individual miRNA for discriminating GBM from GII–III; out-of-the-bag (OOB) error rate is 22.73%. Three of the top
four features that distinguish GBM IDHWT from GII–III IDHMUT were only identified in the GBM vs HC comparative analysis, are members of the
GBM miRNA signature that together accurately classify GBMs from HCs, and may be specific markers for GBM (indicated by asterisks in a, b-2,
c-1, c-2)
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from their corresponding matched healthy control cohorts.
Moreover, three GBM signature panel miRNAs that were unique
to the GBM vs control comparative analysis (increased miR-486-5p
and decreased miR-485-3p and miR-543) were among the top four
features that distinguish GBM IDHWT from GII–III IDHMUT and
therefore might be specific for GBM IDHWT (indicated by asterisks
in Fig. 4). These encouraging results demonstrate the potential for
exosomal miRNA profiles to be used for glioma subtyping and
grading, including the determination of mutational states.
Expansion of these discovery analyses to include well-defined
cohorts of glioma subtypes with sufficient n will likely resolve
biomarkers of more nuanced specificity.
In summary, we have described a serum exosomal miRNA

signature that can accurately predict a GBM diagnosis, preopera-
tively. This pilot study demonstrates that exosomal-associated
miRNAs have exceptional utility as biomarkers in the glioma
disease setting. If these exosomal biomarkers are able to offer
non-invasive, early indications of tumor progression and/or
recurrence, they are likely to have significant clinical utility. These
exciting findings have significant potential to transform current
diagnostic paradigms, as well as provide distinct surrogate
endpoints for clinical trials. Assessment of serum exosomal
miRNAs in larger longitudinal cohorts of patients with GBM are
required to definitely determine their utility in clinical practice,
and these studies are currently underway.

METHODS

Participants

Serum (1mL) was accessed from the Neuropathology Tumor and Tissue
Bank at Royal Prince Alfred Hospital, New South Wales, Australia (Sydney
Local Health District HREC approval, X014-0126 & HREC/09RPAH/627).
Twenty-six serum specimens were collected preoperatively from patients
with histologically confirmed glioma tumors, including 16 with GBM, IDH-
wild-type (IDHWT) WHO (2016) grade IV and 10 patients with grade II–III
IDH-mutant (IDHMUT) gliomas (refer to Table 1; Supp. Table 1 for more
detailed information). Age- and gender-matched healthy control sera (n=
16) were used for discovery miRNA analyses. Sera from an additional 9
healthy controls and 10 non-glioma patients (including active MS, n= 9
and ganglioglioma, n= 1) were used to test the GBM miRNA signature.
This study was performed under RPAH, and USYD HREC approved
protocols (#X13-0264 and 2012/1684), and all participants provided
written informed consent. All methods were performed in accordance
with the relevant guidelines and regulations.

Exosome purification and characterization

Exosomes were isolated from serum as previously described.9 Briefly,
serum (1mL from each subject) was treated with RNase A (37 °C for 10min;
100 ng/mL; Qiagen, Australia) before exosome purification by size
exclusion chromatography (qEV iZONE Science). Ten fractions (500 μL)
were eluted in phosphate-buffered saline, as per the manufacturer’s
instructions. Fractions 8–10 were previously shown to contain purified
exosome populations9 and were collected and stored at −80 °C. Captured
exosomes were characterized in accordance with the criteria outlined by
the International Society for Extracellular Vesicles.31 Specifically, we
identified more than three exosome-enriched proteins by mass spectro-
metry (MS) proteome profiling and characterized vesicle heterogeneity
using two technologies, TEM, and nanoparticle tracking analysis (NTA).

Transmission electron microscopy. Combined qEV-captured fractions 8–10
were loaded onto carbon-coated, 200 mesh Cu formvar grids (#GSCU200C;
ProSciTech Pty Ltd, QLD, Australia), fixed (2.5% glutaraldehyde, 0.1 M
phosphate buffer, pH7.4), negatively stained with 2% uranyl acetate for
2 min, and dried overnight. Exosomes were visualized at ×40,000
magnification on a Philips CM10 Biofilter TEM (FEI Company, OR, USA)
equipped with an AMT camera system (Advanced Microscopy Techniques,
Corp., MA, USA) at an acceleration voltage of 80 kV.

Nanoparticle tracking analysis. Particle size distributions and concentra-
tions were measured by the NTA software (version 3.0) using the
NanoSight LM10-HS (NanoSight Ltd, Amesbury, UK), configured with a

532-nm laser and a digital camera (SCMOS Trigger Camera). Video
recordings (60 s) were captured in triplicate at 25 frames/s with default
minimal expected particle size, minimum track length, and blur setting, a
camera level of 10 and detection threshold of 5.

Proteome analysis of exosomal preparations. Serum exosome fractions
8–10 were prepared for MS-based proteomic analysis. Proteomes were
concentrated using chloroform–methanol precipitation, dissolved in 90%
formic acid (FA), their concentrations estimated at 280 nm using a
Nanodrop (ND-1000, Thermo Scientific, USA), and aliquots dried using
vacuum centrifugation. Proteomes were then processed and quantified as
before.32 Peptides from each fraction were desalted using C18 ZipTipsTM,
concentrations estimated by Qubit quantitation (Invitrogen), dried by
vacuum centrifugation, and re-suspended in 3% acetonitrile (v/v)/0.1% FA
(v/v). Samples (0.5 μg) from exosome elution fractions 8–10 were separated
by nanoLC using an Ultimate nanoRSLC UPLC and autosampler system
(Dionex) before analyzed on a QExactive Plus mass spectrometer (Thermo
Electron, Bremen, Germany) as previously described.32 MS/MS data were
analyzed using Mascot (Matrix Science, London, UK; v2.4.0) with a
fragment ion mass tolerance of 0.1 Da and a parent ion tolerance of
4.0 PPM. Peak lists were searched against a SwissProt database (2017_11),
selected for Homo sapiens, trypsin digestion, max. two missed cleavages,
and variable modifications methionine oxidation and cysteine carbamido-
methylation. Exosome proteins were annotated using Vesiclepedia (http://
microvesicles.org)33 and Functional Enrichment Analysis Tool (FunRich;
v2.1.2; http://funrich.org).34

