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Figure 1: In a training phase (left), our approach learns a mapping from attributes in deferred shading buffers, e. g., positions, normals,
reflectance, to RGB colors using a convolutional neural network (CNN). At runtime (right), the CNN is used to jointly shade with environment
lighting and shadows as well as depth-of-field at interactive rates (512×384 px, 1 ms rasterizing attributes, 209 ms network execution).

Abstract

In computer vision, Convolutional Neural Networks (CNNs) have
recently achieved new levels of performance for several inverse
problems where RGB pixel appearance is mapped to attributes such
as positions, normals or reflectance. In computer graphics, screen-
space shading has recently increased the visual quality in interactive
image synthesis, where per-pixel attributes such as positions, nor-
mals or reflectance of a virtual 3D scene are converted into RGB
pixel appearance, enabling effects like ambient occlusion, indirect
light, scattering, depth-of-field, motion blur, or anti-aliasing. In this
paper we consider the diagonal problem: synthesizing appearance
from given per-pixel attributes using a CNN. The resulting Deep
Shading simulates all screen-space effects as well as arbitrary com-
binations thereof at competitive quality and speed while not being
programmed by human experts but learned from example images.

Keywords: global illumination, convolutional neural networks,
screen-space

Concepts: •Computing methodologies → Neural networks;
Rendering; Rasterization;

1 Introduction

The move to deep architectures in Machine Learning has precip-
itated unprecedented levels of performance on various computer
vision tasks, with several applications having the inverse problem
of mapping image pixel RGB appearance to attributes such as po-
sitions, normals or reflectance as an intermediate or end objective.
Deep architectures have further opened up avenues for several novel
applications. In computer graphics, screen-space shading has been
instrumental in increasing the visual quality in interactive image
synthesis, employing per-pixel attributes such as positions, normals
or reflectance of a virtual 3D scene to render RGB appearance that
captures effects such as ambient occlusion, indirect light, scattering,
depth-of-field, motion blur, and anti-aliasing.

In this paper we turn around the typical flow of information through
Computer Vision Deep Learning pipelines to synthesize appearance
from given per-pixel attributes, making use of Deep Convolutional
architectures (CNNs). The resulting approach, which we call Deep
Shading, can simulate all screen-space effects individually, as well
as arbitrary combinations thereof at competitive quality and speed
while not being explicitly programmed by human experts and rather
learned from example images.

2 Previous Work

Previous work comes, on the one hand, from a computer graphics
background where attributes have to be converted into appearance
and, on the other hand, from a computer vision background where
appearance has to be converted into attributes.

Attributes-to-appearance The rendering equation [Kajiya 1986]
is a reliable forward model of appearance in the form of radiance
incident at a virtual camera sensor when a three-dimensional de-
scription of the scene in form of attributes like positions, normals
and reflectance is given. Several contrived simulation methods for
solving it exist, such as Finite Elements, Monte-Carlo Path Tracing
and Photon Mapping. The high-quality results these achieve come
at the cost of significant computational effort. Interactive perfor-
mance is only possible through advanced parallel implementations
in specific shader languages [Owens et al. 2007], which not only
demands a substantial programming effort, but the proficiency as
well. By choosing to leverage Deep Learning architectures, we seek
to overcome those computational costs by focusing computation
on converting attributes into appearance according to example data
rather than using physical principles.

Our approach is based on screen-space shading that has been demon-
strated to approximate many visual effects at high performance, such
as ambient occlusion [Mittring 2007], indirect light [Ritschel et al.
2009], scattering [Jimenez et al. 2009], participating media [Elek
et al. 2013], depth-of-field [Rokita 1993] and motion blur [McGuire
et al. 2012]. Anti-aliasing too can be understood as a special form
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of screen-space shading, where additional depth information allows
to post-blur along the “correct” edge to reduce aliasing in FXAA
[Lottes 2011]. All of these approaches proceed by transforming a
deferred shading buffer [Saito and Takahashi 1990], i. e., a dense
map of pixel-attributes, into RGB appearance. We will further show
how a single CNN allows combining all of the effects above at once.

Even though screen-space shading is subject to limitations like miss-
ing light and shadow from surfaces not contained in the image,
several desirable properties make it an attractive choice for interac-
tive applications such as computer games: computation is focused
only on what is visible on screen; no pre-computations are required
making it ideal for rich dynamic worlds; it is independent of a geo-
metric representation, allowing to shade range images or iso-surface
ray-castings; it fits the massive fine-grained parallelism of current
GPUs and many different effects can be computed from the same
input representation.

Until now, image synthesis, in particular in screen-space, has con-
sidered the problem from a pure simulation point of view. In this
paper, we demonstrate competitive results achieved by learning from
data, mitigating the need for mathematical derivations from first
principles. This has the benefit of avoiding any effort that comes
with designing a mathematical simulation model. All that is required
is one general but slow simulation system, such as Monte Carlo,
to produce exemplars. Also, it adapts to the statistics of the visual
corpus of our world which might not be congruent to the one a
shader programmer assumes.