RNA extraction and small RNA sequencing

Serum exosomes were processed for RNA extraction using the Plasma/

Serum Circulating & Exosomal RNA Purification Mini Kit (Norgen Biotek,

Cat. 51000) according to the manufacturer’s protocol. Extracted total RNA

samples were analyzed with a Eukaryote Total RNA chip on an Agilent 2100

Bioanalyzer (Agilent Technologies, United States) to confirm sufficient

yield, quality, and size of RNA. Exosome RNA sequencing libraries were

then constructed using the NEBNext Multiplex Small RNA Library Prep Kit

for Illumina (BioLabs, New England) according to the manufacturer’s

instructions. Yield and size distribution of resultant libraries were validated

using Agilent 2100 Bioanalyzer on a High-sensitivity DNA Assay (Agilent

Technologies, United States). Libraries were then pooled with an equal

proportion for multiplexed sequencing on Illumina HiSeq. 2000 System at

the Ramaciotti Centre for Genomics.

Data preprocessing, differential expression analysis, and pathway
analysis

Data preprocessing was performed using a pipeline comprising of adapter

trimming (cutadapt), followed by genome alignment to human genome

hg 19 using Bowtie (18 bp seed, 1 error in seed, quality score sum of

mismatches <70). Where multiple best strata alignments existed, tags were

randomly assigned to one of those coordinates. Tags were annotated

against mirBase 20 and filtered for at most one base error within the tag.

Counts for each miRNA were tabulated and adjusted to counts per million

miRNAs passing the mismatch filter. All samples achieved miRNA read

counts >45,000 read counts and miRNAs with low abundance (<50 read

counts across >20% of samples) were removed. Differential expression

analysis was performed using three different two-sided statistical

hypothesis tests including a non-parametric two-sample Wilcoxon test

and two parametric tests—Student’s t test and Exact test (implemented in

Bioconductor EdgeR), which tests for differences between the means of

two groups of negative binomially distributed counts. Benjamini and

Hochberg adjusted p values were also calculated. Data preprocessing and

differential expression analysis were performed using Bioconductor and R

statistical packages. Pathway analysis was performed using the Ingenuity®

software (Ingenuity Systems, USA; http://analysis.ingenuity.com). miRNA

target filters were applied to significant, differentially expressed miRNAs

(unadjusted p value ≤0.05 in all three statistical methods) and mRNA target

lists were generated based on highly predicted or experimentally observed

confidence levels. Core expression analyses were performed with default

criteria to determine the most significant functional associations (biological

and canonical pathways) of mRNAs targeted by dysregulated miRNAs.
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Univariate analysis

We performed LR and ROC analysis to assess the predictive power of
individual miRNAs between the two groups of interest. LR was used to
identify linear predictive models with each miRNA as the univariate
predictor. The quality of each model was depicted by the corresponding
ROC curve, which plots the true-positive rate (i.e., sensitivity) against the
false-positive rate (i.e., 1− specificity). AUROC was then computed as a
measure of how well each LR model can distinguish between two
diagnostic groups. The 95% CI of AUROC measures were estimated using
the Delong method35 to assess the significance of a model’s predictive
power as compared to a random trial (i.e., AUROC= 0.5). We then used
LOO-CV to estimate the prediction errors of the LR models. LOO-CV learns
the model on all samples except one and tests the learnt model on the
left-out sample. The process is repeated for each sample and the error rate
is the proportion of misclassified samples. Overall, cross-validation is a
powerful model validation technique for assessing how the results of a
statistical analysis can be generalized to an independent dataset.36 These
analyses were performed using R stats (glm) and boot (cv.glm) packages.

Multivariate analysis

To assess the predictive power of multiple miRNAs as disease signatures,
samples were first randomly partitioned into two disjoint sets of discovery
(70% of samples) and validation (30% of samples). miRNAs differentially
expressed in the discovery set (i.e., changes increased or decreased by fold
change ≥2 and unadjusted p value ≤0.05 in all three statistical hypothesis
tests) were then selected as features/predictors of RF multivariate
predictive model. RF is a multivariate nonlinear classifier that operates
by constructing a multitude of decision trees at training time in order to
correct for the overfitting problem.37 RF was trained on the discovery set
and the resultant predictive model was then used to predict GBM or GII–III
patients vs healthy controls based on the read count values of identified
miRNAs in validation samples. For statistical rigour, to account for random
partitioning of the samples into discovery and validation sets, the whole
process was repeated 100 times. We then chose stable miRNAs—i.e., those
identified to be differentially expressed in >75% of iterations—as
predictors of an RF model using all samples and the AUROC with 95% CI
as well as out-of-bag error was reported as an unbiased estimates of the
model predictive power. The “importance” or relative contribution of each
feature (differentially expressed miRNAs) in the RF performance was then
estimated based on the “mean decrease accuracy” measure as discussed in
ref. 38. All analyses were performed using R “caret” and “RandomForest”
packages.
This article was previously published as a preprint on bioRxiv https://doi.

org/10.1101/342154
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