Applications of machine learning to image synthesis are limited,
with a few notable exceptions. A general overview of how computer
graphics could benefit from machine learning, combined with a tu-
torial from a CG perspective, is given by Hertzmann [2003]. The
CG2Real system [Johnson et al. 2011] starts from simulated images
that are then augmented by patches of natural images. It achieves
images that are locally very close to real world example data, but it is
founded in a simulation system, sharing all its limitations and design
effort. Recently, CNNs were used to transfer artistic style from a
corpus of example images to any new exemplar [Gatys et al. 2015].
Our work is different as shading needs to be produced in real-time
and in response to a great number of guide signals encoding the
scene features instead of just locally changing RGB structures when
given other RGB structures. Dachsbacher [2011] has used neural
networks to reason about occluder configurations. Neural networks
have also been used as a basis of pre-computed radiance transfer
[Ren et al. 2013] (PRT) by running them on existing features to fit a
function valid for a single scene. They share the limitations of PRT,
such as static geometry and limited spatial resolution, which have
prevented its wide-spread use in the industry, that routinely uses
screen-space shading. Earlier, neural networks were used to learn a
mapping from character poses to visibility for PRT [Nowrouzezahrai
et al. 2009]. Without end-to-end learning of convolutions and a deep
architecture, all approaches mentioned do not achieve a generaliza-
tion between scenes, but remain limited to a specific room, character,
etc. Kalantari et al. [2015] have used example data to learn optimal
parameters for filtering Monte Carlo noise. Our approach also learns
from labeled reference images, but learns shading itself instead of
filtering the noise produced by a different shading method.

For image processing, Convolution Pyramids [Farbman et al. 2011]
have pursued an approach that optimizes over the space of filters to
the end of fast and large convolutions. Our approach optimizes over
pyramidal filters as well, but allows for a much larger number of
internal states and much more complex filters defined on much richer
input. Similar to Convolutional Pyramids, our network is based on a
pyramidal CNN, allowing for fast but large filters to produce long-
range effects such as distant shadows or strong depth-of-field.

Appearance-to-attributes The inverse problem of turning image
appearance into semantic and non-semantic attributes lies at the heart
of computer vision. Of late, Deep Networks, particularly CNNs,
have shown unprecedented advances in typical inverse problems
such as detection [Krizhevsky et al. 2012], segmentation and de-
tection [Girshick et al. 2014], or depth [Eigen et al. 2014], normal
[Wang et al. 2015] or reflectance estimation [Narihira et al. 2015].
These advances are underpinned by three developments: availability
of large training datasets, deep but trainable (convolutional) learning
architectures, and GPU accelerated computation. Another key con-
tributor to these advances has been the ability to train end-to-end,
i. e., going from input to desired output without having to devise
intermediate representations and special processing steps.

One recent advance is of importance in applying CNNs to high-
quality shading: The ability to produce dense per-pixel output even
for high resolutions. Recently, (de-convolutional) CNNs that do not
only decrease, but also increase resolution were proposed [Long et al.
2015; Hariharan et al. 2015], resulting in fine per-pixel solutions.

For the problem of segmentation, Ronneberger et al. [2015] even
apply a fully symmetric U-shaped architecture where each down-
sampling step is matched by a corresponding up-sampling step which
is re-using earlier intermediate results of the same resolution level.

CNNs have also been employed to replace certain graphics pipeline
operations such as changing the viewpoint [Dosovitskiy et al. 2015;
Kulkarni et al. 2015]. Here, appearance would be already known,
it is just required to manipulate it to achieve a novel view. In our
work, we do not seek to change a rendered image but to create full
high-quality shading from the basic output of a GPU pipeline such
as geometry transformation, visible surface determination, culling,
direct light, and shadows.

We seek to circumvent the need to manually concoct and combine
convolutions into screen-space shaders that have to be programmed,
and ultimately benefit from the tremendous advances in optimizing
over deep convolutional networks to achieve a single screen-space
über-shader that is optimal in the sense of certain training data.

3 Background

Here we briefly summarize some aspects of Machine Learning,
Neural Networks, Deep Learning and training of Convolutional
Networks, only to the extent necessary for immediate application to
the computer graphics problem of shading.

For our purposes, it suffices to view (supervised) learning as simply
fitting a sufficiently complex and high-dimensional function f̃ to
data samples generated from an underlying, unknown function f ,
without letting the peculiarities of the sampling process from being
expressed in the fit. In our case, the domain of f consists of all
instances of a per-pixel deferred shading buffer for images of a given
resolution (containing per-pixel attributes such as position, normals
and material parameters) and the output is the per-pixel RGB image
appearance of the same spatial resolution. We are given the value
f (xi) of the function applied to xi, the ith of n example inputs. From
this we would like to find a good approximation f̃ to f , with the
quality of the fit quantified by a cost/loss function that defines some
measure of difference between f̃ (xi) and f (xi). Training examples
can be produced in arbitrary quantity, by mere path tracing or any
other sufficiently powerful image synthesis algorithm.

Neural Networks (NNs) are a particularly useful way of defining
arbitrary non-linear approximations f̃ . A Neural Network is typi-
cally comprised of computational units or neurons, each with a set
of inputs and a singular scalar output that is a non-linear function
of some affine combination of its inputs governed by a vector of



weights wk for each unit k. This affine combination per unit is what
is learned during training. The units are arranged in a hierarchical
fashion in layers, with the outputs from one layer serving as the
inputs to the layers later in the hierarchy. There are no connections
between units of the same layer. The fan-in of each unit can either
connect to all outputs of the previous layer (fully-connected), or only
sparsely to a few, typically nearby ones. Furthermore, units can also
be connected to several preceding layers in the hierarchy.

The non-linearity applied to the affine combination per unit is called
the activation function. These are often smooth functions, such as
the Sigmoid. In our networks, we make use of Rectified Linear Units
(ReLUs) that simply clamp each unit’s output to the non-negative
range.

Defining w as the set of weights for the entire network, the function
f̃ (xi) can be expressed as f̃w(xi). A typical choice of loss is the

squared L2-norm: || f̃w(xi)− f (xi)||
2
2. Alternatively, a perceptual

loss function based on a combination of L1-norm and structural
similarity (SSIM) index may be used [Zhao et al. 2015]. Optimizing
weights with respect to the loss is a non-linear optimization process,
and Stochastic Gradient Descent or its variants are the usual choice
of learning algorithm. The method makes a computational time -
run time trade-off between computing loss gradients with respect to
weights at all exemplars at each gradient descent step and computing
gradients with one sample at a particular gradient descent step, by
choosing to compute it for subsets of exemplars in mini-batches.
The gradient with respect to w is computed by means of back-
propagation, i. e., the error is first computed at the output layer and
then propagated backwards through the network. From this, the
corresponding update to each unit’s weight can be computed.

Layer i

Layer i+1

Unit j

0.3 -1.2 3.4

1.3

1 2 1

Output vector

Input vector

Kernel

Figure 2: Terminology.

Convolutional Networks are a special
case of Neural Networks, with a sem-
blance of regular spatial arrangement
of the units within layers. Within
each layer, units are arranged in mul-
tiple regular-grid slices of the same
size. Each unit in layer i + 1 con-
nects to the outputs of the units from
all slices of the layer i lying within
a certain local spatial extent defined
as the (spatial) kernel size of the unit,
centered at the unit. The units within
each slice share their weights, with the consequence that the opera-
tion of each slice can be seen as a 3D convolution with a kernel that
is as large as the spatial fan-in of the unit along two dimensions, and
extends as large as the number of slices in the previous layer along
the third dimension. We will interchangeably use spatial kernel size
and kernel size, and the third kernel dimension is implicit.

CNNs typically stack multiple such convolutional layers, with spatial
resolution being reduced between consecutive layers as a trick to
achieve translation invariance. However de-convolutional networks,
allow us to increase the resolution back again [Long et al. 2015],
which is critical for our task, where per-pixel appearance i. e., high-
quality shading needs to be produced quickly.

4 Deep Shading

Here, we detail the training data we produced for our task, the
network architecture proposed and the process of training it.

4.1 Training data

Our training data starts out with about 50,000 pairs of deferred shad-
ing buffers and corresponding shaded reference images. Images and

buffers are computed in a resolution of 256×256 px using perspec-
tive projection from random camera positions within a cube covering
the 3D scene, with a fixed field-of-view of 35◦. Several scenes of
different nature (Fig. 1 left) are sampled to avoid over-fitting to a
particular scene. To increase the robustness of the training set in an
easy way, only 8,000 unique views of the scene are rendered. We
call these base images. For each base image three rotated (in steps
of 90deg) as well as horizontally and vertically flipped versions
are used. Special care has to be taken when transforming attributes
which are with respect to the view space, here the respective posi-
tions and vectors have to be transformed themselves by applying
rotations or mirroring.

We composed the training scenes with objects from publicly avail-
able sources with consideration for the effects to be learnt. For
instance, to learn image-based lighting, where the effect depends on
the surface normal at each pixel, the scene should contain smooth
objects so that as many different normals as possible are covered.
Contrarily, to learn an anti-aliasing filter, a lot of fine geometry with
sharp edges is necessary to create sufficiently many exemplars for
the network. The left of Fig. 1, shows examples of ground truth
images for each instance of the network. Sec. 5 contains additional
information on the training sets for each application.

Attributes The deferred shading buffers are computed using
OpenGL’s rasterization without anti-aliasing of any form. They
contain per-pixel geometry, material and lighting information. All
labels are scaled and biased to fit into 8 bit images.

Positions are only stored with respect to the camera space (Ps) while
normals might be stored with respect to both, camera space and
world space (Ns and Nw). Normals are represented as unit vectors
in Cartesian coordinates and positions are first scaled uniformly by
dividing them by the diameter of a bounding sphere around the scene

to ensure that they are in the range [−1,1]3. Additionally, depth
alone (Ds =Ps,3) and distance to the focal plane (Dfocal) are provided
to also capture sensor parameters. To be able to compute view-
dependent effects, the normalized direction to the camera (Cw/s) is

an additional input.

Material parameters (R) combine surface and scattering properties.
For surfaces, we use the set of parameters to the Phong [1975] re-
flection model, i. e., RGB diffuse and specular colors (denoted as
Rdiff and Rspec) as well as scalar glossiness (Rgloss). For scattering
we use a simplified model with four components (Rscatt): The first
three are the screen-space variance that the best single Gaussian ap-
proximating the BSSRDF at each RGB channel and at unit distance
would have and the fourth is a general scalar strength parameter,
controlling how much SSS contributes to the material over all.

Direct lighting (denoted by L or Ldiff for diffuse-only) is not com-
puted by the network but provided as an input to it, as is the case
with all corresponding screen-space shaders we are aware of. For-
tunately, it can be quickly computed at runtime and fed into the
network. Direct light is computed using the Phong reflection model
with shadow mapping and stored as RGB maps.

Finally, the per-pixel object motion F is encoded as a two-
dimensional polar coordinate in each pixel to support motion blur,
with the assumption that the motion during exposure time is small
enough to be approximated well by a translation. The first compo-
nent holds the direction between 0 and 2π , the second component
holds the distance in that direction.

In summary, each pixel is labeled by a high-dimensional value,
where the dimensions are partially redundant and correlated, e. g.,
normals are derivatives of positions and camera space differs from
world space only by a linear transformation. Nonetheless, those



attributes are the output of a typical deferred shading pass in a com-
mon interactive graphics application, produced within milliseconds
from complex geometric models. Redundant attributes are almost
free but improve the performance of certain networks for certain
effects. At the same time, for some effects that do not need certain
labels, they can be manually removed to increase speed.

Appearance The reference images store per-pixel RGB appear-
ance resulting from shading. They are produced using a reference
rendering method. Path traced images, paintings or even real photos
would represent valid sample data as well, but their acquisition is
significantly more time-consuming than that of the approximate
references we use, of which massive amounts can be produced in a
reasonable time. Therefore, appearance is computed independent for
every pixel as follows. Every pixel iterates all neighboring pixels and
computes shading using the attributes. For motion blur and depth
of field, 100 individual images from random time and lens samples
are computed and averaged to arrive at a reference image combining
complex shading and distribution effects. For anti-aliasing, refer-
ence images are computed with 10× super-sampling relative to the
label images. We do not apply any gamma or tone mapping to our
reference images used in training. It therefore has to be applied as a
post-process after executing the network.

Typically, screen-space shading is faded out based on a distance term
and only accounts for a limited spatial neighborhood. As we train
on one resolution but later apply the network also to different ones,
the effective size of the neighborhood changes. As a solution, when
applying the network at a resolution which is larger by factor of N
compared to the training resolution, we also divide the screen space
effect radius of the reference image by N. This order is chosen to
make the CNN more independent of the final output resolution.

In practice, some effects like Ambient Occlusion (AO) and Direct
Occlusion (DO) do not compute final appearance in terms of RGB
radiance, but rather a quantity which is later multiplied with albedo.
We found the networks that do not emulate this obvious multiplica-
tion to be substantially more efficient while also requiring less input
data and therefore opt for a manual multiplication. However, some
networks that go beyond this simple case need to include the albedo
in their input and calculations. The result section will get back to
where albedo is used in detail. Tbl. 1 provides an overview in the
column “albedo”.

In a similar vein, we have found that some effects are best trained
for a single color channel, while others need to be trained for all
channels at the same time. In the first case, the same network is
executed for all three input channels simultaneously using vector
arithmetic after training it on scalar images showing only one of
the color channels. In the second case, one network with different
weights for the three channels is run. We refer to the first case as
“mono” networks, to the latter as “RGB” networks (Tbl. 1).

4.2 Network

Downsample

Downsample

LReLU LReLU
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Level
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Upsample Overview
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n×n×u/2 n×n×un×n×u n×n×(u+2u)u u u u

Step

Figure 3: Left: One level of our network. Right: The big picture.

Our network is U-shaped, with a left and a right branch. The first
and left branch is reducing spatial resolution (down branch) and

the second and right branch is increasing it again (up branch). We
refer to the layers producing outputs of one resolution as a level.
Fig. 3 shows an example of one such level. Overall, up to 5 levels
with corresponding resolutions ranging from 256×256 px to 16×
16 px are used. Further, we refer to all layers of a particular level
and branch (i. e., left or right) as a step. Every step is comprised
of a convolutional as well as a subsequent activation layer. The
convolutions (blue in Fig. 3) have a fixed extent, which is the same
for all convolutions, in the spatial domain, which varies depending
on the effect to compute. The consecutive activation layers (orange
in Fig. 3) consist of leaky ReLUs as described by Maas et al. [2013],
which multiply negative values by a small constant instead of zero.

The change in resolution between two steps on different levels is
performed by re-sampling layers. These are realized by 2×2 mean-
pooling on the down (red in Fig. 3) and by bilinear up-sampling
(green in Fig. 3) on the up branch.

The layout of this network is the same for all our effects, but the
number of kernels on each level and the number of levels vary. All
designs have in common that the number of kernels increases by
a factor of two on the down part to decrease by the same factor
again on the up part. We denote the number of kernels used on the
first level by u0. A typical start value is u0 = 16, resulting in a 256-
dimensional feature vector for every pixel in the coarsest resolution.
The coarsest level consists of only one step, i. e., one convolution
and one activation layer, as depicted in Fig. 3. Additionally, the
convolution steps in the up-branch access the outputs of the corre-
sponding step of the same output resolution in the down part (gray
arrow in Fig. 3). This allows to retain fine spatial details.

A typical network has about three million degrees-of-freedom i. e.,
weights and bias terms which are learned (see Tbl. 1 for details). We
call the CNN resulting from training on a specific input and specific
labels a Deep Shader.

Training Caffe [Jia et al. 2014], an open-source CNN implemen-
tation, is used to implement and train our network. To produce the
input cube to the first step, all input attributes are loaded from im-
age files and their channels are concatenated forming input vectors
with 3 to 18 components per pixel. To allow networks of varying
complexity which demand different learning rates in order to keep
optimization using stochastic gradient descent fast and stable, an
adaptive learning rate method (ADADELTA [Zeiler 2012]) is used.

We use a loss function based on the structural similarity (SSIM)
index [Zhao et al. 2015] which compares two image patches in a
perceptually motivated way. The loss between the output of the
network and the ground truth is computed by first tiling the two
images into patches of 8×8 px and computing the SSIM between
corresponding patches for each channel. SSIM ranges from −1 to
1, where a higher value means a higher similarity. It is therefore
subtracted from 1 and halved to compute the structural dissimilarity
(DSSIM). The sum of the DSSIM values for all patch pairs across
all channels defines the final loss.

Testing To evaluate the performance of the network, we compute
the test error as the average loss over a set of 100 test images. These
are produced in the same way as the training data, randomly sam-
pling viewpoints and attributes like diffuse reflectance. In addition to
the common requirement that the testing set should not be part of the
training data, we also only use scenes not used to produce training
data when preparing the test data. The resulting SSIM values are
listed in Tbl. 1.

Implementation While Caffe is useful for training the network,
it is inconvenient for executing it in the setting of an interactive



rendering application. We therefore re-implemented the forward
pass of the network using plain OpenGL shaders operating on array
textures. In our application, the result of applying the Deep Shader
can be interactively explored as seen in the supplemental video.

5 Results

5.1 Effects

Here we will analyze our learned Deep Shaders for different shading
effects. Tbl. 1 provides an overview over their input attributes,
structural properties and the resulting SSIM achieved on a test set,
together with the time necessary to execute the network using our
own OpenGL implementation on an NVIDIA GeForce GTX 980 Ti
GPU. For visual comparison, we show examples of Deep Shaders
applied to new (non-training) scenes compared to the reference
implementations used to produce the training sets in Fig. 4.

Table 1: Structural properties of the networks for different effects,
resulting degrees of freedom, SSIM on the test set and time for
executing the network using our OpenGL implementation on 512×
384 px input as seen in Fig. 4. In case of mono networks, the time
refers to the simultaneous execution of three networks. The SSIM is
always with respect to the raw output of the network, e. g., indirect
irradiance for GI. The final image might show even better SSIM.

Effect Attributes Albedo Mono u0. Lev. Ker. Size SSIM Time

IBL Nw, Cw, R ✓ ✗ 128 1 1×1 2 K .982 7.2 ms

AO Ns, Ps ✗ ✓ 8 5 3×3 244 K .891 26 ms

DO Nw, Ns, Ps ✗ ✗ 16 5 3×3 1.0 M .694 78 ms

GI Ns, Ps, Ldiff ✓ ✓ 16 5 5×5 2.7 M .648 254 ms

SSS Ps, Rscatt, L ✓ ✓ 8 5 3×3 244 K .977 35 ms

DoF Dfocal, L ✓ ✓ 8 5 5×5 171 K .926 28 ms

MB F,L,Ds ✓ ✓ 8 5 3×3 244 K .973 36 ms

AA Ds, L ✓ ✓ 8 1 5×5 609 .882 2.2 ms

Full All ✓ ✗ 16 5 5×5 2.7 M .527 209 ms

Ambient Occlusion Ambient occlusion (AO) simulates darken-
ing in corners and creases due to a high number of blocked light
paths and is typically defined as the percentage of directions in
the hemisphere around the surface normal at a point which are not
blocked within a certain distance. Our ground truth images are com-
puted from screen-space positions and normals using screen-space
ambient occlusion (SSAO) [Mittring 2007] with a constant effect
range defined in world space units. In an actual application, the AO
term is typically multiplied with the ambient lighting term before
adding it to the image.

The trained network faithfully reproduces darkening in areas with
nearby geometry (Fig. 4). The most noticeable difference to images
produced using a reference is a lack of contrast. This might be due
to the training set not containing enough examples of empty spaces,
which should be rendered purely white.

We made AO – which is a prototypic screen-space effect – the subject
of further in-depth analysis of alternative network designs described
in Sec. 5.2 and seen in Fig. 6, a) and b).

Image-based Lighting In image-based lighting (IBL) a scene is
shaded by sampling directions in an environment map to determine
incoming radiance, assuming all directions are unblocked. The net-
work is trained to render a final image, so that no post-multiplications
are necessary, using diffuse and specular colors as well as gloss
strengths. It can operate on all color channels simultaneously.

As can be seen from the vehicles in Fig. 4, the network handles
different material colors and levels of glossiness well. The two main
limitations are a slight color shift compared to a reference, as seen
in the tires of the tractors, and an upper bound on the representable
level of glossiness. The latter is not surprising as the extreme here
is a perfect mirror which would need a complete encoding of the
environment map used in training, which has a resolution of several
megapixels, into as few as 128 convolution kernels.

Directional Occlusion Directional occlusion (DO) is a general-
ization of ambient occlusion where each sample direction is associ-
ated with a radiance sample taken from an environment map and we
sum up light only from unblocked directions [Ritschel et al. 2009].
A DO Deep Shader is specific to the environment map it was trained
on and operates on all channels simultaneously, like IBL. The DO
result is applied in the same way as AO.

While AO works well, Deep Shading struggles more with DO. The
increased difficulties come from indirect shadows now having differ-
ent colors and appearing only for certain occlusion directions. As
can be seen in Fig. 4, the color of the light from the environment
map and the color of shadows match the reference but occlusion is
weakened in several places. This is due to the fact that the indirect
shadows resulting from DO induce much higher frequencies than
unshadowed illumination or the indirect shadows in AO which as-
sume a constant white illumination from all directions, which are
harder to encode in a network.

Diffuse Indirect Light A common challenge in rasterization-
based real-time rendering is how to add indirect light. To simplify
the problem, the set of relevant light paths is often reduced to a single
“indirect bounce” and diffuse reflection [Tabellion and Lamorlette
2004]. For this specialization, screen-space global illumination
(SSGI) is a possible approximation. The ground truth in our case
consists of the “indirect radiance”, i. e., the light arriving at each
pixel after one interaction with a surface in the scene. From this, the
final indirect component can be computed by multiplying with the
diffuse color. We compute our ground truth images in screen space
as well [Ritschel et al. 2009]. As we are assuming diffuse reflec-
tions, the direct light input to the network is computed using only
the diffuse reflectance of the material. In the absence of advanced
effects like fluorescence or dispersion, the light transport in differ-
ent color channels is independent from each other. We therefore
apply a monochromatic network. The network successfully learns to
brighten areas in shadow, which do not appear pitch-black anymore,
rather the color of nearby lit objects (Fig. 4).

Anti-aliasing While aliasing on textures can be reduced by ap-
plying proper pre-filtering, this is not possible for sharp features
produced by the geometry of a scene itself. Classic approaches com-
pute several samples of radiance per pixel which typically comes
with a linear increase in computation time. This is why state-of-the-
art applications like computer games offer simple post-processing
filters like Fast Approximate Anti-Aliasing (FXAA) [Lottes 2011]
as an alternative, which operate on the original image and auxiliary
information such as depth values. We let our network learn such a
filter on its own, independently for each channel.

Applying our network to an aliased image (Fig. 4) replaces jagged
edges by smooth ones. While it cannot be expected to reach the
same performance as the 10× Multi Sample Anti-Aliasing (MSAA)
we use for our reference, which can draw from orders of magnitude
of additional information, the post-processed image shows fewer
disturbing artefacts. At the same time, the network learns to not
over-blur interior texture areas that are properly sampled, but only
blurs along depth discontinuities.
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Figure 4: Results of different Deep Shaders as discussed in Sec. 5.1. “Original” is the input RGB image without any effect. The lower right
panel shows animate variants of the Deep Shader seen above from the supplemental video, running at interactive rates.



Depth-of-field As a simple rasterization pass can only simulate a
pinhole camera, the appearance of a shallow depth of field (DoF)
has to be faked by post-processing when multiple rendering passes
are too costly. In interactive applications, this is typically done by
adaptive blurring of the sharp pinhole-camera image. We learn our
own depth-of-field blur from sample data which we actually generate
in an unbiased way, by averaging renderings from multiple positions
on the virtual camera lens. The amount of blurriness depends on
the distance of each point to the focal plane. As the computation
of the latter does not come with any additional effort compared to
the computation of simple depth, we directly use it as an input to
the Deep Shader. While the training data is computed using a fixed
aperture, the shallowness of the depth of field, as well as the focusing
distance, are easy to adjust later on by simply scaling and translating
the distance input. The Deep Shader again is trained independently
for each channel, assuming a non-dispersive lens.

The Deep DoF Shader blurs things in increasing distance from the
focal plane by increasing extents. In Fig. 4, the red blossoms appear
sharper than e. g., the blades of grass in the background. It turned out
to be fruitful to use textured objects in training to achieve a sufficient
level of sharpness in the in-focus areas.

The biggest challenge for Deep Shading of all distribution effects
(DoF, MB, AA) is to avoid over-blurring in the “zero areas”: at the
focal plane for DoF, static objects for MB or off-geometry edges for
AA. The network tends to get this difference right in many places
and by-large, but fails to fully avoid blurring, resulting in slight
haloes or blur that reduces fine spatial details.

Sub-surface Scattering Simulating the scattering of light inside
an object is crucial for achieving realistic appearance for translucent
materials like wax or skin. A popular approximation to this is
screen-space sub-surface scattering (SSSS) [Jimenez et al. 2009]
which essentially applies a spatially-varying blurring kernel to the
different color channels of the image.

While the original method uses a sum of Gaussian kernels to approxi-
mate a physically-motivated diffusion profile derived from scattering
and absorption coefficients, we opted for a single Gaussian with a
different variance for each color channel to keep the number of input
attributes low. An automatic translation of physical parameters into
the right diffusion profile represents further work.

To compute the final images on which the network is trained, we
linearly interpolate between the blurred image and the original one
depending on a per-object scalar which is supplied to the network
as well. In a physically correct solution, this would be handled by
applying the Fresnel equations depending on the refractive indices
of the materials, which determine which portion of the light is
transmitted into the material and which is directly reflected.

After training the Deep Shader independently for all RGB channels
on randomly textured training images with random variances for
the applied Gaussian blurring kernel and with random scattering
strengths, we achieve images which are almost indistinguishable
from our reference method.

Motion Blur Motion blur is the analog to depth-of-field in the
temporal domain. Images of objects moving with respect to the
camera appear to be blurred along the motion vectors of the objects
for non-infinitesimal exposure times. The direction and strength
of the blur depends on the speed of the object in the image plane
[McGuire et al. 2012].

For training, we randomly moved objects inside the scene for random
distances. Motions are restricted to those which are parallel to the
image plane, so that the motion can be encoded by an angle and

magnitude alone. We also provide the Deep Shader with a depth
image to allow it to account for occlusion relations between different
objects correctly, if possible. Our Deep Shader performs motion blur
in an convincing way that manages to convey a sense of movement
and comes close to a reference image (Fig. 4).

Full Shading Finally, we learn a Deep Shader that combines sev-
eral shading effects at once and computes a scene shaded using
image-based lighting, with directional occlusion to produce soft
shadows, and additional shallow depth-of-field and anti-aliasing. As
DO and IBL are part of the effect, the network can again make use
of all channels simultaneously.

An image generated using the network (Fig. 4) exhibits all of the
effects present in the training data. The scene is shaded according to
the environment map, working for both diffuse (cloth) and moder-
ately glossy (fruit) materials. Furthermore, occlusion is visible, e. g.,
around the skull, and the background and very front show a subtle
depth-of-field effect.

Animations Please see the supplemental video for view changes
inside those scenes, and dynamic characters. The network might
overblur at times, but we found Deep Shading to almost never pro-
duce any flickering as the network is built from smooth functions.

Typical artefacts In networks, where light transport becomes
too complex and the mapping was not fully captured, what looks
plausible in a static image may start to look wrong in a way that is
hard to compare to common errors in computer graphics: spatio-
temporal patterns resembling the correct patterns manifest, but are
inconsistent with the laws of optics and with each other, adding a
painterly and surrealistic touch. We show example artefacts in Fig. 5.
Capturing high frequencies is a key challenge of Deep Shaders
(Fig. 5, a). If the network does not have enough capacity or was not
train enough, the results might overblur with respect to the reference.
We consider this a graceful degradation compared to typical artefacts
of man-made shaders such as ringing or Monte Carlo noise, which
are unstable over time and unnatural with respect to natural image
statistics. Sometimes, networks trained on RGB tend to produce
color shifts (Fig. 5, b). CNN-learned filters may also introduce high
frequencies manifesting as ringing (Fig. 5, c). At image boundaries,
Deep Shaders may behave differently and produce incorrect patterns
(Fig. 5, d). At attribute discontinuities, the SSIM loss lacking an
inter-channel prior gives rise to color ringing (Fig. 5, e).
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a) b) c) d) e)

Figure 5: Typical artefacts of our approach: a): Blur. b): Color shift.
c): Ringing. d): Image boundaries. e): Attribute discontinuities.

5.2 Analysis

Deep Learning architectures, with their vast number of trainable
parameters, have a propensity to overfit even when presented with a
large corpus to learn from. Of concern to us is the trade-off between
the expressiveness of the network in approximating a certain effect
and its computational demands. To understand this, we investigate
two modes of variation of the number of parameters of the network,
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iterations for different designs of AO (curves). b) Relation of final loss and compute time for different designs for AO. d) Loss as a function of
iterations for different designs for other effects (curves). d) Relation of final loss and compute time for different designs for other effects.

choosing to vary the spatial extent of the kernels as well as the
number of kernels on the first level u0. Our objective for each effect
being finding the smallest network with sufficient capacity to learn,
that generalizes well on previously unseen data. The results are
summarized in Fig. 6 for the example of AO.

Spatial Kernel Size Fig. 6, (a) (green, yellow and orange lines)
shows the evolution of training and test error with an increasing
number of training iterations, with the number of kernels fixed to a
medium value of u0 = 8 and varying the spatial extent of the kernels.
We see that all three configurations have a nearly identical training
error profile, which means that they all possess sufficient capacity to
approximate the mapping induced by the training set equally well.
However, the test error actually becomes worse with increasing
spatial kernel size, indicating that the networks with kernel sizes
of 5×5 and 7×7 are overfitting and hence not generalizing well.
While an increased kernel size can increase the computational power
of the network, it also increases the need for an extensive training
set. Thus, for the given training set, 3×3 is the optimal choice and
it also represents the fastest-to-execute of the three options as shown
in Fig. 6, (b).

Initial Number of Kernels The orthogonal mode of variation is
u0, the number of kernels on the first level, with the number of
kernels in subsequent layers expressed as multiples of u0. Again,
we plot the training and test error, this time for different values of
u0 (Fig. 6, a, blue and purple lines). On the training set, u0 = 16
performs only slightly better than u0 = 8, while both perform equally
well on the test set. With 16 kernels, the network is slightly over-
fitting to the training set. Additionally, increasing the number of
kernels contributes to increased memory consumption, both in the
way of increased number of parameters and increased size of inter-
mediate representations. Varying the spatial kernel size in isolation
does not affect the size of intermediate representations. Reducing
the number to u0 = 4 however evinces a clear loss of expressiveness.
We therefore choose u0 = 8 for our application, as a doubling of u0

to 16 also comes with a huge hit in performance (Fig. 6, b).

Structural Choices for other Effects The detailed analysis for
AO yields an expedient direction to proceed in for the choice of
kernel size and u0 for the other effects. We start off with spatial
extents of 3× 3 and 5× 5, with u0 = 8, and proceed to increase
or decrease u0 in accordance with overfit / underfit characteristics
exhibited by the the train-test error curves. Tbl. 1 indicates the final
choice of the network structure for each effect. Additionally, the
train-test error curves for the top two contenders for each effect are
shown in Fig. 6, (c), with their test loss-vs.-speed characteristics

captured in Fig. 6, (d). u0 for all pairs of curves in Fig. 6, (c) are as
listed in Tbl. 1.

From Fig. 6, (d) (red and dark red), the choice of kernel size for
DO is clearly 3×3. For GI (green and dark green) however, even
though the losses are quite similar, we go with the larger kernel 5×5
because it produced visually better results. In case of DOF (blue
and dark blue), it again is a close call both in terms of execution
time and loss, so we pick the larger kernel size. For SSS (yellow and
brown) as well as MB (pink and purple) it is a close call and we go
with 3×3 for both.

6 Conclusion

We have proposed Deep Shading, a system to perform shading using
a CNN. Different from previous applications in computer vision
using appearance to infer attributes, Deep Shading leverages deep
learning to turn attributes of virtual 3D scenes into appearance. It
is also the first example of performing complex shading purely by
learning from data and removing all considerations of light transport
simulation derived from first principles of optics.

We have shown that CNNs can actually model any screen-space
shading effect such as ambient occlusion, indirect light, scattering,
depth-of-field, motion blur, or anti-aliasing as well as arbitrary com-
binations of them at competitive quality and speed. Our main result
is a proof-of-concept of image synthesis that is not programmed by
human experts but learned from data without human intervention.

The main limitation of Deep Shading is the one inherent to all
screen-space shading, namely missing shading from objects not
contained in the image due to occlusion, clipping or culling. At the
same time, screen-space shading is well-established in the industry
due to its ability to handle large and dynamic scenes in an output-
sensitive manner. We would also hope, that in future refinements,
the Deep Shader might even learn to fill in this information, e. g.,
it might recognize the front of a sphere and know that in a natural
scene the sphere will have a symmetric back that will cast a certain
shadow. In future work, we would like to overcome the limitation to
screen space effects by working on a different scene representation,
such as surfels, patches or directly in the domain of light paths.
Some shading effects like directional occlusion and indirect lighting
are due to very complex relations between screen space attributes.
Consequently, not all configurations are resolved correctly by a
network with limited capacity, such as ours which runs at interactive
rates. We have however observed that the typical artefacts are much
more pleasant than for human-designed shaders. Typical ringing and
over-shooting often produces patterns the network has learned from
similar configurations, and what appears plausible to the network is



often visually plausible as well. A perceptual study could look into
the question whether Deep Shaders, in addition to their capability to
learn shading, also produce more visually plausible errors than the
typical simulation-type errors which are patterns that never occur in
the data. Screen-space excels in handling complex dynamic scenes,
and Deep Shading does as well. Deep Shaders that result in a low
final test error (Fig. 6, c) are almost free of temporal artefacts as
seen in the supplemental video.

Deep Shading of multiple effects can currently achieve performance
en-par with human-written code, but not exceed it. We would hope
that more and improved training data, advances in learning methods
and new types of deep representations will allow surpassing human
shader programmer performance in a not-so-distant future.
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